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Abstract

In [Laf08, Laf09], Vincent Lafforgue proved strong Banach prop-
erty (T) for SL3 over a non archimedean local field F. In this paper,
we extend his results to Sps and therefore to any connected almost
F-simple algebraic group with F-split rank > 2. As applications, the
family of expanders constructed by finite quotients of a lattice in such
a group does not admit a uniform embedding in any Banach space of
type > 1, and any affine isometric action of such a group, or of any
cocompact lattice in it, in a Banach space of type > 1 has a fixed
point.
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1 Introduction

In [Laf08), Laf09], Vincent Lafforgue proved strong Banach property
(T) for SL3 over a non archimedean local field F. In this paper, we
extend his results to Sps and therefore to any connected almost F-
simple algebraic group with F-split rank > 2. As the first application,
the family of expanders constructed by finite quotients of a lattice
in such a group does not admit a uniform embedding in any Banach
space of type > 1. As the second application, we prove that any affine
isometric action of such a group, or of any cocompact lattice in it,
in a Banach space of type > 1 has a fixed point. In [BEGM], it is
conjectured that any isometric affine action of a higher rank simple
algebraic group over a local field and of its lattice in a uniformly convex
space has a fixed point. As a consequence of the second application,
we confirm this conjecture for any non archimedean local field and the
corresponding cocompact lattices.

To announce the precise statements, we begin by recalling some
definitions and notations from [Laf09].

Definition 1.1 A class of Banach spaces £ is of type > 1 if one of
the following two equivalent conditions holds.

e i) There exist n € N and € > 0 such that for any Banach space
E € &, E does not contain £} (1 + €)-isometrically;

o ii) There exist p > 1 (called the type) and T € Ry such that for
any E €&, neN* and z1,...,x, € E, we have

n L " )
E 2\ 2 1

<€¢LE:|:1|| — 62leE) < T( E 1 szH%) P
i= =

Remark 1. We say that a class of Banach spaces £ is given by a
super-property, if any Banach space F' finitely representable in & (i.e.
for any finite dimensional subspace V' C F and € > 0 there exists
E € & which contains V' (14 ¢)-isometrically) is an element of €. It is
clear that a class of type > 1 is given by a super-property.
Remark 2. If £ is a class of Banach spaces given by a super-property
and not a class of type > 1, then & contains L;(u), where p is any
o-finite measure. In fact, by the classification of o-finite measures it
suffices to show that ¢; and L;({0,1}°°) are elements of £. L;({0,1}*)
is finitely representable in ¢;. By condition i) in the definition, ¢;
is finitely representable in the class £. Since £ is given by a super-
property, we conclude that Li({0,1}°°) and ¢; belong to €.

Let &€ be a class of Banach spaces stable under complex conjugation
and duality. Let G be a locally compact topological group. Let £ be a



continuous length function of G. Denote £g ¢ the set of isomorphism
classes of strongly continuous representations (E,m) of G such that
E e & and

17(9)l| oy < e

for any g € G. Denote CE(G) the completion of compactly supported
functions C.(G) on G with respect to the norm

I£lcs ey = supirmesel [ F@)(a)dgleis)

Definition 1.2 We say that a locally compact group G has strong
Banach property (T) if for any class of Banach spaces € of type >
1, stable under complex conjugation and duality, and any continuous
length function ¢ over G, there exists so > 0 such that the following
holds. For any C' > 0 and sqg > s > 0, there exists a real self-adjoint
idempotent element p in ng_sg(G), such that for any representation
(E,7) € Eg,c+se, the image of m(p) consists of all G-invariant vectors
mn E, i.e.
r(p)E = E™©),

Remark. In this definition, the condition of type > 1 cannot
be replaced by a weaker condition given by a super-property because
otherwise it would be satisfied only for compact groups. Indeed when
G is non compact, suppose that € is a class of Banach spaces (stable
under complex conjugation and duality) given by a super-property,
and that there exists a real self-ajoint idempotent p € C§ (G) such that
for any (E,7) € Eg 0 we have 7(p)E = E™(@) we show that & is a class
of Banach spaces of type > 1. If not, by remark 2 below definition [L.T]
& must contain L*(G). Note that for any (Fy, 1), (Ea,m2) € Eg.0, any
surjective morphism Fy — FEjy in the category £g o induces a surjective
morphism from E{ = m(p)E; to ES = m2(p)Fa. Now consider the
morphism from L!'(G) (with the left regular representation of G) to
C (with the trivial action of G) by integration on G. Since G is non
compact, there is no non zero G-invariant integrable function on G,
therefore L' (G)% = {0}. However, C% = C, and this is a contradiction
to that L'(G)¢ — C% must be a surjective morphism. Therefore, £
must be a class of type > 1 (see the second remark below definition
0.2 in [Laf09]).

Let F be a non archimedean local field. The purpose of this paper
is to prove the following theorem.

Theorem 1.3 Any connected almost F-simple algebraic group with
F-split rank > 2 has strong Banach property (T).



Remark. This result cannot be extended to any almost F-simple
algebraic group with F-split rank = 1 because they do not even have
Kazhdan’s property (T).

The following definition corresponds to the special case of isometric
actions.

Definition 1.4 We say that a locally compact group G has Banach
property (T) if for any class of Banach spaces € of type > 1 sta-
ble under complex conjugation and duality, there exists a real self-
adjoint idempotent element p in COE(G), such that for any represen-
tation (E,m) € &g, the image of w(p) consists of all G-invariant
vectors in E.

Remark. Ifalocally compact group G has (strong) Banach property
(T) with p € C§ +5¢(G) being the corresponding idempotent, there
always exist p, € C.(G) of integral 1, such that p, converges to p in
CE. o,(G). In fact, let p,, € Co(G) be any sequence such that p,, — p.
Let s, = [ Dn(g)dg. Then

Ip = suplles,, (@) = IP* = Publles, )

< llp = bullez, ,@lPllez, ()

and hence |1 — s,| < |lp — anCa ,(@) — 1 when n — oo. Therefore,

sn # 0 for big enough n and p,, = P, /s, has integral 1 and tends to
p.

With the remark above and the same argument as in theorem
5.4 in [Laf09], we obtain the following theorem on application to
expanders.

We say that a family of graphes {(X;,d;)}i>1 is embedded uni-
formly in a Banach space F, if there exist a function p : N — R that
tends to infinity at infinity and 1-Lipschitz maps f; : X; — E such
that

1fi(z) = fi)lle = pldi(z, y))

for any ¢ € N and z,y € X;.

Let T be a discrete group with Banach property (T). Let (I';);en
be a family of subgroups of I' such that |I'/T;| tends to infinity. Let
S a finite symmetric system of generators of I' which contains 1. For
any i > 0, X; = I'/T'; is endowed with a graph structure associated
to S and we denote by d; the associated metric. As I' has the usual
property (T), X; forms a family of expanders.

Theorem 1.5 LetT" be any discrete group with Banach property (T).
Then the family of expanders (X;,d;) constructed above does not admit
a uniform embedding in any Banach space of type > 1.
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Since strong Banach property clearly implies Banach property (T),
and Banach property (T) is inherited by lattices (proposition 5.3 in
[Laf09]), when T is a lattice of a connected almost F-simple algebraic
groups of F-split rank > 2, we see that the family of expanders con-
structed above does not admit a uniform embedding in any Banach
space of type > 1.

We recall that it is still unknown whether or not such a family
of expanders (or in fact any family of expanders) admits a uniform
embedding in a Banach of finite cotype (see [Laf09], [Pis10] and [MN]).

We turn to application to fixed-point property. As a consequence of
proposition 5.6 in [Laf09], we immediately obtain the following propo-
sition, confirming conjecure 1.6 in [BFGM] for any simple algebraic
group of higher rank over a non archimedean local field and its co-
compact lattice.

Proposition 1.6 Let G be a connected almost F-simple algebraic
group with F-split rank > 2, or a cocompact lattice of such a group.
Then any affine isometric action of G on a Banach space of type > 1
has a fized point.

Remark 1. This result cannot be strengthened to affine isometric
actions for a larger class of Banach spaces defined by a super-property.
If so, first of all by remark 2 below definition [T this class must
contain all L' spaces and their closed subspaces. Denote dyu the Haar
measure on G, and L}(G) the space of functions f € L!(G) such that
Jo f(9)du(g) =i,i=0,1. Then Li(G) is an affine Banach space with
L{(G) as the underlying Banach space. Let G act on L}(G) by left
translation. It is an affine isometric action of G without fixed point,
since GG is not compact.

Remark 2. As pointed out by Mikael de la Salle and the editor, let
us mention that it is shown in [BGM] that fixed point property for all
L' spaces is a characterization of Kazhdan’s property (T) for locally
compact topological groups.

This paper will be part of my PhD thesis in Université Paris
Diderot- Paris 7. I would like to thank my thesis adviser Vincent
Lafforgue for his encouragement and guidance, and very helpful dis-
cussions about this paper. I also thank Yanqgi Qiu for the discussion
of type of a Banach space.

Here is how the paper is organized. In section 2, we review the
theorem of strong Banach property (T) for SLs in [Laf09] and an-
nounce the corresponding theorem 23] for Sp4. In section 3, we prove
theorem [Z:3] when char(F') # 2 by constructing matrices for Sp, and
adapting the arguments in [Laf09]. In section 4, we prove theorem 2.3
when char(F') = 2 by constructing new matrices for the local estimate
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of the move (0,2) and establishing the existence of two limits in the
spherical proposition. In section 5, we adapt a well known argument
[DK] [Vag,[Wang] and extend the results of SLs and Spy to any almost
F-simple algebraic groups with F-split rank > 2.

2 Strong Banach property (T) for Spy(F)

Let £ be any class of Banach spaces of type > 1, stable under complex
conjugation and duality. Let F' be a non archimedean local field, O
the ring of integers of F', m one of its uniformizer, F the residue field,
and ¢ the cardinality of F, i.e. ¢ = ‘—}T' The following proposition from
[Laf09] (corollary 2.3) introduces parameters o > 0 and h € N* for
the class &.

Proposition 2.1 There exist « > 0 and h € N* such that for any
FE € £ we have
|To /o @ 1pl| < e,

where T jznp ® 1p € ﬁ(@Q(O/T{'hO,E),€2(07TTO,E)) is defined by

(Tojmro ©1E) () (x) = anI/EWhOX(a)f(a),

for any x € Oﬁ@ and f € 2(0/7hO, E).

It is proved in [Laf09] that SLs(F') has strong Banach property

(T).

Theorem 2.2 (Theorem 4.1 of [Laf09]) Let G = SL3(F), and ¢ be
the length function on G defined by

T
1425 .
E(kz(w% nd )k‘l) =i+,
1

for any k,k" € SL3(O) and i,j > 0 with i — j € 3Z. Let 8 € [0, ).
There exist t,C’ > 0 such that for any C € R, there exists a real and

self-adjoint idempotent element p € CgH%(G) such that
o (i) for any representation (E, ) € Eq c4pe, the image of m(p) is

the subspace of E consisting of all G-invariant vectors,

o (ii) there exists a sequence p, € Ce(G), such that [, |pn(g)|dg <
1, pn has support in {g € G,€(g) < n}, and

1 2C—tn
Ip— Pn||cg+m,(c) <Ce :



Now we turn to Sps. Let G = Spy(F), which is the group of 4 x 4
matrices g over F such that gJg = J where J is the skew-symmetric
matrix,

0 0 01
0 0 10
7= 0 -1 00
-1 0 0 O

Let K = Sp4(O) (i.e. the subgroup in Sp4(F) whose matrix elements
are in O). For any (i,7) € Z? let

By ||gll we denote the norm of the operator g € End(F*) w.r.t. the
standard norm on F, i.e. ||g|| = maxj<a g<4 |gap|- Similarly, denote
|[A2g| the biggest norm of all 2 x 2 minors of g € G, which is the
norm of A%g € End(A?2F*) w.r.t. the standard norm on A2F*. Let
A ={(i,j) € N%)i > j}. Any element in G has the form kD (i, j)k' for
some (i,7) € A and k, k' € K. For such a g = kD(i,j)k’ € G, we have
llgll = ¢* and ||A2g|| = ¢*/, and this gives a bijection from K\G/K
to A by g — (i,7), which is the inverse of (i,7) — KD(i,7)K. Let £
be the length function of G defined by ¢(kD(i,j)k') = i + j, for any
kK € K and (i,j) € A.

We will prove the following theorem with the argument used in
[Laf09] for the proof of theorem (note that the statement is the
same except for the range of 3).

Theorem 2.3 Let a and h be as in proposition [21), and 8 € [0, ).
There exist t,C" > 0 such that for any C € R, there exists a real and
self-adjoint idempotent element p € CgH%(G) such that

e (i) for any representation (E, ) € Eq c4pe, the image of m(p) is
the subspace of E consisting of all G-invariant vectors,

o (ii) there exists a sequence p, € Ce(G), such that [, |pn(g)|dg <
1, pn has support in {g € G,€(g) < n}, and

1 2C—tn
1P = palleg, @) < Ce ™.

3 Proof of theorem 2.3 when char(F') #
2

This section is dedicated to the proof of theorem [2.3] when the char-
acteristic of F' is different from 2. We will first reduce the theorem



to two propositions on matrix coefficients, and then prove them by a
zig-zag argument in the Weyl chamber with two local estimates of the
matrix coefficients.

Most of the claims in this section are only true when char(F") # 2,
but some are still valid in characteristic 2 and will be used in the next
section for the proof in characteristic 2.

When charF' # 2, we denote vy the valuation of 2 € O. For any
a € R, denote |a] (resp. [a]) the biggest (resp. smallest) integer < a
(resp. > a).

Let (F,m) be any continuous representation of G of a Banach space
E, (V,7) any irreducible unitary representation of K. For fixed £ € F
and n € V ® E*, we denote c(g) = (n,7(g)¢) € V for any g € G. By
abuse of notation we write

c(i,j) = (0, 7(D (%, 5)))-

The following is the proposition on spherical matrix coefficients,
which will be used to construct the idempotent element p in theorem

2.3l

Proposition 3.1 Suppose that char(F) # 2. Let « be as in propo-
sition [21), B € [0, ;). There exists C' > 0, such that the following
holds. Let C € R, (E,m) any element in Eg,cype, and { € E, n € E*
any K-invariant vectors of norm 1. There exists coo € C, such that
for any i > j >0,

|C(Z,]) - Coo| S Clezc_(%_zﬁ)i.
Next we turn to the proposition on non spherical matrix coeflients.

Proposition 3.2 Suppose that char(F) # 2. Let o be as in proposi-
tion (2], B € [0, 5), and (V,T) a non trivial irreducible unitary rep-
resentation of K. There exists C' > 0, such that the following holds.
Let C € R%, (E, ) any element in Eg.cipe, and § € E, n €V @ E*
(endowed with the ¢* norm with respect to some fived basis of V) any
K -invariant vectors of norm 1. We have for any ¢ > j > 0,

e, )|y < C'eC~ =201,

Proof of theorem [2.3] when char(F') # 2 assuming propo-
sition B.1] and Denote e, € Cg+BZ(G),Vg € @G, the limit of

% € C.(G) for some descending Borel subsets E,, satisfying N, E,, =

{g}. For any (m, E) € £ .c+p¢, by strong continuity we have 7(ey)& =
7(9)&,V€ € E. Let Py = egeger, where ex = fK erdk and dk is the
Haar measure on K such that K has volume 1. As a consequence



of proposition Bl we see that the limit p = limy)_,o, P, exists in
Cé+6£(G). It is a real and self-adjoint element because P, = P,,
and Py = Pj-1. Moreover for any k € K and 9,9 € G we have
Ugkg') > (g') — €(g~ 1), which gives

exegp = lim eK/ Pyrgdkerx = p, (1)
£(g')—o0 K

and therefore p? = p.

On the other hand, for any non trivial irreducible representa-
tion (V,7) of K, denote e}, = n [} Tr(r(k))erdk € Cg+6£(G), where
n = dimV. For any (E,7) € &g cype, denote 7* : G — L(E*)
the contragredient representation of m, i.e. 7*(g) = 'm(g~!), then
W*(e}/()E* is the subspace of vectors in E* whose K-type is V. For
any & € 7*(ej;)E* there exist K-invariant vectors n; € V* ® E* and
vectors v; € V,1 < i < n, such that £ = > " | (m;,v;). By applying
proposition to V* and E we have exegeK — 0 in Cg+ﬁg(g) when

¢(g) — oo, and therefore

e}/(egp =0. (2)

Note that any vector z € E satisfying ﬂ(e}/()z = 0 for any irre-

ducible representation V of K must be the zero vector (since 7(f)z = 0
for any class function f € C(K), i.e. continuous function invariant
under the conjugate action of K). Now for any = € E apply this to
z = 7(egp — p)z, and in view of ({l) and (2)), we have

7(egp) = 7(p)-

Therefore 7(p)E' is the subspace of G-invariant vectors in FE.

Finally we complete the proof by taking p, = Pp(,) and ¢ =
55 — 2.

Now we turn to the proof of proposition B.1] on spherical matrix
coefficients, which is based on two local estimates on spherical matrix
coefficients corresponding to the move (0,1) and (1, —1) in the Weyl
chamber.

Lemma 3.3 Suppose char(F) # 2. Let o be as in proposition 2.
Let 8 € [0,55). Then there exists C' > 0, such that for any C € R%,
any (E, ) € Eq,c+p0, and any K-invariant vectors £ € E, n € E* of

norm 1, and any (i,j) € A with i — j > vg + 1, we have
le(é,5) — e, + )| < C'eQC_(%—QB)i+%j,

where C' is a constant depending on q, h, vy, a, 3.



Lemma 3.4 Let F be of any characteristic. Let o be as in proposition
21, and B € [0,%). Then there exists C' > 0, such that for any
C e RY, any (E,7) € Eg,c4pe, and any K-invariant vectors { € E,
n € E* of norm 1, and (i,j) € A with j > 2, we have

le(i, ) —c(i+ 1,7 —1)| < O 2C+Bi—(5-B)j

Proof of proposition B.1] assuming lemma B.3] and [3.4t We
adopt the zig-zag argument from [Laf08] to Sps. We put

Sa = {(i,j) € A0 < i—2j < a}.

First we move any (i,j) € A to the strip S3. Then we show that we
can move any (i,7) € S3 to the line i = 25 using the moves inside Sy,
and then we move (7, j) to infinity along this line as illustrated below.

i=2j

Precisely, when i > 2j > 0, we have (i, |i/2]) € Sy C S3 and
< C'e20-(R=28)it50 o 4 20— (5 —2i+ 5 (li/2]-1)

< 120 (55-28)i, (3)

When 2j > i > 0, we have (i + [Qj?’_i},j - [%D € S3, and

clind) i+ 21,5 - [22200)

< 20— (G=BiHBI 4 20— (-AHEF DB [271+1)

< 120G =B+, (4)
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For any (i,7) € S3, if i € 2N+ k, k € {0,1} then
|e(i,§) — (i + &, (i + k) /2)| < C'e*O~ e =200, (5)
In fact, by lemmas B3] and B4, when (7, 7) € Sy we have
max(|e(i, ) — e(i,j + V)], ]e(i, j) = (i + 1,5 = ]} < €20 G201,

When ¢ € 2N and (i,j) € S3, we get inequality (&) by considering
the move (i,j) — (4,4/2). When ¢ € 2N + 1 and (i,j) € S3, there
exists k € {0,1}, suth that (i + 1,5 + k — 1) € S4. Therefore, we
obtain inequality (B]) by considering the following moves inside Sy :
(t,J) = (Lj+k)— (E+1j+k—-1)— (i+1,(+1)/2).

Combining inequalities ([B]), (4) and (E) we obtain: when i > 2j >
0, and 7 € 2N + k, k € {0,1},

lc(i,5) — c(i + K, (i + k) /2)| < C'e20~ G290, (6)
when 2j > > j > 0, there exists k € {0,1,2} such that

elis) — (L5 G+ )] + b, 5 (156 + )] + K] < 2020
(7)
Finally for any j > 0, we have
16(27,7) — e(25 + 2,7+ 1)| < C'2C (2027,
Proposition B.1] is then proved. ]

It remains to prove lemmas B3] and 3.4l To prove these two lem-
mas, we use the following lemma in [Laf09] which is a variant of fast
Fourier transform.

Lemma 3.5 (lemma 4.4 in [Laf09]) Let x : F — C* be a non trivial
character. Let h € N*,a € R* ,n € N*. Let E be a Banach space
such that [T /rno @ 1g|| < €%, and let (§4y)e,yco/mno be a family of
vectors of E. Then

2
E E . -
a’bec)/ﬂ-n(9 :BEO/W"(’)ﬁg]FX( )§x7a$+b+ﬂ' 1g
< q2h72672(%*1)a E ng’y”?

z,ye0/mnO

Proof of lemma [3.3t Denote m = L%J, and ny = 2m —2j — vp.
Let z,y,a,b € O/7™ O, and let 0 : O/ O — O be a section. Let
B(a,b)~1, a(z,y) be the elements in G defined as follows,

" 1
-1 _ 7Ti7m+j 0 1
Bla,b)™" = pitm—j o(a) 1

11



1 ﬂfm‘i’j
04(1'7 y) - 0,(1_) 0 1 am—i
o(2)? +20(y) ofx) 0 1 e
Then
,n.m
B ﬂ.iferj
5(0’7 b) la(x7 y) = 7T—i+m—j X
ﬂ.fm
1 rmt]
0 1 7T_m+j
o(a) + o(x) 1 1 ' =]
o(a)? —20(b) + o(x)? +20(y) ola) +o(x) 0 1 =i

Recall from the second section that for any g € KD(k, 1)K, ¢ is
the biggest norm of all matrix elements in g, and ¢**! is the biggest
norm of all 2 x 2 minors of g. It is easy to see that

142 (8(a.0)) || = 47, A% (a(ar. ) | = "~

and ‘
18(a,b) " e, )| = ¢"-

On the other hand, we calculate the minor of rows 3, 4 and columns
L, 2,

Since the norm of the minor of rows 3, 4 and columns 2, 4 is ¢'7, we
1A% (B(a,b) " a(e, y)) | = max(q"F" 777, ¢F),

where v € {0,1,...,2m — 2j} is the valuation of 2(y — ax — b) €
O/m*m=210. Let y = ax + b+ 1™ "¢, where ¢ € F. When ¢ = 0, we
have v = 2m — 25 and

Bla,b) alw,y) € KD(i, j)K.
When ¢ € F* we have v = 2(m — j) — 1, and then

Bla,b)ta(z,y) € KD(i,j + 1)K.
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Let x : F — C* be a non trivial character. By Cauchy-Schwarz
inequality and lemma we have

(i, 5) — e(i, g + 1)

= t ni—1
N Q|a,b,m60/17§”1 O,ee]FX<6)< W(,B(a, b))?’], W(a(:ﬂ, ar+b+m 6))£>|

<0 B DI

a,be0/m™"1 O

1D E e)m(a(z,ax + b+~ 1e 2
\/a,bEO/ﬂ'nlOHIL'EO/W'”IO,EGFX( )ﬂ( ( ™ ))§H

< qeCtB+D) | gh=1 =(F—Da  O+28(m—j)

q
< qh ) e(vo}ZL?Jrl)a . 6207(%72B)i+%j,

and the lemma follows immediately. 0
Proof of lemma B2t Let z,y,a,b € O/7/710, and let o :
O/77=t0 — O be a section. Define

7t 1
Ba,b)~! = 1 ) |1 —1—760((1) (1) ) c G
Tt —mo(d) 0 —1—mo(a) 1
1 nJ
0 1 1
O[(x,y) = O'(CC) 0 1 : 1 € G.
mo(y)+o(z) o(x) 0 1 m
Then we have
B(a, b)) a(z,y) =
wt 1
1 1+ mwo(a) 1
1 o(z) 0 1
Tt w(o(y) —o(a)o(x) —o(b)) o(x) —1—mo(a)
a=J
1
1

Firstly, we see that

1A2(B(a. b))l = ¢', [A* (a(z, ) | = ¢,

and

1A% (B(a,0) " al, y)) | = ¢"*,
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which is the norm of the determinant of the submatrix of rows 2, 4
and columns 1, 3. Denote the valuation of y — axz — b € O/77~1O by
ve{0,1,...,5 — 1}, and we have
18(a,0)" oz, y)|| = max(q’, ¢ 7).
Let ‘
y=ax+b+ni e ecckF

When ¢ = 0, we see that v = j — 1 and

B(a,b) ra(z,ax +b) € KD(i,j)K.
When ¢ € F* we have v = j — 2, and therefore

Bla,b)ra(z,ax +b+7772%) e KD(i+1,j — 1)K.
Let x : F — C* be a non trivial character. By the same estimates
as in the end of the proof of lemma B3] (ng replaced by j— 1), we have
’0(17]) - C(Z + Lj - 1)’
<qeCthi . gt o~ (it —Da  C+pi

—q el | 2C+8i—(5=B)j
O
As for proposition [3.2] we need two similar lemmas as follows for
its proof.

Lemma 3.6 Suppose char(F) # 2. Let o be as in proposition [21],
B €[0,55), and (V,7) a non trivial irreducible unitary representation
of K which factorizes through Spy(O/7*O) for k > 1. There eists
C' > 0, such that the following holds. Let C' € R, (E,7) any element
in Eq.cqpe, and § € B, n eV @ E* any K-invariant vectors of norm
1. Then for any (i,j) € A with i — j > 2k + vy, we have

le(i, ) = (i, j + 1)l < C'e*O G20,

Lemma 3.7 Let F be of any characteristic. Let o be as in proposition
21, B € [0,%), and (V,T) a non trivial irreducible unitary represen-
tation of K which factorizes through Sps(Q/m*®) for k > 1. There
exists C' > 0, such that the following holds. Let C € R, (E,7) any
element in Eq.cqpe, and £ € E, n € V @ E* any K-invariant vectors
of norm 1. Then for any (i,7) € Z? with i +1 > j > 2k + 2, we have

le(i, 3) = e(i+ 1,5 = Dy < O GE=I,
In particular,

le(G —1,7) — ¢(§,j — Dy < e~ (G=28)3,
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Lemma 3.8 Let h,a,n,E as in lemma [Z3 Let k € {0,...,|n/2]},

o € F*, and let (&u,y)zent om0 yen2r0/mmo be a family of vectors of
E. Then there exists a constant Co depending only on q, such that

2
E E  omitrrtco— | E  Eoont
aeTkO /7 O0,bem2k O /7 OllzenkO /7O 0T oA zeTkO/mnO nar
n—2k
< Cog?h2e 2T e E 124117

zemkO/mnOyen?kO /a0

Proof: When k = 0, let f be the function on F defined by f(gg) =
q, f(0) = —q, and zero elsewhere. The left hand side of the inequality
is equal to
E E 1|
a,beo/ﬂ'no|’ZBEO/TK’”O,EGFf<€)§I7ax+b+T( 16H
Write f = ZX Fxl fxx with fy, € C, then by the triangular inequal-
ity and and lemma [35] the left hand side is equal to

£ E o2

a,beO/wno” Z fX:BEO/W"O,EE]FX(E)gx’aerbJ”r IEH
X€F,x#1

< (3 max E | E X(E)aapipimntcll?

x€F,x#1 a,b€0 /O 2€0 /7O e€F

< Oyg?h—2o-20i-Da | 2
> L2g a7beO/7rnOH£m’yH
2
where Cy = (zxeﬁxﬂ ]fX]) .
In general, let s : O/ 20O — O/7"*O be a section, and for
any 21,91 € O/7"2*O let
/!
§$17y1 - zeﬂn72kI(Ej/7rn7kO§7rk(S(x1)+z)77r2kyl'
For any a,z € 7°0/7"O, the product ax € O/7"O only depends
on the images of a,z in 7O /7" *O. So the left hand side of the
inequality is equal to
!/ !/ 2
a1,b1GOI/EW”—%OHzlE(’)/IE"—%O(gm’mzlerlJrﬂn_%_lEO B f3&1,(113[:1-1—111) H :
By applying the lemma when & = 0 to (£, )z, yye0/an—200 We get
the inequality in the lemma with the same Cj. U
Proof of lemma

Let m,z,y,a,b,e,0,a(z,y), B(a,b) be as in the proof of lemma[3.3]
We recall also from the proof that

”A2 (B(a, b)) | = azh HA2 (Oc(x,y))H — 2m=2,

15



Let €9 be image of 70 /2 in F*, and let
g1 = 2 22t (5(y) — o(a)o(z) — (b)) € O.

Recall that y = ax + b+ 722~ "1lg we have £ modrO = 6616.
Let k1 be the element in K defined by

0 0 - v
. 0 0 —iH(g(a) +o(x) 1
| = 1 0 —mi 2t (g(a) + o(x)) 2|
—ni 2 Hi (g (a) + o () -1 A 0
and let
91 = k18(a,b) " o, y)
0 0 1 0
B 0 0 _7Ti72m+j(0—(a) +o(z)) 1 »
= 1 0 _7Ti—2m+3j+1(o-(a) + o(x)) m2it+l
_7Ti72m+j(0-(a) + 0'(.%')) -1 2i—2m+2j 0
o~
0 pi—2m+2j
o) o) - o
7T72m+] (O’ a) to ) 4+ —Jj— 1 €1 7Tf2m+j(a(a) + 0'(1')) 0 71'7]'
rio(@to@) at w0
I R R A R
- m(eg — 1) 0 —ntlio(a)+o(x)) =/t
0 0 ! 0
When ¢ = 0, we have
i ola) +o(z) 1 T2 0
i B 7 le 0 —(o(a)+o(x) 1
i 91 g1 — 1 0 —7(o(a)+o(z)) =
i 0 0 1 0
which is an element in K. When € = ¢p, we have
i o(a)+o(x) 1 7Y 0
it _ €1 0 —m(o(a)+o(x) =
it T a e -1 0 —(o(a) o) 1]
at 0 0 1 0

which is also in K. Denote &,y = m(a(z,y))&, 10, = (Idy@'7(B(a,b)))n
and n; = 2(m — j) — vo. Note that c¢(k'gk”) = 7(k')c(g) for any

16



kK. k" € K,g € G, we then have
||C(Za.]) - C(iaj + 1)HV

o0 o~ )|
a,wakO/ﬂ"I(’)7b67r2k0/7r"107—( 1) <77a,b ém,ax-l—b—i—ﬂ ! 160> <77a,b 5z,aa}+b>
(8)

v

When i — j > k + v and a,z € 7*FO /7™ O, we have

0 0 1 0
0 0 0 1 i
kl = 1 0 0 7T2j+1 modm O,
0 -1.0 O
so (8) becomes
R (AT}
a,z€mkO /71 0,bem2kO /71 O <77a,b gz,aa:—i—b—i—w ! 160> <77a,b 5z,aa}+b> 1%

By Cauchy-Schwarz inequality and lemma B.8] (when i — j > 2k + vy),
it is less than

< E 2%
- q\/aeﬂko/wnlaben%o/nnlouna’bu

E I E ¢ -1 E  &aatol?
b+m"1 — z,ax+b
\/a€7rk(’)/7r"1 0,bem2kQ /7™ O zerkO /71O LD co zeTkO /1O

< qeCHBHI) | [Cogh 1 . e~ (R e (O+2B(m—j)

242k a e

O
Proof of lemma [3.7k
Let z,y,a,b,e,0,a(z,y),5(a,b) be as in the proof of lemma B4
From the proof we have

HA2 (B(aa b)) H = qia ”A2 (Oé(.%',y)) H = qj-

Denote €1 = 77 T2(a(y) — o(a)o(z) — o(b)) € O, and we have
e1 mod 7O = e. Denote a; = 1+ 7o(a) € O. Forany i +1 > j > 1,
let k1 be the element in K defined by

0 0 0 1
b — 0 1 0 —ri=itlg,
1o —mi a7 —allo(x) 1 mlayt

~1 7ait(l—ep) — 7 g(z) i Itlay  gZItl

Denote

g1 = klﬂ(aa b)ila(xa y)

17



0 0 0 1
10 1 0 —ri—itlg, «
| o —mirar%e) —ayto(x) 1 mlayt

—1 7layl(l— &) — 7t tlo(x) 7ty g2

mi=J
7T7ja1 1
mlo(x) 0 1
a7 ley mlo(x) —mTtap wtH
a7 ey o (x) —ntay
7 9a1(1—¢1) 1—77Tayo(z) 79Ha? —7ay
N 0 —mita%ey 0 mlay!
0 a1 —ep) 0 mitl

When ¢ = 0, we have

s
l
7_‘_7] g1
i
7 le o(x) —ay gl
|a(l—e) 7 —maio(z) mad —nitlay c K
- 0 —nta % 0 apt ’
0 a;r'(l1—e1) 0 T
When € = 1, we have
i+l
ni=1
i+l g1
i1
€1 o (x) —may it
| lai(l—&) Tl —aio(z) o} —mlay c K
N 0 —ay e 0 Tay?t
0 mlal (1 —¢1) 0 1
When j > 2k + 2 and a,2 € 7°0 /77710, we have
0 0 0 1
0 1 0 —tmitl k
ki = 0 0 1 0 mod 7 O.
-1 0 7t 0

By the same estimates (with ny replaced by j — 1 and €9 by 1 € F¥)
as in the end of the proof of lemma we have

lle(i, §) — c(i+1,5 — Dy < qeCHBi . /Cagh=1 . e (s Do, (C+Bi

18



— /Ol - e+ | 20+Bi—(5-B)5

O
Let K7 be the subgroup of K consisting of elements of the form
Xk
* %
k0 ok
* ok

1

i.e.

Ko=1{| B ||BeSL0))}.
1

Lemma 3.9 Let F' be of any characteristic. Then K = (K1K5)3°.

Proof: Denote B the lower triangular matrices in K, and W the
Weyl group associated to G = Sp4(F'). Denote

01 1

10 B 0 1
0 1]~ 1 0
10 1

w21 =

The dihedral group W (of order 8) is generated by ws; and w3z, which
are reflections w.r.t. the axes © = y and x = 0, respectively. Since
wo1 € K1 and w3 € Ko we obtain W C (K1 K>)*.

Denote for any a € O,

1 0 1

a 1 1 0
/1/21(0’) = 1 0 7“32(a) = a 1 )

—a 1 1

1 1

0 1 0 1
:U‘31(a) “la 0 1 sy 41 (CL) - 0 0 1

0 a 01 a 0 0 1

19



By calculations we have

par (@) = worpza(a)wey € (K1K2)3
and

ps1(a) = por(—a)psz (1) pr (a)paz(—1)par (—a®) € (K1 Ka)".

Any element in B has the form
1 . f

b 1 !

c—ab —a 1 e !

QL O =

where a,b,c,d € O and e, f € O*, which is equal to

(&

p21(a)ps2(b) s (¢)par (ac + d) - ! !

6_1

So we have B C (K1 K)!3.

By the Bruhat decomposition, we have K = BW B = (K{K,)3°.00

Lemma 3.10 Let K be any compact group, {K;}1<i<n a family of
subgroups such that K = (K1Ks...K,)N for some N € N*. Then
for any finite dimensional unitary representation (V,7) of K without
invariant vector, and any x € V, and y; € V invariant by K; for each

1 <1< n, we have

<2nN — Y .
v < 20 ma {lz = g}

Proof: Since [, ||7(k)z — z||} dk = 2[|z||} > ||z||3, we see that there
exists a k € K such that ||7(k)x — z||yv > ||z||v. Suppose that k =
(kll---knl)---(klN---an) with k?l'j EKi(l <i1<n, 1< SN) We

then have

lzlv < lIrk)z —zlv < Y (ke —=llv
1<i<n,1<j<N

<2 - < —
<2 3 u—aly < 20N max {lle - uilv)
1<i<n,1<j<N
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Proof of proposition By lemmas 3.6l and 3.7, we obtain two
similar inequalities as (6] and () in the proof of proposition 3.1l (using
the same argument): when i > 25 >0, and i € 2N+ k, k € {0, 1},

lle(iy §) — c(i + k, (i + k) /2)|[v < Ce20~ G20,
when 2j > > j > 0, there exists k € {0,1,2} such that

le(i, 4) — C(Lg(z‘ +)]+Fk %({;(i +)] +k)llv < e

So it remains to prove
(24, )|y < €202,
First we see that
max (e(27.3) — e(27.0) v e(27.) — e((3/2]. 133/2))]lv)
< 20— (35-26)2]

Moreover, c(k'gk”) = 7(K')c(g), VK, k" € K, g € G, and it follows that
c(37/2],37/2]) is invariant by K7, and that ¢(27,0) invariant by K.
By applying lemma BI0 to K = (K1K>5)3°, we complete the proof of
the proposition. O

4 Proof of theorem when char(F') =
2

In this section we prove theorem 23] when char(F') = 2. The proof for
char(F) = 2 is technically more difficult because it is only possible to
prove a local estimate for the move (0,2), and therefore we have two
limits in the spherical propositions (proposition [2]).

Throughout this section we assume F' is of characteristic 2.

Lemma 4.1 Let a > 0 as in proposition [21, § € [0, 5-). Let (V,7)
be an irreducible unitary representation of K which factorizes through

Spa(O/7*O) for k > 0. There exists C' > 0, such that the following
holds. Let C € R, (E,m) any element in Eqcype, and § € E,
n € VRE* any K -invariant vectors of norm 1. Then for any (i,j) € A
with © — j > 4k + 2, we have

le(i,) — e(i.j +2)lly < €20~ G2 5,

In particular when (V,T) is the trivial representation of K (and V =

C), we have
e(i,4) — i, +2)] < C'2C G205,

for any (i,7) € A withi—j > 2.
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Proof: Since char(F) = 2, we have —1 =1 in F. Let m = L%J,
r,y,a,b € O/t 1710 satisfying y + ax + b € 720 /7m0,
and put ¢ € Fwith y = ar+b+7™ 7 2c asusual. Let o : O/7™ 710 —
O be a section. Let

ﬂ.m
-1 _ 0 7Ti_m+j
Bla,b)™ = g~ m=itle(h) a1 + wo(a))? wHmTI ’
0 T "o (b) 0
gt
0 qamtJ
a(:ﬂ,y) - 7T_m+j(0(:6) + 7T0'(y)) 0 ﬂ.m—j
rHo(n)?  a T (o(n) +ro(y) 0
Then
5(0’7 b)ila(-%ﬁ y) =
0 7Ti—2m+2j
(o (b) + o(x) + ma(y)) 7 (1 +mo(a))? qi2m=2j |
7T_2m+]0'($)2 7T—2m+j 7T0'(b) +O'($) +7T0'(y)) 0 =
We see that
1A% (B(a, b)) | = ¢, A% (a2, ) || = ™.
Denote
ar = (ro(b) + o(x) + 7o (y))(1 + mo(a)) 2,
and

e1 =1 "2 (5(y) + o(a)a(z) + o(b)) € O.
Let k1 be the element in K defined by

0 0 1 0
by — 0 0 7Ti72m+ja1 1
1= 1 0 i 2mA 342, 2542 |
Ry 1 g (o) 20
and let
g1 = klﬁ(a’a b)_lOé(:C, y)
0 0 1 0
_ 0 0 mi2mtigy 1
1 0 ,n.i—2m+3j+2a1 7T2j+2 X

7Ti72m+ja1 1 7T2i72m+2j(1+ﬂ_0_(a))72 0

22



7-".]

0 i—2m42j
7 (mo(b) + o(x) + mo(y)) 771 + 7o(a))? o—i+t2m—2j
7T_2m+j0'($)2 r2mtj 7TO'( ) ( )—|—7T0'(y)) 0 o
7 a1 (1 + 7o(a))? (1 + no(a))? o—iH2m—2j 0
— 77];25%(1 + 770'(@))72 0 ﬂfjal 7T7j
miei(1+mo(a)) ™ +n/ 0 7420, rit2
0 0 m(1+7o(a))™2 0
When ¢ = 0, we have |¢?| < ¢~2 and
ﬂ.i
ﬂ'j
T 9
—
a1(1 + mo(a))? (1+ 7wo(a))? a2m—2j 0
7 %e}(1 + mo(a )) - 0 ay 1
B 2 2| € K.
ef(1+mo(a))?+1 0 m2a; T
0 0 (+mo(@)? 0

When ¢ = 1, we have

€2(1+7o(a) 2 +1] = |(e1(1 + 7o (a)) " +1)%| < g2,

and then
—j—2 g1
,n.—i

ai(1+7wo(a))? (14 7o (a))? m2m=2j 0
B e2(1 + mo(a)) 2 0 m2ay 2 cK
T 72 (B +7o(a) 2+ 1) 0 ay 1 ’
0 0 (1+7o(a))™® 0

When i—j > 4k+2 , a,z € 7*O /™7 0, and b,y € 72O /am=I 10O,
we have

0 01 0

000 1 i
kl - 1 0 0 7T2j+2 mod 7" O.

010 0

By replacing n; by m — 7 — 1 at the end of the proof of lemma [3.6] we
get

le(@, 7) = (i 5 + 2)llv
< qeCHBUHD) |\ [Cpgh 1 . e (T e (C+28(m—))

C' 20—(55, —2B)i+3; onJ
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O

Proposition 4.2 Let o > 0, § € [0, 5). There exists C' > 0, such
that the following holds. Let C € R% , (E, ) any element in Eq c+ a1,
and & € E, n € E* any K-invariant vectors of norm 1. There exist
co,c1 € C, such that

(i, j) —al < O’ e2C— (a5 —20)
for any (i,7) € A withi+j € 2N+ 1,1 =0, 1.

Proof: We apply the same argument as in the proof of proposition
[B.1] using lemma [3.4] (which is still true in characteristic 2) and lemma
[41] (in the particular case when (V,7) is the trivial representation of
K). We will get two limits because the moves (i,5) — (i + 1,5 — 1)
and (4,7) ~ (i,7 + 2) generate a sublattice of Z? of index 2.

First, we put S, = {(7,7) € A|0 <i—2j < a}. When 0 < 25 <,
we have (i,j + 2Li742jj) € Sy, and by the particular case of lemma [£.T]
when (V, 1) is the trivial representation of K, we get

le(d,5) — (i, j + 2L%J)| < 20— (5 —28)i

When 0 < i < 2j, we have (i + [2],5 — [25]) € S3 C S By
lemmas [3.4] we have

2 —i, . 2 —i
—|’]_(

3
Moreover, when (7, j) € Sy, there exists k € {0,1,2} such that

| < e

1 (a7 .
|C(Z,]) - C(Z + ka 5(2 + k))| S 0,620_(E_26)Z‘
In fact, when (i,7) € Sg, we first have

max(|e(i, j) — (0,5 +2)1,]e(i, j) — (i + 1, = D]} < €202,

It suffices to show the inequality when i — 2j € {1, 2, 3,4}, by consid-
ering the following moves inside Sg. When ¢ — 2j = 1, we obtain the
inequality by considering (2j+1,7) — (2j+2,j—1) — (2j+2,5+1).
When i—25 = 2, we consider (2j+2,j) — (2j+4,j—2) — (2j+4,j+2).
When i — 2j = 3 or 4, use the moves (25 +3,j) — (2 +2,7 + 1) and
(25 +4,j) — (2 +4,j + 2) respectively.

In sum, when ¢ > 25 > 0, there exists k € {0, 1,2}, such that

1 (o3 .
le(i,7) — c(i + k, 5(2‘ + k)| < Cle20- (2, ()

24



when 2j > > j > 0, there exists k € {0,1,2,3} such that

e(i,3) — (L5 +3)) + b, 5 (156 + )] +B)]
< CleZC—(ﬁ—Zﬁ)i. (10)
Finally the proposition follows from the inequality
(24, 4) — e(2j + 4,5 +2)| < ¢’ T2,
O

Proposition 4.3 Let a > 0, 8 € [0,g;), and (V,7) a non trivial
irreducible unitary representation of K. There exists C' > 0, such
that the following holds. Let C € R% , (E, ) any element in Eq o+ a1,

and £ € E, n eV ® E* any K-invariant vectors of norm 1. We have
(i, )|y < Ce2C—GE=20),

Proof: As (@) and (0] in the proof of the above proposition [4.2]
by lemmas B.7 and [£1], we have the following inequalities. When
i > 24 >0, there exists k € {0, 1,2}, such that

o

1 A
HC(L]) - C(Z + k, 5(1 + k))HV S 0,620_(4}1_25)2_
When 2j > i > j > 0, there exists k € {0, 1,2,3} such that

leGi ) — C(L;(i +4)] +k, %(L;(z’ + )]+ k)|l < C'e2C 29

So it remains to prove that for any j € N we have
le(2j, 4)||v < ' Grm22, (11)

First when j € 2N, we know inequality (II]) holds. In fact, by
lemmas 3.7 and 1], when j € 2N we have

max (|le(2j. 1) —e(25, 0) v, (2, 5)=e(35/2,3/2) | ) < C"e* =292,
Let K1, K5 be the subgroups of the group K as lemmaB.9l By lemmas

B9 and B.I0 we get inequality (ITI).
It remains to show inequality (IIl) when j € 2N + 1. We first have

max(|le(2j.) = e(2) +1,0)llv. le(27.5) = e(2i = |55+ 5 ])Iv)
< O 20— (35 -28)2j
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Note that lemma 3.7 is still valid for 7 = 5 — 1, i.e.
. ] . ] . ] . ] (8o .
HC(?J—L%LJH%J)—C(?J—L%J—LJH%JH)HV < 020 (5 =38)3

Then we have

J

.. . . 7 e )
le(25,5) = (27 = 15) = L+ 5]+ D)lv < O e2C~(55-28)2
~ : o* 70 ox 0
Denote Bj, By the image in Kj of ((’) (’)X> and (77(’) OX)

respectively, under the group isomorphism G L2 (O) — K;. We see that
K1 = (B1B3)?%. Moreover c(k'gk") = 7(k')c(g) for any k', k" € K, g €
G, it follows that ¢(2j + 1,0),¢(2j — |3],5 + [4]),c(2 — [4] — 1,5 +
L%J + 1) are invariant by Ko, By, By repectively. By applying lemma
BI0to K = (B1ByK>3)%, we obtain inequality (1) for j € 2N+ 1. O

Proof of theorem [2.3] when char(F') = 2: For simplicity we say
that an element g € G is even (resp. odd) when g € KD(i,5)K,i >
j > 0 and i + j is even (resp. odd). By proposition €2l we see
that when g is even (resp. odd) and tends to infinity, the limit of
exeger exists in Cé+5Z(G), which we denote by Ty (resp. T1). Let
p=3(Ty+1T1).

We have for any g € G, exegp = p, and thus p? = p. In fact, it
suffices to show that for any g € G there exist «(g),5(g) > 0 with
a(g) + B(g) = 1, such that

exegTo = ag)To + B(9)T1, (12)

and

exegIh = B(9)To + a(g)Th. (13)

Let a(g) (resp. B(g)) be the volume of the set of elements (k1, ko, k3, kg) €
K (where k; are vectors in F'* with norms < 1) such that

lgk1 A gka||n(rey € ¢*F (vesp. ¢*7H1).

We see that for any k = (k1, ko, ks, k4) € K, when i + j € 2N (resp.
2N+ 1) with (7,j) € A and when || gk1 A gka|| > ¢/, gkD(i, j) is even
exactly when ||gki A gkz|| € ¢*% (vesp. ¢?Z*1). Hence we have

li Wk € K, gkD(i, j) i — . ,
o dim ol € K gkD(ig) i even) = al)( resp. 5(9)
and also

lim vol{k € K, gkD(i,7) is odd} = S(g)( resp. a(g)).

1+j€2N( resp. 2N+1),j—00
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And thus equalities (I2) and (3] follow.

By proposition [43] for any non trivial irreducible representation
V of K we have e}éegTo = e}?eng = 0. By the same argument as in
the proof of theorem when char(F') # 2 in section 2, we have

egp = exegp = p.
We complete the proof by taking

1

Pn = 5( K€D(2[%],0)¢K T eK@D(%%J—LO)eK)’

and t = g — 20. O

5 Extension to simple algebraic groups
of higher split rank

Let F be a non archimedean local field. This section is dedicated
to the proof the the following theorem, which is theorem [[.3] in the
introduction.

Theorem 5.1 Let G be a connected almost F-simple algebraic group
with F-split rank > 2. Then G(F) has strong Banach property (T).

We begin the proof with some lemmas. The following lemma is
proposition 8.2 in [Bor].

Lemma 5.2 Let k be a field and H an abelian k-group. Let m: H —
GL,, be a k-rational representation. Then w(H) is conjugate over k to
some subgroup of the group of diagonal elements in GL,.

The following lemma is a consequence of theorem 7.2 in [BT], which
is also proposition 1.1.6.2 in [Mar].

Lemma 5.3 Let k be any field and G a connected almost k-simple
group with k-split rank > 2. Then there exists a k-rational group ho-
momorphism with finite kernel from SLs or Spy to G.

The following lemma is a direct consequence of propositions 1.1.3.3
(ii) and I.1.5.4 (iii), and theorem 1.2.3.1 (a) in [Max].

Lemma 5.4 Let G be a simply connected and almost F'-simple group.
Let S be a mazimal F-split torus of G, ®(G,S) the root system with
some ordering and ¥ a proper subset of simple roots. Then there exist
two unipotent F'-subgroups Vy,Vy of G, and two S-equivariant F-
isomorphisms LieVy — Vy, LieVy™ — V7, such that
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o (i) LieVy (resp. LieVy ) is the direct sum of eigenspaces of posi-
tive (resp. negative) roots which are not integral linear combina-
tions of ¥, and

o (ii) Vy(F)UVy (F) generates G(I).

The next two lemmas reduce the proof to the simply connected cov-
ering of our algebraic group.

Lemma 5.5 (proposition 1.1.4.11 in [Mar]) Let k be a field, and let G
be connected semisimple k-group. Then there exists a simply connected
k-group G and a k-isogeny (i.e. surjective k-group homomorphism

with finite kernel) from G to G.

Lemma 5.6 Let G be a locally compact group and Go its quotient
by a finite normal subgroup. Then G has strong Banach property (T)
if and only if Gy has strong Banach property (T).

Proof: Let H be the kernel of G; — G2. Suppose G has strong
Banach property (T), and let p,, € C.(G1) be real and self-adjoint ele-
ments (otherwise take p, +pn+p) +D;,) that tends to the idempotent
element in Cngsg(Gl)- Then (héEHh) P, tends to a real and self-adjoint

(since H is normal) idempotent element p’ in CZ, +5¢(G2) such that
egp’ = p' for any g € Gs.

On the other direction, if G2 has strong Banach property (T), let
P € Ce(G2) tend to the idempotent element in CE. ,(G2), and denote
its lifting to C.(G1) by Dy, (i-e. Dn(gh) = pn(g) for any g € G1,h € H).
For any (E,7) € &Gy ,c+se, we have m(Pn)€ = W(f)n)(hIeEHﬂ(h)g)’ and

thus
|7 (Br) — 7 (Bl () < max [ (M[ll7(Bn) — 7Bl £y,

where Ef denotes the space of H-invariant vectors. We conclude that
Dn tends to a real and self-adjoint idempotent element p in ng_sg(Gl)
such that e,p = p for any g € G. O

Proof of theorem (.1t In view of lemmas and .6l we can
assume G is simply connected (in order to apply lemma [5.4] as indi-
cated below). By lemma [5.3] there exist a subgroup R of G(F') and a
surjective group homomorphism I from SL3(F') or Spy(F) to R with
finite kernel. Let p : F* — SL3(F) (resp. Spa(F)) be the group
homomorphism defined by
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for any z € F, and let a = I o p(n), where 7 is a uniformizer of F.
By lemma [5.2], the set of eigenvalues of Ad(a) is a subset of 7% which
contains {1} as a proper subset. Let S be a maximal F-split torus of
G whose F points contains a. We can choose an ordering of ®(5, Q)
such that |x(a)| <1 for any simple root x. Let 9 be the proper subset
of simple roots x such that |x(a)| =1, and let Vy, V" be as in lemma
b4

For simplicity denote G(F) and Vy(F),Vy (F) by G and Vy, V"
from now on. Let || - || be the norm on LieG defined w.r.t. some
F-basis. Let ¢ be the length function on G defined by

'(g) = log || Ad(g) || End(Liec)-

Note that for any length function ¢ on SL3(F) or Spy(F), there
exist K € R% such that ¢ < kf, where ¢ is the length function on
SL3(F) or Spy(F') defined in section 2 In fact for SL3(F), let K be

the compact generating set

73 73

{SL3(0),SL3(O)r 1 SL3(0),SL3(O)n? 73
1 1

Then we have ¢(g) > min{n : g € K"} (note that it holds for diagonal
elements and K is a SL3(O) bi-invariant set). Therefore, we have

<maxl7(g))€(g) > U(g).

geK
It can be shown for Sp4(F') using the same argument by replacing the
compact generating set K by

a1 a1

{Sp4(0), Sp4(O) Spa(0), Spa(0O)

s m

Let € be a class of Banach spaces of type > 1 stable under duality
and complex conjugation. Let s,t,C,C" € R ,p € CfHHC(R),pm €
C.(R) verify the conditions (i) and (ii) of theorem 2.2]if R is isogenous
to SL3(F), or of theorem 2.3lif R is isogenous to Sp4(F'), where k € R’
such that ¢|p < k¢ (in view of lemma[5.6]). Let U be an open compact
subgroup of G and f = % Then to establish that G has strong
Banach property (T) it suffices to show that if s is small enough the
series p;, f € Co(G) converges in Cfg/ +¢(G) to aself adjoint idempotent
p’ such that for any (E,7) € Eg s¢4c, the image of m(p') consists of
all G-invariant vectors of F. First it is clear that the series p,,f is
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a Cauchy series in C&, +c(G) and we note p’ its limit (in fact p is a
multiplier of C,, ~(G) and p’ = pf). Let (E,7) € Egsric. It is
obvious that 7(p’) acts by identity over any G-invariant vector. It
remains to show that for any x € E, n(p')z is G-invariant (in fact
it follows that p’ = f*p’ = f*pf, so p’ is self-adjoint). In view of
statement (ii) of lemma [.4] it suffices to show that w(p/)z is Vy-
invariant and V; -invariant.

We first show that m(p’)x is Vy-invariant. Let E : LieVy — Vy be
as in lemma[5.4l We know that m(p’)z is fixed by R, then in particular
by a. It suffices to show that for any Y € LieVy,

m(EX))r(p)z - n(p')r = n(EY))m(a")m(p)z = m(a”")m(p)z

=7(a"")(r(a"E(Y)a™")-1)7(p")a = 7(a” ") (7(E(Ad(a™)Y))—1)n(p')x

tends to 0 when n € N tends to infinity.

Let Y = > ca Y) be the decomposition of Y under the adjoint
action of a in LieVy, where A C F denotes the set of eigenvalues of
the action. Due to the way ¥ is chosen, the eigenvalues of Ad(a)|ricv,
are all of the form 7", Since U is an open subgroup of G, there exists
r > 0 such that when Y’ € V and ||Y’|| < r, we have E(Y') € U. For
any n € N, we put

1 . -1 -1
= 1 A | YalD -
m = |nk og{\r1€1£1| | 7" + k" log(r/ max 1YAlD ]

When n is big enough such that m > 0, we have

(W(E(Ad(a")Y)) — 1)7r(pmf)x

= [ pula)mlo) (=BG ")) = 1)( )
When /(g) < m, we have

14d(g~a™)Y || < € max [A*[Yx[Liev, <7,

and hence
(m(E(Ad(g~'a™)Y)) — 1)m(f)z = 0.
Therefore we have

m(a™") (7(E(Ad(a™)Y)) — 1)m(ppmf)z =0

when n is big enough.
On the other hand for any n € N, we always have

Ad(a™)Y =) A"Y) € P OYa.
AEA AEA
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Hence

Im(a™") (x(E(Ad(a")Y)) = 1)7(p" — pmSf)z e
< eCJrsZ’(a)n(l + C”)Hﬂ'(p/ . pmf)qua

where
C" = sup ||7(E(max t\Yy))||z(m) < o0
trheO AEA

depends only on Y. But

70" = pmf)zle < O |a(f)zl|e

by statement (ii) of theorem if R is isogenous to SL3(F'), or of
theorem 23] if R is isogenous to Sps(F) (we recall that C’ and ¢ are
the constants of theorem and theorem [2.3). In total, when n is big
enough

Iw(a™) (x(E(Ad(a")Y)) = )7 (0" = pmf))zl| £

< st 4 MOt x ()| g,

and if
ot
5 Kl (a)

it tends to 0 when n tends to infinity.

We prove 7(p')x is Vj -invariant by exactly the same argument
(with a replaced by a~! and the ordering of ®(S, G) by its inverse, i.e.
the ordering such that |y(a~!)| < 1 for any simple root ). O

log min |A|~*
ogmin |A|™,
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