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ABSTRACT
Constructing sensor barriers to detect intruders crossing a
randomly-deployed sensor network is an important problem.
Early results have shown how to construct sensor barriers
to detect intruders moving along restricted crossing paths
in rectangular areas. We present a complete solution to this
problem for sensors that are distributed according to a Pois-
son point process. In particular, we present an efficient dis-
tributed algorithm to construct sensor barriers on long strip
areas of irregular shape without any constraint on crossing
paths. Our approach is as follows: We first show that in a
rectangular area of width w and length ` with w = Ω(log `),
if the sensor density reaches a certain value, then there exist,
with high probability, multiple disjoint sensor barriers across
the entire length of the area such that intruders cannot cross
the area undetected. On the other hand, if w = o(log `), then
with high probability there is a crossing path not covered by
any sensor regardless of the sensor density. We then devise,
based on this result, an efficient distributed algorithm to
construct multiple disjoint barriers in a large sensor network
to cover a long boundary area of an irregular shape. Our
algorithm approximates the area by dividing it into horizon-
tal rectangular segments interleaved by vertical thin strips.
Each segment and vertical strip independently computes the
barriers in its own area. Constructing “horizontal” barriers
in each segment connected by“vertical”barriers in neighbor-
ing vertical strips, we achieve continuous barrier coverage for
the whole region. Our approach significantly reduces delay,
communication overhead, and computation costs compared
to centralized approaches. Finally, we implement our algo-
rithm and carry out a number of experiments to demonstrate
the effectiveness of constructing barrier coverage.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network topology
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1. INTRODUCTION
Barrier coverage [4] of wireless sensor networks provides

sensor barriers guarding boundaries of critical infrastruc-
tures or assets, such as country borders, coastal lines, and
boundaries of battlefields. In a wireless sensor network, in-
truders are detected when they enter the areas covered by
sensors. The union of the covered areas of sensors forms a
barrier. A barrier may contain gaps, allowing the intruder
to pass through undetected. A strong barrier has no gaps, so
that no intruders can cross the region undetected no matter
what crossing paths the intruders would choose. Construct-
ing a strong barrier from sensors randomly deployed in a
region is a challenging problem. Whether an intruder can
be detected depends on a number of parameters.

First, barrier coverage is affected by sensor deployment
methods. In barrier coverage sensors are often deployed in
regions of an irregular long belt shape. In certain applica-
tions sensors may be manually placed in desired locations
and so barrier coverage can be achieved using a minimum
number of sensors by aligning them in straight lines cross-
ing the network region. In other applications, sensors may
have to be deployed randomly. They may be, for example,
dropped by airplanes or launched by artilleries. In random
sensor deployments, barrier coverage depends on the spatial
distribution of sensor locations.

Second, barrier coverage is affected by the crossing paths
taken by the intruder. A crossing path is a path that crosses
the complete width of the region from one side to the other
side. If an intruder has no knowledge of the sensor locations
(i.e., sensors are stealthy), it is proved in [8] that the opti-
mal crossing paths that minimize the probability of being
detected in a two-dimensional rectangular network (a.k.a. a
strip network) are the orthogonal crossing paths. Recently,
Kumar, Lai, and Arora defined two types of barrier cover-
age [6]. They are weak barrier coverage, which guarantees to
detect intruders moving along congruent paths; and strong
barrier coverage, which guarantees to detect intruders no
matter what crossing paths they take.

Figure 1 illustrates the difference between strong barrier
coverage and weak barrier coverage. In the top figure, the
network has weak barrier coverage for all orthogonal crossing



paths (dashed paths). However, there is an uncovered path
(solid path) through the region. The bottom figure shows
an example of strong barrier coverage where no intruders
can cross the region undetected, no matter how they choose
their crossing paths. The barrier is highlighted using shaded
sensing areas.

weak coverage

strong coverage

Figure 1: Weak and strong barrier coverage. Weak
barrier coverage guarantees to detect intruders on
congruent crossing paths. Strong barrier cover-
age guarantees to detect intruders without any con-
straint on crossing paths.

Kumar et al. [6] presented a critical condition for weak
barrier coverage. But conditions for strong barrier cover-
age remain an open problem. We solve this problem in this
paper. We then use this result to devise a distributed bar-
rier construction algorithm. Our major contributions are
described as follows:

First, we derive critical conditions for strong barrier cover-
age, filling the gap in the understanding of the critical condi-
tions for barrier coverage. For a two-dimensional rectangular
region where sensors are placed uniformly and independently
at random, we show that the strong barrier coverage of a
sensor network depends on its width-to-length ratio. If the
width of the rectangular area is asymptotically smaller than
the logarithm of the length, then the probability that there
exist crossing paths that are not covered by sensors tends to
1, regardless what sensor density is in the sensor network.
That is, the network has no strong barrier coverage. On the
other hand, if the width is asymptotically larger than the
logarithm of the length, the network has strong barrier cov-
erage when the node density reaches a certain value. There
exist multiple disjoint sensor barriers across the entire length
of the region such that intruders cannot cross the network
undetected. This result provides theoretical foundation to
the network performance and planning in connection to bar-
rier coverage. The analytical characterizations of the barrier
coverage can be used to determine the number of barriers for
a given network deployment. The result can also be used to
compute the minimum number of sensors needed to satisfy
a given barrier coverage requirement.

Second, we devise an efficient distributed algorithm to con-
struct disjoint barriers in a large sensor network to cover long

boundary areas of irregular shapes. Kumar et al [6] demon-
strated how to use a centralized algorithm to find disjoint
barriers on a open strip. This approach, however, could in-
cur high communication overhead and computation cost on
large sensor networks. Chen, Kumar, and Lai [1] recently
proposed a localized algorithm to detect all intruders whose
movement are confined to a slice of the original strip region.
This localized algorithm, however, only provides barrier cov-
erage for slices of bounded length. It does not protect the
network against intruders that can move beyond the range
of a slice.

Our distributed algorithm provides a complete solution
to the barrier construction problem. We divide the orig-
inal network into a number of small segments interleaved
by thin vertical strips. Each segment and vertical strip
independently computes the barriers in its own area. We
construct horizontal barriers in each segment connected by
vertical barriers in neighboring vertical strips. Continuous
barrier coverage for the whole region is thus guaranteed.
By dividing the network into small segments and letting
each segment conduct communication and computation in-
dependently, our algorithm can significantly reduce delay,
communication overhead, and computation costs compared
to the early centralized approach. Also, the vertical barri-
ers between neighboring segments improve the robustness of
the barrier coverage as they prevent intruders from moving
to adjacent segments. Moreover, since each segment com-
putes the barriers between vertical barriers at the two ends,
a larger number of local barriers will be obtained, resulting
in strengthened local barrier coverage for each segment.

The rest of the paper is organized as follows. In Section
2 we review previous work on the barrier coverage of sen-
sor networks. In Section 3 we describe the network model
and define barrier coverage. In Section 4 we derive the crit-
ical conditions for strong barrier coverage. In Section 5 we
present an efficient algorithm to construct strong barriers.
The performance evaluation is presented in Section 6. Fi-
nally, Section 7 concludes the paper.

2. RELATED WORK
In this section we review the previous research on the bar-

rier coverage of wireless sensor networks. The notion of bar-
rier coverage was first introduced in the context of robotics
sensors [4]. The goal of barrier coverage is to detect intrud-
ers that attempt to cross from one side of a region to the
opposite side. Several different barrier coverage measures
and the related issues have been studied.

In [9], path coverage is defined. Efficient algorithms are
proposed to find maximum breach or support paths between
two end points that are least or most likely to be detected by
sensors. In [10], the notion of path exposure is introduced
to measure the likelihood that an intruder is detected when
moving along a given path. A centralized algorithm is pro-
posed to find the minimum exposure paths, where the prob-
ability of an intruder being detected is minimized. These
path coverage problems are further studied in [7, 12], where
efficient distributed algorithms are proposed.

In [8], Liu and Towsley first studied the barrier coverage
of two-dimensional plane and two-dimensional strip sensor
networks using percolation theory results. The barrier cov-
erage of a two-dimensional plane network is related to the
existence of a giant sensor cluster that percolates the net-
work. However, the strength of the barrier coverage, i.e., the



number of disjoint barriers, was not obtained. For a two-
dimensional strip network of finite width, it is proved that
there always exist crossing paths along which an intruder
can cross the strip undetected. Furthermore, the proba-
bility that an intruder is detected when crossing a strip is
characterized.

The most related work to ours is by Kumar et al. [6]
and Chen et al. [1]. Kumar et al. devised a centralized
algorithm to determine whether a region is k-barrier cov-
ered, and derived the critical conditions for weak barrier
coverage in a randomly deployment sensor network. But
the centralized algorithm could incur high communication
overhead and computation cost on large sensor networks,
and conditions for strong barrier coverage remain an open
problem. Recently, Chen et al. devised a localized algorithm
that guarantees the detection of intruders whose trajectory
is confined to a slice of the belt region of deployment. It does
not protect the network against intruders that can move be-
yond the range of the thin slices.

3. NETWORK MODEL
We assume that sensors are deployed in a two-dimensional

strip area of size A2-dim strip = [0, n] × [0, w(n)]. A two-

dimensional rectangular area is also referred to a strip. We
can adjust the width w(n) to obtain different width to length
ratios. More realistic network scenarios may be approxi-
mated by a combination of different strip shapes. We con-
sider the static sensor network scenario where sensors do not
move after the initial deployment. We assume that sensor
nodes are randomly distributed according to a Poisson point
process of density λ. Thus, the expected number of nodes
in the network is λnw(n). We use asymptotic analysis when
n goes to infinity.

We use the widely adopted Boolean sensing model. Un-
der this model, each sensor is assumed to have a certain
sensing range, r. A sensor can only sense the environment
and detect intruders within its sensing area. A location is
said to be covered by a sensor if it lies within the sensor’s
sensing area. The space is partitioned into two regions, the
covered region, which is the region covered by at least one
sensor, and the vacant region, which is the complement of
the covered region.

We say that two sensors at locations Xi and Xj are con-
nected if the sensing areas of the two sensors overlap, or
equivalently, if |Xi − Xj | ≤ 2r, where |Xi − Xj | is the dis-
tance between the two sensors. A sensor barrier is defined
to be a connected component of sensors that intersect both
of the left and right boundaries of the strip, as depicted in
Figure 1. An intruder cannot go through a sensor barrier
without being detected, since it will need to go through the
sensing area of sensors and thus be detected.

A crossing path is a path that connects one side of the
region to the opposite side, where the ingress point and the
egress point reside on two opposite sides of the region. For a
two-dimensional strip, we assume that the intruders attempt
to cross the width of the strip.

The strength of the barrier coverage of a sensor network
can be measured by the number of times that an intruder is
detected when traversing along a crossing path. A path is
said to be k-covered if it intercepts at least k distinct sensors.
We say an event occurs with high probability (w.h.p.) if its
probability tends to 1 as n → ∞.

Definition 1. A sensor network is said to be strongly
k-barrier covered if

P (any crossing path is k-covered) = 1w.h.p.

4. CRITICAL CONDITIONS FOR STRONG
BARRIER COVERAGE

In this section, we present and prove our results on the
critical conditions for strong barrier coverage.

Theorem 1. Consider a sensor network deployed on a
two-dimensional rectangular area A2-dim strip = [0, n] ×
[0, w(n)], where sensors are distributed according to a Pois-
son point process with density λ.

• If w(n) = Ω(log n), the network is strongly barrier cov-
ered w.h.p. when the sensor density reaches a certain
value. There exists a positive constant β such that
w.h.p. there exist βw(n) disjoint horizontal sensor bar-
riers crossing the strip.

• If w(n) = o(log n), the network has no strong barrier
coverage w.h.p. regardless what the sensor density is in
the underlying sensor network. That is, w.h.p. there
exist crossing paths that an intruder can cross the strip
without being detected.

It follows from Theorem 1 that the existence and strength
of the strong barrier coverage depends on the width-to-length
ratio of the strip region. The critical condition for strong
barrier coverage to exist is when the width of the strip
becomes asymptotically larger than the logarithm of the
length, i.e., w(n) = Ω(log n). The number of horizontally
connected sensor clusters (barriers) is proportional to the
width of the strip by a constant factor. On the other hand,
when the width is asymptotically smaller than the logarithm
of the width, there is no strong barrier coverage, i.e., there
exist crossing paths that an intruder can cross the strip with-
out being detected.

If w(n) = Ω(log n), the network area can be divided into
horizontal rectangles Rn of size n×κr log n

r
, for some κ > 0.

We will see later from the proof of Theorem 1 that there
exist βκ log n

r
disjoint barriers in each rectangle and hence

βw(n)/r disjoint barriers in the whole strip, where β = 1 −
2(κ log 6+2)

λr2 . This result can be used to answer a number of
sensor deployment questions:

• How many barriers are present in the underlying sensor
network?

• How does the number of barriers grow if more sensors
can be added?

• What is the minimum number of sensors needed to
achieve a given strong barrier coverage?

Proof of Theorem 1. We first convert the barrier coverage
problem to a bond percolation model and use the results
presented in [3] to complete the proof. Barrier coverage of
a strip sensor network is directly related to the number of
disjoint connected sensor clusters that cross the width of
the strip horizontally. Two sensors are connected if their
sensing areas overlap. Each of such sensor clusters acts as
“trip wire” that can detect any crossing intruders. As in [3],
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Figure 2: Construction of the bond percolation
model.

we construct a bond percolation model to obtain the number
of disjoint sensor clusters crossing the length of the strip.

We divide the area into squares of equal size, where the
length of each side d = r/

√
2, as depicted in Figure 2. By

adjusting sensor density λ, we can adjust the probability
that a square contains at least one sensor:

p = P (a square contains at least one sensor)

= 1 − e−λd2

= 1 − e−c2 ,

where c2 = λd2 = λr2/2.
A square is said to be open if it is occupied by at least

one sensor, and closed otherwise. Since side length of each
square is r/

√
2, the whole square will be covered by a sensor

if it is open. Obviously, if two adjacent squares are both
occupied by sensors, the sensing areas of the sensor would
overlap and no intruder can cross between the two squares
without being detected.

The above construction can now be mapped to a discrete
bond percolation model as follows. Horizontal edges are
added across half of the squares while vertical edges are
added across others, as shown in the right-hand-side of Fig-
ure 2. This construction results in a grid of horizontal and
vertical edges. A path consists of a sequence of consecutive
edges. A path is said to be open or closed if it contains
only open or closed edges respectively. Since the squares
along an open path are all completely covered by sensor, a
crossing open path from left to right of the strip acts as a
barrier (or trip wire) that can detect any crossing intruders.
The strength of the strong barrier coverage of a strip sensor
network thus depends on the number of disjoint open paths.

m

κlogm Rn

Figure 3: The strip network is divided into w(n)
κr log n

r

horizontal rectangles of lattice size m×κ log m where
m = n

r
. A left to right crossing of Rectangle Rn is

shown.

If w(n) = Ω(log n), we can divide the network area into
horizontal rectangles Rn of size n×κr log n

r
, for some κ > 0.

There are w(n)
κr log n

r

such rectangles. Let m = n

r
, each rectan-

gle Rn is of lattice size m× κ log m in the bond percolation
model, as illustrated in Figure 3. The following lemma gives
the number of disjoint open paths that cross each rectangle.
The proof is similar to the proof of Theorem 3 in [3], which
will be omitted here.

Lemma 1. For any κ > 0, if λ > 2(log 6 + 2/κ)/r2, there
exists a strictly positive constant β(c, κ) such that w.h.p.
there exist βκ log m = βκ log n

r
disjoint sensor clusters that

cross each Rectangle Rn from left to right.

For each rectangle Rn of width κr log n

r
, there exist βκ log n

r

disjoint sensor clusters that cross the rectangle. So the total
number of such disjoint sensor clusters is βw(n)/r, which is
linearly proportional to the width of the strip.

If w(n) = o(log n), a simple adaptation of Theorem 11.55
in [5], p. 304, establishes that the probability that there is a
path connecting the left and right sides of the strip is zero as
n → ∞, and therefore excludes the existence of the sensor
clusters that cross the strip. There exist crossing paths that
do not intercept any sensor such that intruders can cross the
strip without being detected. 2

Our strong barrier coverage results are based on an ex-
tended network model where node density is kept constant
while the network size increases to infinity. In the previous
study of critical condition for weak barrier coverage [6], the
results are based on a network model of dimension s× (1/s)
where the area of the network is kept constant while s → ∞.
To better link our results to those of [6], our network model
can be rescaled to yield the critical conditions for strong
barrier coverage of the s× 1/s network model. The result is
presented in the following corollary.

Corollary 1. Consider a two-dimensional strip sensor
network of size s × 1/s where sensors are randomly dis-
tributed according to a Poisson point process of density λ and
each sensor covers a disk of radius r. There exists θ > 0,
if λ = θs2 log2 s and the radius r = 1/(s log s), the strip is
strongly barrier covered as s → ∞. The number of barriers
is of order log s.

Proof. Based on Lemma 1, denoting m = n/r, if λ >
2(log 6 + 2/κ)/r2 for some κ > 0, there exist a total number
of βκ log m barriers in a rectangle region Rn of size n ×
κr log m.

To establish the strong barrier coverage result in the net-
work model Rs of size s × 1/s, we let the length to width
ratios of the rectangle Rn and Rs to be asymptotically the
same, i.e., n/ log n = s2. Therefore, the two network mod-
els have the same length to width radio by transformation
s =

p

n/ log n, or conversely, n = s2 log s.
Now we need to rescale the sensor density and sensing

radius in Rn to Rs. In Rn, the rectangle has length n and
constant sensor density and radius. In Rs, the length is
s =

p

n/ log n. Both the length and width of rectangle Rn

are scaled by a factor of s/n = s/(s2 log s) = 1/(s log s)
in Rs. Therefore, the sensor density should be scaled by a
factor of s2 log2 s and the sensing radius should be rescaled
by a factor of 1/(s log s). The number of barriers is on the
order of log s. 2



5. CONSTRUCTING BARRIERS
Typical wireless sensors are powered by conventional bat-

teries, and thus they are energy stringent. It is therefore
important to schedule sensors so that at any given moment
there are just enough active sensors to cover the barrier.
Other sensors will be set to the sleep mode to save energy
for future use. This way, we can prolong the operation life-
time of the network. Different from the sensor scheduling
for area coverage and weak barrier coverage, scheduling sen-
sors for strong barrier coverage requires that sensors used
on the same barrier be synchronized to wake up or to sleep
simultaneously. Otherwise the barrier will contain holes,
which defeats the objective of the strong barrier coverage.
Hence, it is important to find sets of sensors so that each
of which forms a disjoint barrier. These sets of sensors can
then take turn to form a barrier. Moreover, we want to
find a scheduling to provide strong barrier coverage with
low communication overhead and computation cost.

In [6], the authors show that whether a sensor network
is strongly k-barrier covered cannot be determined using lo-
cal algorithms. They convert the k-barrier coverage testing
problem to the k-connectivity testing problem and refer to
[11] for the best known global algorithms, which incur a time
complexity of O(k2|V |) for a graph of |V | nodes. To use the
algorithm, each sensor node must broadcast its neighbor in-
formation to the whole network to construct the connectiv-
ity graph of the network. For a connected graph G(V, E) of
a sensor network, the message complexity (communication
overhead) is O(|V ||E|) if the location of each node is broad-
cast to all of the other nodes, and the end-to-end delay of
each message is proportional to the length of the strip. The
communication overhead and delay can be formidably high
for a large sensor network.

To reduce delay, communication overhead, and compu-
tation costs for finding disjoint barriers in a large sensor
network, we cover the region to be protected by strips and
divides each strip into small segments interleaved by thin
vertical strips, as illustrated in Figure 5. Each segment
and each vertical strip independently computes the barriers,
where a segment computes horizontal barriers and a vertical
strip computes both “horizontal” and “vertical barrier” (of
course these barriers do not have to be on straight lines).
Horizontal barriers in strip segments are connected by ver-
tical barriers in vertical strips to provide continuous barrier
c overage across the whole network.

We first present an algorithm to find all disjoint barriers in
a strip segment. Each node broadcasts its location and sens-
ing range to all the sensor nodes in the segment. Alternately,
each segment can select a node as the delegate for the entire
segment and each node sends its location and sensing range
to the delegate node. The location of a sensor node can
be obtained by on-board GPS device or computed using a
node localization scheme. After receiving the location infor-
mation from other nodes in the segment, each node (or the
delegate node) constructs a flow network G(V ∪{s, d}, E) by
making each sensor node a vertex in V with a vertex capac-
ity of 1. For any two vertices u and v in V , if their sensing
areas overlap, connect them with an edge capacity of 1. We
add two nodes s and d. For each node u ∈ V , if its sensing
area intersects with the left boundary of the segment, con-
nect s to u with an edge capacity of 1; if its sensing area
intersects with the right boundary of the segment, connect
u to d with an edge capacity of 1. Figure 4 illustrates the

construction of a flow network. The vertex capacity is used
to ensure that each sensor node can only be used at most
once in a barrier when finding a maximum flow from s to
d. This flow network can be transformed to a traditional
flow network by replacing each node u ∈ V with two nodes
u′, u′′ and between them a new edge (u′, u′′) of capacity
1, where u′ has all the incoming edges of u, and u′′ has all
the outgoing edges of u. We then use a standard algorithm
(e.g., Edmond-Karp or the relabel-to-front algorithms [2]) to
find a maximum flow from s to d and all the paths used in
the maximum flow. Based on the above construction, nodes
of the same path form a barrier that connects the left and
right boundaries of the segment, and the maximum flow is
the number of available disjoint barriers.

s d

Figure 4: Construction of flow networks. Sensors
whose sensing areas intersect with the left and right
boundaries are connected to s and t, respectively.
Each edge and vertex is of capacity 1. The maximum
flow from s to d gives the number of disjoint barriers.
Sensors on the same flow path form a barrier.

The complexity of the relabel-to-front algorithm is O(|V |3).
Since the number of sensor nodes deployed in a strip segment
is much smaller than the number of sensor nodes deployed in
the entire sensor field, this computational complexity would
be much more manageable by sensor nodes. This algorithm
can be easily modified to find all vertical barriers in a verti-
cal strip by connecting s to all sensors whose sensing areas
intersect with the top boundary and connecting d to all sen-
sors whose sensing areas intersect with the bottom bound-
ary. We refer this algorithm as ComputeBarriers in the rest
of the paper.

We now describe our divide-and-conquer approach to con-
structing disjoint barriers in a large strip sensor network.

Divide-and-Conquer Algorithm to Construct Bar-
rier Coverage

1. Divide the given (curly) strip into small segments in-
terleaved by thin vertical strips. The length of each
vertical strip is w(n), the width of the original strip.
The width of each vertical strip is chosen to be of the
order log w(n) such that there exist Θ(log w(n)) dis-
joint barriers crossing the vertical strip according to
Theorem 1.

2. In each vertical strip, sensor nodes use ComputeBar-
riers to find all of the disjoint vertical barriers and
the horizontal barriers that connect the vertical barri-
ers together. This computation is carried out in each
vertical strip independently.

3. For each strip segment, use ComputeBarriers to find
disjoint horizontal barriers intersecting the vertical bar-
riers on both ends of the segment. This computation
is carried out in each strip segment independently in
parallel.
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Figure 5: The original strip is divided into small
segments interleaved by thin vertical strips. Each
vertical strip finds its horizontal and vertical barri-
ers. Each segment finds the local horizontal barri-
ers intersecting the vertical barriers on both ends.
These local horizontal barriers are connected by ver-
tical barriers so continuous barrier coverage across
the whole strip is ensured. Each dot represents the
location of a sensor. For conciseness, sensing areas
of sensors are not shown in this figure.

In the above barrier construction process, each segment
and vertical strip independently computes the horizontal
barriers. These horizontal barriers are connected by vertical
barriers in the neighboring vertical strips to provide global
barrier coverage. This ensures that there is no gap between
the horizontal barriers; so continuous barrier coverage across
the whole strip is provided.

The ComputeBarriers algorithm finds all barriers in each
strip segment and each vertical strip. If only k disjoint barri-
ers are required, we can activate k horizontal barriers in each
segment and in each vertical strip and rotate the active-duty
barriers among all available barriers. Also, we can move
the vertical strips as sliding windows to avoid the overuse
of the same vertical barriers. The barrier rotation process
and sliding vertical barrier scheme will balance the power
consumption among sensors and hence extend the network
lifetime.

Compared to the centralized approach that computes bar-
riers for the whole strip, the above divide-and-conquer ap-
proach has the following advantages:

• Lower communication overhead and computation costs.
By dividing the large network area into small segments,
the message delay, communication overhead, and com-
putation cost can be significantly reduced. The lo-
cation and sensing area information of a sensor node
only need to be broadcast within the strip segment (or
within the thin vertical strip) where the node is lo-
cated, resulting in a smaller delay and communication
overhead compared to the whole network broadcast-
ing. For a connected graph G(V,E), the communi-
cation overhead (for location information broadcast)
and computation complexity of the ComputeBarriers
algorithm is O(|V ||E|), and O(|V |3), respectively. If
the original strip is divided into ns segments inter-
leaved by thin vertical strips, each segment contains
less than |V |/ns nodes and O(|V |/ns) links. The com-
munication overhead is O(|V |2/n2

s), a n2
s factor reduc-

Figure 6: Improved robustness for barrier coverage.
Vertical barriers serve as “firewalls” that prevent in-
truders from moving from one segment to adjacent
segments, resulting in improved robustness in case
of barrier failures. Shaded nodes indicate activated
sensors. Red (lightly shaded) nodes indicate failed
sensors. Non-shaded nodes indicate non-activated
sensors.

tion from the centralized approach. The computation
complexity is O(|V |3/n3

s), a n3
s factor reduction from

the centralized approach.

• Improved robustness of the barrier coverage. In a cen-
tralized approach which constructs global horizontal
barriers for the whole strip, a horizontal sensor barrier
could be broken if some nodes on the barrier fail, or
become compromised or displaced by adversaries. In
our divide-and-conquer approach, the original strip is
divided into segments by interleaving vertical barriers.
In case of node failure, these vertical barriers act as
“firewalls” that prevent intruders from moving from its
current segment to adjacent segments. This limits the
barrier damages within the local segment and hence
improving the robustness of the barrier coverage. A
scenario of improved robustness with vertical barriers
is illustrated in Figure 6.

• Strengthened local barrier coverage. By dividing the
original strip into small segments and computing bar-
riers in each segment, a larger number of local horizon-
tal barriers will be found in each segment than for the
whole strip. These local barriers are not necessarily
part of the global barriers for the whole strip, whose
number remains unchanged. Since adjacent segments
are blocked by interleaving vertical barriers, a larger
number of local barriers results in a strengthened lo-
cal barrier coverage for each segment. The simulation
results in Section 6 confirms that there is significant
improvement of local barrier coverage in each segment
over global barrier coverage.

6. PERFORMANCE EVALUATION
In this section, we first present simulation results on the

conditions of strong barrier coverage. We then investigate



the improvement of local barrier strength in each segment
over the global barrier strength. These results will help net-
work planners get a sense of the critical condition of strong
barrier coverage, the strength of the barrier coverage as a
function of various network parameters, as well as the benefit
of our divide-and-conquer approach to constructing barrier
coverage.

In the simulation, sensor nodes are distributed into the
network of size l × w according to a two-dimensional Pois-
son point process of density λ. The mean number of nodes
is m = λlw. Each sensor has a sensing range of r. By
varying the network parameters, (λ, l, w, r), we can ob-
tain a wide range of network scenarios. In each simulation,
ComputeBarriers algorithm is used to find the number of
disjoint barriers in the network. For every network scenario
(λ, l, w, r), the simulation is repeated 500 times to compute
the mean values. The corresponding standard deviations are
relatively small and not plotted.

6.1 Conditions for strong barrier coverage
In the experiments, we set the length of the region l =

10, 000 meters and the sensor’s sensing range r = 10 meters.
The width of the strip is varied region from 50 meters to 1000
meters. This is repeated for several different node densities
λ = 0.005, 0.0075, and 0.01.
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Figure 7: Conditions for strong barrier coverage.
Horizontal barriers start to appear only when the
width is large enough. The number of barriers in-
crease linearly with the width. For a given width,
the network is strongly barrier covered when the
density is large enough.

Figure 7 shows the number of disjoint horizontal barriers
as a function of the strip width. It can be observed that
for each of the node densities, there exists a critical width.
The horizontal barriers only start to emerge when the strip
width is larger than the critical value. The larger the node
density, the smaller the critical width beyond which hori-
zontal barriers start to appear. As the width increases, the

number of disjoint horizontal barriers at each node density
increases linearly. Also, it can also be observed that for a
given width, the network is strongly barrier covered only
when the density is large enough. These observations are
consistent with the results in Theorem 1.

6.2 Strengthened local barrier coverage
In our divide-and-conquer barrier construction algorithm,

the whole strip region is divided into small segments inter-
leaved by thin vertical strips. We first compute the vertical
barriers in the vertical strips and then compute the hori-
zontal barriers in each segment connected by the vertical
barriers in the neighboring vertical strips. Compared to the
original strip region, each segment has a larger width-to-
length ratio with the same node density. From results in
Section 6.1, a larger number of local barriers is expected for
each segment than the global barriers for the original strip.
This will result in an strengthened barrier coverage for each
segment.

In the simulation, we consider network scenarios of size
10,000 meters × 250 meters and node density λ = 0.005,
0.0075, and 0.01. The original strip is divided into ten seg-
ments interleaved by vertical strips. The length of each ver-
tical strip is varied from 20 meters to 350 meters. The length
of each segment is set accordingly. We measure the improve-
ment of barrier strength in each segment over the centralized
approach by the barrier improvement ratio, defined to be the
number of horizontal barriers in each segment divided by the
number of global barriers for the whole strip.
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Figure 8: Barrier improvement ratio. Each segment
has more local barriers than the global barriers for
the whole strip region. These local barriers in each
segment are connected by neighboring vertical bar-
riers to provide global barrier coverage.

Figure 8 shows how barrier improvement ratio changes
with the width of the vertical strip. It can be observed that
the number of barriers is immediately increased as soon as
the vertical strips are activated in our divide-and-conquer
approach. The barrier improvement ratio continues to in-



crease as the width of the thin vertical strip increases, and
quickly levels off after some point. This is because as the
width of the vertical strips increases, there will be more ver-
tical barriers in each vertical strip, and thus a larger number
of local barriers in each segment will be connected by these
vertical barriers. However, after a certain point, most of the
local barriers are already connected by vertical barriers. As
a result, the barrier improvement ratio levels off. For node
density λ = 0.01, the average number of global barriers for
the whole strip in the centralized approach is 9.6. In our
divide-and-conquer approach, with a vertical strip width of
100 meters, the average number of horizontal barriers in each
segment reaches 42.7, a more than four-fold increase over the
centralized approach. The barrier improvement ratio is even
more significant for smaller node densities, for example, the
improvement ratio is close to 20 for node density λ = 0.005.
This is because there are fewer global barriers for smaller
node densities, allowing more room for improvement in each
segment.
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Figure 9: Number of vertical barriers in each verti-
cal strip.

Compared to the centralized approach, the overhead of
our approach is the employment of vertical barriers. Fig-
ure 9 shows the average number of vertical barriers for the
above network scenarios: network of size 10,000 meters ×
250 meters at node density λ = 0.005, 0.0075, and 0.01.
The number of vertical barriers increases linearly with the
width of each vertical strip. But we do not need to make
the strip width too large and employ a large number of ver-
tical barriers. Based on the observations for Figure 8, the
barrier improvement ratio quickly levels off after the width
of each vertical strip reaches a certain point. This provides
a guideline to choose the width of the vertical strips. The
proper width for a given network scenario can be obtained
by simulation before the application of our algorithm. For
example, the barrier improvement ratio saturates after the
width of the vertical strips reaches 150 meters, at which

point the number of vertical barriers is less than 10 for all
three densities.

7. CONCLUSION
We study the strong barrier coverage of a randomly-deployed

sensor network on a long irregular strip region. Previous re-
search has only shown the critical conditions of weak barrier
coverage (intruders take congruent paths) and how to con-
struct sensor barriers to detect intruders crossing the strip
within a small bounded region. We want to ensure that
intruders cannot cross the strip undetected no matter how
they choose their crossing paths. To this end, we make two
main contributions that provide theoretical foundations and
practical algorithm for the construction of strong barriers in
a sensor network. Specifically, we obtain the critical condi-
tions for strong barrier coverage in a strip sensor network,
filling the gap in the understanding of the critical conditions
for barrier coverage. Our results show that there is a criti-
cal width-to-length ratio (width being the logarithm of the
length) beyond which strong barriers start to emerge in the
strip. Below the critical width to length ratio, there is no
strong barrier coverage, i.e., there is a crossing path along
which an intruder can cross the network undetected. Based
on this result, we further devise an efficient distributed algo-
rithm to construct disjoint barriers in a sensor network with
low delay, communication overhead, and computation cost.
The simulation results show that our distributed algorithm
can significantly improve the strength of the local barrier
coverage in each segment over global barrier coverage.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful com-

ments. Benyuan Liu was partly supported by the National
Science Foundation under grant CNS-0721626. Jie Wang
was partly supported by the National Science Foundation
under grants CCF-0429906 and CNS-0709001.

9. REFERENCES
[1] A. Chen, S. Kumar, and T.-H. Lai. Designing

localized algorithms for barrier coverage. In
Proceedings of ACM Mobicom, 2007.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms (Second Edition).
MIT Press and McGraw-Hill, 2001.

[3] M. Franceschetti, O. Dousse, D. Tse, and P. Thiran.
Closing the gap in the capacity of random wireless
networks. In Proc. of Information Theory Symposium
(ISIT), 2004.

[4] D. Gage. Command control for many-robot systems.
In Proc. of the Nineteenth Annual AUVS Technical
Symposium (AUVS-92), 1992.

[5] G. R. Grimmett. Percolation. Springer, 1999.

[6] S. Kumar, T. H. Lai, and A. Arora. Barrier coverage
with wireless sensors. In Proc. ACM Mobicom, 2005.

[7] X.-Y. Li, P.-J. Wan, and O. Frieder. Coverage in
wireless ad-hoc sensor networks. IEEE Transactions
on Computers, 52(6):753–763, June 2003.

[8] B. Liu and D. Towsley. A study on the coverage of
large-scale sensor networks. In The 1st IEEE
International Conference on Mobile Ad-hoc and
Sensor Systems, 2004.



[9] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and
M. B. Srivastava. Coverage problems in wireless
ad-hoc sensor networks. In Proc. IEEE Infocom, pages
1380–1387, 2001.

[10] S. Meguerdichian, F. Koushanfar, G. Qu, and
M. Potkonjak. Exposure in wireless ad-hoc sensor
networks. In ACM Mobile Computing and Networking,
pages 139–150, 2001.

[11] A. Schrijver. Combinatorial Optimization. Springer,
2003.

[12] G. Veltri, Q. Huang, G. Qu, and M. Potkonjak.
Minimal and maximal exposure path algorithms for
wireless embedded sensor networks. In Proc. of ACM
Sensys, 2003.


