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Abstract

We consider asymptotics of orthogonal polynomials with respect to weights
w(x)dx=e Q¥ dxon the real line, wher®(x) = 3 2™ akX¥, dzm > 0, denotes a
polynomial of even order with positive leading coefficient. The orthogonal poly-
nomial problem is formulated as a Riemann-Hilbert problem following [22, 23].

We employ the steepest-descent-type method introduced in [18] and further
developedin [17, 19] in order to obtain uniform Plancherel-Rotach-type asymp-
totics in the entire complex plane, as well as asymptotic formulae for the zeros,
the leading coefficients, and the recurrence coefficients of the orthogonal poly-
nomials.© 1999 John Wiley & Sons, Inc.
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1 Introduction and Background
Let

2m
(1.1) Q(X) = Z)quk, O2m >0, >0,
k=

be a polynomial of even degree with a positive leading coefficient. We denote by
(% Q) = mn(X) = X" 4 --- the n'" monic orthogonal polynomial with respect to
the measure

(1.2) w(x)dx = e ™dx
on the real line and by, (x,Q) = pn(X) = Ynmn(X), 7n > 0, the normalizecht”

orthogonal polynomial or simply the orthogonal polynomial, with respect to
the measurev(x)dx, i.e.,

(1.3) /R Pn(X) pm(X)€ ™dx = 6m, NnmeN.

Furthermore, we denote H®,)ney and (bn)nen the coefficients of the associated
three-term recurrence relations, namely,

(1.4) XPh(X) = bnpPn+1(X) +anPn(X) +bn-1pn-1(X), NEN,

and denote by

(1.5) Xin > Xon > -+ > Xnn

the roots ofp,. The statement of results involves th& Mhaskar-Rakhmanov-Saff
numbers(in short, MRS numbers [34, 37}, and 3,, which can be determined
from the equations

Bn / —
21 Jan /(B —1)(t — )
Bn / —
27 Jay (Bn—1)(t —an)
and, in particular, the intervédv,, 5,] whose width and midpoint are given by
- +
(1.8) cni= S thi= r .

For the weights under consideration, it will be straightforward to prove the ex-
istence of the MRS numbers for sufficiently lang¢see Proposition 5.2 below).
Indeed, they can be expressed in a power seriaskif™. We obtain

hd |

(1.9) ¢, = N7 S cnam, ¢@= (qumAﬂ)‘%n , ¢V =0,
%
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1.10 d, = S dOn-zm g0 = _ Oom-1 1
(1.10) n I; e
where

m2j-1
(2.12) A= 2_1 meN.

J:
The coefficients of the series foy andd,, can be computed explicitly, and we have
just written down the first ones in (1.9) and (1.10) for the reader’s convenience.
From now on, we will assume thatis sufficiently large for (1.9) and (1.10) to
hold.

The results in this paper concern the asymptotics of leading coefficignts
recurrence coefficient, andby, and zerog; », as well as Plancherel-Rotach-type
asymptotics for the orthogonal polynomials, i.e., asymptotics fopn(cnz+ dn)
uniformly for all ze C. The name “Plancherel-Rotach” refers to the work [36] in
which the authors prove asymptotics of this type in the classical case of Hermite
polynomials.

There is a vast literature on asymptotic questions for orthogonal polynomials.
Among the measures considered in this paper, the case of the Hermite weight was
the first to be understood (see [36, 43]). During the last thirty years, more general
classes of weights dR have been studied. Here the class of Freud weights played
a most important role. Freud weights are of the fermR* dx, whereQ grows like
a power at infinity (see [28] for a recent survey). We refer the reader to [28] for a
full description of the wide variety of results that have been obtained in this field.

We will now describe briefly the results in the literature related to Theorems
2.1, 2.2, and 2.3 below. The measures considered are always of the form

(1.12) w(x)dx = e~ dx.

The functionQ will be either a polynomial of even degree (as in our results) or
a power of the formQ(x) = |x|%, 8 > 0, or lie in some class of functions that
grow like powers at infinity and that we will simply call Freud weights without
distinguishing the different (and rather technical) additional assumptions.

1.1 Asymptotics of Leading and Recurrence Coefficients

Strong asymptotics for the leading coefficientsof orthogonal polynomials
have been obtained by Lubinsky and Saff [30] and by Totik [4] for even Freud
weights and by Rakhmanov [38] f@(x) = |x|?, 3 > 1. These papers are con-
cerned only with determining, to leading order im. In particular, in [30] and
[4] no estimates on the rate of convergence are provided, whereas in [38] an error
bound of orde© (n~1/3) is given.

In the case thaD is a polynomial of even order with positive leading coefficient,
Magnus [31] showed thdt,_1/c, — 3 anda,n~1/2™ — 0. The existence of an
asymptotic expansion was then proved by Bauldry, Maté, and Nevai [4]. In the
case of even Freud weights, Lubinsky, Mhaskar, and Saff [29] prbyed'c, —
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—1  —1+4

FIGURE 1.1. Different asymptotic regions fq(cnz+ dy) in C...

%. Note that the limit ofb,_1/c, asn — « is related to the well-known Freud
conjecture, i.e.by_1/X1n — % The two limits are equivalent by the asymptotics
for the largest zeray , (see, e.g., Theorem 2.3). Note the high accuracy of the
Freud conjecture as displayed in (2.11), where all the terms up to Oraer?)

vanish.

1.2 Plancherel-Rotach Asymptotics

Becausepn(z) = pn(2), we will only describe the asymptotics pf(chz+ dn)
in the closed upper half-plar@, . Depending on a small parametgrwe divide
C. into six closed regions, as shown in Figure 1.1.

The asymptotic behavior qi,(Cnz+ dy)e~29(@Z+t) in the regionA; was de-
termined by Lubinsky and Saff [30] and Totik [44] for even Freud weights, and by
Rakhmanov [38] foQ(x) = |x|%, 3 > 1. In a different direction, Geronimo and
Van Assche (see, e.g., [45]) imposed conditions directly on the recurrence coeffi-
cients rather than on the weight functien® and obtained asymptotic results for
the regionAs.

In the regiorBs, results have been obtained by Nevai [35] in the €s¢ = x*,
by Bauldry [2] forQ(x) = x* 4+ q(x), whereq is an arbitrary polynomial of degree
3, by Sheen [41] foQ(x) = x8, by Rakhmanov [38] foQ(x) = |x|?, 3 > 1, and by
Lubinsky [27] for even Freud weights. Estimates on the rate of convergence were
given in [35] and [41], where the error term was shown to be of ofer?),
uniformly forze [-1+6,1—¢], for anyd > 0. Nevai conjectured that the same
rate of convergence would apply for Freud weights. Formula (2.18) proves this
conjecture in the case @J being a polynomial of even order with positive leading
coefficient.

1.3 Asymptotic Location of the Zeros

Maté, Nevai, and Totik proved in [32] that an asymptotic formula similar to
(2.27) holds if the recurrence coefficients satify= 0, b,_1 = cn”(140(n~%/3)),
for some positive constantsand~. This proves (2.27) (with a weaker error term
than we obtain) in the case @i(x) = x*™ (and for a slightly more general class
of even polynomial®), cf. [4] or Theorem 2.1 above). Asymptotics for the largest
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zeros also follow from recent work of Chen and Ismail [9] for convex polynomials
Q. For even Freud weights it was shown in ([26]) that/c, = 1+0(n~%/3).

Estimates on the distance between neighboring zeros were obtained in the case
of even Freud weights by Criscuolo, Della Vecchia, Lubinsky, and Mastroianni
[11].

Second-order differential equations have played an important role in analyzing
the asymptotic behavior of orthogonal polynomials. They have been derived by
Nevai [35], Sheen [41], Bonan and Clark [8], Bauldry [3], Chen and Ismail [9]
for polynomial Q, and Mhaskar [33] for even Freud weights. Although we do
not use second-order differential equationsggto derive our asymptotic results,
we can derive such differential equations from the Riemann-Hilbert formulation as
indicated in Appendix C.

To prove our results stated in the following section, we apply, in Section 3, the
reformulation of Fokas, Its, and Kitaev [22, 23] of the problem of orthogonal poly-
nomials as a Riemann-Hilbert problem. In the remaining sections, we derive the
asymptotics of the solution to the Riemann-Hilbert problem. We use the method
of steepest descent introduced by Deift and Zhou in [18] and further developed
in [19], and also by Deift, Venakides, and Zhou in [17]. Our analysis also makes
use of results obtained by Deift, Kriecherbauer, and McLaughlin in [14]. To our
knowledge the asymptotic behavior pf near the largest and smallest zeros (i.e.,
regionsC, 5, Co 5, D1 5, andD3 5) has not been determined before except, of course,
in the classical case of Hermite polynomials (see [36, 43]). Also, formulae (2.29)
and (2.30), which locatg , for arbitrary ratios;'j € [0,1], are, we believe, new.
The method presented in this paper allows explicit asymptotic expansions for the
various guantities to be obtained to all orders.

In Section 2 we state our results. In Section 3 we present the reformulation of
the problem for orthogonal polynomials as a Riemann-Hilbert problem (RHP). We
give an overview of the calculation in Section 4. We solve the RHP in Sections 5
through 7. The main results, Theorems 2.1, 2.2, and 2.3, are proved in Section 8.

In a related paper ([16], whose results were announced in [15]) we consider
asymptotics for polynomialgk(z N), k= 0,1,2,..., orthogonal with respect to
varying exponential weights NV dx, whereV is real analytic and satisfies the
growth conditionV (x)/log(1+ x?) — o as|x| — . Of particular interest are the
asymptotics ofn(z n) andpn_1(z n) asn — . These asymptotics are the crucial
ingredients in proving a variety of universality conjectures in random matrix the-
ory in [16]. The analysis in [16] and in the present paper are based on the same
approach, but there are crucial differences as discussed in Remark 4.1 below. A
pedagogic discussion of our methods is given in [12] in the special case Qlere
a monomialQ(x) = x?™. In the special case wheveis an even quartic polynomiall,
the results in [16] should be compared with [7].

The methods presented in this paper are developments of earlier work of the au-
thors in inverse scattering theory. The first connection between inverse scattering
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theory and Riemann-Hilbert problems was established by Sabat [39]. The first sys-
tematic and rigorous analysis of the inverse scattering theory of first-order systems
using Riemann-Hilbert techniques is due to Beals and Coifman [5].

2 Statement of Results

To make our subsequent analysis simpler, we have normalized the interval
[an, On] to be[—1, 1] by making the linear change of variable

(2.1) A:C—C:z—chz+dy,

which takes the interval-1, 1 onto[an, 8], and we work with the function

(2.2) Vo(2) = Q((2).

The functionV;, is again a polynomial of degreer?with a leading coefficient of
(mAy)~1 > 0 and all other coefficients tending to zeroretends to.

We present our results in terms of the well-known equilibrium measpi(see,
e.g., [40] and (4.17) below) with respect ¥, which is defined as the unique
minimizer inM;(R) = {probability measures dR} of the functional

(2.3)
Vo: M () — (=oo,e5]: = [ Toglx =y *du(da(y) + | V(du(x).
The equilibrium measure together with the the corresponding variational problem

emerge naturally in our asymptotic analysis of the Riemann-Hilbert problem (cf.
Section 4). The minimizing measure is given by

(2.4) Gin(%) = o VI ()11 500,

wherel;_, ; denotes the indicator function of the $etl, 1] andh, is a polynomial
of degree th— 2,

2m—2 "
(25) hn(x) == hn’kx y
2
and the real coefficients,x can be expanded in a power seriegit/2m
|

(2.6) Mok =3 h/n"zn.
1=0

Again the coefﬁcientshl((') can be computed explicitly (see (5.25) below) and the
leading-order behavior is given by

2.7) hg@:z‘\mAntl, hy,, =0, 0<k<m-1.
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Finally, to state our first theorem, we define
1 1
2.8) |n::—/ V1—t2hn(t) log|t|dt —Va(0),
mJ-1
which also has an explicitly computable power seriesit/2™,
S0 with1© - 1
(2.9) Ih= Z}I n-zmn  with 'Y = —= —2log2.
& m

2.1 Asymptotics of Leading and Recurrence Coefficients of Orthogo-
nal Polynomialspp

THEOREM 2.1 In the notation above we have

; . 1(4h(1)—3m,(1)  4ha(—1)+3h,(~1)
vn\/wc%+1@'n_1—ﬁ( PENCIE + 28 (1) >

(2.10)
1
+0 (ﬁ) )
b1 1 1
Cn 1 1 1
(2.12) an:dn‘F%(hn(l)—hn(_l)—{—o <H>)

In all three cases there are explicit integral formulae for the error terms, all of
which have an asymptotic expansion mf™, e.g.,0 () = L (kg + ki /2M+

-+). The coefficients of these expansions can be computed via the calculus of
residues by purely algebraic means.

Next we will state the Plancherel-Rotach-type asymptotics of the orthogonal
polynomialspy, i.e., the limiting behavior of the rescaleff orthogonal polyno-
mial pn(An(2)) asn tends to infinity andz € C remains fixed. We will give the
leading-order behavior and produce error bounds that are uniform in the entire
complex planeC.

Remark(Notation) Throughout this paper we will denote farc R the function
(2.13) ()% :C\ (00,0 — C: z+— 1092,

where log denotes the principal branch of the logarithm. In addition, we will re-
serve the notatiory/a for nonnegative numbegs and we always tak¢’a nonnega-
tive. Thusv1—x2, —1 < x< 1, in (2.4) is positive and equals — x)%/?(14x)%/?,

etc.
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2.2 Plancherel-Rotach Asymptotics

We state our second theorem in terms of the function

(2.14)  tn:C\ ((—e0,—1 U[L,00)) — C: 21> zi(l— 2V2(1 4 2)Y2hn(2).

v

The functionyy, is an analytic extension of the densityaf on (—1,1) to C\
((—o0,—1]U[1,0)) and thus closely linked to the equilibrium measure (cf. (2.4)).
We show that there exist analytic functiofisand f,ina neighborhood of 1 and
—1, respectively, satisfying
(2.15) (—fn(2)%? = T Z¢ (y)dy f 1 l,z¢ [1

. 2(2)¥2 = - 2/1 A(y)dy for |z— 1| small, ¢ [1,0).

(2.16) (fa(2)¥% = 0T /Z Yn(y)dy  for |z+ 1| small,z¢ (—o,—1].
2 J1

(See Proposition 7.3, the remark thereafter, and (7.38)). Again each of the Taylor
coefficients ofn~2/3f, at 1 and ofn~2/3f,, at —1 can be computed explicitly as a
series imn~1/2m,

THEOREM 2.2 There exists &g such that for all0 < § < g the following holds
(see Figurel.l1):

(i) Forze A,

(2.17)
Pr(Chz+ dn)e 2Qenztth) —

\/Zlcnexp<—n7ri /;wn(y)dy> (Z;Eiﬁj + EEJ_F 1;31) <1+O <r_11)> .

(i) Forze Bs,

Pn(Coz-+ Oy g 2Rz )
= i(l— 2) V41427 Y4

7Cn

(2.18) X {cos(mr/lzwn(y)dw—%arcsinz) <1+O (%))
+sin (nw/lzq/)n(y)dy ;arcsinz> 0 (i) } .
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(iiiy ForzeCyg,

Pn(Cnz+ )&~ 2Q(Czth)

/
219 é{(%(fn@))”“m (fn(z))> <1+o <%>)
_1\1/4
) (E; 31/4(““(2))1/4Ai' (fn(Z))> <1+O <%>> }

Pr(Cnz+ dy)e 2 QAenz+ch)

1/4
- \/E{%(fn(Z)W“Ai(fn(z))

(Z 1)1/4

(z+21)l/4
(V) Forze Dy,

(oo(2)
(2.21)
Pr(Cnz+ dy)e 2QAenztch)
- )\f{@ﬁ;x( fo(2)) VAl (o >>> (20 (2))
(i A <fn<>>><1+0<%>)}.

(iv) Forze Cyy,

(2.20)

a(fnl >>—1/4Ai’<fn<z>>}

(vi) Forze Dy,
(2.22)
Pr(Chz+ dn) e 2QAenztth)

_1)/4 )
i (_l)nﬁ{%( fo(2)"* Al (= To(2)
va )
_ E;t 31/4 (—fn(Z)) 1/4Ai’(_fn(z))} <1+O (%)) ‘
All the error terms are uniform fof ¢ compact subsets ¢0,d0] and for z X,

where Xe {A,B,C;,Cy,D1,D2}. There are integral formulae for the error terms
from which one can extract an explicit asymptotic expansiorn 4.
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Remarks. 1. Some of the expressions in Theorem 2.2 are not well-defined for
all ze R (see, e.g.(z— 1)V/4, [{4n(y)dy). In these cases we always take the
limiting expressions asis approached from the upper half-plane.

2. The function arcsin is defined as the inverse function of

sin :{ze C: |Re(2)| < %} o C\ ((—0,~ 1 U[1,0)).

3. We denote by Ai the Airy function as defined in [1, 10.4]. Note that the
function Ai is uniguely determined as the solution of

(2.23) Ai’(2) = zAi(2),
satisfying
(2.24) lim Ai(x )\/_x1/4exp< 3/2> =1.

4. Forze C, the integralf1 Y¥n(y)dyis of the form
(2.25) / Un(y)dy= o (1 2)Y2(1+2)Y?Hn(z )+5arcsinz—%
T

whereH, is a polynomlal of degreer?— 1 whose (real) coefficients can again
be computed explicitly (cf. (5.40) below).

5. We will check explicitly that the different formulae match at the boundaries
of the different regions (see (8.43)—(8.47)).

2.3 Asymptotic Location of the Zeros

In order to state our result on the location of the zeros, we denote the zeros of
the Airy function Ai by

(2.26) 0> —11>—12>---.
Recall that all the zeros of Ai lie ii—c,0), so that there exists a largest zero

—11 < 0. Furthermore, note that-1,1 3 x— [ 4n(t)dt € [0,1] is bijective, and
we define its inverse function to lgg: [0,1] — [-1,1].

THEOREM 2.3 The zeros ¥, > Xop > --- > Xnpn Of the i orthogonal polynomials
pn satisfy the following asymptotic formutae

() Fixke N. Then

Xgn—0Cn 2 13 Lk 1
(227) c =1- <hn(1)2> W+O ﬁ y as N— oo,

ankn_dn 2 1/3 Lk 1
2.2 el g = — o,
(2.28) c +<hn(—1)2> n2/3+0 ~). asn—o

n

(i) There exist constantg lC > 0 such that for all k < k < n— Ky the following
holds

(%) o (%)

(2.29)
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(2.30) |Men =G _

6k—3 1 i ©

n

wherea :=Kk/n.
(iii) There exists a constant G 0 such that

231) & <M Xl 018 ooy forall l<k<n—1.
C Cn
Remarks. 1. Using the asymptotic expansion for the error terms in Theorem
2.2, one can, of course, approximate kfezeroxy , of the orthogonal poly-
nomial p, to arbitrary accuracy.
2. Note that the error term in (2.30) is at most of or@¢n—2/3). Furthermore,
it is obvious that for any compact subgebf (0, 1), there exists a constaBk
such that the error termin (2.30) is boundedlagy'n® as long asy = k/n € K.
3. In the special cag®(x) = x*™, the results can be stated more explicitly since
the Mhaskar-Rakhmanov-Saff numbers have a simple form. One verifies by
a straightforward calculation that = n'/2™(mAy,)~Y/?™ andd, = 0 solve
(1.6), (1.7), and (1.8). Following the analysis in Section 5 below, one sees
that hy(x) = ﬁ i Amk-1x* andl, = —L — 2log2 are independent of
n. Furthermore, one verifies thht(1) = 4m andh,(1) = %6m(m— 1) by
induction onm. Finally, note that as the weight function is symmetric, the
recurrence coefficient, = 0. Theorem 2.1 now reads:

1 (0 \FE]T m—2\ 1 1

ZL bn_]_ o 1 1
(2.33) (manF 22— 50 (F ,
(2.34) a,=0.

Rather than restating Theorems 2.2 and 2.3 with all the details, we just note
that, in addition to the explicit formulae faf, d,, hn, andl, given above, the
functionz— [{+n(y)dyis also independent of(asyny is n-independent, see
(2.14)) and is given, once again explicitly, by

(2.35)

z m—1
/1 Yn(y)dy = ! ( Z)Am_k_lzzk”) (1-2)Y?(1+2)Y? - ! arccog.
k=

2mmMAnm P

The asymptotic expansion of the error terms in Theorems 2.1 and 2.2 are
given in powers o%; i.e., fractional powers 0% do not appear in this special
case.
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3 The Fokas-lts-Kitaev Reformulation as a Riemann-Hilbert Problem

Our approach is based on the following determination of orthogonal polyno-
mials in terms of a Riemann-Hilbert problem (RHP), due to Fokas, Its, and Ki-
taev [22, 23] (as a general reference for Riemann-Hilbert problems, see [10]; for
the convenience of the reader, we present a sketch of the basic constructions in
Riemann-Hilbert theory in Appendix A): For fixedand a given weightv(x), let
Y = (Yij)1<i,j<2 = Y(2) = Y (z n,w) be the (unique) & 2 matrix function with the
properties

(3.1) Y(z) is analytic inC\ R,
(3.2) Y. (s) =VY_(9) (é w(ls)> , SEeR,
where
Y. (s) Eme(C), seR, £im{ >0,
—S
and
z" 0 1

(3.3) Y(2) ( 0 z”) =140 (H) as|zl — .
Then then™ monic orthogonal polynomial

1
(3.4) Tn(X) = —pn(X) = X"+

n
is given by
(3.5) m(2) = Yi1(z n,w).

Asymptotic problems for orthogonal polynomiaig(z) asn — o are converted in

this way to asymptotic questions for RHPs containing a large external parameter.
The following theorem, due to Fokas, Its, and Kitaev (see [22, 23]; a specialized

version also appeared in [13]), proves the existence and uniqueness of the solution

of the Riemann-Hilbert problem and computes the leading coefficients and the re-

currence coefficients of the orthogonal polynomials in terms of this solution:

THEOREM3.1 Let w: R — R, denote a function with the property thafsys*
belongs to the Sobolev spacé(R) for all k € N. Suppose, furthermore, that n is
a positive integer.

Then the Riemann-Hilbert problefd.6)—(3.8)

(3.6) Y : C\R — C?#*?s analytic,

(3.7) YL (s) =Y_(9) ((1) w(ls)> forse R,
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z" 0 1

3.8 Y =1+0( = as

@8) @(% o) =1+0(5) asli—e.

has a unique solution, given by

(2) &@W%)
S

I -2 Th—
—27iy2 ymn-1(2) fRWlT;(S)W(S)d

wherer, denotes the h monic orthogonal polynomial with respect to the mea-
sure wx)dx onR and~, > 0 denotes the leading coefficient of tHe& erthogonal
polynomial p = ynm. Furthermore, there existYY, € C2*2 such that

z" 0 . Y]_ Y2 1

and

[ (Y1)21 _ 1
(3.11) M-1= o N 227 (Vo)1

(3.12) an=(Y1)11+ gﬂi; bn-1=v/(Y1)21(Y1)12,

where @ and h, are the recurrence coefficients associated to the orthogonal poly-
nomials p (cf. 1.4).

(3.9) Y(2) = (

Remarks. 1. The jump condition (3.7) is a shorthand notation for the following:
The functionsy|c, have a continuous extension@. with boundary values
Y, satisfying relation (3.7).

2. The second column &fin the solution (3.9) of the Riemann-Hilbert problem

is theCauchy transform

(3.13) Cf(z);/ﬁd—sf, ze C\R, f € LA(R),

R S—2Z 2mi

of the productw(s) times the first column. A brief summary of relevant
properties of the Cauchy transform is given in Appendix A.

PROOF OFTHEOREM 3.1: UniquenessWe first note that any solutiox of
the Riemann-Hilbert problem (3.6)—(3.8) satisfiesYlej = 1 for all ze C\ R.
Indeed, condition (3.7) implies that détcan be continued to an entire function.
Using property (3.8), it follows from Liouville’s theorem that détnust be identi-
cally equal to 1, and 961 is also analytic irC \ R. Denote byY a second solution
of (3.6)—(3.8) and defin® := YY~1. A simple calculation shows thad, = M_.
HenceM has an extension to all & as an entire function. Again condition (3.8),
together with Liouville’s theorem, implies thit = I, which proves uniqueness.

Existence.We verify that the functiorY given in (3.9) solves the Riemann-
Hilbert problem. The following observation is immediate from the properties of
the Cauchy transform stated in Appendix A. Given any entire functiasith w f
lying in H1(R), the row-vector-valued functioff,C(wf)) is analytic onC \ R
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and, by property 4 of the Cauchy transform (see Appendix A), satisfié twe
jump condition

(3.14) (f,Cwh)), = (f,Cwf))_ <é "1V> .

ThereforeY satisfies (3.6) and (3.7).

We will now see that the asymptotic condition (3.8) leads to the orthogonal
polynomials. Clearly (3.8) holds for the 11-entry and for the 12-entry becayse
is a monic polynomial of degreeand—2riy2 ;mn_1(2) is a polynomial of degree
n— 1. In order to investigate the 12-entry, observe that forlany,
1 S s+t

(3.15) s—z zz““ Z+1(s—72)

for s+ z.

Hence

1 S|+ln |
316) V() =5, [ S OME 10 gzm [ Smalsms 7.

The last term in (3.16) is of orded(1/|2™1), because we have assumed that
s (s)w(s) lies in HY(R) (again use property 4 of the Cauchy transform stated
in Appendix A). Hence, by orthogonality;»(z) = O(1/|7"1) as |z tends to
infinity. Denote

n-1
k=
Then, by arguments similar to the above,
z" 0 1
Y(Z)<O Zn>:<o’7n1f§l77nl )
1 tn 1n _fgqﬂ'n S) S)2d7s
(3.18) *3 ( 2rin2 ;2 4 [ mnoal( sw(s)lds

+_2<* — [ (9w (s)zd;>+o<i3>
2 \* * kA
Observe that, again by orthogonality, for dny 0,

(3.19) /§7r|(s)w(s)ds:/ 1(S)°w(s)ds=,” /p| s)ds= ;2

and
/ $+17 (s)w(s)ds= / (S~ 7m,1(9)m (SW(S)ds

(3.20)
= —t| |+1/SI7T| ds— _t| |+1’7|
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Equation (3.18) therefore simplifies to

z" 0 10\ 1( thin —5=
Y(z — - ) 2miyé
oo 2693 (s, 7

1 (x ol 1
= 2min2 o—]).
+z2<* " )* (\ZI3>

Thus we have established property (3.8) as well as the existengeaoflY,,
satisfying (3.10) and (3.11). In order to verify (3.12), we recall that the coefficients
of the recurrence relatiorsg andb, can be expressed in terms of the coefficients of
the orthogonal polynomials simply by collecting terms of the same order in (1.4).
We obtain

(3.21)

(3-22) an = tn—l,n _tn,n—i-l: bn—l = fyfnyil .
n

Using equation (3.21), one easily verifies (3.12). O

4 Overview of the Calculation

We evaluate the solution of the Fokas-Its-Kitaev RHPYfasymptotically by
applying to it a series of transformations

4.1) Y—-U-—->T—-S—R,

each of which determines a contribution to the solution and/or simplifies the prob-
lem. The final quantityr can be expressed as a Neumann series. The solition
follows from R and the composition of these transformations.

Successive transformations with contour deformations that produce exponen-
tially decaying jump matrices form the basis of the steepest-descent method for
oscillatory RHPs introduced by Deift and Zhou in [18] and further developed by
them in [19]. A significant extension of the steepest-descent method, by Deift, Ve-
nakides, and Zhou in [17], incorporates into the method a nonlinear analogue of
WKB analysis that makes asymptotics of fully nonlinear oscillations possible, thus
allowing the method to be applied to a new class of problems.

Our analysis of the problem follows the framework of [17]. We briefly describe
the transformations involved:

e Y — U is arescaling.

e U — T involves the functiorg that is the analogue for the RHP of the phase
function of linear WKB theory.

e T — Sinvolves a factorization of the jump matrix and a deformation of the
contour. Under this deformation, oscillatory terms are transformed into ex-
ponentially decaying terms, which may be neglected, and all that remains is
a simple RHP on a finite interval.

e S— Rinvolves the construction, following [19], of a parametrix that is
particularly delicate at the endpoint of the contour.
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We now describe the above steps in greater detail.

41Y—-U

For reasons that will become clear further on (see Remark 4.1; see also Ap-
pendix B) we scale— An(2) = chz+ dn, Wherec, andd, are related to the MRS
numbers (see (1.8) above). A simple calculation shows that

4.2) U@ = <an (%)Y()\n(z))

solves the scaled RHP (4.3)—(4.5) below, whavig(z) = Q(An(2)) as in (2.2).

(4.3) U :C\R — C?>?is analytic,
1 e*nVn(S)
(4.4) Ui(s)=U_(s) <0 1 ) forse R,
z" 0 1
(4.5) U(Z)( 0 zn> =140 (H) as|z — o,
42U —-T

Let o3 denote the Pauli matrix
1 0
0 -1/
|

(4.6) T(2) = To(2) = e 272U (2)e (902 2)03

where the constamtand the functiorg(z) are to be determined below. The expo-
nential factore"d? can be viewed for RHPs as the analogue of the “fast phase”
arising in the analysis of linear differential equations in the WKB limit. We require
that

4.7 0(z) be analytic orC\ R.

This insures that the new quantity(z) solves a RHP on the same contoutlas
Setg. (s) = g(s£10), s€ R. Second, we require thg{z) behave as

Following [17], set

(4.8) 0(z) ~logz asz— o

in order to normalize the RHP at infinity (cf. (4.11) below). A simple computation
now shows thaT is the unique solution of (4.9)—(4.11)

(4.9) T:C\R — C??is analytic

e NG+-9-) (g++9-—Vn-1)
(4.10) T =T 0 n(g:-g) onR,
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1

(4.11) T(2=1+0 <|Z‘

) as|z] — oo.

Guided by the procedure in [17], we suppose further greattisfies the follow-
ing conditions: There exists a finite closed interval R such that

(4.12) 9+(8)+9-(S)—Wn(s)—1=0 forsel,
(4.13) 9+(s) —g-(s) is purely imaginary fosel,
andidgs(g+(s)—g(s)) >0 forsel,
(4.14) 9+(5)+9-(s) —Va(s)—1 <0 forse R\ I,
(4.15) g9+(8-9-(9 — 1 forse R\I.

We call conditions (4.7), (4.8), and (4.12)—(4.15) pgiese conditiongPC) forg.
The motivation for (4.12)—(4.15) will become clear below.

It is a remarkable piece of luck (cf. [17]) that the phase conditions can be ex-
pressed simply in terms of the variational conditions for a well-known minimiza-
tion problem in logarithmic potential theory. Indeed, set

(4.16) 9(2) = [ log(z—X)dju, (),

where the measurgy, is the unique minimizer (see [40]) of
[ Joalk=yi a0t + | Vo)

whereM;(R) denotes the space of all probability measuresRoriThe measure
Loy, is called theequilibrium measurend is characterized by the Euler-Lagrange
equations (cf. [40]; see also [14]): There exists a real nurhlfdre Lagrange
multiplier) such that

(4.18) 2/Iog\x—y\du(y)—vn(x)—l <0 forxeR,

(4.17) E= inf
peM1(R)

(4.19) 2/ log|X—yldiu(y) —Va(X) —| =0 forx € Supg).

For measureg € M1 (R) that are supported in the single interval sgpp= 1, itis
easy to see that

9(2) = /Iog(z— x)du(X) solves (PC)
<= u solves the variational conditions (4.18) and (4.19).

Remark4.1 Phase conditions (4.7), (4.8), and (4.12)—(4.15) are specific to the
problem at hand. More generally (see [17]), one can congjdanctions that
satisfy conditions (4.12)—(4.14) and an appropriate modification of (4.15) in the
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case of a finite union of disjoint intervals= (JI;. Such a general situation arises

in the related paper ([16]; see also [15]). However, in the present paper it turns out
that forn sufficiently large, the support of the equilibrium measuygis a single
interval; in fact, the scaling using the MRS numbers (see (1.6) and (1.7) above) is
chosen precisely to insure that the interval [—1, 1].

Remarkd.2 In Appendix B we present another approach togfienction (and the
rescaling) that is closer in spirit to standard constructions in the theory of orthog-
onal polynomials. It is based on the well-known connection between the asymp-
totic distribution of zeros of orthogonal polynomials and the equilibrium measure.
A g-function also appears in the recent work of Ercolani, Levermore, and Zhang
[20, 21] on the zero dispersion limit of the KdV equation via Lax-Levermore theory
[25].

43T—S

The significance of conditions (4.12)—(4.15) is the following: Conditions (4.12)
and (4.13) lead to an upper-triangular jump matrix

en(g+-9-) 1
“T:< 0 en(g+g)> on[-1.1,

and (4.14) and (4.15) yield a jump matrix

<1 @9+ (9)+9-(5)—Va(9)-1)
T =

0 1 >:|+0(1) OnR\[—l,l]asn—mo,

The oscillatory term&*"(9:~9-) can be transformed into exponentially decaying
terms as follows: Factor

1 0\/ 01 1 0\ _
(4.20) T = (en(m—g) 1) <_1 o> (e—n(g+—g) 1> = U-Uov+-

Sinceg; —g- =29 —Vh—1 =-29_+Vh+1 on[-1,1], g+ —g- has an ana-
lytic continuation above and below-1, 1], and by the Cauchy-Riemann condition
(4.13) the real part ofg; — g-)(2) is positive abové—1,1) and negative below
(—1,1). Hencev, (2) (respectivelyp_(z)) has an analytic continuation above (re-
spectively, below)—1, 1) that converges exponentially to the identitynas c.

The factorization (4.20) suggests the following deformation of the RHF for
LetZg= Ui5:1 2; be the oriented contour in Figure 4.1. Let

(4.21)

S(z) =T(z) forzoutside the lens-shaped region,

(4.22)

S2=T@2v*(2=T(2 (—e”(GjZ)G(Z)) g) in the upper lens region,
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24 z2 z5

23

FIGURE4.1. The contouEs.

(4.23)
S2)=T(2v_(2) =T(2) (en(g+(z)lg(z)) 2) in the lower lens regian
ThenSsatisfies
(4.24) S:C\ Zs— C?*?is analytic
(4.25) S:(s) =S (s)uvs(s), se s,
(4.26) S2=1+0 (,—2) as|z| — oo,

whereuvg(s) = vi(s) fors€ Zj, 1 <i <5, andvy = vy, v2 = v, v3 =v_, v4 = T,
U5 = UT.

44 S—R
The preceding definitions and calculations have the following reshi:jump
matrixvs converges to the identity matrix everywherexgrexcept ork, = [—1, 1.

The above RHP foSis clearly equivalent to the original RHP (3.1)—(3.3) in the
sense that the solution of the one problem implies the solution of the other, and
vice versa. This suggests that for lamyéhe solution of (4.24)—(4.26) should be
close to the solution of the following limiting RHP:

(4.27) §%): C\ [-1,1 — C?*? s analytic,
(4.28) S™(s)=S")(s) (_2 é) forsc[-1,1],
(4.29) S®(z)=1+0 (,—2) as|zl — .

The RHP (4.27)—(4.29) can be solved explicitly by diagonalizing the jump matrix
and hence reducing it to two scalar RHPs. The solution is given by

1/ a@+az) @@ *-a@)

(4.30) §°(2) =5 (i(a(z) ~a27Y) a2 +a(z)? )
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with

(Z— 1)1/4
(z+1)¥/4

However, to prove rigorously that inde&d— S®) asn — «, numerous technical-
ities arise. The origin of these difficulties can be seen by defining

(4.32) M = §(S®) 1,

Denote byu., the jump matrix forS*). The matrix-valued functioM then satisfies
an RHP of the form

(4.31) a(z) =

(4.33) M, =M_ (s£°°>vsu;1(s£°°>)*1) onss,
(4.34) M(z)=1+0 <|z> as|zl — .

In order to prove that the solutiovi of (4.33)—(4.34) is close to the identity, and
henceS~ S®), one needs to know (see (A.4)—(A.9) below) that the jump matrix
for M is close to the identity in the, andin thelL. sense. Due to the fourth-root
singularity ofS*) at+1, however, we see that the jump matrix kbiis unbounded.

In order to remedy this difficulty, one needs to construct an explicit soluiRion
of the RHP (4.24)—(4.26) in small neighborhoodsieff that matche§®) at the
boundary of these neighborhoods up to o{@). Such an explicit local solutioR

is constructed in terms of Airy functions (see Section 7.1 below). Finally, we define
the parametrixy, for Sby Spar = P in neighborhoods of-1 and bySya, = S
elsewhere. TheR= S$ solves a RHP with jumps of the forint-o(1) and can

be computed to any order by a Neumann series.

5 Theg-Function and the Equilibrium Measure

5.1 Rescaling
The transformatioly — U (see (4.2)) leads to the following relations:

PrRoOPOSITIONS.1 LetY and U be the solutions of the RHB%)—(3.8)and (4.3)—
(4.5), respectively. Furthermore, let YY2, U1, and U, be given according t(3.10)
Then

R A A c," O -nd, O
(5.1) Yl—Cn< Cﬁn>ul<0 o)t o nd)
_ofcn O c," O
(52) YZ—Cn<0 Cnn> U2< 0 CR
ey O c," 0\ [dy(1—n) 0
+C“(o cn”>U1<o a 0 da(1+n)

n(n—1)d2 0
+ ( z n(n+1)d§> '
0o ==

o
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The proof is a simple calculation.

5.2 MRS Numbers and the Construction of the Functiong,(2) and of
the Equilibrium Measure Through the Solution of the Variational
Problem

We first construct the MRS numbers for sufficiently largand then solve the
variational problem showing that the support of the equilibrium measure is indeed
given by the interval [-1,1] after the corresponding rescaling. Our solution of the
variational problem follows [14].

Construction of the MRS Numbers

PROPOSITION5.2 There exist pe N and sequence@ ¥ )iy and (6K )y such
that

1 [ 2 K
(5.3) an = Nz ( a<k>n-m>
2
and
(5.4) B =7 (z BMnzm
k=0
converge for all > n; and satisfy the conditions

1 o/ Q)(t—an) _
(5.5) ZLH G0 —on) dt=n

and
1 A QM)(Ba—t)
(5.6) Z/an (Bn—1)(t— )

The coefficienta® and 5 can be expressed explicitly in terms of the coefficients
Jo, - - - » Oom Of the polynomial Q. For example,

dt= —n.

(5.7) /8(0) = —Oé(o) = (qumA‘n)_%T1 )
1 _ (1) _ _ Jom-1
(5.8) & o ot ,

where Ay, are the numerical coefficients definedinl1)

PrROOF We firstintroduce a few auxiliary functions. Far g, €, X € R, define

(5.9) Q(x,e) = ;;m)qkszm‘kxk (: £2"Q (g)) ,
(5.10) V(x,a,5,¢) ::Q(ﬂ;aqua—;ﬁ,e),
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1 V(ya,B.e)
A= s dy

fl W (y,a.8.€)
1-y2

(5.11) G(a,B,¢) =

dy

where we denote by’ the derivative with respect to the first variable. It is easy to
see thaty < g solve (5.5) and (5.6) for sonre> 1 if and only if

(5.12) G(an*%n,ﬁn*%n,n*%ﬁ - <2?T> .
It suffices therefore to find asp > 0 and real analytic functions, 3: (—eo,c0) —
R satisfying

(5.13) Glale), A(e),e) = (2(;) forall e € (—e0,20)

Indeed, choosing then, := n/2Mq(n~1/2™) and g, := n'/2M3(n~1/2M) for n >
(1/£0)?™ yields a solution of (5.5) and (5.6) of the form (5.3) and (5.4). The exis-
tence of the real analytic functiomsand$ is guaranteed by the implicit function
theorem, since one easily checks that

(5.14) G(a<°>,5<°>,o)=<2?r) (cf. (5.7))
and

2mr 11
(5.15) D(aﬂ)G(a(O),B(O),O):W<_1 1).

Finally, it is easy to see that the integrals involved in computing the derivatives of
G at (9,39 ,0) can be evaluated explicitly, and by an inductive procedure the
coefficientsa® and 3K can be determined. O

Using the expressions obtained fef and 3,, one obtains immediately (cf.
(1.8)—(1.10)) the coefficients of the polynomials for the rescaledVie(@.2): For
n>mn

2m [
: N
(5.16) Vo) = S vn® with vp= S vl 2,
P w2
Furthermore,
1
(5.17) vn2m—m+0(n %),

(5.18) vnk =0 (nﬁ*1> forO<k<2m-1.
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The Solution of the Variational Problem

In order to determine the equilibrium measure for the externalVigldve pro-
ceed asin [14]. Set

(5.19) r(z) = (z— 1)Y3(z+1)Y/? forze C\[-1,1],

1 _\//
(5.20) Fn(2) = %[1%% forze C\[-1,1],

1 Va(y)
5.21 h ZE—.% —= _d forze C,
©20 =2 iy

wherel™; denotes any simple, closed contour that is oriented counterclockwise and
containg—1,1 U {z} in its interior. A standard residue calculation shows that

W@ 1@

_2—7ri+2—7rih”(z) forallze C\[-1,1.

PropPOSITIONS.3 Given the notation above, there exisgsnn; such that for all
n > ny the equilibrium measure with respect to the external figldv&s support
[—1,1] and its density is given by

(5.23) dun(x) = %\/l—xzhn(x)dx for—1<x<1.

Furthermore, h is a polynomial of degreem— 2 whose(real) coefficients can be
computed explicitly, and there exists a constant-t0 such that k(x) > ho for all
n>n; and xe R.

(5.22) Fo(2) =

PROOF. We start by proving the claims related tig. We evaluate (5.21) by
calculating the residue of the integrand at infinity. For example, fokany,

) oot
5.24 —7{ ———dy= Az
(524 2 -2 M
In the notation of (5.16), we obtain
2m-2 [ 2]
(5.25) ha(2) = 5 k2, k= % Aj(K+2+2j)vnki2+2j,
k=0 j=

yielding that for each & k < 2m— 2, the coefficienh,x can be expressed in a
serieshnk = 51 oh'n"1/2M and, by (5.17), the leading-order behavior is given by

(5.26) hgg—z‘\m/;:l, hip,, =0, foro<k<m-—1.

This, in turn, implies that there existsna > n; and a constartty > 0 such that
hn(x) > hp for all n > ny and allx € R.
In the notation of (5.10), we can express

(5.27) Vh(x) =V (x, n‘%nan, n‘%nﬁn, n‘%)
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From the proof of Proposition 5.2 we conclude

1 W

528)  G(n #an,n @G, n @ f_lx/%if“dy — (0

(5.28) (nFann 0 ) LMW gy | \27)°
f—l 1_y2 y

The first row of (5.28) together with (5.20) implies th&(z) = O(1/z) asztends
to infinity. From the representation & in (5.22), it is then obvious that the
Falc, lie in the Hardy spacelsl 2(C..). Setin := Re(R,) . € LZ(R). Sinceh, is a
strictly positive function fon > n,, we conclude from (5.22) that supp = [—1,1].

Furthermore, it follows from (5.20) th&(z) = —F(2). Then a standard argument
in harmonic analysis (see, e.g., [42]) leads to

B @n(x) dx

(5.29) Fn(2) = — and
RX—Z @
(5.30) (Fn)+(X) = £¢0n(X) +i(Heon) (X)
where
(5.31) H:L%R)— L%R): f — 1 PV/ mdy
s RX—Y

denotes the Hilbert transform. We will now prove thatdx is indeed the equi-
librium measure with respect to the fiell. The representation qfﬁn as given in
(5.23) follows easily from (5.22), and therefore it is clear tiiatis honnegative.

In order to see thafzn is also a probability measure, we use the two representations
for Ry, namely, (5.20) and (5.29). The first formula together with the second row
of (5.28) yields thaF,(z) = —1/7iz+ 0(z2), whereas it follows from (5.29) that
Fa(2) = —1/miz 1 dn(x)dx+0(z 2): Thus [1 ¢n(x)dx= 1. Finally, we have

to show thatzﬁn satisfies the variational conditions (4.18)—(4.19). To that end we
conclude from (5.30) and (5.22) that foe R

% (2 / Iog!X—ylzin(y)dy—Vn(w)
(5.32) — 27 (Hn) (X) = Vi(X)
— Re( — 2 (Fn)+ (x) — V(X)) = — Re(r (x)hn(X)).

The fact thah, is positive on the real line implies thaj2og IX—Y[Un(y)dy—Va(X)
i§ constant orj—1, 1], increasing forx < —1, and decreasing for> 1, and thus
n(X)dx satisfies the Euler-Lagrange equations (4.18)—(4.19). O

Remark.Note that the density of the equilibrium measure is denoteaf)m()
in order to distinguish it from)(z), which was defined in (2.14) as the analytic
extension ofiin|(_1,1) to C\ ((—o0, —1JU[1,)).
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Set
1,
(5.33) gn(z)z/_lwn(t)log(z—t)dt, 26 C\ (~,1],
639 G@=-2i [ a)dy,  zeC\(~w~YulLe)

(cf. (2.14)), and recall the definition of the constant in the Euler-Lagrange equation
givenin (2.8)

1 r1
(5.35) Iy = ;/ V/1—t2hy(t) log t|dt — Vi (0).
-1
PROPOSITIONS.4 Let m € N be given as in Propositiof.3. Then there exists a
41 > 0 such that for all n> n; the following holds

(i) gnis analytic and g|c, have continuous extensions@a.
(i) The map z— €'%(? possesses an analytic continuatiortq [—1,1] and

(5.36) @%@z "=110(1/2) asz— .
(iii)
2mi forx< -1
(5.37) (Gn)+(X) = (gn)-(X) = § n(x) for |x| <1
0 forx>1.

(iv)
(&n)+(X) —2mi forx < -1
(5.38)  —Va(X)+ (gn)+(X) + (gn)-(X) =In =<0 for x| <1
(&n)+(X) forx > 1.

FurthermoreRe(&q)+ (X) < —v/2ho(|x| — 1)/ for all |x| > 1 (cf. Proposition
5.3).
(v) The functior¢, can be computed explicitly,

(5.39) &n(2) = —iHn(2)(1 - 2Y2(1+ 2)Y/2 — 2i arcsire+ i,
om-1 [ [ P
(5.40) Hn(2) = kZO ( I; AIUn,k+2I+1> .
Furthermore,
(5.41) Re¢n(z) >0 forO<Imz<dy, —1<Rez<1,

(5.42) Re¢n(z) <0 for —d1< Imz< 0, —-1<Rez< 1.
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(vi) The constant,can be expressed in a convergent series Iy, 1K n-k/2m
with leading coefficient? = —1/m—2log2 More generally,

m
k=0

PROOE 1. Forz, z € C, one can show using (5.29) that

(5.44) n(z2) — on(z1) = i [ Faly)dy,

L
It follows from (5.22) and (5.29) thdg, is a bounded function. Consequently,
On is uniformly Lipschitz-continuous in the upper half-plane and can there-
fore be continued t& ., . The same argument holds for the lower half-plane.
Furthermore,

1, ol
(5.45) (gn)i(x):llwn(t)log|x—t|dti7r|/x Da(t)dt forxeR.

2. We observe from (5.45) and the fact tlziaﬂx is a probability measure with
support[—1,1] that the jump(gn)+ — (gn)- vanishes on1,) and equals
2ri on (—o0, —1). Hencee"%(? can be continued analytically outsified, 1.
From

© 1 /t k
(5.46) log(zt) = logz- ¥ + (>

K=K\ 2
forallt € [-1,1,z€ C\ (—,0] with|z| > 2, it follows easily that
(5.47) gn(2) =logz+0(1/|2)),

which in turn proves (5.36).
3. This follows immediately from (5.45) and the definition&gfin (5.34).
4. Equation (5.45) implies

548) (o) 09+ (@) 0 —Ve() =2 dn(t)loglx—tidt—Va(x)

for all x e R. As ¢, satisfies the Euler-Lagrange equations (4.18)—(4.19),
equation (5.38) is clear foix| < 1. The other two cases follow from the
calculation in (5.32). The proof of the estimate on&¢. (x) follows easily
from Proposition 5.3 and from (5.34).

5. Recall thath, is a polynomial of degreer@— 2 (cf. Proposition 5.3), and
therefore by elementary calculations there exists a polyndmjalf degree
2m— 1 and a constamt, such that

&n(2) = i /12(1—y)1/2(1+y)1/2hn(y)dy
= —i(Hn(2)(1—2Y?(1+2)Y? + An(arcsire— 7/2)) .

(5.49)
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One can determine the coefficientd-fand/A, inductively. However, we
find it more convenient to proceed as follows: From (5.38), (5.47), and (5.49)
one remarks that

(5.50) In:le(—vn(x)+2Iogx+Hn(x)\/x2—1—/\nlog(x+ X2 —1)).

Clearly, the limit can only exist if\, = 2 and
, Vh(X) B

Expanding(1—x~2)~Y/2 immediately leads to (5.40).
We next prove (5.41) and (5.42). Agis purely imaginary oi—1,1), we
only need to show that there exists a suitable neighborhood of the interval
(—1,1) on which the imaginary part of the derivativegfis negative for all
n > ny. This, however, follows from the uniform positivity &f, as stated in
Proposition 5.3.
6. In order to evaluate formula (5.50), we observe that

(5.52) I|m (2Iogx 2log(x+ —1)) =—-2log2

and that forx large

om-1[m-"%]
(5.53) Hn(X) v/ X2 — ( Z Z Avnkyal+1X ke ) (Z)B X2]> ,

whereB; denote the coefficients of the expansior{bf- x)/2 atx = 0. Be-
cause the\; denote the Taylor coefficients (f—x) /2 atx = 0, we have for
everyr > 1 thaty|_,AjBr_j = 0. A straightforward calculation then shows

that the constant term ofVi(x) + Hn(X)vx? — 1 is given by— 3 o Acvn 2.
O

5.3 The Transformed RHP for T
In this section we state the RHP for the maiFix

THEOREM5.5 LetU: C\ R — C?*2; recall the definition of the Pauli matrix

(1 0
7%= \0 -1)"
and let g, I, and&, be as calculated above. Furthermore, set

(5.54) T(2) = e "872U (2)e (®@-3)7s forze C\R.

The function U solves the Riemann-Hilbert problefB8)—(4.5)if and only if T
solveq5.55)—(5.57)

(5.55) T:C\R — C*?ijs analytic.
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e—nfn(s) 1
< 0 en&(s)) for —1<s<1,
(én)+(9)
L e for |s| > 1.
0 1
1

(5.57) T(z2=1+0 <H> as|z — o.

(5.56) T.(s)=T_(9

ProoOF. Employing (i), (ii), (iii), and (iv) of Proposition 5.4, it is a straightfor-
ward calculation to show that any solutionof (4.3)—(4.5) leads to a solutioh of
(5.55)—(5.57), and vice versa. ]

Note that the jump matrix foF is oscillatory in(—1,1) and converges expo-
nentially fast (as1 — =) to the identity outsidé—1, 1].

6 Steepest Descent: Jump Matrix Factorization and Contour
Deformation

The basic idea behind the steepest-descent method is to deform the contour so
that the rapidly oscillating terms become exponentially decaying. Note that by
Proposition 5.4(v) the entries of the jump matrix fohave analytic continuations
into a neighborhood af-1, 1), where the 11-entrg~ " decays exponentially (as
n — o) in the upper half-plane and grows in the lower half-plane, while the 22-
entry €% has the opposite behavior. However, we can split the 11-entry and the
22-entry by the following factorization of the jump matrix:

g 1 10 01 1 0
©.1) ( 0 é“én> - (e”fn 1> <—1 0> <e"€n 1) = Ut

We now deform the Riemann-Hilbert problem in the sense of [17, 18, 19] to an
equivalent Riemann-Hilbert problem for ax2—matrix-valued functiors on the
oriented contouEs shown in Figure 6.1, where

(6.2) S(z)=T(z) forzoutside the lens-shaped region,

(6.3) Sz = T(Z)UJ—rl(z) =T(2) <_e]|'-1§n(z) 2) in the upper lens region,

6.4) S2=T(2v-(2=T(2 <e”;(z) S) in the lower lens region

The precise shape of the lens will be determined in the beginning of Section 7.1
(see Figures 7.4 and 7.5). Of course, it will be contained in the region where (5.41)
(respectively, (5.42)) hold.
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2

24 z2 z5

23

FIGURE 6.1. The contouEs.

We decompose the contobig by >s = U?:l % according to Figure 6.1. Fur-
thermore, let

(6.5) v1(S) = (en%n(s) S) forse ¥4,
(6.6) v2(s) = (_2 (1)> forse 2y,
(6.7) v3(s) = ( engln(s) g) forse 23,
(6.8) v4(S) = ((1) en(§n1)+(5)> forse 24,
(6.9) vs(S) = <(1) en(&f(s)) forse Zs.

LEMMA 6.1 Let T: C\R — C?*?, and define S according 1®.2)—(6.4) Then
T solves the Riemann-Hilbert probld55)—(5.57)f and only if S solve6.10)—
(6.12)below

(6.10) S:C\Zs— C¥? s analytic.
(6.11) S.(s) =S_(s)vj(s) forsexj, 1<j<5,
(6.12) Sz =1+0 (é) as|z — .

PrRoOOFE The proof is straightforward, and we will only verify the jump condi-
tions onZ; throughZs:

Zl:&:T+ =T_ :&U+:&Ul,
55:S =T (vy) P =T (v_wovy)(vi') = S.vo =S w2,
23:S, =Tyv_ =T v_=Sv_=S vs.
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Remark.Again, the jump condition (6.11) is to be understood in the sens&ibat
continuous in each component@f\ Zs up to the boundary with boundary values
S; satisfying (6.11) orks (cf. the remark after Theorem 3.1).

Note that the Riemann-Hilbert problem 8(6.10)—(6.12), which is equivalent
to the Riemann-Hilbert problem (3.6)—(3.8) fdr has jump matrices that converge
exponentially fast (as — ) to the identity except on the intervat1, 1), where
the jump matrix is a constant. At this point it becomes clear how to construct a
parametrix, i.e., an approximate solution for the Riemann-Hilbert problem. In a
first step we simply neglect those jump conditions that tend to the identity. We
consider the following Riemann-Hilbert problem:

(6.13) N:C\[-1,] —C?? s analytic,
(6.14) N.(s) =N_(s) <_2 é) forse [-1,1],
(6.15) N(z)=1+0 (%) as|z — .

The Riemann-Hilbert problem (6.13)—(6.15) can be solved explicitly by diag-
onalizing the jump matrix and hence reducing it to two scalar Riemann-Hilbert
problems. One obtains the (unique) solution

-3 (L))

(6.16) B 1 8.(2) + a(z)*l i(a(Z)’l - a(Z))
=5 (i(a(z) —a(z™Y) a(2+alz? > ’
with
(z—1)¥4
(6.17) A= i

Observe thaa is analytic onC\ [-1, 1].

Remark.Note thatN as defined in (6.16) does not solve the Riemann-Hilbert prob-
lem (6.13)—(6.15) in the sense described above (see the remark after Theorem 3.1)
asN|c, cannot be extended continuously@.. However,N(-+ic) converge

in L2 (R) ase \, 0 to functionsN.. in L?([—1,1]) that satisfy (6.14) almost ev-
erywhere on—1,1]. It is not difficult to show thaN is the unique solution of
(6.13)—(6.15), where (6.14) is interpreted in thfg,t sense. This implies, in par-
ticular, that there is no solution of (6.13)—(6.15) with continuous boundary values.
The fact thaNN is a solution of a (generalized) RHP is not used in the paper.

As explained in Section 4, we need the parametrix to be uniformly bounded in
order to prove that there is a solution of the full Riemann-Hilbert problem close to
the parametrix. We see thistdoes not satisfy this requirement for a parametrix as
there are}l-root singularities at the endpoints of the interjval, 1) (cf. Section 4).
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We will therefore introduce a different parametrix close to the endpoints of the
support of the equilibrium measut€l in the next section.

7 Solution of the RHP for S

7.1 Analysis at the Endpoints of the Equilibrium Measure

In this section we will provide a parametrix for the Riemann-Hilbert problem
(6.10)—(6.12) near the endpoints of the equilibrium measure. Let us first consider
the right endpoint. By a parametrix near 1, we mean a solution of the following
Riemann-Hilbert problem: Denoté; := {ze C:|z—1| <} for1> 6 > 0.

(7.1) P:Us\Zs— C?*? s analytic,
(7.2) P.(s) =P_(s)vj(s) forsezsnUs, j€{1,2,3,8,
(7.3) P(z) ~ N(2) for [z— 1| =4.

This Riemann-Hilbert problem is not fully determined in two ways. First, re-
call that we have not given a precise definition of the confbuyet (cf. below
(6.4)), and we will choos&s as part of the construction of the parametrix. Second,
the more usual asymptotic condition that normalizes the solutien tat ensure
uniqueness is replaced by the approximate matching condition (7.3). We are led to
a unigue determination of the parametrix in the construction below by satisfying
(7.3) in an “optimal” way.

The general way to construct such a parametrix is by using the vanishing lemma
[16]. However, in the generic case where the equilibrium measure vanishes as
a square root at the endpoints of its support, we can express the parametrix in
terms of Airy functions. As these functions appear in the asymptotic analysis of
orthogonal polynomials in many different situations (see, e.g., [7, 9, 32, 36]), we
choose to proceed in the latter way; we devote the remainder of this subsection to
constructing an explicit solution of (7.1) and (7.2) using Airy functions that will
satisfy (7.3) up to an error of ord@r(%).

We begin with an observation that allows us to transform to constant jump ma-
trices. Define

1

(7.4) SOn:(C\R,ZH{lzgn(Z) for Imz> 0,

5¢n(z)  forimz<O.
One concludes easily from the definition &f in (5.34) (see also (2.14)) that
(n)+(X) = (¢n)—(X) for x > 1 and(¢n)+(X) = (¢n)—(X) — 27 for x < —1. Hence
the functione™ possesses an analytic continuatiorCtg [—1,1]. A straightfor-
ward calculation now yields
(7.5) vj(s) = —n(s@n)—(s)aswjen(wn)+(5)<73 forl1<j<5,

where

10 01 11
(7.6) W1:W3:<1 1), W2:<_1 0), W4:W5:<0 1).
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Yo,5

v
Yo,3

FIGURE 7.1. The contouty, with opening angle 2.

Note that ifP satisfies (7.2), theRe (273 satisfies the corresponding jump re-
lations wherev; is replaced by the constant matvix.

We now introduce the auxiliary contoyy, = U,s:l%,j U~e,5, Which depends
on the parameter < (3, 7) as displayed in Figure 7.1 below and divides the com-
plex plane into four regions, I, II, lll, and IV.

Prescribing the jump matriw; on, j (j =1,2,3,5), we arrive at the Riemann-
Hilbert problem (7.10) and (7.11) below, for which we can write down an explicit
solution in terms of Airy functions (cf. [19]). Denote

2mi

(7.7) w:=e3
and define
(7.8) W :C\r, — C>2,
Ai Ai(w?C) oy
(Ai’ wW?Ai' (W?C) © for¢el,
Ai Al (w2¢)
(7.9)  WI(Q)=

e 5o (1 0> for e lll,

(9]
(©)
©) P 10
AII(C) wZAi/(WZC)) e 6 (_1 1> fOl"CE I,
©) >
(©)
e > 6% for¢ elIV.
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Us

25 25

Yo,3

FIGURE 7.2. Map between the contours and-~,, .

LEMMA 7.1 For all o € (3,7) the functionW” satisfies the following two condi-
tions

(7.10) W7 : C\ v, — C*?is analytic and

(7.11) (W)i(s) = (¥9)_(sw; forsens,j, j=1,2,3,5

PROOF. The proof just uses the following identity:

(7.12) Ai(¢) +wAi(wC) +w?Ai(w?) =0 forallze C.
]

Suppose now that we have a biholomorphic nfapUs — f(Us) C C with
f(1) = 0 such that the contodtsNU; is mapped onta, N f(Us) (see Figure 7.2).
Then, obviouslyW? ( f(z))e™(273 will solve (7.1) and (7.2). As we will see below,
the asymptotics for the Airy function together with condition (7.3) determine the
function f (and hence the contolis). Finally, we observe that the jump relation
for W (f(2))e¥"(@73 is not changed under multiplication by an analytic matrix-
valued function from the left. This provides additional degrees of freedom that
enable us to satisfy (7.3) up to ordé(%). We summarize with the following:

PROPOSITION7.2 For any biholomorphic map fUs — f(Us) satisfying {%; N
Us) =,,;N F(Us) for j =1,2,3,5 @nd preserving orientatigrand any analytic
map E: Us — C2*2, the matrix-valued function

(7.13) Us\ Zs2 z— E(2)W7 (f(2))e¥n(@7s ¢ C2¥2
satisfies conditioné7.1)and (7.2).

We now choose the paramet&andf of Proposition 7.2 in order to satisfy the
matching condition (7.3) in an optimal way. To this end, observe first that we have
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to compensate for the (nonanalytic) tegffin in (7.13). The asymptotic expansion
for Ai (cf. [1, 10.4.59]) shows that has to be chosen to satisfy

(7.19 2 (12)"2 = nn(@).
We shall now demonstrate that for eath- n, (cf. Proposition 5.3) there exists
such a biholomorphic functiof(z) = fy(2).

PrROPOSITION7.3 Let p be defined as in Propositidn3. There exists @, > 0
such that for all n> ny there are biholomorphic functions, : Us, — ¢n(Us,) C C
and

(i) an(Uéz QR) = an(Uéz) NR, ¢H(U62 ﬂ@i) = ¢n(U62) NCux.
(i) ¢n(2)%2=3pn(z) forall ze Us, \ (—o,1].
(iii) There exists a constang ¢ 0 such that for all z= Us, and all n> ny the
derivative of¢, can be estimated by, |¢y,(2)| < 1/co and |argen(z)| <
7/15.

Remark.In order to satisfy (7.14), we choodg = n%3¢,. Note that Proposition
7.3 also implies (2.15) (see (7.4) and (5.34)).

PrROOF. We defineg,, explicitly. From (7.4), (5.34), and (2.14) it follows that
(7.1 2eh(@ = | 3@ 2+ 177 (2- 112

for all z€ Us—2\ (—1,1. The functionhy(z)(z+ 1)Y/? is analytic inUs;—, and
hence there exists a power series

(7.16) —hn )(z+1)Y2 = Z rnk(z— 1)K
Define
~ o & 2rn,k k
(7.17) on(2) = kZo3+2k(z 1)% for|z—1|<2.
A short calculation yields
(7.18) :—2390”(2) = (z—1)%29y(2) forallze Us_5\ (—1,1].

We observe that
(7.19) Fno > gho\/i >0 foralln> n, (cf. Proposition 5.3)
and by Cauchy’s integral formula

(7.20) sup |raxl <  sup g’hn(z)(u—l)l/2 < 0.

k>0,n>n, |z—1|=1,n>n;
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Therefore there exists &> 0 such that Re,(z) > 0 for all z< Us and for all
n>np. Hence

(7.21) on(2) = (z— 1) (6n(2))?°  forze U,

is an analytic function. The injectivity ap, on a possibly smaller (but inde-
pendent) domait;, follows, for example, from the uniform boundednessin
andz) of the second derivatives @f, together with am-independent lower bound

on |¢n(1)|, both of which are consequences of (7.19) and (7.20). Similarly, one
shows property (iii). Property (i) follows from the fact that and consequently
also its inversey,; * are real on the real axis. Finally, (7.18) together with property
(i) allows us to conclude (ii). O

The only freedom left in the choice of the parametrix is the analytic matrix-
valued functiorkE (cf. Proposition 7.2). Keeping condition (7.3) in mind, we seek
an analytic approximation to

(7.22) N(2)[W (fa(2)) e @7s] .
This leads to the following definitions: Far> n; ando € (3, ), set

_ (1 =1\ ((fa(2)Y4a(2) 0
oz ew=viet (5 5) (MM ) ey
for ze Us,, and
(7.24) Pn(2) = En(2) W7 (fa(2))e¥n@73 for ze Us, \ frl(7s) .-

Remarks. 1. Recall the definition o&(z) = % (cf. (6.17)) and note that

(7.25) (fa(2)"*a(2) "t = n¥%(n(2) "oz + D)V,

ThereforeE, indeed represents an analytic functioruig.
2. We suppress the dependenc®pbn the parameter in the notation.

We now summarize the properties®f To that end, we introduce coefficients
s« andty, which are taken from the asymptotic expansion of the Airy function at
(cf.[1,10.4.59, 10.4.61)).

(O~ L cte i s Caps (8)
(7.26) A|(§)~ﬁ< e k:0( 1) sk<3§> for |arg¢| < m,
(7.27) AV ! et s Lok (2 %>_k for |ar
: (C)N—ﬁC k;(—) k ;_?,C larg| <,
where
M(3k+3) _ bk+1

(7.28) s=tr=1, s, fork>1,

*Tedar(ktd) ¢ bk—1
andl” denotes the (factorial) gamma function.
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LEMMA 7.4 Letrp, andd, be given as in Proposition.3and letn>ny, o € (%,77).
Suppose further thafsNUs, = f1(v,) NUs,. Then the matrix-valued function
Py (given by(7.24)) satisfies(7.1) and (7.2). In addition, for0 < |z— 1| < d,
there exists an asymptotic expansion feiZPN~—1(z) in powers of o', u= nyn(2),
which is given by

- Szk +ia (S —tak) u
ZZ] Sk —tak) Sk +tak

Z — (k18 +t2k+1a2) i(Spkp 182 —tox182) g1
*3 i(Sokr18 2 —tk18%)  Spkp1@ 2+ 1oy 182

(7.29)

ProoF. Recall that by Proposition 7.2 we only have to verify the asymptotic
expansion fo?,N~1, which in turn follows from the following observation: For
o € (5,7), ¢ € C\ 7, andu = 3¢%2 the asymptotic formulae for Airy functions
(cf. (7.26) and (7.27)) yield the uniform expansion

o Uo3 e% §71/4 0 00 (_l)ksr( S 7’%03 —k
(7.30)  WI(Q)€ N2ﬁ< 0 Cl/4> kzo(—(—l)ktk tk)e u .

O

Remark.Note that the expansion (7.29) is uniformdrandzif o andz are chosen
to lie in compact subsets ¢0§,7), {0 < [z— 1] < 62}, respectively.

The following result is immediate from (7.29):

COROLLARY 7.5 Let0 < ¢ < 42 and let K be a compact subset @, 7). Then
there exists a constant € 0 such that for al: < |z— 1| < §,, 0 € K, and n> ny

(22—12 i(122—2)>
. 1\i12z—2) —2z+12 C
(7.31) Pa(2)N (Z)_I_596(z+1)1/2(z—1)2<2>n(z) <=

Similar calculations also produce the parametrix-dt We summarize: For
n> ny, we define

(7.32) Gn(2) =

~—

on(2) +mi =7 [*]n(y)dy  for Imz>0,
on(2) — i = —7i [*19n(y)dy for Imz< O,

(7.33) Us = {zeC:|z+1| < 5},

AW

(7.34) hn<z>(1—z>1/2=kirn,k<z+1>k,

Zrnyk

Dk f 1 <2,
2 3Jr2k(z+ )< for|z+1| <

(7.35)  on(2) =
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:)‘/0,4

FIGURE 7.3. The contouty,.

~ ~

(7.36) on(2) = (z+1) (¢n(z))2/ ® forze Us, with sitableb, > 0,
(7.37) fo(2) = n?36n(2) for ze Us, .

Then (2.16) holds, or, equivalently,

2, - ~
(7.38) §(_ fn(2)¥2 = n@n(2).
Furthermore, for € (3,7) we introduce the contouy, = Uj‘zl%,j with 451 =
Vo3 Vo2 = —Vo.20 Vo.3 = —Vo.1, Vo4 = —7o,5 With Orientation as shown in Fig-
ure 7.3 (cf. Figure 7.1).

Denote
(7.39) $7(¢) = 03W7 (—()oz for ¢ € C\ Ay,
(7.40)
= oy (1 1\ ((-fa(2)*a2) 0 7.
B0 =vret (1 ) (T p o) g ) forzels

(7.41) Pr(2) = Ea(@ 97 (fa(2))e"@72  forze Uz \ f,%(5,).

Propositions 7.2 and 7.3 and Lemmata 7.1 and 7.4 hold mutatis mutandis. In par-
ticular, under the assumption tia¢nU;, = f1(5,) NUs,, one obtains

(7.42) P,:U;, \ Zs— C*?is analytic,
(7.43) (Pn)+(s) = (Pn)-(s)vj(s) forsezsnU;, j€{1,2,3,4,
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Sk+tx —i(sk—tak) | ~—2k
7.44) P G
(7.44) Pl T2 z ( Sok—tak) Skt
Szk+1a +t2k+1a ) —i(Sok182 — txk122) G2t
T2 Z) i(Sk18° —ta18 ) Spk18° +tok1@ 2 ’

where the asymptotic variableis’given byu'= ngn(z). Furthermore,

(-22—12 i(122+2)>
(7.45) PN 1 t\1Z+2) 2z+iz2 J C
No6(1—2)Y/2(z+1)26,(z)| W

N

where the constai@ can be chosen independentlyzaindo as long asz+ 1] lies
in a compact subset ¢0,0,] ando lies in a compact subset 6%, )

7.2 The Parametrix Spar and the Solution of the RHP forR

In this section we will define a paramet¥,, for the Riemann-Hilbert problem
(6.10)—(6.12). We then state the Riemann-Hilbert problenkfes S%_alr and show
that its jump matrix is of the forrh+ O(1/n) in theL, senseandin theL., sense.
Therefore we can expre&sin terms of a Neumann series.

As motivated in Section 4, the parametgh, for the Riemann-Hilbert problem
(6.10)—(6.12) will be given b, near the endpoints of the equilibrium measure and
by N everywhere else. We will now make this precise.

First, we will define the contoukEs. Keeping the hypothesis of Lemma 7.8
in mind (i.e.,ZsNUs = f;1(y,) NU;s and similarly=snUs = f-1(5,) NUs), we
constructzs depending on the parametéran, anda (a new parameter replacing
o). Fix n > n; (cf. Proposition 5.3) and séf := min{41,d,d-} (cf. Propositions
5.4 and 7.3 and equivalence (7.36)). Chodse(0,d0) anda € (%, 3F). From
Proposition 7.3(iii) it is clear that there existera= o(n,a,6) € (3, 3%) such that
fot(vo.1) NOUs = {1+ 5€°}. By the symmetryfn(2) = f(2), it then follows that
fit(v,3)NAUs = {1+ de '} (see Figure 7.4).

An analogue construction atl leads to Figure 7.5, where the contour within
the circle at 1 is given as the inverggimage offyg(n,a,(;) and, correspondingly,
the contour within the circle at1 is the inversef, image of+5 ). Define
Ss= U?:l 2, whereX; = 2] UZ{UZY’, and so on. Note that the circl2g andX;
arenotcontained irks. Furthermore, definBg := XsUXgUZX7 and forze C\ Zg,
let

Pa(z) ifjz—1]<dor|z+1] <9,
N(z) otherwise

(7.46) Sar(2) = {

The following proposition can be easily verified:
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1+ 06 0Us

fo t (7o)

1

1+ e ie

FIGURE 7.4. The contouks near 1 depending am, ¢, andn.

26 2/1// 2 27
Z’l’ 1
S V(
\BE/ = \Zé/

FIGURE 7.5. The contoukgs together with>g and;.

PROPOSITION7.6 Letn>ny, 0< § < dg, € (£, 3F), and S C\ Z5— C?*? e
a matrix-valued function. Define
(7.47) R(2) =S2)Sya(2) forze C\zg.
S is a solution of the Riemann-Hilbert probléé10)—(6.12)f and only if R solves
(7.48)—(7.50pelow
(7.48) R:C\Zr— C>*?is analytic,
N(s)vi(sN~Y(s) forse3l”,i=1,3,4,5
(7.49) R (s)=R_(5) ¢ Py(s)N"L(s) forse SsU%7
I inside the circles and o’/
1
(750) R(z=1+0 (H) as|z] — oo.
Note that any solution of (7.48)—(7.50) will have jumps only on the smaller
contour>r = 2" UXg U7, whereX” = 27" U2 UZ)' U (see Figure 7.6).
We now give estimates for the jump matrix on >g. Set

(7.51) Ar:=vr—1.

PROPOSITION7.7 Let K be a compact subset @,dp]. There exist positive con-

stants ¢,C; > 0 such that for all N> ny, § € K, anda € (%’r, %”), the following
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1
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FIGURE 7.6. The contoukg.

estimates hold

5|0

(7.52) 18R L1 (5us,) T AR L2(55us,) T AR Lo (5u57) <
(7.53) ARz + 18RI L2z + 1AR]| Loy < Cre™™.

Furthermore Ag has an analytic continuation to, say,i% neighborhood of"”’
with

)
100

PROOF. The estimate (7.52) is immediate from (7.31) and (7.45). In order to

prove (7.53), note first thal andN—! are uniformly bounded outside the circles
Us andU; for § € K. The claim then follows from (5.41), (5.42), (6.5), and (6.7)
on X7 andXj and from (6.8), (6.9), and Proposition 5.4(iv) Bjf andX?'. Using
the additional information on the polynomidigprovided by (5.25) and (5.26), the
pointwise estimate (7.54) is immediate (by decreasiifinecessary). ]

(7.54) 1Ar(z)| <& "al? for dist(z, ") <

Proposition 7.7 implies, in particular, that
(7.55) Car(f) =C_(fARr) for f € Lp(5g;C?*?)

defines a bounded linear operator frapi2g; C2*2) into itself with operator norm
|Cagll =0 (%). Thusl—Ca, can be inverted by a Neumann seriesfsufficiently
large. We define

(7.56) pr= (1=Cng) H(C-LR) € La(2R)
We are now able to present an explicit formula fRor

THEOREM 7.8 Leté € (0,00] anda € (%, 3F). For n sufficiently large, the unique
solution of the Riemann-Hilbert problefn.48)—(7.50)s given by

(7.57) R=1+4+C(Ar+ prAR) -

PROOF: Let Rdenote the unique solution of (7.48)—(7.50). We first prove that
inC \ 2R
(7.58) R=1+C(R.AR),
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FIGURE 7.7

which is equivalent to the Plemelj relation
(7.59) R—1=C((R:—I)—(R_—1))
(cf. (7.51)). Although this formula is well-known for smooth contours without
self-intersections, we shall verify it directly for the contdli. It is easy to see
that forze C\ g the termC((R;. — 1) — (R_ —1))(2) is equivalent to the sum of
five integrals, each of which is the integral of

1 R(e-I

2mi s—z
along the positively oriented boundary of one of the five componertts &k (see
Figure 7.7). Together with (7.50), relation (7.59) and consequently (7.58) follow
from Cauchy’s theorem.

From (7.58) we conclude that

(7.60) R.—1=Cpy(R.—1)+C_(LR).

Sincel —Cp, is invertible oan(iR), we conclude

(7.61) R =14 (1-Cay) YC_OR) =1+ pr.

By (7.58) this proves the claim. O

We now deduce a useful corollary of Theorem 7.8, which states the uniform
boundedness dk.

COROLLARY 7.9 For every compact subset & (0,dp], there exist p > np and
C > O such that the unique solution R ¢f.48)—(7.50katisfies
2m br

(7.62) IR(z)] <C forallze C\ 2R, ac <?€> ,0€K, n>ng.

PROOF. Proposition 7.7 implies that

1

(7.63) 18R+ RO 23, = O (ﬁ)

uniformly in o andd. Clearly, by (7.57) there exists a uniform bound |& for
all z e C satisfying, say, digz,>2gr) > ¢§/100. In order to obtain a uniform bound
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R=R
27
Zg’
R=R

FIGURE 7.8. Contour deformation.

forallze C\ $r, We use a contour deformation argument. Suppose, for example,
thatzis close tozg’. DefineR as shown in Figure 7.8, where the radius of the half-
circle is chosen to bé/100. TherR satisfies the same Riemann-Hilbert problem
(7.48)—(7.50) aRk except that the dotted contour is to be replaced by the half-
circle and the jump at the half-circle is given by the analytic continuationrpf
which exists by Proposition 7.7. By (7.54) the estimates (7.52) and (7.53) also
hold for the deformed Riemann-Hilbert problem, and the analogue of Theorem
7.8 holds as well. Thus the boundednessR@) follows now as above, since
dist(z,%5) > §/100. This completes the proof R&z) = R(z) by definition. Finally,

note that forz close toZg U 27, the contour deformation can also be achieved by
varying the parametesandc. OJ

The following theorem demonstrates how one can extract an explicitly com-
putable asymptotic expansion farfrom (7.57):

THEOREM 7.10 For every compact subset &K (0,do], there exists > ny such
that for all n> no, § € K, anda € (%, 3) the unique solution R of7.48)—(7.50)
has an asymptotic expansion in'2™ of the form

1 [ee]
(7.64) R@) ~1+2 Y ndzn =,

=
Here r(z) are bounded functions that are analytic @\ (X UX7) and can be
computed explicitly. The expansion is uniform in z and in the parametansi §.

PROOF. Fix a € (&,%2), 5 € K, and letl € N. We define

zlj:]_ﬁjln(S)n—]] forse TgUT;

(7.65) Ni(s) = {o forse 2r\ (Z6UZ7),
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where (cf. (7.29) and (7.43))

(7.66)
1 skttt i(Sk—tx) —2k
= . z forze U 1
2 <—|(32k—t2k) suttz ) "2 o\t
Bokn(z) ==
1 s+tx —i(Sk—taw) | ~ 2 ~
—. z forzeU -1},
3 (I(Szktzk) S+ >90n( ) s \ 11}
and
(7.67)
1 —(Sok1+takr18(2)*) i (Soki1 — takraa(2)%)
2a(2)%pn(2)21 \ | (Sokr1 —t18(2)%)  Soks1 +tara(2)?
forze Us, \ {1},
Bor+1n(2) == ’

a(2)? —(Soki1+txa(2) ™) —i(soki1—tkiaa(2)™?)
250(2)2 L\ —i(spr1 —ta1a(2) ™) Sa1 +tae1a(2)~?
forze Us, \ {—1}.

Note thatg; , is meromorphic irJs, UUs, with poles of order(3j +1)/2 at+1
(see (6.17) and (7.18)). Following (7.55) we define

(7.68) Cp (f)=C_(fh) for f ela(ZsUZ7).
Finally, set
|

(7.69) wi=Y (Cy)(CA),

| % A |
(7.70) R :=14+CA + mdy).
We will show below that

1

(7.71) Rz =R(2+0 <W> ,

where the error term is uniform i, §, andz. Note that the Cauchy operators used
for the definition ofy; andR, correspond to a contour consisting of the two circles
25 andZ; only. Furthermorey; has an analytic continuation inside the circles and
A has a meromorphic continuation inside the circles with poles of ¢@tier 1) /2
at+1. Therefore one can compugeexplicitly using the calculus of residues. The
asymptotic expansion (7.64) follows then immediately from the expansiop.for
in powers ofn~1/2M (cf. (7.66), (7.67), (7.4), (7.32), Proposition 5.4(v), (5.34), and
(5.16)).

It remains to prove (7.71). We first consider the case that the distance between
z and the circle&s U 27 is bigger thanj/100. Denote byC the Cauchy operator
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associated with the contoblg U >7. We estimate

IR(2) —R(2)| < [C(Ar+ HRAR) (2) — C(AR+ HRAR) (2)]

+[C(AR+ 1RAR) — (A1 + )] (2)].
Using the assumption that digt>¢ UZ7) > /100, one can prove (7.71) by show-
ing that for eachl € N thereA exist a constar@@; > 0 such that for ally € K,
a € (27/3,51/6), andz € C\ 2r with dist(z, 25 U X7) > 6/100, the following two
inequalities hold:

(7.72)

(7.73) IC(BR+ 1ROR) (2) — C(BR+ 1ROR) (2)] < % :
7.7 (et i) = (B 1) gz < .

We first prove (7.73). Recall the definition &f' = X' U UZ} UZY (see
(7.50)). By (7.61) and (7.51), inequality (7.73) is equivalent to
1 [ R()-R( . |_ G

, — | /= —Tdg < —.
(7.79) 2mi Jsm s—z ds < n'+1
Note thatR, — R_ has an analytic extension t@A100-neighborhood at”’ given
by Rug AR on the+ side and byRAg on the— side ofZ”. Since disz, ZsUZ7) >
§/100, we can always deform the contaf of the integral (7.75) to a contolt’
lying in ad,/100-neighborhood af’” such that digz, 2)") > §,/100 and

(7.76) Ri(§-R(9 4 [ R(O-R(9 4o
s sS—z b1 S—2

Becausear is uniformly bounded (cf. Corollary 7.9), inequality (7.75) now follows
from (7.54). (In fact, the bound in (7.75) is exponentially smalh.in

Now we verify (7.74). The definition oy together with Lemma 7.4, (7.44),
and (7.53) yield that

1
T77) r- Bl ey + 18— By + [m By O ().
Writing urAR — 1l = (pr — )AR + i (Ar — &) and using (7.52), (7.65), and

(7.69), it suffices to show thaliur — 1 || 2(s4us,) = O(1/n'*1). By the definition
of ur andy (see (7.56) and (7.69)), this follows from

1
(7.78) fC-8a—C iz =0 ()
and from the following estimates of operator norms:
- _ 1
(7.79) I(1—Car) ™t = (1-Ca) Y| =0 <W)

| _ 1
(7.80) I(1-Ca)*= 5 (€)'l =0 (w)
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Estimates (7.78) and (7.79) are immediate consequences of (7.77), and (7.80) fol-
lows from ||Cy || = O(2). This completes the proof of (7.71) in the case that
dist(z, s UZ7) > 6/100.

In order to prove (7.71) for arbitrary e (C\iR, we note as in (the final sen-
tence of) the proof of Corollary 7.9 that one can always achzeeebe bounded
away fromZg U 27 by at leasty /100 by modifying the parametefsanda without
changing the value d®(z) . Using Cauchy'’s theorem, it is not then difficult to see

that the value oR (z) is also unchanged under the modification of parametérs.

8 Proof of the Main Theorems

8.1 Proof of Theorem 2.1

Recall from Theorem 3.1 the formulae for the leading coefficign{see (3.11))
and the recurrence coefficiersg and b, (see (3.12)). The solutiok of the
Riemann-Hilbert problem (3.6)—(3.8) witk(s) = e ¥ is connected to the solu-
tion R of the Riemann-Hilbert problem (7.48)—(7.50) by a series of transformations

(8.1) Y—-U—-T—-S—R

(see Propositions 5.1 and 7.6 and Lemmas 5.5 and 6.1). We will now unfold these
relations.

For large|z|
(8.2) U(z2) = "2 R(Z)N(2) @@~ )3

Clearly,U has an expansion in powers fof type (3.10), andN(z) and %2z

have asymptotic expansions in powerslidrfy explicit calculations. It follows from
(8.2) thatR(z) also has such an expansion. Using (7.57), (6.16), (6.17), (5.33), and
(5.46), we derive

(8.3) R(z):l+%+%+0<%>,

where

(8.4) Ry = —Ziﬂ A Ar(Y) + pr(Y)AR(Y)dy,

(8.5) Ro= 5 [ Y(BR(Y) + pr(y)BR(Y))dy.
Tl J5g

and

(8.6) N(z):|+%+¥+0<%>,

where

(8.7) Ny = % <£)| 6) , N = % <(1) (1)> :
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and
o@os (2 0 G1,G 61
(8.8) e (o z”) I+ —+—5+0 )
where
_(—nSY ty(t)dt 0 _[(x 0
(8.9) Gl_( 0 nft tya(t)dt)” G2=10«)

From Proposition 5.1, we learn

n n
e(§ S)ormensan (5 9

0 c,
(8.10) "
n -nd, O
0 ndy/’
Y _C2 CR O erl20'3z —I"I 2 03 C . O
2= 0 " 0 o
—-nd, O (1—n)dy 0
(8.11) *(Yl( 0 noh))( 0 (1+n)dn>
n(n—l)dz 0
+< 20 n n(n;»l) d§>,
(812) Z=Ro+No+Gy+RiN; + RiG1 +N1Gy.

We are interested in the following entries\gfandYs:
(8.13) (Yy)11 = C <(R1)11— n/llwn(t)dt) ~ndh,
(8.14) (Y1)12= 2"l ((R1)12+ 12> :
(8.15) (Y1)21=c e ™ ((Rl) 1—%>,
(8.16) (Y2)12=C3"*2eM [(R2)12+ ié(Rl)llJr (n/llwn(t)dt> ((R1)12+ %)]

+ (Y1) 120n(14-N).
We apply formulae (3.11) and (3.12) from Theorem 3.1 and obtain
, -1/2
@17 = (e r(1-2R)2)

4 2

(8.19) an=0dn+ ﬁ(}\ﬁ)lz [Z(Rl)ll— 2i ((R1)11<R1)12+ (Rz)lz)] .

. 1/2
(8.18)  byi— <1 L (RYz— (R + <R1>12<R1>21> ,
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We conclude the proof of Theorem 2.1 by determinfgand (Ry)12 up to
orderO(n~2). Note that by Theorem 7.10 one can compute all coefficients of the
asymptotic expansions & andR; explicitly. Recall the definition oy, in (7.65).
From (7.77) we learn thafAr — Aj—1| 15, = O(n=2). Moreover, Proposition 7.7
implies that/|Ar|| s, = O(n1), and it is a consequence of (7.61) and Theorem
7.10 that| url| o sq) = [R- = =3, = O(n1). Thus

1
(8.20) 0w+ ) Bz, =O ()
Using estimate (7.54), one can prove in addition that
1
821) [ VIanly) +neeiy) ~Ba)idy =0 (5 ).
R

From (8.4) and (8.5), it then follows that

1 1
(6.2 Ri= =i [, Mady+0 ().
(8.23) R——i/ A(y)dy+0 (=

. 2= "5 ZGUZ7y 1y)ay )

These formulae can be evaluated using Cauchy’s theorem, and we obtain
1 1 3 4 hi(1) /3 =3
824)  Ri=7m { (1) <4i _3> T P02 \ -3 -3
1 -3 4 ho(—1) (3 3 1
+ m <4i > + 3 _3 +0 2/

hn(—1)2
i /3ma(1)—h.(1) 3 h, 1
(8.25) (Rp)12= ﬁ ( (h:(l)z ( ) ( hn() )2( )> +0 <ﬁ> '

8.2 Proof of Theorem 2.2

Recall thatp, denotes the normalized” orthogonal polynomial with respect
to the measure- ™ dx. We will now derive the asymptotics fq, in the variables
Cnz+dn. From (3.9), (4.2), and (8.17) we learn that

_1
2

(8.26) Pn(CnZ+dn) = mchU11(2) = [wcne”'” (1-2i(Ry)12)| "U11(2).

We now determinéJi1(z) in the different regions by relatinB andU as in the
proof of Theorem 2.1 above (cf. (8.1)).

RegionA;

In this region we obtain formula (8.2) by Proposition 7.6 and Lemmas 6.1 and
5.5, i.e.,

(8.27) U(2) = "3 R(z)N(2)e" @@~ 5oz
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Therefore

U11(2) = €*?N1a(2) [1+ (Ri1(2) —1) + Ri2(2) Eig]
:é@ﬂmhﬂ@[1+0<%>]

The last line can be derived from Lemma 7.10 together with the fac%ﬁé% is
uniformly bounded o\; (see (6.17) for a definition &f). Furthermore, note that

(8.28)

(8.29) On(2) = %(Vn(z)+ln+§n(z)) forallze C..

This relation follows forz € [1,%) from (5.38) and can be extended to all®f by
analyticity. Definitions (2.1) and (2.2) imply

(830) nVn(Z) = Q(an+ dn)
and hence
(8.31) Ua(2) = edQer e ™5 Ny 2) [l+0 (éﬂ '

Relation (2.17) now follows readily from (8.26), (5.34), (6.16), and (6.17).

RegionBy;
HereU is represented by
(8.32) U(2) = "27R@ZN(2 <e-é~n<z> 2) SO,

Let arcsin be defined as an analytic functior(®y((—e, —1]U[1,)) as described
in remark 2 after the statement of Theorem 2.2. Then the following relations hold:

(8.33) a(z) + L \1/2 _e 23S for 7 T,
az) (1-24(1+2)7
(8.34) —ia(z) + | V2 e TSI for 7 T, .

a2 (1-2i(1+2)1
Employing equation (8.29), we find farc Bs
1 g:
N(2) <e—nfn(z)) e'h(@os —

341 V2 (cos(%”gn(z) + Larcsire) )

(1—2)2(1+2)3 \isin(9&n(2) — S arcsirg)

(8.35)
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and therefore

V2
(1-2)3(1+2)

X [Rll(z) cos<i§£n(z) + %arcsinz) +iR12(2)sin (iingn(z) - %arcsinzﬂ :

Theorem 7.10 together with (8.26) and (8.30) yield (2.18).

(836) Ull(Z) = eg(vﬂ(z)""ln)

Bl

RegionsCi5 and Cy;

By definition of the parametriR®, nearz = 1, the seC; ; UCy s consists of two
regions 1 and I (which do not necessarily agree with regi@s andC; ) such
that

(8.37) U(2) = €"37:R(2) Py (2) " (@—B)os zel,
830 U@=TRER@ (g §) ST ze

Using the definition foP in (7.24) together with (7.4), (7.9), and (8.29), we obtain
the following formula forall z € C; s UCy -

830)  (Ju2) = etmEn ) (407 )e ¥,

Uz1(2) Ai’(fn(2)
whereE, is as defined in (7.23). We are led to
(8.40)
a2 fW(2Y4AI ((2) 2@ A (fa(2)
Upy(2) = e2 (@ )\/E{Rll(z) [ a2) T (YA ]
. fa(2V4Ai(fa(2)) a2 Ai'(fa(2))
—iR12(2) [ a(2) + f(z)L/4 ] }

This immediately implies the estimate in the reg@y (cf. Theorem 7.10, (8.26),
(8.30)). Forze Cy 5 we can do a little better. First note that by Proposition 7.3(iii)
that fo(2) liesinS :={ye C:0<argy < %’r} for ze Cy5. Furthermore,

y YAAI'(y)
8.41 sup|———-
( ) yeSp yY4Ai (y)

This follows from the asymptotic formulae for Ai and’Aef. [1, 10.4.59, 10.4.61])
and from the fact that the Airy function has no zero§inTherefore by choosing
do sufficiently small we can achieve

a(2) fn(2) *Ai'(fn(2)
a(z2) fa(2)V4Ai (fn(2))

(8.42)

IA
NI =

ZECZV(;

This proves (2.20).
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RegionsD1 s and Dy s

The proof is the same as for regiddgs andCys.

We refer the reader to the proof of Theorem 7.10 for obtaining an explicit as-
ymptotic expansion for the error terms.

Remark. Varying the parameterin the construction, one sees immediately that the
asymptotic formulae for the different regioAsB, C, andD match at the bound-
aries. Nevertheless, we will now verify the matching of the leading-order terms
from the asymptotic formulae in Theorem 2.2.

RegionsA; and By
From (8.33) it follows that

(8.43) <(Z_1)1/4 (2+ 1)1/4> exp<—n7ri /1 Z¢n(y)dy> _

(Z+ DA " (z- 1)1

V2 2 i
(1—2)¥4(11 2)1/ eXp(—”m/l wn(y)dy—éarcswz).

Furthermore, note that Rexi [{1n(y)dy) = Re(én(2)/2) > 0 for all z on the
boundary between the regioAs andB; (cf. (5.34) and (5.41)). Thus, for some
c>0,

(8.44) eXp<—n7Ti /121/Jn(y)dy— izarcsinz) =

Zcos<n7r /lzwn(y)der % arcsinz> (1+0(e™™).

RegionsA; and C; 5

Proposition 7.3 implies that € arg(fn(2)) < %” Therefore we can apply the
asymptotic formulae for the Airy function and its derivative as shown in (7.26) and
(7.27). Finally, we use the relations

(8.45) ~1(2)? = ngn(2) = -2
(cf. (7.14) and (7.4)) and obtain
a(2) (27 A (fa(2) — a2 fn(2) T A (fa(2)) ~

(8.46) 1

27 (@2 ) exp<n7ri /1 Z%(y)dy) .
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RegionsB; and Cy 5

Again from Proposition 7.3 we learn that > arg(f,(z)) > %“ Using the
asymptotics for the Airy function and its derivative as given in [1, 10.4.60,62],
together with (8.33) and (8.34), we obtain

(8.47)
a(2) " a(2) 4 Al (fa(2)) — a(2) fal(2) "2 A’ (f(2))

~ T [ (2)~te7 sin <n£;|( )+%> +a(z)ed cos(nggl(z) +%>}
[exp(n ”2<Z)> ( (z)‘1+a(z))+exp< £nz(z ) )}

\/7 cos(nw/ Un(y dy+ arcsirg
1+z

8.3 Proof of Theorem 2.3

In order to locate the zeros pf,, we proceed in two steps. We first construct a
decreasing sequence-lygn > - -- > Yynn > —1 such that the signs <pt1(cnyk n+dn)
alternate irk. As p, has exactlyr zeros, one concludes that 1, > Xk" T > Vin
for 1 < k < n. The second step then consists in finding a zerp,dh each of the
intervals(CnYk n -+ dn, ChYk—1n+ dn)-

We begin by extending (2.18) to intervdls 1+ # 1- 2/3) More precisely,
we claim that there exist positive constahtandCp such that

@(1 B yz)% Pn(Cny +dn)e” 3Q(Cny-+0h)
Co

y 1 .
_Cos<nﬂ/l Yn(t)dt+ Earcsny)’ < m

for all =1+ — <y < 1— —. By (2.18) we only need to investigate thosthat

are close tot1. Here one uses (2.19) or (2.21)), respectively, together with the
asymptotic expansion for the Airy function (see [1, 10.4.60,62]) to estimate the
left-hand side of (8.48) b&(n~1+ |nm [} 1n(t)dt|~1) for someC > 0O (cf. (8.47)).

The claim now follows from Proposition 5.3.

(8.48)

Step 1

In order to specify the sequenygg,, we introduce some notation. Recall that
all the zeros- of the Airy function Ai and the zeros wy of its derivative Af are
located in(—e0,0) and interlace

(cf. (2.26)). Let andCo be the constants determined above (see (8.48)) and denote
C:=sup,{hn(1),hn(—1)} < o (see (5.25) and (5.26)). We choose an intéger 9
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to satisfy the following four conditions:

2C
(8.50) T/CZO <1/10,
“ko
1 1/3
(8.52) ol toralksk
| (3 (ak—1))%° < o
Wk 1
(8.53) W—l <5 foralk>ko.

The existence of such a numbler can be easily deduced from the asymptotic
expansion fory andwy (see, e.g., [1, 10.4.94,95,105]). Finally, recall the definition
of ¢, as the inverse function q‘f(l n(t)dt (see below (2.26)). We set

Cn(ﬁ%fﬁ) for0<k < kg,

(8.54) Yin := < ¢n(E) forko <k<n—Kko,
gn(l_%wﬁﬁﬂ) forn—kg <k<n,

wheren is chosen sufficiently large so that s, are well-defined. Note that the
behavior of¢,(z) for znear 0 or 1 can be deduced from (2.14),

2/3
(8.55) Cn(z)zl( 3t > z2/3+o(z4/3) for 0 < zsmall

v2hn(1)
and
(8.56)
3 2/3
() = -1+ <m> (1-2%°+0 <(1—z)4/3) for 0 < 1—zsmall.
Hence we can assume that
1/ 2 \1/3
(8.57) 1- > (W) wk"m > Viy—1n > 1—do,
1/ 2 \® 1
(8.58) -1+ > <m> kaW < Yn—ko+1n < —1+4 0o,

by choosingn sufficiently large.

We verify now that the sequengg, has the properties described above. Mono-
tonicity follows from the monotonicity of,, and from condition (8.53). We now
show that

(8.59) SGMPn(Caykn + th)] = (—1)%.
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CAsel. 0< k< kg: Since|1—yin| < do, we may use (2.19). From (2.15) and
from the definition of¢,, we see thaf,(ykn) = —wk+1 and hence we learn
from (2.19) that

(8.60) SN Pn(CaYkn + bn)] = SIHAI (—wis1)] = (=1)*.
CASE 2. kg < k< n—kg: From (8.57), (8.58), and (8.51) it follows thatl +
# <Yun<1l— ﬁ and estimate (8.48) can be applied. Condition (8.50)
then implies that

Co 1
8.61 I B
(8.61) n(1—y2,)32 = 10

Finally, observe that

T

Z )

which completes the proof of Case 2. Furthermore, it is clear that these

estimates also imply (2.29).
CASE 3. n—Kkg < k< n: This case is similar to Case 1.

Ykn
(8.62) —km — % < nw/ Yn(t)dt+ % arcsinyyn < —km+
1

Step 2

In order to locate the zeros pf, in each of the interval&c,yin + tn, CaYk—1n+
dn), we use the following basic fact, which is an immediate consequence of the
intermediate value theorem.

PROPOSITIONS.1 Let | C R be an interval, g= CY(1), r € C%(1), satisfying

(8.63) Iq(t)|>c, |r(t)|<b, foralltel,

for some b, & R. Suppose, furthermore, that there existg a t such that
<t0— \Q(to)C\Jer o+ |Q(to)cf+2b> cl

Then there exists a € | satisfying

(864) Q(tl) + I'(t]_) =0,

|a(to) | + 20
o :

We now prove statement (i) of Theorem 2.3. kix N. Clearly,yxn — 1 as
n — oo. We show that fon sufficiently large

(8.65) to—ta| <

(8.66) —wkt1 < —lk < —Wk,
(8.67) fa(Yicn) < —tk < fa(Yi—1n) -

The first estimates (8.66) are immediate from (8.49). To see (8.67), note that for
sufficiently largen,

(8.68) fn(Ykn) = {“"kﬂ if0 <k<ko,

- (3977 itkzlo,
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by (2.15), and (8.67) follows from (8.49) and (8.52). Becafiggx ) is indepen-
dent ofn, we can find a closed intervalix € Jk that is contained in the open inter-
vals (—wis 1, —wk) and(fa(ykn), fn(yk_1n)). Recall the definition off, = n?/3¢,
and the properties af,, as stated in Proposition 7.3 (and in the remark after Propo-
sition 7.3). It follows that there existsa > 0 such that

n2/3
(8.69) con?/® < f(x) < o forall1—dp < x< 1.

Finally, we learn from (2.19) that for all- 6o < t < 1, the expressiop,(Cnt +
d) equals zero if and only if

e\ 172
(8.70)  Ai(fn(t)) - (i—ﬁ) (—fn(t) " M2Ai'(fn(t)) +0 (%) =0,

where theO(%) term is a short notation for some continuous (in fact, analytic)
function (cf. (8.40), theorem 7.10). We apply Proposition 8.1 to (8.70) ith
f1(J), q(t) := Ai(fy(t)), r consisting of the remaining terms in (8.70) apd=
fo(—w). Observe that|(to) = 0, |q(t)| > coon?/3, with & :=inf{| Ai'(s)| : s €

J} >0and|r(t)] = O(n1—1/3) ast = 1—O(n2—1/3) for allt € I. We conclude that

[a)+20 _ 0(1). since the length of the intervalis of sizen 2/3, it is clear
that the hypothesis of Proposition 8.1 will be satisfied for sufficiently largend
we find thatpn(caty + dn) = O for somet; € | satisfying[t; —to| = O(%). Note,
furthermore, that C (ykn,Yk-1n) by the choice of the intervak above, and thus

we have found th&" zerox , of the polynomialp,. So far we have proved
Xkn — On

o wcu-of)

Finally, (2.27) follows from inverting

1/3
(8.72) fn(x):n2/3(x—l)[<hn<21)2> +O(|x—1|)], 1-do<x<1,

(8.71)

which in turn is a consequence of (7.21), (7.17), and (7.16).

The proof of (2.28) is analogous to the proof of (2.27), and we do not repeat it
here.

Recalling (8.48) and the choice kf made above, we can prove (2.30) by find-
ing a solution of

y 1 .
(8.73) cos(m/1 Yn(t)dt+ Earcswy) +ra(y)=0

fory e (¢a(82), 6 (829)) (cf. (2.29)), wherer, is a continuous function satisfy-
ing

(1 Co
(8.74) r(y) < min (ny)
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(see (8.48) and (8.61)). Again we apply Proposition 8.1 to obtain estimates on the
zero in (8.73), choosin:= (¢n(&=1), Gr(852)), 1 :=rn, andt = ¢n( %3 + 51
arcsir(gn(ﬁ))). For the derivation of (2.30), we also use the fact that there exists a
constant > 0 such that

1—(n(a)? 1
8.75 C< ——————=<—- foralln>ny, O0<a<1,
&7 a8 < Ze e

which is an immediate consequence of (8.55) and (8.56).
Claim (iii) of Theorem 2.3 follows from (i) for K k < kg orn—ky < k <
n—1. Forkg < k < n—ky we apply (2.29) to obtain bounds on the distance of two

consecutive zeros. Estimates for the derivativédfollow from Proposition 5.3
and from (8.75).

Appendix A: Properties of the Cauchy Transform and RHPs
Normalized at oo

We begin by listing some properties of the Cauchy transfGrom the line,

C(z) = — /m 1 gs,

T 21 ) ws—z
(see, e.g., [42]). Let € L2(R). Then

1. Cfis analytic inC\ R.

2. Cf(-+ie) converge tqCf). in L2(R) ase \, 0.

3. The operator€.. f = (Cf).. are bounded operators frdmi(R) to L?(R) and
C,-C_=1

4. The operator€. are bounded from the Sobolev spat&R) to itself be-
cause they commute with the derivative. Moreover (see, e.g., [6]).af
HL(R), thenCf is bounded and uniformlg-Holder-continuous irC, and
in C_. In particular,Cf has a continuous extension@. andC_, and the
values at the boundary are given (@ f)(z), respectively.

Properties 1, 2, and 3 above for the Cauchy transform, suitably interpreted, are
true for more general oriented contotrs£ R. In particular, these properties are
true for contour& with the following properties:

(i)  is a finite union of simple smooth areg = {z;(t) : 0 <t < 1} in the
Riemann sphere.

(i) The arcs and line segmentsinintersect at most at a finite number of points
and all intersections are transversal.

In particular, 1, 2, and 3 are true for contolks 2R, andiR in the text (see Figures
6.1, 7.5, and 7.6).

If s+iv(s), —0 <s< 4, Iis apiecewise parameterization of two arcs in a neigh-
borhood of a point of intersectioni~(0) = O (see Figure A.1), then 2 should be
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iR

FIGUREA.1

FIGUREA.2

interpreted to mean

(A.1) ii{no/i|0f(s+i(1+e)7(s))—c+f(s+w(s))|2,/1+7/(s)2ds=o,

etc.

If all the arcs ofZ are straight lines, properties 1, 2, and 3 can be read off
from standard estimates of the Cauchy transform (see, e.g., [6, p. 88]). The proof
of properties 1 through 3 for contours satisfying (i) and (ii) can be obtained from
the straight-line case by approximating all of the segments locally by straight lines
(see, e.g., [24]). For self-intersecting contours, property 4 requires additional as-
sumptions orf that can be found in [46].

Basic references for RHPs are [10] and [24]. Edie an oriented curve in the
plane satisfying properties (i) and (ii) above. By convention,-thgide (respec-
tively, — side) of an arc itk lies to the left (respectively, right) as one traverses the
arc in the direction of the orientation (see, e.g., Figure A.2).

Let 2o = 2\ {points of self-intersectighandv be a smooth map frorly —
Gl(k,C) for somek. If X is unbounded, we require thatz) — | asz— o« alongZ.

The RHP E, v) consists of the following (see, e.g., [10]): Establish the existence
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and uniqueness oflax k—-matrix-valued functiolY (z) (thesolutionof the RHP g,
v)) such that

Y(2) is analyticC\ Z,
(A.2) Y. (s) =Y_(s)v(s) forse Zo,
Y(z) — | asz— oo,

HereY.(z) = limz_,Y(Z) whereZ € + side ofZ. The precise sense in which
these boundary values are attained, and also the precise sense ity {zichl as
Z— oo, are technical matters that should be specified for any given RH#.(In
this paper, by a solutiovf of an RHP g, v), we always mean (in this connection,
cf. the remark at the end of Section 6) that

Y(z) is analytic inC\ £ and continuous up to the boundary (in-
cluding the points irt \ Zp) in each component. The jump relation
(A.3) Y;(2z) = Y_(2)v(2) is taken in the sense of continuous boundary
values, and (z) — | asz— o meansy (z) = | +O(ﬁ) uniformly
asz— o in C\ Z.
Given €,v), the existence of under appropriate technical assumptionsamd
v is, in general, a subtle and difficult question. However, for the RHP (3.1)—(3.3)
(which is nonregular at infinity), and hence for all RHPs obtained by deforming
(3.1)—(3.3) (see, e.g., (4.3)—(4.5)), we will prove the existence of a solution directly
by construction (see Theorem 3.1); uniqueness, as we see, is a simple matter.
The solution of an RHRZ,v) can be expressed in terms of the solution of an
associated singular integral equation2(see (A.6) and (A.7) below) as follows:
LetC. be the Cauchy operators @n
Let

(A.4) v=b"tb, = (I —w_)"*(l +w,)

be any factorization of. We assumé.., and hencev,, are smooth ozg, and if
2 is unbounded, we assurbe(z) — | asz— « alongZ. Define the operator

(A.5) Cul(f) =Co(fw_) +C_(fw.).

By the above discussion,\if;. € L(Z,|dZ), thenC,, is bounded from.2(Z,|d2)
— L?(Z,|dZ). Suppose that the equation

(A.6) (1-Cypu=1 onZ
has a solution € | +L?(Z), or more precisely, suppoge- | € L?(Z) solves
(A7) (1—Cuw)(p—1) =Cul =Cy(W_) +C_(w,),

which is a well-defined equation ib?(Z) provided thatw. € L® NL?(Z,|dZ).
Then the solution of the RHP (A.2) is given by (see [10])

(A.8) Y(2) =1 +/z“(s)(w+s<s_)jw‘(s))2d—;, 2¢s
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Indeed, for a.ez € Z, from (A.6) and from property 3 of the Cauchy transform
stated above,
Yo (2) = 1+ Co (W +W_)) = 1 +Cyy(p) + (C — C_) (1)
= p+pwy = p(2)by (2),
and similarlyY_(z) = u(2)b_(2), so thatY, (z) = Y_(2)b_1(2)by(2) = Y_(2)v(2)

a.e. onz. Under appropriate regularity assumptions2oandv, one then shows
thatY (z) solves the RHPX, v) in the sense of (A.3).

(A.9)

Appendix B: The Hermite Case

In this appendix we use well-known facts in the theory of orthogonal polynomi-
als to motivate the introduction of tlgefunction of Section 4 in the case of Hermite
polynomials.

Here the weight function is given by(x)dx = e dx._As before, letx n >
-+ > Xnn denote the roots afy(z). From (3.5),

n 1 n
B.1)  Yu(znw) =m(2) = [1(z—Xjn) = L5 log(z—xin) || .
BY  Yulznw =m(@ =[] %) exp[n(njzlogc X; >>]

Itis a well-known fact that under the appropriate scakjig— Xjn = Xj.n/v/2n, the
normalized counting measurg := %Z?:l%n (whered, denotes the Dirac mea-
sure concentrated a) converges weakly to a measuréhat has suppoft-1, 1,
dv(x) = %\/1— x2dx. Similar facts are true for a very general class of orthogonal
polynomials (see [34, 37, 40]). Hence from (B.1) we expect that

(B.2) Yi1(V2nZ n,w) & (2n) 2108z X)dv(X) _ (20yn/2gng(2
whereg(z) = [log(z— s)dv(s). This motivates

1. the rescaliny — U (here++/2n are the MRS numbers) and
2. the introduction of the phase fact®r? in the transformatiok) — T

in Section 4.
Direct integration yields

z
(B.3) g(z):zz—%—logZ—Z/ (t— V2t 4+ )Mt
1
and it is easy to verify directly the phase conditions (4.7), (4.8), and (4.12)—(4.15)
with| = —-1—2log?2.
Appendix C: A Second-Order Differential Equation for the
Orthogonal Polynomials

Denote byY the solution of the Riemann-Hilbert problem (3.6)—(3.8) with re-
spect to the weight function(s) = e 2, whereQ is a polynomial of even degree
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2m and with positive leading coefficient. Set

_ Q@) —n
(C.1) Y(2):=Y(2) (e 02 e%) : V(2):=Y(2) (ZO g) .

One easily verifies that

ca  vo-ve(s) () o-(%) 91,

[EEN

for se R. ThereforeH (z) .= ‘é—i(z)\?*l(z) is an entire matrix-valued function, and
we find

dV -1 o / n 1 0 -1
(C.3) EV _H(z)+<Q (Z)_E>V<O _1>V :

From (3.9) and (C.1),

Y, Yom.. 1
(C.4) V(z):|+;+--~+Z§,r;‘i+o<W>, z— 0 (cf. (3.10)),

and

av _ 1
TN -0(), 2w

Expanding (C.3) at = o, we learn from (C.4) and (C.5) that the entire functidn
is a polynomial of degreer@— 1, which can then be determined explicitly fraph
and from the matrice¥, ..., Yom_1 (see (C.4)). Finally, we arrive at a differential
equation fory, using (C.1) and the definition &f,

o) HO-HY@+Q@Y@(y 7).

The first column of (C.6) reads
.7 < (2 ) _ <H11<z> Q@ - Hi@) ) ( (2 >

' Yn-171_1(2) H21(2) H22(2) +Q(2) ) \"h-17n-1(2) )~
Standard manipulations now lead to a linear second-order differential equation for
m. The coefficients of this differential equation are regular except at the zeros of
Hio. As remarked in Section 1, differential equations for the orthogonal polynomi-
als have been derived in [3, 8, 9, 33, 35, 41].

(C.5)
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