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Abstract

In [Laf08, Laf09], Vincent Lafforgue proved strong Banach prop-
erty (T) for SL3 over a non archimedean local field F. In this paper,
we extend his results to Sp4 and therefore to any connected almost
F -simple algebraic group with F -split rank ≥ 2. As applications, the
family of expanders constructed by finite quotients of a lattice in such
a group does not admit a uniform embedding in any Banach space of
type > 1, and any affine isometric action of such a group, or of any
cocompact lattice in it, in a Banach space of type > 1 has a fixed
point.
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1 Introduction

In [Laf08, Laf09], Vincent Lafforgue proved strong Banach property
(T) for SL3 over a non archimedean local field F. In this paper, we
extend his results to Sp4 and therefore to any connected almost F -
simple algebraic group with F -split rank ≥ 2. As the first application,
the family of expanders constructed by finite quotients of a lattice
in such a group does not admit a uniform embedding in any Banach
space of type > 1. As the second application, we prove that any affine
isometric action of such a group, or of any cocompact lattice in it,
in a Banach space of type > 1 has a fixed point. In [BFGM], it is
conjectured that any isometric affine action of a higher rank simple
algebraic group over a local field and of its lattice in a uniformly convex
space has a fixed point. As a consequence of the second application,
we confirm this conjecture for any non archimedean local field and the
corresponding cocompact lattices.

To announce the precise statements, we begin by recalling some
definitions and notations from [Laf09].

Definition 1.1 A class of Banach spaces E is of type > 1 if one of
the following two equivalent conditions holds.

• i) There exist n ∈ N and ε > 0 such that for any Banach space
E ∈ E , E does not contain ℓn1 (1 + ε)-isometrically;

• ii) There exist p > 1 (called the type) and T ∈ R+ such that for
any E ∈ E, n ∈ N∗ and x1, ..., xn ∈ E, we have

(

E
εi=±1

‖
n
∑

i=1

εixi‖
2
E

) 1

2

≤ T
(

n
∑

i=1

‖xi‖
p
E

) 1

p
.

Remark 1. We say that a class of Banach spaces E is given by a
super-property, if any Banach space F finitely representable in E (i.e.
for any finite dimensional subspace V ⊂ F and ε > 0 there exists
E ∈ E which contains V (1+ ε)-isometrically) is an element of E . It is
clear that a class of type > 1 is given by a super-property.
Remark 2. If E is a class of Banach spaces given by a super-property
and not a class of type > 1, then E contains L1(µ), where µ is any
σ-finite measure. In fact, by the classification of σ-finite measures it
suffices to show that ℓ1 and L1({0, 1}

∞) are elements of E . L1({0, 1}
∞)

is finitely representable in ℓ1. By condition i) in the definition, ℓ1
is finitely representable in the class E . Since E is given by a super-
property, we conclude that L1({0, 1}

∞) and ℓ1 belong to E .
Let E be a class of Banach spaces stable under complex conjugation

and duality. Let G be a locally compact topological group. Let ℓ be a
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continuous length function of G. Denote EG,ℓ the set of isomorphism
classes of strongly continuous representations (E, π) of G such that
E ∈ E and

‖π(g)‖L(E) ≤ eℓ(g)

for any g ∈ G. Denote CE
ℓ (G) the completion of compactly supported

functions Cc(G) on G with respect to the norm

‖f‖CE

ℓ
(G) = sup(E,π)∈EG,ℓ

‖

∫

f(g)π(g)dg‖L(E).

Definition 1.2 We say that a locally compact group G has strong
Banach property (T) if for any class of Banach spaces E of type >
1, stable under complex conjugation and duality, and any continuous
length function ℓ over G, there exists s0 > 0 such that the following
holds. For any C > 0 and s0 ≥ s ≥ 0, there exists a real self-adjoint
idempotent element p in CE

C+sℓ(G), such that for any representation
(E, π) ∈ EG,C+sℓ, the image of π(p) consists of all G-invariant vectors
in E, i.e.

π(p)E = Eπ(G).

Remark. In this definition, the condition of type > 1 cannot
be replaced by a weaker condition given by a super-property because
otherwise it would be satisfied only for compact groups. Indeed when
G is non compact, suppose that E is a class of Banach spaces (stable
under complex conjugation and duality) given by a super-property,
and that there exists a real self-ajoint idempotent p ∈ CE

0 (G) such that
for any (E, π) ∈ EG,0 we have π(p)E = Eπ(G), we show that E is a class
of Banach spaces of type > 1. If not, by remark 2 below definition 1.1,
E must contain L1(G). Note that for any (E1, π1), (E2, π2) ∈ EG,0, any
surjective morphism E1 → E2 in the category EG,0 induces a surjective
morphism from EG

1 = π1(p)E1 to EG
2 = π2(p)E2. Now consider the

morphism from L1(G) (with the left regular representation of G) to
C (with the trivial action of G) by integration on G. Since G is non
compact, there is no non zero G-invariant integrable function on G,
therefore L1(G)G = {0}. However, CG = C, and this is a contradiction
to that L1(G)G → CG must be a surjective morphism. Therefore, E
must be a class of type > 1 (see the second remark below definition
0.2 in [Laf09]).

Let F be a non archimedean local field. The purpose of this paper
is to prove the following theorem.

Theorem 1.3 Any connected almost F -simple algebraic group with
F -split rank ≥ 2 has strong Banach property (T).
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Remark. This result cannot be extended to any almost F -simple
algebraic group with F -split rank = 1 because they do not even have
Kazhdan’s property (T).

The following definition corresponds to the special case of isometric
actions.

Definition 1.4 We say that a locally compact group G has Banach
property (T) if for any class of Banach spaces E of type > 1 sta-
ble under complex conjugation and duality, there exists a real self-
adjoint idempotent element p in CE

0 (G), such that for any represen-
tation (E, π) ∈ EG,0, the image of π(p) consists of all G-invariant
vectors in E.

Remark. If a locally compact group G has (strong) Banach property
(T) with p ∈ CE

C+sℓ(G) being the corresponding idempotent, there
always exist pn ∈ Cc(G) of integral 1, such that pn converges to p in
CE
C+sℓ(G). In fact, let p̌n ∈ Cc(G) be any sequence such that p̌n → p.

Let sn =
∫

G p̌n(g)dg. Then

‖p− snp‖CE

C+sℓ
(G) = ‖p2 − p̌np‖CE

C+sℓ
(G)

≤ ‖p − p̌n‖CE

C+sℓ
(G)‖p‖CE

C+sℓ
(G),

and hence |1 − sn| ≤ ‖p − p̌n‖CE

C+sℓ
(G) → 1 when n → ∞. Therefore,

sn 6= 0 for big enough n and pn = p̌n/sn has integral 1 and tends to
p.

With the remark above and the same argument as in theorem
5.4 in [Laf09], we obtain the following theorem 1.5 on application to
expanders.

We say that a family of graphes {(Xi, di)}i≥1 is embedded uni-
formly in a Banach space E, if there exist a function ρ : N → R+ that
tends to infinity at infinity and 1-Lipschitz maps fi : Xi → E such
that

‖fi(x)− fi(y)‖E ≥ ρ(di(x, y))

for any i ∈ N and x, y ∈ Xi.
Let Γ be a discrete group with Banach property (T). Let (Γi)i∈N

be a family of subgroups of Γ such that |Γ/Γi| tends to infinity. Let
S a finite symmetric system of generators of Γ which contains 1. For
any i ≥ 0, Xi = Γ/Γi is endowed with a graph structure associated
to S and we denote by di the associated metric. As Γ has the usual
property (T), Xi forms a family of expanders.

Theorem 1.5 Let Γ be any discrete group with Banach property (T).
Then the family of expanders (Xi, di) constructed above does not admit
a uniform embedding in any Banach space of type > 1.
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Since strong Banach property clearly implies Banach property (T),
and Banach property (T) is inherited by lattices (proposition 5.3 in
[Laf09]), when Γ is a lattice of a connected almost F -simple algebraic
groups of F -split rank ≥ 2, we see that the family of expanders con-
structed above does not admit a uniform embedding in any Banach
space of type > 1.

We recall that it is still unknown whether or not such a family
of expanders (or in fact any family of expanders) admits a uniform
embedding in a Banach of finite cotype (see [Laf09], [Pis10] and [MN]).

We turn to application to fixed-point property. As a consequence of
proposition 5.6 in [Laf09], we immediately obtain the following propo-
sition, confirming conjecure 1.6 in [BFGM] for any simple algebraic
group of higher rank over a non archimedean local field and its co-
compact lattice.

Proposition 1.6 Let G be a connected almost F -simple algebraic
group with F -split rank ≥ 2, or a cocompact lattice of such a group.
Then any affine isometric action of G on a Banach space of type > 1
has a fixed point.

Remark 1. This result cannot be strengthened to affine isometric
actions for a larger class of Banach spaces defined by a super-property.
If so, first of all by remark 2 below definition 1.1 this class must
contain all L1 spaces and their closed subspaces. Denote dµ the Haar
measure on G, and L1

i (G) the space of functions f ∈ L1(G) such that
∫

G f(g)dµ(g) = i, i = 0, 1. Then L1
1(G) is an affine Banach space with

L1
0(G) as the underlying Banach space. Let G act on L1

1(G) by left
translation. It is an affine isometric action of G without fixed point,
since G is not compact.
Remark 2. As pointed out by Mikael de la Salle and the editor, let
us mention that it is shown in [BGM] that fixed point property for all
L1 spaces is a characterization of Kazhdan’s property (T) for locally
compact topological groups.

This paper will be part of my PhD thesis in Université Paris
Diderot- Paris 7. I would like to thank my thesis adviser Vincent
Lafforgue for his encouragement and guidance, and very helpful dis-
cussions about this paper. I also thank Yanqi Qiu for the discussion
of type of a Banach space.

Here is how the paper is organized. In section 2, we review the
theorem of strong Banach property (T) for SL3 in [Laf09] and an-
nounce the corresponding theorem 2.3 for Sp4. In section 3, we prove
theorem 2.3 when char(F ) 6= 2 by constructing matrices for Sp4 and
adapting the arguments in [Laf09]. In section 4, we prove theorem 2.3
when char(F ) = 2 by constructing new matrices for the local estimate
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of the move (0, 2) and establishing the existence of two limits in the
spherical proposition. In section 5, we adapt a well known argument
[DK, Vas, Wang] and extend the results of SL3 and Sp4 to any almost
F -simple algebraic groups with F -split rank ≥ 2.

2 Strong Banach property (T) for Sp4(F )

Let E be any class of Banach spaces of type > 1, stable under complex
conjugation and duality. Let F be a non archimedean local field, O
the ring of integers of F , π one of its uniformizer, F the residue field,
and q the cardinality of F, i.e. q = 1

|π| . The following proposition from

[Laf09] (corollary 2.3) introduces parameters α > 0 and h ∈ N∗ for
the class E .

Proposition 2.1 There exist α > 0 and h ∈ N∗ such that for any
E ∈ E we have

‖TO/πhO ⊗ 1E‖ ≤ e−α,

where TO/πhO ⊗ 1E ∈ L
(

ℓ2(O/πhO, E), ℓ2(Ô/πhO, E)
)

is defined by

(

TO/πhO ⊗ 1E
)

(f)(χ) = E
a∈O/πhO

χ(a)f(a),

for any χ ∈ Ô/πhO and f ∈ ℓ2(O/πhO, E).

It is proved in [Laf09] that SL3(F ) has strong Banach property
(T).

Theorem 2.2 (Theorem 4.1 of [Laf09]) Let G = SL3(F ), and ℓ be
the length function on G defined by

ℓ
(

k(π
i+2j

3





π−i−j

π−j

1



)k′
)

= i+ j,

for any k, k′ ∈ SL3(O) and i, j ≥ 0 with i − j ∈ 3Z. Let β ∈ [0, α
3h).

There exist t, C ′ > 0 such that for any C ∈ R+, there exists a real and
self-adjoint idempotent element p ∈ CE

C+βℓ(G) such that

• (i) for any representation (E, π) ∈ EG,C+βℓ, the image of π(p) is
the subspace of E consisting of all G-invariant vectors,

• (ii) there exists a sequence pn ∈ Cc(G), such that
∫

G |pn(g)|dg ≤
1, pn has support in {g ∈ G, ℓ(g) ≤ n}, and

‖p− pn‖CE

C+βℓ
(G) ≤ C ′e2C−tn.

6



Now we turn to Sp4. Let G = Sp4(F ), which is the group of 4× 4
matrices g over F such that tgJg = J where J is the skew-symmetric
matrix,

J =









0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0









.

Let K = Sp4(O) (i.e. the subgroup in Sp4(F ) whose matrix elements
are in O). For any (i, j) ∈ Z2 let

D(i, j) =









π−i

π−j

πj

πi









.

By ‖g‖ we denote the norm of the operator g ∈ End(F 4) w.r.t. the
standard norm on F 4, i.e. ‖g‖ = max1≤α,β≤4 |gαβ |. Similarly, denote
‖Λ2g‖ the biggest norm of all 2 × 2 minors of g ∈ G, which is the
norm of Λ2g ∈ End(Λ2F 4) w.r.t. the standard norm on Λ2F 4. Let
Λ = {(i, j) ∈ N2, i ≥ j}. Any element in G has the form kD(i, j)k′ for
some (i, j) ∈ Λ and k, k′ ∈ K. For such a g = kD(i, j)k′ ∈ G, we have
‖g‖ = qi and ‖Λ2g‖ = qi+j, and this gives a bijection from K\G/K
to Λ by g 7→ (i, j), which is the inverse of (i, j) 7→ KD(i, j)K. Let ℓ
be the length function of G defined by ℓ(kD(i, j)k′) = i + j, for any
k, k′ ∈ K and (i, j) ∈ Λ.

We will prove the following theorem with the argument used in
[Laf09] for the proof of theorem 2.2 (note that the statement is the
same except for the range of β).

Theorem 2.3 Let α and h be as in proposition 2.1, and β ∈ [0, α
8h).

There exist t, C ′ > 0 such that for any C ∈ R+, there exists a real and
self-adjoint idempotent element p ∈ CE

C+βℓ(G) such that

• (i) for any representation (E, π) ∈ EG,C+βℓ, the image of π(p) is
the subspace of E consisting of all G-invariant vectors,

• (ii) there exists a sequence pn ∈ Cc(G), such that
∫

G |pn(g)|dg ≤
1, pn has support in {g ∈ G, ℓ(g) ≤ n}, and

‖p− pn‖CE

C+βℓ
(G) ≤ C ′e2C−tn.

3 Proof of theorem 2.3 when char(F ) 6=

2

This section is dedicated to the proof of theorem 2.3 when the char-
acteristic of F is different from 2. We will first reduce the theorem
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to two propositions on matrix coefficients, and then prove them by a
zig-zag argument in the Weyl chamber with two local estimates of the
matrix coefficients.

Most of the claims in this section are only true when char(F ) 6= 2,
but some are still valid in characteristic 2 and will be used in the next
section for the proof in characteristic 2.

When charF 6= 2, we denote v0 the valuation of 2 ∈ O. For any
a ∈ R, denote ⌊a⌋ (resp. ⌈a⌉) the biggest (resp. smallest) integer ≤ a
(resp. ≥ a).

Let (E, π) be any continuous representation of G of a Banach space
E, (V, τ) any irreducible unitary representation of K. For fixed ξ ∈ E
and η ∈ V ⊗ E∗, we denote c(g) = 〈η, π(g)ξ〉 ∈ V for any g ∈ G. By
abuse of notation we write

c(i, j) = 〈η, π(D(i, j))ξ〉.

The following is the proposition on spherical matrix coefficients,
which will be used to construct the idempotent element p in theorem
2.3.

Proposition 3.1 Suppose that char(F ) 6= 2. Let α be as in propo-
sition 2.1, β ∈ [0, α

4h). There exists C ′ > 0, such that the following
holds. Let C ∈ R∗

+, (E, π) any element in EG,C+βℓ, and ξ ∈ E, η ∈ E∗

any K-invariant vectors of norm 1. There exists c∞ ∈ C, such that
for any i ≥ j ≥ 0,

|c(i, j) − c∞| ≤ C ′e2C−( α
2h

−2β)i.

Next we turn to the proposition on non spherical matrix coeffients.

Proposition 3.2 Suppose that char(F ) 6= 2. Let α be as in proposi-
tion 2.1, β ∈ [0, α

4h), and (V, τ) a non trivial irreducible unitary rep-
resentation of K. There exists C ′ > 0, such that the following holds.
Let C ∈ R∗

+, (E, π) any element in EG,C+βℓ, and ξ ∈ E, η ∈ V ⊗ E∗

(endowed with the ℓ2 norm with respect to some fixed basis of V ) any
K-invariant vectors of norm 1. We have for any i ≥ j ≥ 0,

‖c(i, j)‖V ≤ C ′e2C−( α
2h

−2β)i.

Proof of theorem 2.3 when char(F ) 6= 2 assuming propo-
sition 3.1 and 3.2: Denote eg ∈ CE

C+βℓ(G),∀g ∈ G, the limit of
χEn

vol(En)
∈ Cc(G) for some descending Borel subsets En satisfying ∩nEn =

{g}. For any (π,E) ∈ EG,C+βℓ, by strong continuity we have π(eg)ξ =
π(g)ξ,∀ξ ∈ E. Let Pg = eKegeK , where eK =

∫

K ekdk and dk is the
Haar measure on K such that K has volume 1. As a consequence
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of proposition 3.1 we see that the limit p = limℓ(g)→∞ Pg exists in

CE
C+βℓ(G). It is a real and self-adjoint element because P̄g = Pg,

and P ∗
g = Pg−1 . Moreover for any k ∈ K and g, g′ ∈ G we have

ℓ(gkg′) ≥ ℓ(g′)− ℓ(g−1), which gives

eKegp = lim
ℓ(g′)→∞

eK

∫

K
Pgkg′dkeK = p, (1)

and therefore p2 = p.
On the other hand, for any non trivial irreducible representa-

tion (V, τ) of K, denote eVK = n
∫

K Tr(τ(k))ekdk ∈ CE
C+βℓ(G), where

n = dimV. For any (E, π) ∈ EG,C+βℓ, denote π∗ : G → L(E∗)
the contragredient representation of π, i.e. π∗(g) = tπ(g−1), then
π∗(eVK)E∗ is the subspace of vectors in E∗ whose K-type is V. For
any ξ ∈ π∗(eVK)E∗ there exist K-invariant vectors ηi ∈ V ∗ ⊗ E∗ and
vectors vi ∈ V, 1 ≤ i ≤ n, such that ξ =

∑n
i=1〈ηi, vi〉. By applying

proposition 3.2 to V ∗ and E we have eVKegeK → 0 in CE
C+βℓ(g) when

ℓ(g) → ∞, and therefore
eVKegp = 0. (2)

Note that any vector z ∈ E satisfying π(eVK)z = 0 for any irre-
ducible representation V ofK must be the zero vector (since π(f)z = 0
for any class function f ∈ C(K), i.e. continuous function invariant
under the conjugate action of K). Now for any x ∈ E apply this to
z = π(egp− p)x, and in view of (1) and (2), we have

π(egp) = π(p).

Therefore π(p)E is the subspace of G-invariant vectors in E.
Finally we complete the proof by taking pn = PD(n,0) and t =

α
2h − 2β. �

Now we turn to the proof of proposition 3.1 on spherical matrix
coefficients, which is based on two local estimates on spherical matrix
coefficients corresponding to the move (0, 1) and (1,−1) in the Weyl
chamber.

Lemma 3.3 Suppose char(F ) 6= 2. Let α be as in proposition 2.1.
Let β ∈ [0, α

2h). Then there exists C ′ > 0, such that for any C ∈ R∗
+,

any (E, π) ∈ EG,C+βℓ, and any K-invariant vectors ξ ∈ E, η ∈ E∗ of
norm 1, and any (i, j) ∈ Λ with i− j ≥ v0 + 1, we have

|c(i, j) − c(i, j + 1)| ≤ C ′e2C−(α
h
−2β)i+α

h
j ,

where C ′ is a constant depending on q, h, v0, α, β.
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Lemma 3.4 Let F be of any characteristic. Let α be as in proposition
2.1, and β ∈ [0, αh ). Then there exists C ′ > 0, such that for any
C ∈ R∗

+, any (E, π) ∈ EG,C+βℓ, and any K-invariant vectors ξ ∈ E,
η ∈ E∗ of norm 1, and (i, j) ∈ Λ with j ≥ 2, we have

|c(i, j) − c(i + 1, j − 1)| ≤ C ′e2C+βi−(α
h
−β)j .

Proof of proposition 3.1 assuming lemma 3.3 and 3.4: We
adopt the zig-zag argument from [Laf08] to Sp4. We put

Sα = {(i, j) ∈ Λ|0 ≤ i− 2j ≤ α}.

First we move any (i, j) ∈ Λ to the strip S3. Then we show that we
can move any (i, j) ∈ S3 to the line i = 2j using the moves inside S4,
and then we move (i, j) to infinity along this line as illustrated below.

j

i

i=2j

(i,j)
✲✛

3

Precisely, when i ≥ 2j ≥ 0, we have (i, ⌊i/2⌋) ∈ S2 ⊂ S3 and

|c(i, j) − c(i, ⌊i/2⌋)|

≤ C ′e2C−(α
h
−2β)i+α

h
j + . . .+ C ′e2C−(α

h
−2β)i+α

h
(⌊i/2⌋−1)

≤ C ′e2C−( α
2h

−2β)i. (3)

When 2j ≥ i ≥ 0, we have
(

i+ ⌈2j−i
3 ⌉, j − ⌈2j−i

3 ⌉
)

∈ S3, and

∣

∣

∣c(i, j) − c(i + ⌈
2j − i

3
⌉, j − ⌈

2j − i

3
⌉)
∣

∣

∣

≤ C ′e2C−(α
h
−β)i+βj + . . . +C ′e2C−(α

h
−β)(i+⌈ 2j−i

3
⌉−1)+β(j−⌈ 2j−i

3
⌉+1)

≤ C ′e2C−( α
3h

−β)(i+j). (4)

10



For any (i, j) ∈ S3, if i ∈ 2N+ k, k ∈ {0, 1} then
∣

∣c(i, j) − c
(

i+ k, (i+ k)/2
)∣

∣ ≤ C ′e2C−( α
2h

−2β)i. (5)

In fact, by lemmas 3.3 and 3.4, when (i, j) ∈ S4 we have

max
(

|c(i, j) − c(i, j + 1)|, |c(i, j) − c(i+ 1, j − 1)|
)

≤ C ′e2C−( α
2h

−2β)i.

When i ∈ 2N and (i, j) ∈ S3, we get inequality (5) by considering
the move (i, j) 7→ (i, i/2). When i ∈ 2N + 1 and (i, j) ∈ S3, there
exists k ∈ {0, 1}, suth that (i + 1, j + k − 1) ∈ S4. Therefore, we
obtain inequality (5) by considering the following moves inside S4 :
(i, j) 7→ (i, j + k) 7→ (i+ 1, j + k − 1) 7→ (i+ 1, (i + 1)/2).

Combining inequalities (3), (4) and (5) we obtain: when i ≥ 2j ≥
0, and i ∈ 2N + k, k ∈ {0, 1},

|c(i, j) − c(i+ k, (i+ k)/2)| ≤ C ′e2C−( α
2h

−2β)i; (6)

when 2j ≥ i ≥ j ≥ 0, there exists k ∈ {0, 1, 2} such that

|c(i, j) − c
(

⌊
2

3
(i+ j)⌋+ k,

1

2
(⌊
2

3
(i+ j)⌋+ k)

)

| ≤ C ′e2C−( α
2h

−2β)i.

(7)

Finally for any j ≥ 0, we have

|c(2j, j) − c(2j + 2, j + 1)| ≤ C ′e2C−( α
2h

−2β)2j .

Proposition 3.1 is then proved. �

It remains to prove lemmas 3.3 and 3.4. To prove these two lem-
mas, we use the following lemma in [Laf09] which is a variant of fast
Fourier transform.

Lemma 3.5 (lemma 4.4 in [Laf09]) Let χ : F → C∗ be a non trivial
character. Let h ∈ N∗, α ∈ R∗

+, n ∈ N∗. Let E be a Banach space
such that ‖TO/πhO⊗1E‖ ≤ e−α, and let (ξx,y)x,y∈O/πnO be a family of
vectors of E. Then

E
a,b∈O/πnO

∥

∥

∥
E

x∈O/πnO,ε∈F
χ(ε)ξx,ax+b+πn−1ε

∥

∥

∥

2

≤ q2h−2e−2(n
h
−1)α

E
x,y∈O/πnO

‖ξx,y‖
2.

Proof of lemma 3.3: Denote m = ⌊ i+j
2 ⌋, and n1 = 2m−2j− v0.

Let x, y, a, b ∈ O/πn1O, and let σ : O/πn1O → O be a section. Let
β(a, b)−1, α(x, y) be the elements in G defined as follows,

β(a, b)−1 =









πm

πi−m+j

π−i+m−j

π−m









·









1
0 1

σ(a) 1 1
σ(a)2 − 2σ(b) σ(a) 0 1









,
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α(x, y) =









1
0 1

σ(x) 0 1
σ(x)2 + 2σ(y) σ(x) 0 1









·









π−m+j

π−m+j

πm−j

πm−j









.

Then

β(a, b)−1α(x, y) =









πm

πi−m+j

π−i+m−j

π−m









×









1
0 1

σ(a) + σ(x) 1 1
σ(a)2 − 2σ(b) + σ(x)2 + 2σ(y) σ(a) + σ(x) 0 1









·









π−m+j

π−m+j

πm−j

πm−j









.

Recall from the second section that for any g ∈ KD(k, l)K, qk is
the biggest norm of all matrix elements in g, and qk+l is the biggest
norm of all 2× 2 minors of g. It is easy to see that

‖Λ2
(

β(a, b)
)

‖ = qi+j, ‖Λ2
(

α(x, y)
)

‖ = q2m−2j ,

and
‖β(a, b)−1α(x, y)‖ = qi.

On the other hand, we calculate the minor of rows 3, 4 and columns
1, 2,

det
(

(

π−i+m−j

π−m

)(

σ(a) + σ(x) 1
σ(a)2 − 2σ(b) + σ(x)2 + 2σ(y) σ(a) + σ(x)

)

×

(

π−m+j

π−m+j

)

)

= −2π−i−2m+j
(

σ(y)− σ(a)σ(x) − σ(b)
)

.

Since the norm of the minor of rows 3, 4 and columns 2, 4 is qi+j, we
have

‖Λ2
(

β(a, b)−1α(x, y)
)

‖ = max(qi+2m−j−v, qi+j),

where v ∈ {0, 1, . . . , 2m − 2j} is the valuation of 2(y − ax − b) ∈
O/π2m−2jO. Let y = ax+ b+ πn1−1ε, where ε ∈ F. When ε = 0, we
have v = 2m− 2j and

β(a, b)−1α(x, y) ∈ KD(i, j)K.

When ε ∈ F∗ we have v = 2(m− j)− 1, and then

β(a, b)−1α(x, y) ∈ KD(i, j + 1)K.
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Let χ : F → C∗ be a non trivial character. By Cauchy-Schwarz
inequality and lemma 3.5 we have

|c(i, j) − c(i, j + 1)|

= q| E
a,b,x∈O/πn1O,ε∈F

χ(ε)〈tπ
(

β(a, b)
)

η, π
(

α(x, ax + b+ πn1−1ε)
)

ξ〉|

≤ q
√

E
a,b∈O/πn1O

‖tπ
(

β(a, b)
)

η‖2×

√

E
a,b∈O/πn1O

‖ E
x∈O/πn1O,ε∈F

χ(ε)π
(

α(x, ax + b+ πn1−1ε)
)

ξ‖2

≤ qeC+β(i+j) · qh−1 · e−(
n1
h
−1)α · eC+2β(m−j).

≤ qh · e(
v0+2

h
+1)α · e2C−(α

h
−2β)i+α

h
j ,

and the lemma follows immediately. �

Proof of lemma 3.4: Let x, y, a, b ∈ O/πj−1O, and let σ :
O/πj−1O → O be a section. Define

β(a, b)−1 =









πi

1
1

π−i









·









1
1 + πσ(a) 1

0 0 1
−πσ(b) 0 −1− πσ(a) 1









∈ G,

α(x, y) =









1
0 1

σ(x) 0 1
πσ(y) + σ(x) σ(x) 0 1









·









π−j

1
1

πj









∈ G.

Then we have

β(a, b)−1α(x, y) =








πi

1
1

π−i









·









1
1 + πσ(a) 1

σ(x) 0 1
π(σ(y)− σ(a)σ(x) − σ(b)) σ(x) −1− πσ(a) 1









×









π−j

1
1

πj









.

Firstly, we see that

‖Λ2
(

β(a, b)
)

‖ = qi, ‖Λ2
(

α(x, y)
)

‖ = qj,

and
‖Λ2

(

β(a, b)−1α(x, y)
)

‖ = qi+j,
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which is the norm of the determinant of the submatrix of rows 2, 4
and columns 1, 3. Denote the valuation of y − ax− b ∈ O/πj−1O by
v ∈ {0, 1, . . . , j − 1}, and we have

‖β(a, b)−1α(x, y)‖ = max(qi, qi+j−v−1).

Let
y = ax+ b+ πj−2ε, ε ∈ F

.

When ε = 0, we see that v = j − 1 and

β(a, b)−1α(x, ax+ b) ∈ KD(i, j)K.

When ε ∈ F∗ we have v = j − 2, and therefore

β(a, b)−1α(x, ax+ b+ πj−2ε) ∈ KD(i+ 1, j − 1)K.

Let χ : F → C∗ be a non trivial character. By the same estimates
as in the end of the proof of lemma 3.3 (n1 replaced by j−1), we have

|c(i, j) − c(i+ 1, j − 1)|

≤qeC+βj · qh−1 · e−( j−1

h
−1)α · eC+βi

=qh · e(
1

h
+1)α · e2C+βi−(α

h
−β)j .

�

As for proposition 3.2, we need two similar lemmas as follows for
its proof.

Lemma 3.6 Suppose char(F ) 6= 2. Let α be as in proposition 2.1,
β ∈ [0, α

2h), and (V, τ) a non trivial irreducible unitary representation
of K which factorizes through Sp4(O/πkO) for k ≥ 1. There exists
C ′ > 0, such that the following holds. Let C ∈ R∗

+, (E, π) any element
in EG,C+βℓ, and ξ ∈ E, η ∈ V ⊗ E∗ any K-invariant vectors of norm
1. Then for any (i, j) ∈ Λ with i− j ≥ 2k + v0, we have

‖c(i, j) − c(i, j + 1)‖V ≤ C ′e2C−(α
h
−2β)i+α

h
j.

Lemma 3.7 Let F be of any characteristic. Let α be as in proposition
2.1, β ∈ [0, αh ), and (V, τ) a non trivial irreducible unitary represen-
tation of K which factorizes through Sp4(O/πkO) for k ≥ 1. There
exists C ′ > 0, such that the following holds. Let C ∈ R∗

+, (E, π) any
element in EG,C+βℓ, and ξ ∈ E, η ∈ V ⊗ E∗ any K-invariant vectors
of norm 1. Then for any (i, j) ∈ Z2 with i+ 1 ≥ j ≥ 2k + 2, we have

‖c(i, j) − c(i+ 1, j − 1)‖V ≤ C ′e2C+βi−(α
h
−β)j.

In particular,

‖c(j − 1, j) − c(j, j − 1)‖V ≤ C ′e2C−(α
h
−2β)j .
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Lemma 3.8 Let h, α, n,E as in lemma 3.5. Let k ∈ {0, ..., ⌊n/2⌋},
ε0 ∈ F∗, and let (ξx,y)x∈πkO/πnO,y∈π2kO/πnO be a family of vectors of
E. Then there exists a constant C2 depending only on q, such that

E
a∈πkO/πnO,b∈π2kO/πnO

∥

∥

∥
E

x∈πkO/πnO
ξx,ax+b+πn−1ε0 − E

x∈πkO/πnO
ξx,ax+b

∥

∥

∥

2

≤ C2q
2h−2e−2(n−2k

h
−1)α

E
x∈πkO/πnO,y∈π2kO/πnO

‖ξx,y‖
2.

Proof: When k = 0, let f be the function on F defined by f(ε0) =
q, f(0) = −q, and zero elsewhere. The left hand side of the inequality
is equal to

E
a,b∈O/πnO

‖ E
x∈O/πnO,ε∈F

f(ε)ξx,ax+b+πn−1ε‖
2.

Write f =
∑

χ∈F̂,χ 6=1
fχχ with fχ ∈ C, then by the triangular inequal-

ity and and lemma 3.5, the left hand side is equal to

E
a,b∈O/πnO

‖
∑

χ∈F̂,χ 6=1

fχ E
x∈O/πnO,ε∈F

χ(ε)ξx,ax+b+πn−1ε‖
2

≤ C2 max
χ∈F̂,χ 6=1

E
a,b∈O/πnO

‖ E
x∈O/πnO,ε∈F

χ(ε)ξa,ax+b+πn−1ε‖
2

≤ C2q
2h−2e−2(n

h
−1)α

E
a,b∈O/πnO

‖ξx,y‖
2,

where C2 =
(
∑

χ∈F̂,χ 6=1
|fχ|

)2
.

In general, let s : O/πn−2kO → O/πn−kO be a section, and for
any x1, y1 ∈ O/πn−2kO let

ξ′x1,y1 = E
z∈πn−2kO/πn−kO

ξπk(s(x1)+z),π2ky1 .

For any a, x ∈ πkO/πnO, the product ax ∈ O/πnO only depends
on the images of a, x in πkO/πn−kO. So the left hand side of the
inequality is equal to

E
a1,b1∈O/πn−2kO

‖ E
x1∈O/πn−2kO

(

ξ′x1,a1x1+b1+πn−2k−1ε0
− ξ′x1,a1x1+b1

)

‖2.

By applying the lemma when k = 0 to (ξ′x1,y1)x1,y1∈O/πn−2kO we get
the inequality in the lemma with the same C2. �

Proof of lemma 3.6:
Let m,x, y, a, b, ε, σ, α(x, y), β(a, b) be as in the proof of lemma 3.3.

We recall also from the proof that

‖Λ2
(

β(a, b)
)

‖ = qi+j, ‖Λ2
(

α(x, y)
)

‖ = q2m−2j .
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Let ε0 be image of πv0/2 in F∗, and let

ε1 = 2π−2m+2j+1(σ(y) − σ(a)σ(x) − σ(b)) ∈ O.

Recall that y = ax + b + π2m−2j−v0−1ε, we have ε1 modπO = ε−1
0 ε.

Let k1 be the element in K defined by

k1 =









0 0 1 0
0 0 −πi−2m+j(σ(a) + σ(x)) 1
−1 0 −πi−2m+3j+1(σ(a) + σ(x)) π2j+1

−πi−2m+j(σ(a) + σ(x)) −1 π2i−2m+2j 0









,

and let
g1 = k1β(a, b)

−1α(x, y)

=









0 0 1 0
0 0 −πi−2m+j(σ(a) + σ(x)) 1
−1 0 −πi−2m+3j+1(σ(a) + σ(x)) π2j+1

−πi−2m+j(σ(a) + σ(x)) −1 π2i−2m+2j 0









×









πj

0 πi−2m+2j

π−i(σ(a) + σ(x)) π−i π−i+2m−2j

π−2m+j
(

σ(a) + σ(x)
)2

+ π−j−1ε1 π−2m+j(σ(a) + σ(x)) 0 π−j









=









π−i(σ(a) + σ(x)) π−i π−i+2m−2j 0
π−j−1ε1 0 −π−j(σ(a) + σ(x)) π−j

πj(ε1 − 1) 0 −πj+1(σ(a) + σ(x)) πj+1

0 0 πi 0









.

When ε = 0, we have









πi

πj

π−j

π−i









g1 =









σ(a) + σ(x) 1 π2m−2j 0
π−1ε1 0 −(σ(a) + σ(x)) 1
ε1 − 1 0 −π(σ(a) + σ(x)) π

0 0 1 0









which is an element in K. When ε = ε0, we have









πi

πj+1

π−j−1

π−i









g1 =









σ(a) + σ(x) 1 π2m−2j 0
ε1 0 −π(σ(a) + σ(x)) π

π−1(ε1 − 1) 0 −(σ(a) + σ(x)) 1
0 0 1 0









,

which is also inK. Denote ξx,y = π(α(x, y))ξ, ηa,b =
(

IdV ⊗
tπ(β(a, b))

)

η
and n1 = 2(m − j) − v0. Note that c(k′gk′′) = τ(k′)c(g) for any
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k′, k′′ ∈ K, g ∈ G, we then have

‖c(i, j) − c(i, j + 1)‖V

= q
∥

∥

∥
E

a,x∈πkO/πn1O,b∈π2kO/πn1O
τ(k1)

(

〈ηa,b, ξx,ax+b+πn1−1ε0〉 − 〈ηa,b, ξx,ax+b〉
)∥

∥

∥

V
.

(8)

When i− j ≥ k + v0 and a, x ∈ πkO/πn1O, we have

k1 =









0 0 1 0
0 0 0 1
−1 0 0 π2j+1

0 −1 0 0









modπkO,

so (8) becomes

q
∥

∥

∥
E

a,x∈πkO/πn1O,b∈π2kO/πn1O

(

〈ηa,b, ξx,ax+b+πn1−1ε0〉−〈ηa,b, ξx,ax+b〉
)∥

∥

∥

V
.

By Cauchy-Schwarz inequality and lemma 3.8 (when i− j ≥ 2k+ v0),
it is less than

≤ q
√

E
a∈πkO/πn1O,b∈π2kO/πn1O

‖ηa,b‖2×

√

E
a∈πkO/πn1O,b∈π2kO/πn1O

‖ E
x∈πkO/πn1O

ξx,ax+b+πn1−1ε0− E
x∈πkO/πn1O

ξx,ax+b‖2

≤ qeC+β(i+j) ·
√

C2q
h−1 · e−(

n1−2k

h
−1)α · eC+2β(m−j)

≤
√

C2q
h · e(

v0+2+2k

h
+1)α · e2C−(α

h
−2β)i+α

h
j.

�

Proof of lemma 3.7:
Let x, y, a, b, ε, σ, α(x, y), β(a, b) be as in the proof of lemma 3.4.

From the proof we have

‖Λ2
(

β(a, b)
)

‖ = qi, ‖Λ2
(

α(x, y)
)

‖ = qj.

Denote ε1 = π−j+2(σ(y) − σ(a)σ(x) − σ(b)) ∈ O, and we have
ε1 mod πO = ε. Denote a1 = 1 + πσ(a) ∈ O. For any i + 1 ≥ j ≥ 1,
let k1 be the element in K defined by

k1 =









0 0 0 1
0 1 0 −πi−j+1a1
0 −πj−1a−2

1 ε1 − a−1
1 σ(x) 1 πia−1

1

−1 πia−1
1 (1− ε1)− πi−j+1σ(x) πi−j+1a1 π2i−j+1









.

Denote
g1 = k1β(a, b)

−1α(x, y)
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=









0 0 0 1
0 1 0 −πi−j+1a1
0 −πj−1a−2

1 ε1 − a−1
1 σ(x) 1 πia−1

1

−1 πia−1
1 (1− ε1)− πi−j+1σ(x) πi−j+1a1 π2i−j+1









×









πi−j

π−ja1 1
π−jσ(x) 0 1
π−i−1ε1 π−iσ(x) −π−ia1 π−i+j









=









π−i−1ε1 π−iσ(x) −π−ia1 π−i+j

π−ja1(1− ε1) 1− π−j+1a1σ(x) π−j+1a21 −πa1
0 −πj−1a−2

1 ε1 0 πja−1
1

0 πia−1
1 (1− ε1) 0 πi+1









When ε = 0, we have








πi

πj

π−j

π−i









g1

=









π−1ε1 σ(x) −a1 πj

a1(1− ε1) πj − πa1σ(x) πa21 −πj+1a1
0 −π−1a−2

1 ε1 0 a−1
1

0 a−1
1 (1− ε1) 0 π









∈ K.

When ε = 1, we have








πi+1

πj−1

π−j+1

π−i−1









g1

=









ε1 πσ(x) −πa1 πj+1

π−1a1(1− ε1) πj−1 − a1σ(x) a21 −πja1
0 −a−2

1 ε1 0 πa−1
1

0 π−1a−1
1 (1− ε1) 0 1









∈ K

When j ≥ 2k + 2 and a, x ∈ πkO/πj−1O, we have

k1 =









0 0 0 1
0 1 0 −πi−j+1

0 0 1 0
−1 0 πi−j+1 0









mod πkO.

By the same estimates (with n1 replaced by j − 1 and ε0 by 1 ∈ F∗)
as in the end of the proof of lemma 3.6 we have

‖c(i, j) − c(i+ 1, j − 1)‖V ≤ qeC+βj ·
√

C2q
h−1 · e−( j−1−2k

h
−1)α · eC+βi
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=
√

C2q
h · e(

1+2k
h

+1)α · e2C+βi−(α
h
−β)j .

�

Let K1 be the subgroup of K consisting of elements of the form








∗ ∗
∗ ∗

∗ ∗
∗ ∗









, and K2 consisting of elements of the form








1
∗ ∗
∗ ∗

1









,

i.e.

K1 = {

(

A
QtA−1Q

)

|A ∈ GL2(O)},

where Q =

(

1
1

)

, and

K2 = {





1
B

1



 |B ∈ SL2(O)}.

Lemma 3.9 Let F be of any characteristic. Then K = (K1K2)
30.

Proof: Denote B the lower triangular matrices in K, and W the
Weyl group associated to G = Sp4(F ). Denote

w21 =









0 1
1 0

0 1
1 0









, w32 =









1
0 1
−1 0

1









.

The dihedral group W (of order 8) is generated by w21 and w32, which
are reflections w.r.t. the axes x = y and x = 0, respectively. Since
w21 ∈ K1 and w32 ∈ K2 we obtain W ⊂ (K1K2)

4.
Denote for any a ∈ O,

µ21(a) =









1 0
a 1

1 0
−a 1









, µ32(a) =









1
1 0
a 1

1









,

µ31(a) =









1
0 1
a 0 1
0 a 0 1









, µ41(a) =









1
0 1
0 0 1
a 0 0 1









.
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By calculations we have

µ41(a) = w21µ32(a)w21 ∈ (K1K2)
3

and

µ31(a) = µ21(−a)µ32(1)µ21(a)µ32(−1)µ41(−a2) ∈ (K1K2)
7.

Any element in B has the form









1
a 1
c b 1
d c− ab −a 1









·









e
f

f−1

e−1









where a, b, c, d ∈ O and e, f ∈ O×, which is equal to

µ21(a)µ32(b)µ31(c)µ41(ac+ d) ·









e
f

f−1

e−1









.

So we have B ⊂ (K1K2)
13.

By the Bruhat decomposition, we have K = BWB = (K1K2)
30.�

Lemma 3.10 Let K be any compact group, {Ki}1≤i≤n a family of
subgroups such that K = (K1K2 . . . Kn)

N for some N ∈ N∗. Then
for any finite dimensional unitary representation (V, τ) of K without
invariant vector, and any x ∈ V , and yi ∈ V invariant by Ki for each
1 ≤ i ≤ n, we have

‖x‖V ≤ 2nN max
1≤i≤n

{‖x− yi‖V }.

Proof: Since
∫

K ‖τ(k)x − x‖2V dk = 2‖x‖2V ≥ ‖x‖2V we see that there
exists a k ∈ K such that ‖τ(k)x − x‖V ≥ ‖x‖V . Suppose that k =
(k11 . . . kn1) . . . (k1N . . . knN ) with kij ∈ Ki(1 ≤ i ≤ n, 1 ≤ j ≤ N). We
then have

‖x‖V ≤ ‖τ(k)x − x‖V ≤
∑

1≤i≤n,1≤j≤N

‖τ(kij)x− x‖V

≤ 2
∑

1≤i≤n,1≤j≤N

‖yi − x‖V ≤ 2nN max
1≤i≤n

{‖x− yi‖V }

�
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Proof of proposition 3.2: By lemmas 3.6 and 3.7, we obtain two
similar inequalities as (6) and (7) in the proof of proposition 3.1 (using
the same argument): when i ≥ 2j ≥ 0, and i ∈ 2N+ k, k ∈ {0, 1},

‖c(i, j) − c(i+ k, (i + k)/2)‖V ≤ C ′e2C−( α
2h

−2β)i;

when 2j ≥ i ≥ j ≥ 0, there exists k ∈ {0, 1, 2} such that

‖c(i, j) − c
(

⌊
2

3
(i+ j)⌋+ k,

1

2
(⌊
2

3
(i+ j)⌋+ k)

)

‖V ≤ C ′e2C−( α
2h

−2β)i.

So it remains to prove

‖c(2j, j)‖V ≤ C ′e2C−α
h
−2β)2j .

First we see that

max
(

‖c(2j, j) − c(2j, 0)‖V , ‖c(2j, j) − c(⌊3j/2⌋, ⌊3j/2⌋)‖V

)

≤ C ′e2C−( α
2h

−2β)2j .

Moreover, c(k′gk′′) = τ(k′)c(g),∀k′, k′′ ∈ K, g ∈ G, and it follows that
c(⌊3j/2⌋, ⌊3j/2⌋) is invariant by K1, and that c(2j, 0) invariant by K2.
By applying lemma 3.10 to K = (K1K2)

30, we complete the proof of
the proposition. �

4 Proof of theorem 2.3 when char(F ) =

2

In this section we prove theorem 2.3 when char(F ) = 2. The proof for
char(F ) = 2 is technically more difficult because it is only possible to
prove a local estimate for the move (0, 2), and therefore we have two
limits in the spherical propositions (proposition 4.2).

Throughout this section we assume F is of characteristic 2.

Lemma 4.1 Let α > 0 as in proposition 2.1, β ∈ [0, α
4h). Let (V, τ)

be an irreducible unitary representation of K which factorizes through
Sp4(O/πkO) for k ≥ 0. There exists C ′ > 0, such that the following
holds. Let C ∈ R∗

+, (E, π) any element in EG,C+βℓ, and ξ ∈ E,
η ∈ V ⊗E∗ any K-invariant vectors of norm 1. Then for any (i, j) ∈ Λ
with i− j ≥ 4k + 2, we have

‖c(i, j) − c(i, j + 2)‖V ≤ C ′e2C−( α
2h

−2β)i+ α
2h

j .

In particular when (V, τ) is the trivial representation of K (and V =
C), we have

|c(i, j) − c(i, j + 2)| ≤ C ′e2C−( α
2h

−2β)i+ α
2h

j,

for any (i, j) ∈ Λ with i− j ≥ 2.
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Proof: Since char(F ) = 2, we have −1 = 1 in F. Let m = ⌊ i+j
2 ⌋,

x, y, a, b ∈ O/πm−j−1O satisfying y + ax + b ∈ πm−j−2O/πm−j−1O,
and put ε ∈ F with y = ax+b+πm−j−2ε as usual. Let σ : O/πm−j−1O →
O be a section. Let

β(a, b)−1 =









πm

0 πi−m+j

π−i+m−j+1σ(b) π−i+m−j(1 + πσ(a))2 π−i+m−j

0 π−m+1σ(b) 0 π−m









,

α(x, y) =









π−m+j

0 π−m+j

π−m+j(σ(x) + πσ(y)) 0 πm−j

π−m+jσ(x)2 π−m+j(σ(x) + πσ(y)) 0 πm−j









.

Then
β(a, b)−1α(x, y) =









πj

0 πi−2m+2j

π−i(πσ(b) + σ(x) + πσ(y)) π−i(1 + πσ(a))2 π−i+2m−2j

π−2m+jσ(x)2 π−2m+j(πσ(b) + σ(x) + πσ(y)) 0 π−j









.

We see that

‖Λ2
(

β(a, b)
)

‖ = qi+j, ‖Λ2
(

α(x, y)
)

‖ = q2m−2j .

Denote
a1 = (πσ(b) + σ(x) + πσ(y))(1 + πσ(a))−2,

and
ε1 = π−m+j+2

(

σ(y) + σ(a)σ(x) + σ(b)
)

∈ O.

Let k1 be the element in K defined by

k1 =









0 0 1 0
0 0 πi−2m+ja1 1
1 0 πi−2m+3j+2a1 π2j+2

πi−2m+ja1 1 π2i−2m+2j(1 + πσ(a))−2 0









,

and let
g1 = k1β(a, b)

−1α(x, y)

=









0 0 1 0
0 0 πi−2m+ja1 1
1 0 πi−2m+3j+2a1 π2j+2

πi−2m+ja1 1 π2i−2m+2j(1 + πσ(a))−2 0









×
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πj

0 πi−2m+2j

π−i(πσ(b) + σ(x) + πσ(y)) π−i(1 + πσ(a))2 π−i+2m−2j

π−2m+jσ(x)2 π−2m+j(πσ(b) + σ(x) + πσ(y)) 0 π−j









=









π−ia1(1 + πσ(a))2 π−i(1 + πσ(a))2 π−i+2m−2j 0
π−j−2ε21(1 + πσ(a))−2 0 π−ja1 π−j

πjε21(1 + πσ(a))−2 + πj 0 πj+2a1 πj+2

0 0 πi(1 + πσ(a))−2 0









.

When ε = 0, we have |ε21| ≤ q−2 and








πi

πj

π−j

π−i









g1

=









a1(1 + πσ(a))2 (1 + πσ(a))2 π2m−2j 0
π−2ε21(1 + πσ(a))−2 0 a1 1
ε21(1 + πσ(a))−2 + 1 0 π2a1 π2

0 0 (1 + πσ(a))−2 0









∈ K.

When ε = 1, we have

|ε21(1 + πσ(a))−2 + 1| =
∣

∣

(

ε1(1 + πσ(a))−1 + 1
)2∣
∣ ≤ q−2,

and then








πi

πj+2

π−j−2

π−i









g1

=









a1(1 + πσ(a))2 (1 + πσ(a))2 π2m−2j 0
ε21(1 + πσ(a))−2 0 π2a1 π2

π−2
(

ε21(1 + πσ(a))−2 + 1
)

0 a1 1
0 0 (1 + πσ(a))−2 0









∈ K.

When i−j ≥ 4k+2 , a, x ∈ πkO/πm−j−1O, and b, y ∈ π2kO/πm−j−1O,
we have

k1 =









0 0 1 0
0 0 0 1
1 0 0 π2j+2

0 1 0 0









mod πkO.

By replacing n1 by m− j − 1 at the end of the proof of lemma 3.6 we
get

‖c(i, j) − c(i, j + 2)‖V

≤ qeC+β(i+j) ·
√

C2q
h−1 · e−(m−j−1−2k

h
−1)α · eC+2β(m−j)

≤ C ′e2C−( α
2h

−2β)i+ α
2h

j.
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�

Proposition 4.2 Let α > 0, β ∈ [0, α
8h). There exists C ′ > 0, such

that the following holds. Let C ∈ R∗
+, (E, π) any element in EG,C+βℓ,

and ξ ∈ E, η ∈ E∗ any K-invariant vectors of norm 1. There exist
c0, c1 ∈ C, such that

|c(i, j) − cl| ≤ C ′e2C−( α
4h

−2β)i,

for any (i, j) ∈ Λ with i+ j ∈ 2N+ l, l = 0, 1.

Proof: We apply the same argument as in the proof of proposition
3.1, using lemma 3.4 (which is still true in characteristic 2) and lemma
4.1 (in the particular case when (V, τ) is the trivial representation of
K). We will get two limits because the moves (i, j) 7→ (i + 1, j − 1)
and (i, j) 7→ (i, j + 2) generate a sublattice of Z2 of index 2.

First, we put Sα = {(i, j) ∈ Λ|0 ≤ i − 2j ≤ α}. When 0 ≤ 2j ≤ i,
we have

(

i, j+2⌊ i−2j
4 ⌋

)

∈ S4, and by the particular case of lemma 4.1
when (V, τ) is the trivial representation of K, we get

|c(i, j) − c(i, j + 2⌊
i − 2j

4
⌋)| ≤ C ′e2C−( α

4h
−2β)i.

When 0 ≤ i ≤ 2j, we have
(

i + ⌈2j−i
3 ⌉, j − ⌈2j−i

3 ⌉
)

∈ S3 ⊂ S4. By
lemmas 3.4 we have

∣

∣

∣
c(i, j) − c(i + ⌈

2j − i

3
⌉, j − ⌈

2j − i

3
⌉)
∣

∣

∣
≤ C ′e2C−(α

h
−3β) i+j

3 .

Moreover, when (i, j) ∈ S4, there exists k ∈ {0, 1, 2} such that

|c(i, j) − c
(

i+ k,
1

2
(i+ k)

)

| ≤ C ′e2C−( α
4h

−2β)i.

In fact, when (i, j) ∈ S8, we first have

max
(

|c(i, j) − c(i, j + 2)|, |c(i, j) − c(i+ 1, j − 1)|
)

≤ C ′e2C−( α
4h

−2β)i.

It suffices to show the inequality when i− 2j ∈ {1, 2, 3, 4}, by consid-
ering the following moves inside S8. When i − 2j = 1, we obtain the
inequality by considering (2j+1, j) 7→ (2j+2, j−1) 7→ (2j+2, j+1).
When i−2j = 2, we consider (2j+2, j) 7→ (2j+4, j−2) 7→ (2j+4, j+2).
When i− 2j = 3 or 4, use the moves (2j + 3, j) 7→ (2j + 2, j + 1) and
(2j + 4, j) 7→ (2j + 4, j + 2) respectively.

In sum, when i ≥ 2j ≥ 0, there exists k ∈ {0, 1, 2}, such that

|c(i, j) − c(i + k,
1

2
(i+ k))| ≤ C ′e2C−( α

4h
−2β)i; (9)
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when 2j ≥ i ≥ j ≥ 0, there exists k ∈ {0, 1, 2, 3} such that

|c(i, j) − c
(

⌊
2

3
(i+ j)⌋+ k,

1

2
(⌊
2

3
(i+ j)⌋+ k)

)

|

≤ C ′e2C−( α
4h

−2β)i. (10)

Finally the proposition follows from the inequality

|c(2j, j) − c(2j + 4, j + 2)| ≤ C ′e2C−( α
4h

−2β)2j .

�

Proposition 4.3 Let α > 0, β ∈ [0, α
8h), and (V, τ) a non trivial

irreducible unitary representation of K. There exists C ′ > 0, such
that the following holds. Let C ∈ R∗

+, (E, π) any element in EG,C+βℓ,
and ξ ∈ E, η ∈ V ⊗E∗ any K-invariant vectors of norm 1. We have

‖c(i, j)‖V ≤ C ′e2C−( α
4h

−2β)i.

Proof: As (9) and (10) in the proof of the above proposition 4.2,
by lemmas 3.7 and 4.1, we have the following inequalities. When
i ≥ 2j ≥ 0, there exists k ∈ {0, 1, 2}, such that

‖c(i, j) − c(i+ k,
1

2
(i+ k))‖V ≤ C ′e2C−( α

4h
−2β)i.

When 2j ≥ i ≥ j ≥ 0, there exists k ∈ {0, 1, 2, 3} such that

‖c(i, j) − c
(

⌊
2

3
(i+ j)⌋+ k,

1

2
(⌊
2

3
(i+ j)⌋+ k)

)

‖V ≤ C ′e2C−( α
4h

−2β)i.

So it remains to prove that for any j ∈ N we have

‖c(2j, j)‖V ≤ C ′e2C−( α
4h

−2β)2j . (11)

First when j ∈ 2N, we know inequality (11) holds. In fact, by
lemmas 3.7 and 4.1, when j ∈ 2N we have

max
(

‖c(2j, j)−c(2j, 0)‖V , ‖c(2j, j)−c(3j/2, 3j/2)‖V

)

≤ C ′e2C−( α
4h

−2β)2j .

Let K1,K2 be the subgroups of the groupK as lemma 3.9. By lemmas
3.9 and 3.10 we get inequality (11).

It remains to show inequality (11) when j ∈ 2N+ 1. We first have

max
(

‖c(2j, j) − c(2j + 1, 0)‖V , ‖c(2j, j) − c
(

2j − ⌊
j

2
⌋, j + ⌊

j

2
⌋
)

‖V

)

≤ C ′e2C−( α
4h

−2β)2j .
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Note that lemma 3.7 is still valid for i = j − 1, i.e.

‖c
(

2j−⌊
j

2
⌋, j+⌊

j

2
⌋
)

−c
(

2j−⌊
j

2
⌋−1, j+⌊

j

2
⌋+1

)

‖V ≤ C ′e2C−( 3α
h
−3β)j .

Then we have

‖c(2j, j) − c
(

2j − ⌊
j

2
⌋ − 1, j + ⌊

j

2
⌋+ 1

)

‖V ≤ C ′e2C−( α
2h

−2β)2j .

Denote B1, B2 the image in K1 of

(

O× πO
O O×

)

and

(

O× O
πO O×

)

respectively, under the group isomorphismGL2(O) → K1.We see that
K1 = (B1B2)

2. Moreover c(k′gk′′) = τ(k′)c(g) for any k′, k′′ ∈ K, g ∈
G, it follows that c(2j + 1, 0), c

(

2j − ⌊ j2⌋, j + ⌊ j2⌋
)

, c
(

2j − ⌊ j2⌋ − 1, j +

⌊ j2⌋+ 1
)

are invariant by K2, B1, B2 repectively. By applying lemma
3.10 to K = (B1B2K2)

60, we obtain inequality (11) for j ∈ 2N+ 1. �
Proof of theorem 2.3 when char(F ) = 2: For simplicity we say

that an element g ∈ G is even (resp. odd) when g ∈ KD(i, j)K, i ≥
j ≥ 0 and i + j is even (resp. odd). By proposition 4.2, we see
that when g is even (resp. odd) and tends to infinity, the limit of
eKegeK exists in CE

C+βℓ(G), which we denote by T0 (resp. T1). Let

p = 1
2(T0 + T1).
We have for any g ∈ G, eKegp = p, and thus p2 = p. In fact, it

suffices to show that for any g ∈ G there exist α(g), β(g) > 0 with
α(g) + β(g) = 1, such that

eKegT0 = α(g)T0 + β(g)T1, (12)

and

eKegT1 = β(g)T0 + α(g)T1. (13)

Let α(g) (resp. β(g)) be the volume of the set of elements (k1, k2, k3, k4) ∈
K (where ki are vectors in F 4 with norms ≤ 1) such that

‖gk1 ∧ gk2‖∧(F 4) ∈ q2Z(resp. q2Z+1).

We see that for any k = (k1, k2, k3, k4) ∈ K, when i + j ∈ 2N (resp.
2N+1) with (i, j) ∈ Λ and when ‖gk1∧ gk2‖ ≥ q−2j , gkD(i, j) is even
exactly when ‖gk1 ∧ gk2‖ ∈ q2Z (resp. q2Z+1). Hence we have

lim
i+j∈2N( resp. 2N+1),j→∞

vol{k ∈ K, gkD(i, j) is even} = α(g)( resp. β(g)),

and also

lim
i+j∈2N( resp. 2N+1),j→∞

vol{k ∈ K, gkD(i, j) is odd} = β(g)( resp. α(g)).
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And thus equalities (12) and (13) follow.
By proposition 4.3, for any non trivial irreducible representation

V of K we have eVKegT0 = eVKegT1 = 0. By the same argument as in
the proof of theorem when char(F ) 6= 2 in section 2, we have

egp = eKegp = p.

We complete the proof by taking

pn =
1

2

(

eKeD(2⌊n
2
⌋,0)eK + eKeD(2⌊n

2
⌋−1,0)eK

)

,

and t = α
4h − 2β. �

5 Extension to simple algebraic groups

of higher split rank

Let F be a non archimedean local field. This section is dedicated
to the proof the the following theorem, which is theorem 1.3 in the
introduction.

Theorem 5.1 Let G be a connected almost F -simple algebraic group
with F -split rank ≥ 2. Then G(F ) has strong Banach property (T).

We begin the proof with some lemmas. The following lemma is
proposition 8.2 in [Bor].

Lemma 5.2 Let k be a field and H an abelian k-group. Let π : H →
GLn be a k-rational representation. Then π(H) is conjugate over k to
some subgroup of the group of diagonal elements in GLn.

The following lemma is a consequence of theorem 7.2 in [BT], which
is also proposition I.1.6.2 in [Mar].

Lemma 5.3 Let k be any field and G a connected almost k-simple
group with k-split rank ≥ 2. Then there exists a k-rational group ho-
momorphism with finite kernel from SL3 or Sp4 to G.

The following lemma is a direct consequence of propositions I.1.3.3
(ii) and I.1.5.4 (iii), and theorem I.2.3.1 (a) in [Mar].

Lemma 5.4 Let G be a simply connected and almost F -simple group.
Let S be a maximal F -split torus of G, Φ(G,S) the root system with
some ordering and ϑ a proper subset of simple roots. Then there exist
two unipotent F -subgroups Vϑ, V

−
ϑ of G, and two S-equivariant F -

isomorphisms LieVϑ → Vϑ,LieV
−
ϑ → V −

ϑ , such that
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• (i) LieVϑ (resp. LieV −
ϑ ) is the direct sum of eigenspaces of posi-

tive (resp. negative) roots which are not integral linear combina-
tions of ϑ, and

• (ii) Vϑ(F ) ∪ V −
ϑ (F ) generates G(F ).

The next two lemmas reduce the proof to the simply connected cov-
ering of our algebraic group.

Lemma 5.5 (proposition I.1.4.11 in [Mar]) Let k be a field, and let G
be connected semisimple k-group. Then there exists a simply connected
k-group G̃ and a k-isogeny (i.e. surjective k-group homomorphism
with finite kernel) from G̃ to G.

Lemma 5.6 Let G1 be a locally compact group and G2 its quotient
by a finite normal subgroup. Then G1 has strong Banach property (T)
if and only if G2 has strong Banach property (T).

Proof: Let H be the kernel of G1 → G2. Suppose G1 has strong
Banach property (T), and let pn ∈ Cc(G1) be real and self-adjoint ele-
ments (otherwise take pn+p̄n+p∗n+p̄∗n) that tends to the idempotent
element in CE

C+sℓ(G1). Then
(

E
h∈H

h
)

pn tends to a real and self-adjoint

(since H is normal) idempotent element p′ in CE
C+sℓ(G2) such that

egp
′ = p′ for any g ∈ G2.
On the other direction, if G2 has strong Banach property (T), let

pn ∈ Cc(G2) tend to the idempotent element in CE
C+sℓ(G2), and denote

its lifting to Cc(G1) by p̃n (i.e. p̃n(gh) = pn(g) for any g ∈ G1, h ∈ H).
For any (E, π) ∈ EG1,C+sℓ, we have π(p̃n)ξ = π(p̃n)( E

h∈H
π(h)ξ), and

thus

‖π(p̃n)− π(p̃m)‖L(E) ≤ max
h∈H

‖π(h)‖‖π(p̃n)− π(p̃m)‖L(EH ),

where EH denotes the space of H-invariant vectors. We conclude that
p̃n tends to a real and self-adjoint idempotent element p in CE

C+sℓ(G1)
such that egp = p for any g ∈ G1. �

Proof of theorem 5.1: In view of lemmas 5.5 and 5.6, we can
assume G is simply connected (in order to apply lemma 5.4 as indi-
cated below). By lemma 5.3 there exist a subgroup R of G(F ) and a
surjective group homomorphism I from SL3(F ) or Sp4(F ) to R with
finite kernel. Let ρ : F ∗ → SL3(F ) (resp. Sp4(F )) be the group
homomorphism defined by

x 7→





x 0 0
0 1 0
0 0 x−1



 (resp.









x
1

1
x−1









)
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for any x ∈ F , and let a = I ◦ ρ(π), where π is a uniformizer of F .
By lemma 5.2, the set of eigenvalues of Ad(a) is a subset of πZ which
contains {1} as a proper subset. Let S be a maximal F -split torus of
G whose F points contains a. We can choose an ordering of Φ(S,G)
such that |χ(a)| ≤ 1 for any simple root χ. Let ϑ be the proper subset
of simple roots χ such that |χ(a)| = 1, and let Vϑ, V

−
ϑ be as in lemma

5.4.
For simplicity denote G(F ) and Vϑ(F ), V −

ϑ (F ) by G and Vϑ, V
−
ϑ

from now on. Let ‖ · ‖ be the norm on LieG defined w.r.t. some
F -basis. Let ℓ′ be the length function on G defined by

ℓ′(g) = log ‖Ad(g)‖End(LieG).

Note that for any length function ℓ̃ on SL3(F ) or Sp4(F ), there
exist κ ∈ R∗

+ such that ℓ̃ ≤ κℓ, where ℓ is the length function on
SL3(F ) or Sp4(F ) defined in section 2. In fact for SL3(F ), let K be
the compact generating set

{SL3(O), SL3(O)π





π−3

1
1



SL3(O), SL3(O)π2





π−3

π−3

1



SL3(O)}.

Then we have ℓ(g) ≥ min{n : g ∈ Kn} (note that it holds for diagonal
elements and K is a SL3(O) bi-invariant set). Therefore, we have

(

max
g∈K

ℓ̃(g)
)

ℓ(g) ≥ ℓ̃(g).

It can be shown for Sp4(F ) using the same argument by replacing the
compact generating set K by

{Sp4(O), Sp4(O)









π−1

1
1

π









Sp4(O), Sp4(O)









π−1

π−1

π
π









Sp4(O)}.

Let E be a class of Banach spaces of type > 1 stable under duality
and complex conjugation. Let s, t, C,C ′ ∈ R∗

+,p ∈ CE
sκℓ+C(R),pm ∈

Cc(R) verify the conditions (i) and (ii) of theorem 2.2 if R is isogenous
to SL3(F ), or of theorem 2.3 if R is isogenous to Sp4(F ), where κ ∈ R∗

+

such that ℓ′|R ≤ κℓ (in view of lemma 5.6). Let U be an open compact
subgroup of G and f = eU

vol(eU ) . Then to establish that G has strong

Banach property (T) it suffices to show that if s is small enough the
series pmf ∈ Cc(G) converges in CE

sℓ′+C(G) to a self adjoint idempotent
p′ such that for any (E, π) ∈ EG,sℓ′+C , the image of π(p′) consists of
all G-invariant vectors of E. First it is clear that the series pmf is
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a Cauchy series in CE
sℓ′+C(G) and we note p′ its limit (in fact p is a

multiplier of CE
sℓ′+C(G) and p′ = pf). Let (E, π) ∈ EG,sℓ′+C . It is

obvious that π(p′) acts by identity over any G-invariant vector. It
remains to show that for any x ∈ E, π(p′)x is G-invariant (in fact
it follows that p′ = f∗p′ = f∗pf , so p′ is self-adjoint). In view of
statement (ii) of lemma 5.4, it suffices to show that π(p′)x is Vϑ-
invariant and V −

ϑ -invariant.
We first show that π(p′)x is Vϑ-invariant. Let E : LieVϑ → Vϑ be

as in lemma 5.4. We know that π(p′)x is fixed by R, then in particular
by a. It suffices to show that for any Y ∈ LieVϑ,

π(E(Y ))π(p′)x− π(p′)x = π(E(Y ))π(a−n)π(p′)x− π(a−n)π(p′)x

= π(a−n)
(

π(anE(Y )a−n)−1
)

π(p′)x = π(a−n)
(

π(E(Ad(an)Y ))−1
)

π(p′)x

tends to 0 when n ∈ N tends to infinity.
Let Y =

∑

λ∈Λ Yλ be the decomposition of Y under the adjoint
action of a in LieVϑ, where Λ ⊂ F denotes the set of eigenvalues of
the action. Due to the way ϑ is chosen, the eigenvalues of Ad(a)|LieVϑ

are all of the form πN∗

. Since U is an open subgroup of G, there exists
r > 0 such that when Y ′ ∈ V and ‖Y ′‖ ≤ r, we have E(Y ′) ∈ U . For
any n ∈ N, we put

m = ⌊nκ−1 logmin
λ∈Λ

|λ|−1 + κ−1 log(r/max
λ∈Λ

‖Yλ‖)⌋.

When n is big enough such that m > 0, we have

(

π(E(Ad(an)Y ))− 1
)

π(pmf)x

=

∫

R
pm(g)π(g)

(

π(E(Ad(g−1an)Y ))− 1
)

π(f)xdg.

When ℓ(g) ≤ m, we have

‖Ad(g−1an)Y ‖ ≤ eℓ
′(g)max

λ∈Λ
|λ|n‖Yλ‖LieVϑ

≤ r,

and hence
(

π(E(Ad(g−1an)Y ))− 1
)

π(f)x = 0.

Therefore we have

π(a−n)
(

π(E(Ad(an)Y ))− 1
)

π(pmf)x = 0

when n is big enough.
On the other hand for any n ∈ N, we always have

Ad(an)Y =
∑

λ∈Λ

λnYλ ∈
⊕

λ∈Λ

OYλ.
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Hence
‖π(a−n)

(

π(E(Ad(an)Y ))− 1
)

π(p′ − pmf)x‖E

≤ eC+sℓ′(a)n(1 + C ′′)‖π(p′ − pmf)x‖E,

where
C ′′ = sup

tλ∈O
‖π(E(max

λ∈Λ
tλYλ))‖L(E) < ∞

depends only on Y . But

‖π(p′ − pmf)x‖E ≤ C ′e2C−tm‖π(f)x‖E

by statement (ii) of theorem 2.2 if R is isogenous to SL3(F ), or of
theorem 2.3 if R is isogenous to Sp4(F ) (we recall that C ′ and t are
the constants of theorem 2.2 and theorem 2.3). In total, when n is big
enough

‖π(a−n)
(

π(E(Ad(an)Y ))− 1
)

π((p′ − pmf))x‖E

≤ eC+sℓ′(a)n(1 + C ′′)C ′e2C−tm‖π(f)x‖E ,

and if

s <
t

κℓ′(a)
logmin

λ∈Λ
|λ|−1,

it tends to 0 when n tends to infinity.
We prove π(p′)x is V −

ϑ -invariant by exactly the same argument
(with a replaced by a−1 and the ordering of Φ(S,G) by its inverse, i.e.
the ordering such that |χ(a−1)| ≤ 1 for any simple root χ). �
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