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STRONG CHIP, NORMALITY, AND LINEAR REGULARITY
OF CONVEX SETS

ANDREW BAKAN, FRANK DEUTSCH, AND WU LI

Abstract. We extend the property (N) introduced by Jameson for closed
convex cones to the normal property for a finite collection of convex sets in
a Hilbert space. Variations of the normal property, such as the weak normal
property and the uniform normal property, are also introduced. A dual form
of the normal property is derived. When applied to closed convex cones, the
dual normal property is the property (G) introduced by Jameson. Normality
of convex sets provides a new perspective on the relationship between the
strong conical hull intersection property (strong CHIP) and various regularity
properties. In particular, we prove that the weak normal property is a dual
characterization of the strong CHIP, and the uniform normal property is a
characterization of the linear regularity. Moreover, the linear regularity is
equivalent to the fact that the normality constant for feasible direction cones
of the convex sets at x is bounded away from 0 uniformly over all points in
the intersection of these convex sets.

1. Introduction

Briefly, this paper studies three forms of properties that can be imposed on a finite
collection of closed convex sets in a Hilbert space: the strong CHIP, normality, and
linear regularity.

The concept of CHIP was first introduced by Chui, Deutsch, and Ward [12] as
a sufficient condition for an unconstrained reformulation of a constrained best ap-
proximation problem. Afterward, Deutsch, Li, and Ward [18] found that a stronger
version of CHIP was actually needed for the reformulation of the constrained best
approximation. In special cases, the reformulation leads to an unconstrained refor-
mulation of a constrained optimization problem, which allows one to use various
unconstrained optimization algorithms to solve constrained minimization problems
[18]. Later, Deutsch [15] showed that the strong CHIP is a geometric version of the
basic constraint qualification for constrained optimization problems.

The concept of linear regularity was first introduced by Bauschke and Borwein as
a key condition in establishing a linear convergence rate of iterates generated by the
cyclic projection algorithm for finding the projection from a point to an intersection
of finitely many closed convex sets C1, . . . , Cm [5, 4, 6, 8, 7]. Later, Bauschke,
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Borwein, and Li [9] proved that the bounded linear regularity of {C1, . . . , Cm}
implies the strong CHIP of {C1, . . . , Cm}. But the converse is not true (see [3, 10]).
Linear regularity is also related to error estimates for approximate solutions of a
feasibility problem (such as Hoffman’s error bounds) [10, 30, 25].

The normal property for two convex cones was introduced by Jameson [26] to
study the closedness of the sum of their dual cones. The dual form of the normal
property (called property (G) by Jameson) is actually closely related to linear
regularity for two closed convex cones (see [26, Theorem 2.1] or [9, Theorem 6.5]).

Since the strong CHIP and linear regularity are properties for a finite collection
of closed convex sets, a natural question is whether it is meaningful to extend
the definition of Jameson’s normal property for a collection of convex sets. The
main purpose of this paper is to show that such an extension does provide new
perspectives on the relationship between the strong CHIP and linear regularity.
By using various normal properties, we obtain new characterizations of the strong
CHIP and linear regularity.

Even in a finite-dimensional space setting, our results are new. Readers may
read the paper under the assumption that H is a finite-dimensional Euclidean
space. This will help readers understand the main ideas without having to deal
with topological concepts in a Hilbert space (such as weak convergence, etc.).

The paper is organized as follows. In Section 2 we list a few facts about polars
of convex sets and some algebraic/topological properties about convex sets. All
results in Section 2 are needed in the proofs of the main results and should be
studied only if the reader has difficulty in understanding the proofs in the following
sections. In Section 3 various normal properties are introduced and a hierarchy
among various normal properties is established. We devote Section 4 to the dual
normality and show that the dual normality property is a generalization of Jame-
son’s property (G) for closed convex cones. In Section 5 we prove that the weak
normal property is a dual characterization of the strong conical hull intersection
property. Finally, various characterizations of the linear regularity are given in
Section 6. In particular, we prove that linear regularity is equivalent to the uni-
form normal property. Moreover, a collection of closed convex sets {C1, . . . , Cm} is
linearly regular if and only if the normality constant for the collection of feasible
direction cones {con(C1 − x), . . . , con(Cm − x)} is bounded away from 0 uniformly
over all x ∈

⋂m
1 Ci.

We conclude this Introduction by listing the notations that will be used through-
out the paper. Unless otherwise specified, H will always denote a (real) Hilbert
space with inner product 〈x, y〉, norm ‖x‖ =

√
〈x, x〉, and unit ball BH := {x ∈

H | ‖x‖ ≤ 1}. An important example of a Hilbert space is a k-dimensional Eu-
clidean space R

k, which is the vector space of all k-tuples x = (x(1), . . . , x(k)) of
real numbers x(i) with the inner product 〈x, y〉 =

∑k
1 x(i)y(i).

For a given subset S of H, we denote the closure, interior, and relative interior of
S by S, int(S), and ri(S), respectively. In addition, the convex hull and the affine
span of S are denoted by co(S) and aff (S), respectively. A convex cone is a subset
K of H with the property that K + K ⊂ K and θK ⊂ K for all θ ≥ 0. The conical
hull of S, denoted by con(S), is the intersection of all convex cones that contain S;
hence con(S) is the smallest convex cone that contains S. The closures of co(S)
and con(S) are abbreviated by co (S) and con (S), respectively. The polar of S is
the set S◦ := {x ∈ H | 〈x, y〉 ≤ 1 for every y ∈ S}; this is a closed convex set that
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contains the origin. The distance from a point x ∈ H to the set S is defined by
d(x, S) := infy∈S ‖x − y‖.

There are a number of convex cones that one can generate from a given convex
subset C of H. We list those that are of main importance to this work. The dual
cone (or negative polar) of C is the set C� := {x ∈ H | 〈x, y〉 ≤ 0 for every y ∈ C}.
Note that the dual cone of C is a closed convex cone; and if C is a convex cone,
then C� = C◦. The orthogonal complement of C is the set C⊥ := {x ∈ H |
〈x, y〉 = 0 for every y ∈ C}. If C is a linear subspace of H, then C◦ = C� = C⊥.
The normal cone (respectively, tangent cone) to C at a point x ∈ H is the set
NC(x) = (C − x)� (respectively, TC(x) = con (C − x)). It is not hard to show that
NC(x)◦ = NC(x)� = TC(x) and TC(x)◦ = TC(x)� = NC(x). That is, TC(x) and
NC(x) are the dual cones (and polars) of each other. The cone of feasible directions
(see [22, p. 135]) to C at a point x ∈ C is the set con(C − x). The recession cone
of C is the set

0+C := {x ∈ H | y + θx ∈ C for all θ ≥ 0 and y ∈ C}.

Alternatively, 0+C = {x ∈ H | C + x ⊂ C}. From this it is easy to see that (i)
0+C is a convex cone, (ii) 0+C = C if and only if C is a convex cone, and (iii) if C
is a closed convex set, then 0+C is a closed convex cone. It is also not difficult to
verify that

0+C◦ = C�,(1.1)

and for arbitrary closed convex subsets Ci of H (see [29]),

(1.2) 0+

(
m⋂

i=1

Ci

)
=

m⋂
i=1

0+Ci.

In this paper, we also need some topological concepts in Hilbert spaces. Recall
that a sequence {xn} in H converges weakly to x∗ if

lim
n→∞

〈xn, y〉 = 〈x∗, y〉 for all y ∈ H.

A subset D of H is said to be weakly closed, if D contains the limit of any weakly
convergent sequence xn ∈ D. A subset D of H is said to be weakly compact,
if for any sequence xn ∈ D, there exists a subsequence of {xn} that converges
weakly to a point in D. When H = R

k, xn converges weakly to x if and only if
limn→∞ ‖xn −x‖ = 0; and a set D is weakly compact if and only if D is closed and
bounded.

2. Properties of convex sets

In this section, we collect some facts about polars and convex/conical hulls in
Lemma 2.1. Moreover, we will give a few technical lemmas about algebraic and
topological properties of convex sets. These lemmas contain some technical state-
ments needed later. This will make it easier to follow the main ideas in the proofs
of the results concerning strong CHIP, normality, and linear regularity in the fol-
lowing sections. Readers should study this section only if they have difficulty in
understanding the proofs given in Sections 3-6.

Lemma 2.1(1)-(8) contain a few facts about polars, and some properties concern-
ing convex/conical hull are given in Lemma 2.1(9)-(11). Most of these statements
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can be found in a standard convex analysis textbook (cf. [34, 22] or [16, sections
4.4–4.6]). However, interested readers can also derive them from the definitions.

Lemma 2.1. Let C, Ci be convex sets and let K, Ki be convex cones in H.

(1) C◦ is a closed convex set that contains 0 and C◦ = (C)◦.
(2) If C1 ⊂ C2, then C◦

1 ⊃ C◦
2 .

(3) (αC)◦ = 1
αC◦ for each constant α 	= 0.

(4) (Bipolar theorem) C◦◦ = co (C ∪ {0}). In particular, if 0 ∈ C, then C◦◦ =
C.

(5) K◦ = K� and (
⋂m

1 Ki)◦ ⊃
∑m

1 K◦
i . Moreover, if Ki are closed, then

(
⋂m

1 Ki)◦ =
∑m

1 K◦
i .

(6) (
⋃m

1 Ci)◦ = [co(
⋃m

1 Ci)]
◦ =

⋂m
1 C◦

i .
(7) If Ci are closed and 0 ∈

⋂m
1 Ci, then (

⋂m
1 Ci)◦ = co (

⋃m
1 C◦

i ).
(8) If 0 ∈ C, then (K + C)◦ = K◦ ∩ C◦.
(9) If 0 ∈

⋂m
1 Ci, then co(

⋃m
1 Ci) ⊂

∑m
1 Ci ⊂ m ·co(

⋃m
1 Ci) and co (

⋃m
1 Ki) =∑m

1 Ki.
(10) con(C) = {θx | θ ≥ 0, x ∈ C} =

⋃
θ≥0(θC); if 0 ∈ C, then con(C) =⋃

θ>0(θC).
(11) If C is weakly compact, then co (C) = co(C).

Remark 2.1. In the sequel, we will use the following simple fact without explicit
mention:

If D is a nonempty set and K is a convex cone in H, then

D =
⋂
ε>0

(D + εBH) and θ(K + D) = K + θD for every θ > 0.

The following lemma shows that in a certain case, we can exchange the order of
intersection and union for convex sets.

Lemma 2.2. Let Ai(θ) be a set for each θ > 0 and i ∈ {1, 2, . . . , m}. Suppose
that this collection of sets is monotone. (That is, either Ai(θ1) ⊂ Ai(θ2) for each i
whenever 0 < θ1 < θ2, or Ai(θ1) ⊃ Ai(θ2) for each i whenever 0 < θ1 < θ2.) Then

m⋂
i=1

[⋃
θ>0

Ai(θ)

]
=
⋃
θ>0

[
m⋂

i=1

Ai(θ)

]
.(2.1)

In other words, the union (over all θ > 0) commutes with the intersection (over all
i ∈ {1, 2, . . . , m}).

Proof. We assume the sets are monotonely increasing. The proof for the decreasing
case is similar. Let A =

⋃
θ>0(

⋂m
i=1 Ai(θ)) and B =

⋂m
i=1(
⋃

θ>0 Ai(θ)). We must
show that A = B. If x ∈ A, then there exists θ > 0 such that x ∈

⋂m
i=1 Ai(θ).

It follows that x ∈ Ai(θ) for each i, which implies that x ∈
⋃

θ>0 Ai(θ) for each i.
Hence x ∈

⋂m
i=1(
⋃

θ>0 Ai(θ)) = B. Thus A ⊂ B.
Conversely, if x ∈ B, then x ∈

⋃
θ>0 Ai(θ) for each i, which implies that for each

i there exists θi > 0 such that x ∈ Ai(θi). Let θ = max1≤i≤n θi. Since the Ai’s are
increasing, we have that x ∈ Ai(θ) for all i, which implies that x ∈

⋂m
1 Ai(θ), and

hence x ∈ A. Thus B ⊂ A, and the proof is complete. �
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The next lemma is about the closure and closedness of convex sets.

Lemma 2.3. Suppose that C1 and C2 are convex subsets of H.
(1) If C1, C2 are closed and C1 is bounded, then C1 + C2 is also closed.
(2) If C2 ∩ int(C1) 	= ∅, then C1 ∩ C2 = C1 ∩ C2.
(3) C1 + C2 ⊂ C1 + C2 = C1 + C2.

Proof. (1) Assume that C1 and C2 are closed. Let zn = xn + yn ∈ C1 + C2 with
limn zn = z ∈ H. Since C1 is a bounded closed convex set, it is weakly compact.
We may assume (by replacing xn by a convergent subsequence) that xn converges
weakly to x ∈ C1. Then yn = zn−xn converges weakly to z−x. Since C2 is a closed
convex set, it is weakly closed. Thus, z − x ∈ C2 and z = x + (z − x) ∈ C1 + C2.
This proves the closedness of C1 + C2.

(2) It suffices to prove that C1∩C2 ⊂ C1 ∩ C2. Let x ∈ C1∩C2. Then there exist
xn ∈ C2 such that limn xn = x. Since C2 ∩ int(C1) 	= ∅, there exist x0 ∈ C1 ∩ C2

and ε > 0 such that x0 + 2εBH ⊂ C1. Then (1 − t)x + t(x0 + 2εBH) ⊂ C1 for
0 < t < 1, which implies that

(1 − t)x + t(x0 + εBH) ⊂ int(C1) = int(C1) for all 0 < t < 1.

Fix t for the moment. Then, for sufficiently large n, we have ‖x − xn‖ ≤ tε.
Therefore,

(1 − t)xn + tx0 ∈ (1 − t)x + t(x0 + εBH) ⊂ C1.

Since x0, xn ∈ C2, we have (1− t)xn + tx0 ∈ C1∩C2 for sufficiently large n. Letting
n → ∞, we obtain (1 − t)x + tx0 ∈ C1 ∩ C2 for 0 < t < 1. Taking the limit with
respect to t as t → 0+, we get x ∈ C1 ∩ C2.

(3) Let x + y ∈ C1 + C2. Then there exist xn ∈ C1 and yn ∈ C2 such that
limn xn = x and limn yn = y. Then (x + y) = limn(xn + yn) ∈ C1 + C2, which
implies C1 + C2 ⊂ C1 + C2. Therefore,

C1 + C2 ⊂
(
C1 + C2

)
= C1 + C2 ⊂ C1 + C2.

This proves (3) and we complete the proof of Lemma 2.3. �
The following lemma shows that if the intersection of the ε-ball neighborhoods

of convex sets is contained in the closure of a convex set D, then the intersection of
smaller neighborhoods of these convex sets is contained in D. This lemma will be
used to prove that certain properties of {C1, . . . , Cm} also hold for {C1, . . . , Cm}.

Lemma 2.4. Let C1, . . . , Cm, D be convex subsets of H with
⋂m

1 Ci 	= ∅. If
m⋂

i=1

(
Ci + εBH

)
⊂ D(2.2)

for some ε > 0, then
m⋂

i=1

(
Ci + ε̂BH

)
⊂ D for all 0 < ε̂ < ε.(2.3)

Proof. It follows from (2.2) that

int

[
m⋂

i=1

(
Ci + εBH

)]
⊂ int

(
D
)

= int (D) ,(2.4)
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where the equality follows from the fact that int(D) = int(D) for any convex subset
of H. Let OH be the open unit ball of H. Then

m⋂
i=1

(
Ci + εOH

)
=

m⋂
i=1

( ⋃
xi∈Ci

(xi + εOH)
)

is an open set (since the union of open sets is open and a finite intersection of open
sets is open). Therefore,

m⋂
i=1

(
Ci + εOH

)
= int

[
m⋂

i=1

(
Ci + εOH

)]
⊂ int

[
m⋂

i=1

(
Ci + εBH

)]
⊂ int (D) ,

(2.5)

where the last inclusion is (2.4). Since ε̂BH ⊂ εOH for 0 < ε̂ < ε, (2.3) follows
from (2.5). �

It is well known that for convex cones, the strong CHIP (see Definition 5.1) holds
at zero if and only if the strong CHIP holds for every point in the intersection of
these cones (cf. [9]). This fact is actually a consequence of the following lemma
concerning a particular inclusion property for the conical hulls of convex cones (see
the proof of Theorem 5.4).

Lemma 2.5. Let K1, . . . , Km be convex cones in H and let D1, D2 be subsets of
H. If

m⋂
i=1

(
Ki + D1

)
⊂

m⋂
i=1

Ki + D2,(2.6)

then
m⋂

i=1

(
con(Ki − x) + D1

)
⊂

m⋂
i=1

con(Ki − x) + D2 for all x ∈
m⋂

i=1

Ki.(2.7)

Proof. Let K :=
⋂m

i=1 Ki. Multiplying both sides of (2.6) by a positive number θ,
we get

m⋂
i=1

(Ki + θD1) ⊂ K + θD2.(2.8)

Subtracting any x ∈ K from both sides of (2.8) and dividing both sides of it by θ,
we obtain

m⋂
i=1

(
1
θ
(Ki − x) + D1

)
⊂ 1

θ
(K − x) + D2.(2.9)

Since x ∈ K, we conclude that all sets 1
θ (Ki − x) + D1 and 1

θ (K − x) + D2 are
decreasing as θ increases. Using this fact, Lemma 2.2, and Lemma 2.1(10), we
obtain

m⋂
i=1

[con(Ki−x)+D1] =
m⋂

i=1

⋃
θ>0

(
1
θ
(Ki − x) + D1

)
=
⋃
θ>0

m⋂
i=1

(
1
θ
(Ki − x) + D1

)

⊂
⋃
θ>0

[
1
θ
(K − x) + D2

]
⊂ con(K − x) + D2 =

m⋂
i=1

con(Ki − x) + D2.

This completes the proof of Lemma 2.5. �
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Finally, we include the following well known characterization for the projection
of a point x in H onto a closed convex set C.

Lemma 2.6. Let C be a closed convex subset of H, x ∈ H, and x∗ ∈ C. Then
d(x, C) = ‖x − x∗‖ if and only if x − x∗ ∈ (C − x∗)�. Furthermore, if 0 ∈ C and
d(x, C) = ‖x − x∗‖, then ‖x∗‖ ≤ ‖x‖.

Proof. The first statement of Lemma 2.6 is well-known (see, e.g., [29, Theorem
2.2.2 in Chapter II] or [16, Theorem 4.3, p. 44]). The second statement follows
immediately from the nonexpansive property of the metric projection onto a closed
convex set (see, e.g., [16, Theorem 5.5(5), p. 73]). For easy reference, we give the
following simple proof. Assume d(x, C) = ‖x − x∗‖ and 0 ∈ C. Then x − x∗ ∈
(C − x∗)�, i.e.,

(2.10) 〈x − x∗, y − x∗〉 ≤ 0 for all y ∈ C.

By substituting 0 for y in (2.10), we get ‖x∗‖2 ≤ 〈x, x∗〉 ≤ ‖x‖ ‖x∗‖ , which implies
‖x∗‖ ≤ ‖x‖. �

3. Various normal properties

In this section we extend the definition of normal property introduced by Jame-
son for two closed convex cones to a finite collection of convex sets. Variations of
the normal property, such as the uniform normal property and the weak normal
property, are also introduced. Then we study the hierarchy structure among var-
ious normal properties. These normal properties will be used later to study the
geometric version of the basic constraint qualification in convex optimization and
the linear regularity property of convex sets. We begin with the following definition
of various normal properties.

Definition 3.1. Let C1, . . . , Cm be convex sets in H that have a nonempty inter-
section.

(1) {C1, . . . , Cm} is said to have the closed intersection property if
m⋂

i=1

Ci =
m⋂

i=1

Ci.(3.1)

(2) {C1, . . . , Cm} is said to have the normal property if there exist ε > 0
such that

m⋂
i=1

(Ci + εBH) ⊂
(

m⋂
i=1

Ci

)
+ BH .(3.2)

(3) {C1, . . . , Cm} is said to have the weak normal property if for every y ∈ H
there exists ε(y) > 0 such that

m⋂
i=1

(Ci + ε(y)BH) ⊂
(

m⋂
i=1

Ci

)
+ {y}◦.(3.3)

(4) {C1, . . . , Cm} is said to have the uniform normal property if there exists
a positive constant ε such that

m⋂
i=1

(Ci + ηεBH) ⊂
(

m⋂
i=1

Ci

)
+ ηBH for every η > 0.(3.4)
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Remark 3.1. (a) In 1940, M. Krein [35, Chapter V, Section 3, Subsection 3.2,
Lemma 1] proved the first result concerning the strong CHIP for a pair of opposite
convex cones K1 = K and K2 = −K in a Banach space. When restricted to
the Hilbert space H, his result yields that K◦

1 + K◦
2 = H = {0}◦ = (K1 ∩ K2)◦

when {K1, K2} = {K,−K} is normal and K ∩ (−K) = {0}. To extend Krein’s
result for two arbitrary convex cones, Jameson defined the normal property for
two convex cones. He also used the abbreviation “property (N)” for the normal
property. Jameson regarded the normal property as a generalization of the notion
of a normal cone (see [35]), and this motivated its name.

(b) In (2), (3), and (4) of Definition 3.1, one could replace BH by the open unit
ball OH = {x ∈ H | ‖x‖ < 1} everywhere to get equivalent definitions of various
normal properties. We leave the details to the interested reader.

(c) In essence, the normal property means that if each Ci is expanded outward
by an ε-ball, then the intersection of the expanded sets is within a fixed distance
from the intersection of the original sets. It is interesting to note that the “reverse”
version of the normal property was also studied in convex optimization, which is
called the bounded excess property. Let gi(x) be convex functions on H and define
Ci := {x ∈ H | gi(x) ≤ 0}. Then {C1, . . . , Cm} is said to have the bounded
excess property if there exist δ > 0 and ε > 0 such that

m⋂
i=1

Ci ⊂
(

m⋂
i=1

Ci(−ε)

)
+ δBH ,(3.5)

where Ci(−ε) := {x ∈ H | gi(x) ≤ −ε} can be considered as the algebraic version
of shrinking Ci inward by an ε-ball. It was proved that (3.5) implies the existence
of a global error bound for approximate solutions of the convex feasibility problem:
gi(x) ≤ 0 for 1 ≤ i ≤ m. That is,

d

(
x,

m⋂
i=1

Ci

)
≤ γ

m∑
i=1

max{gi(x), 0} for all x ∈ H,

where γ > 0 is a positive constant. See [13, 14] and [25, Theorem 5] for details. It
is not clear whether there is a relationship between the normal property and the
geometric version of the bounded excess property of (3.5), where Ci(−ε) is defined
as the set obtained by shrinking Ci inward by an ε-ball:

Ci(−ε) :=
{

x ∈ Ci | d
(
x, (H \ Ci) ∩ aff (Ci)

)
≥ ε
}

.

Our conjecture is that the bounded excess property implies the uniform normal
property, but the converse is not true. (After this paper had been submitted for
publication, Hein Hundal privately communicated a counterexample to this conjec-
ture.)

The following theorem shows a hierarchy of various normal properties for a finite
collection of convex sets.

Theorem 3.1. Let C1, . . . , Cm (respectively K1, . . . , Km) be convex sets (respec-
tively convex cones).

(1) If each Ci is closed, then {C1, . . . , Cm} has the closed intersection property.
(2) If {C1, . . . , Cm} has the uniform normal property, then it has the normal

property and the closed intersection property.
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(3) {K1, . . . , Km} has the normal property if and only if it has the uniform
normal property.

(4) If {K1, . . . , Km} has the normal property (or, equivalently, the uniform
normal property), then it has the weak normal property and the closed in-
tersection property.

(5) {K1, . . . , Km} has the normal property, the weak normal property, or the
uniform normal property if and only if it has the closed intersection property
and {K1, . . . , Km} has the normal property, the weak normal property, or
the uniform normal property, respectively.

Proof. Statement (1) is trivial. To verify (2), let {C1, . . . , Cm} have the uniform
normal property. Then clearly it has the normal property (take η = 1). If we
intersect both sides of equation (3.4) over all η > 0, we obtain that

⋂m
1 Ci ⊂

⋂m
1 Ci.

Since the reverse inclusion is obvious, it follows that {C1, . . . , Cm} has the closed
intersection property, and this verifies statement (2).

If {K1, . . . , Km} has the normal property, multiply both sides of relation (3.2)
(with Ci = Ki) by η > 0 to obtain the relation (3.4) (with Ci = Ki), and this
shows that {K1, . . . , Km} has the uniform normal property. Since the uniform
normal property implies the normal property by (2), it follows that (3) holds.

To prove (4), suppose that {K1, . . . , Km} has the normal property, and let y ∈ H.
If ‖y‖ ≤ 1, then BH ⊂ {y}◦, so that relation (3.3) holds with ε(y) = ε. If ‖y‖ > 1,
then multiplying both sides of relation (3.2) by 1/‖y‖, we obtain that

m⋂
i=1

(
Ki +

ε

‖y‖BH

)
⊂

m⋂
i=1

Ki +
1

‖y‖BH .

But since 1
‖y‖BH ⊂ {y}◦, it follows that (3.3) holds with ε(y) = ε/‖y‖. Thus,

{K1, . . . , Km} has the weak normal property, and (4) is verified.
If {K1, . . . , Km} has the normal property, then it has the uniform normal prop-

erty by (3), and hence the closed intersection property by (2). Using the normal
property, we have that

(3.6)
m⋂

i=1

(Ki +
ε

2
BH) ⊂

m⋂
i=1

(Ki + εBH) ⊂
m⋂

i=1

Ki + BH ⊂
m⋂

i=1

Ki + BH .

This proves that {K1, . . . , Km} has the normal property (with ε/2 instead of ε).
Conversely, assume that {K1, . . . , Km} has the closed intersection property and

that {K1, . . . , Km} has the normal property. Then there exists ε > 0 such that

(3.7)
m⋂

i=1

(Ki + εBH) ⊂
m⋂

i=1

Ki + BH .

Now we can derive that

m⋂
i=1

(Ki + εBH) ⊂
m⋂

i=1

(Ki + εBH) ⊂
m⋂

i=1

Ki + BH =
m⋂

i=1

Ki + BH ⊂
m⋂

i=1

Ki + BH ,

where the first inclusion is obviously true, the second inclusion is (3.7), the equality
is by the closed intersection property, and the last inclusion follows from Lemma
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2.3(3). Applying Lemma 2.4 with Ci = Ki and D = (
⋂m

i=1 Ki) + BH , we get
m⋂

i=1

(Ki + ε̂BH) ⊂
m⋂

i=1

Ki + BH for all 0 < ε̂ < ε,

which implies that {K1, . . . , Km} has the normal property. Thus, the statement
in (5) concerning the normal property is verified. Using (4), it follows that the
statement in (5) concerning the uniform normal property is also valid.

It remains to verify the statement in (5) concerning the weak normal property.
First assume that {K1, . . . , Km} has the weak normal property. Then for each
y ∈ H, there exists ε(y) > 0 such that

(3.8)
m⋂

i=1

(
Ki +

ε(y)
2

BH

)
⊂

m⋂
i=1

(Ki + ε(y)BH) ⊂
m⋂

i=1

Ki + {y}◦ ⊂
m⋂

i=1

Ki + {y}◦.

This proves that {K1, . . . , Km} has the weak normal property, where ε(y) := ε(y)/2
works for each y ∈ H.

To show that {K1, . . . , Km} has the closed intersection property, we intersect
both sides of the inclusion in (3.3) over all y ∈ H to get

(3.9)
m⋂

i=1

Ki ⊂
⋂

y∈H

m⋂
i=1

(Ki + ε(y)BH) ⊂
⋂

y∈H

(
m⋂

i=1

Ki + {y}◦
)

.

Next we prove that the last set in (3.9) is contained in K :=
⋂m

1 Ki. Let z /∈ K.
Since d(z, K) > 0, for any 0 < ρ < d(z, K), we have (z + ρBH) ∩ K = ∅. By the
first separation theorem (see [35, Ch.II, §9] or [16, Theorem 6.23, p. 103]) applied
to K and z + ρBH , one can find ȳ ∈ H such that

〈
ȳ, K

〉
≤ 0 < 1 < 〈ȳ, z〉, which

implies that 〈ȳ, z − x〉 > 1 for x ∈ K. Thus, z /∈ K + {ȳ}◦. This proves that

⋂
y∈H

[
m⋂

i=1

Ki + {y}◦
]
⊂ K =

m⋂
i=1

Ki.(3.10)

It follows from (3.9) and (3.10) that
⋂m

i=1 Ki ⊂
⋂m

i=1 Ki. But
⋂m

i=1 Ki ⊂
⋂m

i=1 Ki.
So
⋂m

1 Ki =
⋂m

1 Ki and {K1, . . . , Km} has the closed intersection property.
Finally, assume that {K1, . . . , Km} has the weak normal property and that

{K1, . . . , Km} has the closed intersection property. We must show that {K1, . . . ,
Km} has the weak normal property. For each y ∈ H, there exists ε(y) > 0 such
that

(3.11)
m⋂

i=1

(Ki + ε(y)BH) ⊂
m⋂

i=1

Ki + {y}◦.

Then
m⋂

i=1

(Ki + ε(y)BH) ⊂
m⋂

i=1

(
Ki + ε(y)BH

)
⊂
[

m⋂
i=1

Ki + {y}◦
]

=
m⋂

i=1

Ki + {y}◦ ⊂
m⋂

i=1

Ki + {y}◦,

where the first inclusion is obviously true, the second inclusion is (3.11), the equality
is by the closed intersection property, and the last inclusion follows from Lemma

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STRONG CHIP, NORMALITY, AND LINEAR REGULARITY 3841

2.3(3). Applying Lemma 2.4 with Ci = Ki, ε = ε̄(y), and D = (
⋂m

i=1 Ki) + {y}◦,
we get

m⋂
i=1

(Ki + εBH) ⊂
m⋂

i=1

Ki + {y}◦ for all 0 < ε̄ < ε̄(y),

which implies that {K1, . . . , Km} has the weak normal property. This completes
the proof of Theorem 3.1. �

4. Dual normality

In this section, we study a dual form of the normal property, which is a gen-
eralization of the property (G) that was introduced by Jameson for closed convex
cones. A quantitative relationship between the normal property and the dual nor-
mal property is established in Theorem 4.1. To explore the quantitative relationship
explicitly, we define the normality constant and the dual normality constant for a
finite collection of convex sets {C1, . . . , Cm} in Definition 4.2. If {C1, . . . , Cm} has
the closed intersection property, then the normality constant for {C1, . . . , Cm} is
the same as the dual normality constant for its collection of polars {C◦

1 , . . . , C◦
m}

(see Theorem 4.2). In the special case when all the sets are closed convex cones, the
dual normal property is actually equivalent to property (G) introduced by Jameson
(see Theorem 4.3 and Corollary 4.1). In the next section, we will see how the dual
normal property can be used to characterize the linear regularity of {C1, . . . , Cm}.

The main technical difficulty in this section is to prove a few facts about the
polar of the sum of two convex sets. This turns out to involve the “inverse sum”
of two convex sets. Therefore, let us define the inverse sum of two convex sets and
study some of its properties.

Definition 4.1. Let D1 and D2 be convex subsets of H with 0 ∈ D1∩D2. Then the
inverse sum of D1 and D2 is defined as the union of the convex sets [tD1∩(1−t)D2]
(0 < t < 1) and their limits (with respect to t as t → 0+ and t → 1−); that is,

D1#D2 :=
( ⋃

0<t<1

[tD1 ∩ (1 − t)D2]
)
∪ (D1 ∩ 0+D2) ∪ (D2 ∩ 0+D1).(4.1)

Remark 4.1. The definition and notation for the inverse sum are adopted from the
book of Kusraev and Kutateladze [28, §1.1.6(8)]. One can find a detailed exposition
of the inverse sum and its applications in this book. We should note that Rockafellar
[34, section 3 of Chapter 1] defined the inverse sum somewhat differently than this.
He essentially dropped the two terms involving the recession directions, i.e., his
inverse sum was defined to be the set of all proper convex combinations of elements
of D1 and D2. Of course, in case both D1 and D2 are bounded, then 0+Di = {0}
for i = 1, 2 and the two definitions agree.

In the following lemma we list some facts about inverse sums of convex sets,
which will be used to derive a dual form of the normal property.

Lemma 4.1. Let C1 and C2 be convex subsets of H with 0 ∈ C1 ∩ C2.
(1) C1#C2 is a convex set.
(2) C1#C2 ⊂ C1 ∩ C2.
(3) If C1 is a cone, then C1#C2 = C1 ∩ C2.
(4) If C1 and C2 are closed, then C1#C2 is closed.
(5) If C1 is closed and bounded with 0 ∈ int(C1), then C1#C2 ⊂ C1#C2.
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(6) If C1 and C2 are closed and C1 ∩ C2 is bounded, then C1#C2 is a weakly
compact set.

(7) (C1 + C2)◦ = C◦
1#C◦

2 .

Proof. (1) This follows from the definition (see [28, §1.1.7]).
(2) Since 0 ∈ C1 ∩ C2, for any 0 < t < 1, we have tC1 ⊂ C1, (1 − t)C2 ⊂ C2,

0+C1 ⊂ C1, and 0+C2 ⊂ C2. Thus, C1#C2 ⊂ C1 ∩ C2.
(3) Since C1 is a cone, 0+C1 = C1. Thus, C1 ∩ C2 = 0+C1 ∩ C2 ⊂ C1#C2. By

(2), we have C1 ∩ C2 = C1#C2.
(4) Let {xn} ⊂ C1#C2 converge to x∗. We must prove that x∗ ∈ C1#C2. Since

C1 and C2 are closed convex sets in H, C1 ∩ 0+C2 is closed. Therefore, if there
exist infinitely many indices n such that xn ∈ C1 ∩ 0+C2, then x∗ ∈ C1 ∩ 0+C2 ⊂
C1#C2. Similarly, if there exist infinitely many indices n such that xn ∈ C2∩0+C1,
then x∗ ∈ C2 ∩ 0+C1 ⊂ C1#C2. Otherwise, by deleting those xn’s that are in
(C1 ∩ 0+C2) ∪ (C2 ∩ 0+C1) from the sequence, we may assume that there exists a
sequence {tn} such that 0 < tn < 1 and xn ∈ tnC1∩(1−tn)C2. Again, by replacing
{tn} with a convergent subsequence, we may assume that limn→∞ tn = t ∈ [0, 1].

First assume t = 0. Let γ > 0 be any fixed positive number. Since tn → 0, for n
sufficiently large we have γ < 1/tn, which implies γxn ∈ γtnC1 ⊂ C1 (since 0 ∈ C1).
By taking the limit as n → ∞, we obtain γx∗ ∈ C1 (by the closedness of C1). Since
γ > 0 is arbitrary, we get x∗ ∈ 0+C1. Since xn ∈ (1 − tn)C2 ⊂ C2 (since 0 ∈ C2)
and C2 is closed, we obtain x∗ ∈ C2. It follows that x∗ ∈ C2 ∩ 0+C1 ⊂ C1#C2.
Similarly, if t = 1, then x∗ ∈ C1 ∩ 0+C2 ⊂ C1#C2.

If 0 < t < 1, the closedness of C1 and C2 implies that xn/tn ∈ C1 converges
to x∗/t ∈ C1 and xn/(1 − tn) ∈ C2 converges to x∗/(1 − t) ∈ C2. Thus, x∗ ∈
tC1 ∩ (1− t)C2 ⊂ C1#C2. This proves that x∗ ∈ C1#C2. Hence, C1#C2 is closed.

(5) Since 0 ∈ int(C1), we have 0 ∈ int(tC1) for any t > 0. Let 0 < t < 1 and
x ∈ tC1 ∩ (1 − t)C2. Then

tC1 ∩ (1 − t)C2 = tC1 ∩ (1 − t)C2 = tC1 ∩ (1 − t)C2 ⊂ C1#C2 for all 0 < t < 1,

where the second equality follows from 0 ∈ (1− t)C2 ∩ int(tC1) and Lemma 2.3(2),
while the last inclusion follows from the definition of C1#C2. Similarly, we have

C1 ∩ 0+C2 = C1 ∩ 0+C2 = C1 ∩ 0+C2 ⊂ C1#C2,

where the first equality follows from the definition of the recession cone and the
second equality follows from 0 ∈ 0+C2 ∩ int(C1) and Lemma 2.3(2). Since C1 is
a bounded set, we have 0+C1 = {0}, so C2 ∩ 0+C1 = {0} ⊂ C1#C2. This proves
that C1#C2 ⊂ C1#C2.

(6) It follows from (1), (2), and (4) that C1#C2 is a closed bounded convex set
in H, so it is weakly compact (see [16, Theorems 9.12 and 9.16]).

(7) This is the formula (3) in [28, §3.3.12]. However, the proof given in [28] is
quite complicated, involving infimal convolution and subdifferential formulas for
convex functions. Therefore, we give the following elementary proof of (7).

Let 0 < t < 1 and x ∈ tC◦
1 ∩ (1− t)C◦

2 . Then 〈x, C1 + C2〉 = 〈x, C1〉+ 〈x, C2〉 ≤
t + (1 − t) = 1, i.e., x ∈ (C1 + C2)◦. Thus,

⋃
0<t<1[tC

◦
1 ∩ (1 − t)C◦

2 ] ⊂ (C1 + C2)◦.
If x ∈ C◦

2 ∩ 0+C◦
1 = C◦

2 ∩ C�
1 , then 〈x, C1 + C2〉 = 〈x, C1〉 + 〈x, C2〉 ≤ 0 + 1 = 1,

so C◦
2 ∩ 0+C◦

1 ⊂ (C1 + C2)◦. Similarly, C◦
1 ∩ 0+C◦

2 ⊂ (C1 + C2)◦. This proves
C◦

1#C◦
2 ⊂ (C1 + C2)◦.
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Conversely, if x ∈ (C1 + C2)◦, then

sup
y1∈C1

〈x, y1〉 + sup
y2∈C2

〈x, y2〉 = sup
y1∈C1,y2∈C2

〈x, y1 + y2〉 = sup
y∈C1+C2

〈x, y〉 ≤ 1.(4.2)

Let t = supy1∈C1
〈x, y1〉. Since 0 ∈ C1∩C2, we have supyi∈Ci

〈x, yi〉 ≥ 0. Therefore,
(4.2) implies 0 ≤ t ≤ 1. If t = 0, x ∈ C�

1 . Moreover, for t = 0, (4.2) implies
x ∈ C◦

2 , so x ∈ C◦
2 ∩ C�

1 = C◦
2 ∩ 0+C◦

1 ⊂ C◦
1#C◦

2 . Similarly, if t = 1, then
x ∈ C◦

1 ∩ C�
2 = C◦

1 ∩ 0+C◦
2 ⊂ C◦

1#C◦
2 . Finally, If 0 < t < 1, then (4.2) implies

supy2∈C2
〈x, y2〉 ≤ 1 − t. Since t > 0 and 1 − t > 0, we have x ∈ tC◦

1 ∩ (1 − t)C◦
2 ⊂

C◦
1#C◦

2 . This completes the proof of (7). �
Remark 4.2. If D1 and D2 are closed convex cones, then it follows from statements
(1) and (4) of Lemma 4.1 that

D1#D2 = co
( ⋃

0<t<1

[tD1 ∩ (1 − t)D2]
)

=
( ⋃

0<t<1

[tD1 ∩ (1 − t)D2]
)
.(4.3)

Actually, one can prove the following formula: if D1 and D2 are convex cones, then

D1#D2 = co
( ⋃

0<t<1

[tD1 ∩ (1 − t)D2]
)

=
( ⋃

0<t<1

[tD1 ∩ (1 − t)D2]
)
.(4.4)

We leave the details to the interested reader. However, in general, D1#D2 	=
D1#D2. For example, consider the following two convex cones in R

2:

D1 = {(t, 0) ∈ R
2 | t ∈ R} and D2 = {(t1, t2) ∈ R

2 | t1, t2 ∈ R, t2 > 0}∪{(0, 0)}.
Note that D2 is not closed. It is easy to verify that

D1#D2 = D1#D2 = {(0, 0)} 	= D1 = D1 ∩ D2 = D1#D2 .(4.5)

One major step in establishing the dual form of the normal property is to com-
pute the polar of

⋂m
i=1(Ci + εBH) for convex sets Ci. This will also be used later

to derive the dual form of the weak normal property. For ease of reference, we now
give an expression for the polar of

⋂m
i=1(Ci + εBH) in terms of the polars of the

Ci’s.

Lemma 4.2. Let C1, . . . , Cm be convex sets with 0 ∈
⋂m

i=1 Ci. Then(
m⋂

i=1

[Ci + εBH ]

)◦

= co

(
m⋃

i=1

(
C◦

i #
1
ε
BH

))
.(4.6)

Proof. We have that

(
m⋂

i=1

[Ci + εBH ]

)◦

=

(
m⋂

i=1

[Ci + εBH ]

)◦
(4.7)

=

(
m⋂

i=1

[Ci + εBH ]

)◦

= co

[
m⋃

i=1

(
Ci + εBH

)◦]

= co

[
m⋃

i=1

(Ci + εBH)◦
]

= co

[
m⋃

i=1

(
C◦

i #
1
ε
BH

)]
= co

[
m⋃

i=1

(
C◦

i #
1
ε
BH

)]
,

where the first and fourth equalities are by Lemma 2.1(1), the second equality is
by Lemma 2.3(2), the third equality is by Lemma 2.1(7), and the fifth equality is
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by Lemma 4.1(7). By Lemma 4.1(6), each set C◦
i #1

εBH is weakly compact. Since
a finite union of weakly compact sets is also weakly compact, the last equality in
(4.7) follows from Lemma 2.1(11). This completes the proof of Lemma 4.2. �

Now we can formulate the dual form of the normal property for a finite collection
of convex sets. The equivalence of the normal property and its dual form is not
exact. The main effort is to derive the dual form without the closure operation
involved, which creates some technical difficulty in the proof.

Theorem 4.1. Let C1, . . . , Cm be convex subsets of H and let 0 ∈
⋂m

i=1 Ci. Assume
that ε is a positive constant. If

m⋂
i=1

(Ci + εBH) ⊂
(

m⋂
i=1

Ci

)
+ BH ,(4.8)

then

BH# co

(
m⋃

i=1

C◦
i

)
⊂ co

(
m⋃

i=1

(
C◦

i #
1
ε
BH

))
.(4.9)

Conversely, if (4.9) holds and {C1, . . . , Cm} has the closed intersection property,
then

m⋂
i=1

(Ci + ε̂BH) ⊂
(

m⋂
i=1

Ci

)
+ BH for all 0 < ε̂ < ε.(4.10)

Proof. Applying the polar operation to both sides of (4.8) and using Lemma 2.1(7)
together with Lemma 4.1(7), we obtain

BH # co

(
m⋃

i=1

C◦
i

)
⊂
[

m⋂
i=1

(Ci + εBH)

]◦
.(4.11)

By Lemma 4.2, (4.11) can be rewritten as follows:

BH # co

(
m⋃

i=1

C◦
i

)
⊂ co

(
m⋃

i=1

(
C◦

i #
1
ε
BH

))
,(4.12)

which obviously implies (4.9).
Conversely, if (4.9) holds, by applying the polar operation to both sides of (4.9)

and using Lemma 4.2, we obtain[
m⋂

i=1

(Ci + εBH)

]◦◦
⊂
[
BH# co

(
m⋃

i=1

C◦
i

)]◦
.(4.13)

But

(4.14)

[
BH# co

(
m⋃

i=1

C◦
i

)]◦
=


BH# co

(
m⋃

i=1

C◦
i

)

◦

⊂
[
BH#co

(
m⋃

i=1

C◦
i

)]◦

=

[
BH +

m⋂
i=1

C◦◦
i

]◦◦
= BH +

m⋂
i=1

Ci = BH +
m⋂

i=1

Ci = BH +
m⋂

i=1

Ci,

where the first equality is by Lemma 2.1(1), the inclusion follows from Lemma
4.1(5), the second equality follows from Lemma 4.1(7) and Lemma 2.1(7), the third
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equality is by Lemma 2.1(4), the closed intersection property of {C1, . . . , Cm} yields
the fourth equality, and the last equality is by Lemma 2.3(3). It follows from Lemma
2.1(4), (4.13), and (4.14) that

m⋂
i=1

(
Ci + εBH

)
⊂
[

m⋂
i=1

(
Ci + εBH

)]◦◦
⊂
(

m⋂
i=1

Ci

)
+ BH .(4.15)

Applying Lemma 2.4 with D =
⋂m

i=1 Ci + BH , we get (4.10). This completes the
proof of Theorem 4.1. �

The above theorem does not give a complete quantitative characterization of the
normal property in dual form. To get a better understanding of the duality relation-
ship for the normal property, we introduce the following quantitative measurement
of the normality for a finite collection of convex sets.

Definition 4.2. The normality constant for a finite collection of convex sets
{C1, . . . , Cm} in H is defined as follows:

λN (C1, . . . , Cm) := sup

{
ε ≥ 0

∣∣∣∣∣
m⋂

i=1

(Ci + εBH) ⊂
(

m⋂
i=1

Ci

)
+ BH

}
.

The dual normality constant for a finite collection of convex sets {C1, . . . , Cm}
in H is defined by

λD(C1, . . . , Cm) := sup

{
ε ≥ 0

∣∣∣∣∣ BH# co

(
m⋃

i=1

Ci

)
⊂ co

(
m⋃

i=1

(
Ci#

1
ε
BH

))}
,

where 1
εBH is defined to be the whole space H when ε = 0. We will say that

{C1, . . . , Cm} has the dual normal property if λD(C1, . . . , Cm) > 0.

Obviously, {C1, . . . , Cm} has the normal property if and only if λN (C1, . . . , Cm)
> 0. The following reformulation of Theorem 4.1 in terms of normality constants
shows an interesting dual relationship that is hidden in Theorem 4.1.

Theorem 4.2. Let {C1, . . . , Cm} be a collection of convex sets with the closed
intersection property and let 0 ∈

⋂m
1 Ci. Then

λN (C1, . . . , Cm) = λD(C◦
1 , . . . , C◦

m).(4.16)

Proof. By Theorem 4.1, the implication (4.8) ⇒ (4.9) shows that

0 ≤ λN (C1, . . . , Cm) ≤ λD(C◦
1 , . . . , C◦

m).(4.17)

If λD(C◦
1 , . . . , C◦

m) = 0, then (4.16) holds. Otherwise, we have

λD(C◦
1 , . . . , C◦

m) − δ ≤ λN (C1, . . . , Cm) ≤ λD(C◦
1 , . . . , C◦

m),(4.18)

for any 0 < δ < λD(C◦
1 , . . . , C◦

m), where the first inequality follows from the im-
plication (4.9) ⇒ (4.10) in Theorem 4.1 and the second inequality is (4.17). Since
δ > 0 is arbitrary, letting δ → 0+ in (4.18) yields (4.16). �

The above theorem can be considered as a generalization and refinement of the
duality between the normal property and property (G) for two closed convex cones

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3846 ANDREW BAKAN, FRANK DEUTSCH, AND WU LI

established by Jameson [26]. Recall that the collection {C1, . . . , Cm} is said to have
property (G) if there exists ρ > 0 such that(

m∑
i=1

Ci

)⋂
BH ⊂

m∑
i=1

(
Ci ∩

1
ρ
BH

)
.(4.19)

Actually, Jameson’s definition was for the particular case when m = 2 and the Ci

are closed convex cones. Property (G) has its origin in M. Krein’s work. In 1940,
M. Krein proved that if K is a normal cone (i.e., {K,−K} has the normal property
and K ∩ (−K) = {0}), then K� is a generating cone (i.e., K� − K� = H)
(see [35, Chapter V, Section 3, Subsection 3.2, Lemma 1]). Jameson’s duality
theory between property (N) and property (G) can be considered as an extension
of M. Krein’s work to two arbitrary closed convex cones. The following theorem
shows that property (G) for closed convex cones is actually a special case of the
dual normal property (4.9).

Theorem 4.3. Let K1, . . . , Km be convex cones in H. Then

λD(K1, . . . , Km) ≤ λG(K1, . . . , Km) ≤ m · λD(K1, . . . , Km),(4.20)

where λG(K1, . . . , Km) is a quantitative measurement of property (G) for {K1, . . . ,
Km}; namely,

λG(K1, . . . , Km) := sup

{
ρ ≥ 0

∣∣∣∣∣
(

m∑
i=1

Ki

)⋂
BH ⊂

m∑
i=1

(
Ki ∩

1
ρ
BH

)}
,

where 1
ρBH := H if ρ = 0.

Proof. By Lemma 4.1(3) and Lemma 2.1(9), we obtain that

BH# co

(
m⋃

i=1

Ki

)
⊂ co

(
m⋃

i=1

(
Ki#

1
ε
BH

))
(4.21)

is equivalent to

BH ∩
(

m∑
i=1

Ki

)
⊂ co

(
m⋃

i=1

(
Ki ∩

1
ε
BH

))
.(4.22)

By Lemma 2.1(9) and the fact that m · co(S1) = co(m · S1) and m(S1 ∩ S2) =
(m S1) ∩ (m S2) for any sets S1 and S2, we obtain that

co

(
m⋃

i=1

(
Ki ∩

1
ε
BH

))
⊂

m∑
i=1

(
Ki ∩

1
ε
BH

)
⊂ co

(
m⋃

i=1

(
Ki ∩

m

ε
BH

))
.(4.23)

If λD(K1, . . . , Km) = 0, then λD(K1, . . . , Km) ≤ λG(K1, . . . , Km). Otherwise, for
any 0 < ε < λD(K1, . . . , Km), (4.21) holds, which implies (4.22). By the first
inclusion in (4.23), (4.22) implies that (4.19) holds with ρ = ε and Ci = Ki. Hence,

ε ≤ λG(K1, . . . , Km) for all 0 < ε < λD(K1, . . . , Km),

which implies

λD(K1, . . . , Km) ≤ λG(K1, . . . , Km).(4.24)
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Conversely, if λG(K1, . . . , Km) = 0, then λG(K1, . . . , Km) ≤ m · λD(K1, . . . , Km).
Otherwise, for any 0 < ρ < λG(K1, . . . , Km),(

m∑
i=1

Ki

)⋂
BH ⊂

m∑
i=1

(
Ki ∩

1
ρ
BH

)
.(4.25)

By the second inclusion in (4.23), (4.25) implies that (4.22) holds with ε = ρ/m.
Hence, (4.21) holds with ε = ρ/m, which implies

ρ

m
≤ λD(K1, . . . , Km) for all 0 < ρ < λG(K1, . . . , Km),

i.e.,

λG(K1, . . . , Km) ≤ m · λD(K1, . . . , Km).(4.26)

The required inequality (4.20) follows from (4.24) and (4.26). This completes the
proof of Theorem 4.3. �

The above theorem shows that the dual normal property is equivalent to property
(G) for convex cones. However, for general convex sets, it is not clear whether
property (G) is related to the dual normal property or not.

An immediate consequence of the above two theorems is a generalization of
Jameson’s duality relationship between the normal property and property (G) for
closed convex cones.

Corollary 4.1. Let K1, . . . , Km be convex cones in H. Then {K1, . . . , Km} has
the normal property if and only if {K1, . . . , Km} has the closed intersection property
and {K◦

1 , . . . , K◦
m} has property (G).

Proof. Suppose that {K1, . . . , Km} has the normal property. By Theorem 3.1(3), it
has the uniform normal property. It follows from Theorem 3.1(2) that {K1, . . . , Km}
has the closed intersection property. Thus, by Theorems 4.2 and 4.3, we have

λN (K1, . . . , Km) ≤ λG(K◦
1 , . . . , K◦

m) ≤ m · λN (K1, . . . , Km),

which implies that {K1, . . . , Km} has the normal property (i.e., λN (K1, . . . , Km) >
0) if and only if {K◦

1 , . . . , K◦
m} has property (G) (i.e., λG(K◦

1 , . . . , K◦
m) > 0). �

5. Strong CHIP, normal CHIP, and weak normality

Strong CHIP is the geometric version of the basic constraint qualification in
convex optimization. The main result in this section is to show that the strong
CHIP can be characterized by the weak normal property of the feasible direction
cones. Simpler characterizations of the strong CHIP for closed convex cones will
also be derived. We begin by defining some possible “conical hull intersection
properties” that a collection of convex sets might possess.

Definition 5.1. Let C1, . . . , Cm be convex subsets of H having a nonempty inter-
section C :=

⋂m
1 Ci.

(1) {C1, . . . , Cm} is said to have the conical hull intersection property
(CHIP) at x ∈ C if the collection of convex cones

{con(C1 − x), . . . , con(Cm − x)}
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has the closed intersection property, i.e., if
m⋂
1

con(Ci − x) =
m⋂
1

con (Ci − x).

We say that {C1, . . . , Cm} has the CHIP if it has the CHIP for each x ∈ C.
(2) {C1, . . . , Cm} is said to have the strong conical hull intersection prop-

erty (strong CHIP) at x ∈ C if(
m⋂

i=1

Ci − x

)�

=
m∑

i=1

(Ci − x)�.(5.1)

We say that {C1, . . . , Cm} has the strong CHIP if it has the strong CHIP
for each x ∈ C.

(3) {C1, . . . , Cm} is said to have the normal conical hull intersection prop-
erty (normal CHIP) at x ∈ C if the collection of convex cones

(5.2) {con(C1 − x), . . . , con(Cm − x)}

has the normal property. We say that {C1, . . . , Cm} has the normal CHIP
if it has the normal CHIP for each x ∈ C.

Remark 5.1. (a) While the normal CHIP property is new, the terminology “CHIP”
was introduced in [11] and used in [12] for reformulations of certain constrained
approximation problems in a Hilbert space. The “strong CHIP” was introduced in
[18] (see also [19]) because it was noted there that the strong CHIP, rather than the
CHIP, was the fundamental property which governed such problems. Indeed, it was
shown in [15] that the strong CHIP was the precise property for which a Karush-
Kuhn-Tucker (or Lagrange multiplier) condition was necessary and sufficient for
characterizing an optimal solution to the problem of minimizing any continuous
convex function f :

⋂m
1 Ci → R under convex constraints. In addition, in [17] it

was shown that a natural generalization of a certain dual optimization problem
over

⋂m
1 Ci has a solution if and only if {C1, . . . , Cm} has the strong CHIP.

(b) It was shown in [19] (see also [16, Lemma 10.3, p. 239]) that {C1, . . . , Cm}
has the strong CHIP at x if and only if it has the CHIP at x and

∑m
1 (Ci − x)� is

closed.
(c) {C1, . . . , Cm} has the normal CHIP at x ∈ C if and only if the normality con-

stant (cf. Definition 4.2) for {con(C1−x), . . . , con(Cm−x)} is positive. In the next
section, we will show that the normality constant for {con(C1−x), . . . , con(Cm−x)}
is bounded away from 0 uniformly over all x ∈ C if and only if {C1, . . . , Cm} has
the linear regular property (cf. Theorems 6.1 and 6.2).

We can now exhibit a hierarchy among the various conical hull intersection prop-
erties.

Theorem 5.1. Let C1, . . . , Cm be closed convex subsets of H with a nonempty
intersection C :=

⋂m
1 Ci. For a given x ∈ C, consider the following statements:

(1) {C1, . . . , Cm} has the normal CHIP at x.
(2) {C1, . . . , Cm} has the strong CHIP at x.
(3) {C1, . . . , Cm} has the CHIP at x.

Then (1) ⇒ (2) ⇒ (3).
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Proof. By Remark 5.1(b) it follows that (2) ⇒ (3). To prove that (1) ⇒ (2),
suppose that {C1, . . . , Cm} has the normal CHIP at x. By Theorem 3.1(4) with
Ki := con(Ci − x), it follows that {con(C1 − x), . . . , con(Cm − x)} has the closed
intersection property. By Remark 5.1(b), it follows that it suffices to verify that∑m

1 K◦
i is closed. It has been proved in Corollary 4.1 that {K◦

1 , . . . , K◦
m} has the

property (G). Thus,
∑m

1 K◦
i is closed by Lemma 5 in [26] (see also Lemma 2.8 in

[9]). This completes the proof. �

Remark 5.2. In general, (3) 	⇒ (2) [10] and (2) 	⇒ (1) [3] (see also [10]). If dimH ≤
3, it was proved that (1) ⇔ (2) (see [1]) and (2) ⇔ (3) (see [10]).

By a duality analysis of the weak normal property, we can prove that the strong
CHIP is equivalent to the weak normal property for convex cones. The key step in
the proof of this equivalence relationship is to establish the following dual form of
the weak normal property.

Theorem 5.2. (Dual weak normality) Let C1, . . . , Cm be convex sets in H with
nonempty intersection C. If {C1, . . . , Cm} has the weak normal property, then for
any y ∈ H, there exists ε(y) > 0 such that

[0, y] #C◦ ⊂ co

[
m⋃

i=1

(
1

ε(y)
BH#C◦

i

)]
,(5.3)

where [0, y] := {θy | 0 ≤ θ ≤ 1}). Conversely, if (5.3) holds and {C1, . . . , Cm} has
the closed intersection property, then {C1, . . . , Cm} has the weak normal property.

Proof. By Definition 3.1(3), {C1, . . . , Cm} has the weak normal property if and only
if for each y ∈ H there exists ε(y) > 0 such that

m⋂
i=1

[Ci + ε(y)BH ] ⊂ C + {y}◦.(5.4)

Taking the polar on both sides of (5.4), we obtain
(5.5)

[0, y]#C◦ = (C + {y}◦)◦ ⊂
(

m⋂
i=1

[Ci + ε(y)BH ]

)◦

= co

[
m⋃

i=1

(
1

ε(y)
BH#C◦

i

)]
,

where the first equality follows by Lemma 4.1(7), the inclusion follows from (5.4),
and the last equality is by Lemma 4.2. This proves the first statement in Theorem
5.2.

Conversely, assume (5.3) holds. By calculating the polar form of (5.3), we get

(5.6)
m⋂

i=1

(
Ci +

ε(y)
m

BH

)
=

[
m⋂

i=1

(
Ci +

ε(y)
m

BH

)]◦◦
=

[
m⋃

i=1

(
m

ε(y)
BH#C◦

i

)]◦

=

(
co

[
m⋃

i=1

(
m

ε(y)
BH#C◦

i

)])◦

⊂ ([0, y]#C◦)◦ = (C + {y}◦)◦◦ = C + {y}◦,

where the first equality and the last equality are by Lemma 2.1(4), the second
equality follows from Lemma 4.2, the third equality is by Lemma 2.1(6), the in-
clusion follows from (5.3), and the fourth equality is by Lemma 4.1(7). Applying
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Lemma 2.4 with ε = ε(y)/m and D = C + {y}◦, we obtain
m⋂

i=1

(
Ci +

ε(y)
2m

BH

)
⊂ C + {y}◦.(5.7)

Thus, {C1, . . . , Cm} has the weak normal property. This completes the proof of
Theorem 5.3. �

Using Theorem 5.2 we can prove that the strong CHIP is a dual form of the weak
normality property for convex cones. This leads to the following characterization
of the strong CHIP via the weak normality of feasible direction cones.

Theorem 5.3. Let C1, . . . , Cm be closed convex subsets of H with nonempty in-
tersection C, and let x ∈ C. Then {C1, . . . , Cm} has the strong CHIP at x if and
only if the collection of feasible direction cones {con(C1 −x), . . . , con(Cm −x)} has
the weak normal property.

Proof. Let Ki := con(Ci − x) and K := con(C − x). Since x ∈ C ⊂ Ci, it follows
that K◦

i = (Ci − x)� and K◦ = (C − x)�. Thus, the strong CHIP of {C1, . . . , Cm}
is equivalent to K◦ =

∑m
i=1 K◦

i . Since K◦
i ⊂ K◦, we obtain that {C1, . . . , Cm} has

the strong CHIP if and only if

K◦ ⊂
m∑

i=1

K◦
i .(5.8)

Therefore, it suffices to prove that (5.8) holds if and only if {K1, . . . , Km} has the
weak normal property.

By Theorem 5.2, the weak normal property of {K1, . . . , Km} implies that for
any y ∈ H, there exists ε(y) > 0 such that

(5.9) [0, y]#K◦ ⊂ co

[
m⋃

i=1

(
1

ε(y)
BH#K◦

i

)]
.

By Lemma 4.1(3), (5.9) can be rewritten as

(5.10) [0, y] ∩ K◦ ⊂ co

[
m⋃

i=1

(
1

ε(y)
BH ∩ K◦

i

)]
.

It follows from (5.10) and Lemma 2.1(9) that

(5.11) [0, y] ∩ K◦ ⊂
m∑

i=1

(
1

ε(y)
BH ∩ K◦

i

)
.

For any y ∈ K◦, (5.11) implies y ∈
∑m

i=1 K◦
i . Thus, (5.8) holds.

On the other hand, if (5.8) holds, then for y ∈ K◦, there exist yi ∈ K◦
i such that

y =
∑m

i=1 yi. Let ε(y) > 0 be such that ‖myi‖ < 1/ε(y). Then y = 1
m

∑m
i=1(myi) ∈

co
[⋃m

i=1

(
1

ε(y)BH ∩ K◦
i

)]
. Hence (5.10) holds. If y 	∈ K◦, then [0, y] ∩ K◦ = {0}

and (5.10) holds for any ε(y) > 0. By Lemma 4.1(3), (5.9) holds for any y ∈ H.
By (2) ⇒ (3) in Theorem 5.1, the strong CHIP of {C1, . . . , Cm} at x implies that
{K1, . . . , Km} has the closed intersection property. By Theorem 5.2, {K1, . . . , Km}
has the weak normal property. This completes the proof of Theorem 5.3. �
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Remark 5.3. (a) From the proof of Theorem 5.3, we know that the weak normal
property is a dual characterization of the strong CHIP. In contrast, there are some
obvious alternative ways of describing the strong CHIP. The following statements
are equivalent for any x ∈

⋂m
1 Ci [18, p. 389]:

(1) {C1, . . . , Cm} has the strong CHIP at x;
(2) N(

⋂m
1 Ci)(x) =

∑m
1 NCi

(x);
(3) ∂I(

⋂m
1 Ci)(x) =

∑m
1 ∂ICi

(x).
Here ID(x) denotes the indicator function of a set D, which is defined on H by
ID(x) = 0 if x ∈ D and ID(x) = +∞ if x /∈ D, and ∂ID(x) is the subdifferential
of ID at x, which is defined by

∂ID(x) := {z ∈ H | 〈z, y − x〉 + ID(x) ≤ ID(y) for every y ∈ H}.
(b) The relation (2) may be regarded as the geometric version of the basic con-

straint qualification. In fact, let gi be a convex function on H for i = 1, 2, . . . , m,
and let Ci = {x ∈ H | gi(x) ≤ 0} and suppose that there exists an x0 ∈ H such
that gi(x0) < 0 for i = 1, 2, . . . , m. That is, the “Slater condition” holds. Then for
x ∈ Ci, we have

NCi
(x) =

{
{θy | y ∈ ∂gi(x), θ ≥ 0} if gi(x) = 0,
{0} if gi(x) < 0.

(5.12)

It was observed in [17] that if int
⋂m

1 Ci 	= ∅, then {C1, . . . , Cm} has the strong
CHIP. But the Slater condition implies the nonemptiness of int

⋂m
1 Ci. Thus, by

(5.12), we can rewrite (2) as

N(
⋂m

1 Ci)(x) =



∑

i∈I(x)

θiyi | yi ∈ ∂gi(x), θi ≥ 0


 ,(5.13)

where I(x) := {i | gi(x) = 0} is the active index set at x and the scalars θi in (5.13)
are called Lagrange multipliers.

(c) Li, Nahak, and Singer [32] gave a characterization of the basic constraint
qualification for convex inequalities gi(x) ≤ 0 (1 ≤ i ≤ m) in terms of upper
semicontinuity of certain cone mappings. It would be interesting to know whether
Theorem 2.4 in [32] can be reformulated to give a characterization of the strong
CHIP for {C1, . . . , Cm}.

Our next result shows that, in the case of convex cones, having the strong or
normal CHIP is equivalent to having this property at the single point zero.

Theorem 5.4. Let K1, . . . , Km be convex cones. Then {K1, . . . , Km} has the
strong CHIP or the normal CHIP if and only if it has the same property at zero.

Proof. Let K :=
⋂m

i=1 Ki. Suppose now that {K1, . . . , Km} has the strong CHIP
at 0. By Theorem 5.3, {K1, . . . , Km} has the weak normal property, i.e., for every
y ∈ H, there exists ε(y) > 0 such that

(5.14)
m⋂

i=1

(Ki + ε(y)BH) ⊂ K + {y}◦.

Lemma 2.5 and (5.14) imply that

(5.15)
m⋂

i=1

[con(Ki − x) + ε(y)BH ] ⊂
m⋂

i=1

con(Ki − x) + {y}◦ for all x ∈ K.
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Applying Theorem 5.3 with Ci = Ki, we get that {K1, . . . , Km} has the strong
CHIP at x for x ∈ K, i.e., {K1, . . . , Km} has the strong CHIP.

Suppose that {K1, . . . , Km} has the normal CHIP at 0. This means that {K1, . . . ,
Km} has the normal property, i.e., there exists ε > 0 such that

(5.16)
m⋂

i=1

(Ki + εBH) ⊂
m⋂

i=1

Ki + BH .

Using Lemma 2.5, (5.16) implies that

(5.17)
m⋂

i=1

[con(Ki − x) + εBH ] ⊂
m⋂

i=1

con(Ki − x) + BH for all x ∈ K.

This proves that {con(K1−x), . . . , con(Km−x)} has the normal property. In other
words, {K1, . . . , Km} has the normal CHIP at arbitrary x ∈ K, which was to be
proved. �
Remark 5.4. A proof that a set of closed convex cones has the strong CHIP at zero
if and only if it has the strong CHIP was first given in [9].

The following characterizations of the strong CHIP for convex cones can be
derived immediately from Theorems 5.3 and 5.4.

Corollary 5.1. Let K1, . . . , Km be convex cones. Then the following statements
are equivalent:

(1) {K1, . . . , Km} has the strong CHIP;
(2) {K1, . . . , Km} has the weak normal property;
(3) (

⋂m
i=1 Ki)

� =
∑m

i=1 K�
i .

Moreover, if K1, . . . , Km are closed, these statements are equivalent to the following
statement:

(4)
∑m

1 K�
i is closed.

Proof. Since the relation (3) is just the statement that {K1, . . . , Km} has the strong
CHIP at 0, the equivalence of (1) and (3) follows from Theorem 5.4. Taking x = 0
and Ci = Ki in Theorem 5.3 yields the equivalence of (2) and (3). Since dual
cones are always closed, (4) is an obvious consequence of (3). Finally, if the Ki are
closed and (4) holds, then by Lemma 2.1(5), we have that (

⋂m
1 Ki)� =

∑m
1 K�

i =∑m
1 K�

i . That is, (3) holds. �
Remark 5.5. Some authors have called the equation in Corollary 5.1(3) the Moreau-
Rockafellar equality for convex cones in honor of the two mathematicians who have
established the first sufficient condition for the validity of this equation (see, e.g.,
[24, 27, 28]). The problem of getting a dual description of the Moreau-Rockafellar
equality has attracted the attention of many mathematicians (see the survey [2]).

When applied to closed linear subspaces, in addition to what we have in Corollary
5.1, there is another interesting characterization of the strong CHIP in terms of the
projections onto the orthogonal complements of these subspaces.

Corollary 5.2. Let M1, . . . , Mm be closed linear subspaces in H, and let M =⋂m
1 Mi. Then the following statements are equivalent:

(1) {M1, . . . , Mm} has the strong CHIP;
(2) {M1, . . . , Mm} has the weak normal property;
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(3) M⊥ =
∑m

1 M⊥
i ;

(4)
∑m

1 M⊥
i is closed;

(5) ‖PMm
PMm−1 · · ·PM1PM⊥‖ < 1.

Proof. The equivalence of the first four statements is an immediate consequence of
Corollary 5.1. The equivalence of the last two statements follows from a combina-
tion of results from [6, Lemma 5.18 and Theorem 5.19] and [8, Lemma 3.7.3 and
Theorem 3.7.4] (see also [4, Theorem 5.5.1]). �

Remark 5.6. (a) One can find some historical motivation for studying the strong
CHIP (or Moreau-Rockafellar equality) for two closed linear subspaces in [2].

(b) One reason for the possible interest in this corollary stems from the fact that it
shows for the first time a close connection between “fast” convergence of the method
of alternating projections and the strong conical hull intersection property. More
precisely, the well-known von Neumann–Halperin method of alternating projections
can be stated as follows: If Mi and M are given as in Corollary 5.2, then

lim
n

(PMm
PMm−1 · · ·PM1)

n(x) = PM (x)

for each x ∈ H (see, e.g., [16, Corollary 9.28, p. 217]). Moreover, concerning the
rate of convergence of this method, it is not difficult to show (see [16, Lemma 9.30,
p. 218]) that

‖PMm
PMm−1 · · ·PM1)

n − PM‖ = ‖
(
PMm

PMm−1 · · ·PM1PM⊥
)n ‖

≤ ‖PMm
PMm−1 · · ·PM1PM⊥‖n.

It follows from this and the above corollary that when the collection of subspaces
has the strong CHIP, then the rate of convergence in the method of alternating
projections is geometric. We should mention that without some additional condition
on the subspaces, the convergence may be arbitrarily slow (see [21]).

6. Linear regularity and normality

The main purpose of this section is to show that linear regularity can be char-
acterized by normality of certain families of the convex sets generated by scaling
and/or shifting of the original collection of convex sets. In particular, we will show
that linear regularity is equivalent to uniform normality. Moreover, linear regular-
ity can also be characterized by the fact that the normality constant for the feasible
direction cones {con(C1 − x), . . . , con(Cm − x)} is bounded away from 0 uniformly
over all x in the intersection

⋂m
1 Ci.

First we give the formal definitions of (bounded) linear regularity for a collection
of convex sets in the Hilbert space H.

Definition 6.1. Let C1, . . . , Cm be convex subsets of H with C :=
⋂m

1 Ci 	= ∅.
(1) {C1, . . . , Cm} is said to have the bounded linear regularity property

if for any constant ρ > 0, there exists a constant γρ such that

d (x, C) ≤ γρ max
1≤i≤m

d(x, Ci) whenever ‖x‖ ≤ ρ.(6.1)

(2) {C1, . . . , Cm} is said to have the linear regularity property if there exists
a constant γ such that

d (x, C) ≤ γ max
1≤i≤m

d(x, Ci) for every x ∈ H.(6.2)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3854 ANDREW BAKAN, FRANK DEUTSCH, AND WU LI

Remark 6.1. (a) The linear regularity of closed convex sets was first introduced by
Bauschke and Borwein [5] to quantify the relationship between the distance from
an approximate solution x to the feasible set

⋂
i Ci and the distance from x to each

individual constraint set Ci.
(b) The linear regularity property is the geometric version of the so-called Hoff-

man’s error bound for approximate solutions of convex inequalities gi(x) ≤ 0
(1 ≤ i ≤ m):

d(x, C) ≤ γ max
1≤i≤m

max{gi(x), 0} for all x ∈ H,(6.3)

where Ci := {z ∈ H : gi(z) ≤ 0} and C :=
⋂m

i=1 Ci. In the case that each
gi(x) is an affine function, (6.3) was proved by Hoffman [23]. In this case, the
gradient ∇gi(x) ≡ ai is a constant vector, and it is easy to verify that d(x, Ci) =

1
‖ai‖ max{gi(x), 0}. Therefore, if each Ci is defined by an affine inequality gi(x) ≤ 0,
then the linear regularity of {C1, . . . , Cm} is the same as Hoffman’s error bound
(6.3) for approximate solutions of affine inequalities gi(x) ≤ 0 (1 ≤ i ≤ m).

(c) In general, (bounded) linear regularity is defined for closed convex sets. If
C1, . . . , Cm are not closed, then (bounded) linear regularity implies that they have
the closed intersection property. In fact, if x ∈

⋂m
i=1 Ci, then d(x, Ci) = 0 for

1 ≤ i ≤ m. By either (6.1) or (6.2), we have d(x, C) = 0, i.e., x ∈ C. This proves
the closed intersection property of {C1, . . . , Cm}. By d(x, S) = d(x, S) for any x and
S in H, {C1, . . . , Cm} has the (bounded) linear regularity property. Conversely, if
{C1, . . . , Cm} has the closed intersection property, then (bounded) linear regularity
of {C1, . . . , Cm} implies (bounded) linear regularity of {C1, . . . , Cm}.

(d) When H is a finite-dimensional Euclidean space, the bounded linear regular-
ity is equivalent to the so-called metric regularity. Recall that {C1, . . . , Cm} is said
to be metrically regular at x ∈

⋂m
1 Ci if there exist positive constants δx and γx

such that

d(y, C) ≤ γx max
1≤i≤m

d(y, Ci) for all y ∈ H with ‖y − x‖ ≤ δx.

We say that {C1, . . . , Cm} is metrically regular if it is metrically regular at every
x ∈

⋂m
1 Ci. It is obvious that bounded linear regularity implies metric regularity.

When H is finite dimensional, by using the finite-covering theorem for a compact
set, one can also prove that metric regularity implies bounded linear regularity (cf.
[31, the proof of Theorem 8]).

(e) Suppose that H is a finite-dimensional Euclidean space and Ci := {x | gi(x) ≤
0}, where gi are differentiable convex functions on H. If NCi

(x) = {t∇gi(x) |
t ≥ 0} whenever gi(x) = 0, then the bounded linear regularity of {C1, . . . , Cm}
is equivalent to Abadie’s constraint qualification or the standard basic constraint
qualification for gi(x) ≤ 0 (1 ≤ i ≤ m) (cf. the proofs of [31, Theorems 8 and 10]).
We leave the details to the interested reader.

Before proving the main results that characterize (bounded) linear regularity, we
need the following technical lemma about normality and bounded linear regularity.

Lemma 6.1. Let C1, . . . , Cm be closed convex subsets of H with 0 ∈ C :=
⋂m

i=1 Ci.
For fixed positive constants ρ, τ , and γρ, consider the following relations:

d (x, C) ≤ γρ max
1≤i≤m

d(x, Ci) whenever ‖x‖ ≤ ρ,(6.4)
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(ρBH) ∩
[

m⋂
i=1

(
Ci +

δ

γρ
BH

)]
⊂ C + δBH for every δ > 0,(6.5)

(ρBH) ∩
[

m⋂
i=1

(
Ci +

δ

γρ
BH

)]
⊂ C + δBH for every 0 < δ ≤ τ,(6.6)

d (x, C) ≤ γρ max
1≤i≤m

d(x, Ci) whenever ‖x‖ ≤ ρ and d(x, C) ≤ τ

γρ
,(6.7)

λN

(
con(C1 − x), . . . , con(Cm − x)

)
≥ 1

γρ
for all x ∈ C with ‖x‖ < ρ.(6.8)

Then (6.4) ⇔ (6.5) ⇔ (6.6) ⇔ (6.7) ⇔ (6.8).

Proof. (6.4) ⇒ (6.5) Assume that (6.4) holds. Let x be an element in the set on
the left-hand side of (6.5). Then ‖x‖ ≤ ρ and

d(x, Ci) ≤
δ

γρ
for all 1 ≤ i ≤ m.(6.9)

It follows from (6.9) and (6.4) that

d (x, C) ≤ γρ max
1≤i≤m

d(x, Ci) ≤ γρ · δ

γρ
= δ,

which implies x ∈ C + δBH . This proves that (6.5) holds.
(6.5) ⇒ (6.4) Let x ∈ H with ‖x‖ ≤ ρ. Define δ := γρ max1≤i≤m d(x, Ci). Then

x is in the set on the left-hand side of (6.5). It follows from (6.5) that d(x, C) ≤ δ,
i.e., (6.4) holds.

(6.5) ⇒ (6.6) This is obvious.
(6.6) ⇒ (6.7) Assume that (6.6) holds. For any ‖x‖ ≤ ρ and d(x, C) ≤ τ

γρ
, we

have for each i that
d(x, Ci) ≤ d(x, C) ≤ τ

γρ
,

i.e., δ := γρ max1≤i≤m d(x, Ci) ≤ τ. Thus x is an element in the set on the left-hand
side of (6.6). By (6.6), we have x ∈ C + δBH , i.e., (6.7) holds.

(6.7) ⇒ (6.4) Assume that (6.7) holds. Let x ∈ H with ‖x‖ ≤ ρ. Since C is a
closed convex set, there is x∗ ∈ C such that d(x, C) = ‖x − x∗‖. If ‖x − x∗‖ > τ

γρ
,

for θ := τ
γρd(x,C) ∈ (0, 1), we have

d(x̂, Ci) ≤ d(x̂, C) = θ · d(x, C) =
τ

γρ
,(6.10)

where x̂ := (1−θ)x∗+θx. Since 0 ∈ C, the second statement in Lemma 2.6 implies
that ‖x∗‖ ≤ ‖x‖ ≤ ρ. Thus

‖x̂‖ ≤ (1 − θ)‖x∗‖ + θ ‖x‖ ≤ ρ.(6.11)

By (6.10), (6.11), and (6.7), we get

d(x̂, C) ≤ γρ max
1≤i≤m

d(x̂, Ci).(6.12)

Since x∗ ∈ C ⊂ Ci, by the convexity of the distance function, we have

max
1≤i≤m

d(x̂, Ci) ≤ max
1≤i≤m

[
θ · d(x, Ci) + (1 − θ) · d(x∗, Ci)

]
= θ max

1≤i≤m
d(x, Ci).

(6.13)
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It follows from (6.10), (6.12), and (6.13) that

d(x, C) ≤ γρ max
1≤i≤m

d(x, Ci).(6.14)

If ‖x−x∗‖ ≤ τ
γρ

, then (6.7) implies (6.14). As a consequence, (6.14) holds whenever
‖x‖ ≤ ρ, i.e., (6.4) holds.

(6.5) ⇒ (6.8) Subtracting x from both sides of (6.5) and dividing the resulting
inclusion by δ > 0, we get

1
δ

(ρBH − x)
⋂[ m⋂

i=1

(
1
δ
(Ci − x) +

1
γρ

BH

)]
(6.15)

⊂
(

m⋂
i=1

1
δ
(Ci − x)

)
+ BH for all x ∈ C ∩ (ρBH).

We claim that (6.15) implies that

m⋂
i=1

[
con(Ci − x) +

1
γρ

BH

]
⊂
[

m⋂
i=1

con(Ci − x)

]
+ BH for all x ∈ C with ‖x‖ < ρ.

(6.16)

In fact, if y ∈
⋂m

i=1

[
con(Ci − x) + 1

γρ
BH

]
, then there exist δi > 0 such that

y ∈
m⋂

i=1

[
1
δi

(Ci − x) +
1
γρ

BH

]
.

Moreover, since ‖x‖ < ρ, there exists δ0 > 0 such that y ∈ 1
δ0

(ρBH−x). As a conse-
quence, y is in the set on the left-hand side of (6.15) with δ := min{δ0, δ1, . . . , δm}.
It follows from (6.15) that

y ∈
(

m⋂
i=1

1
δ
(Ci − x)

)
+ BH ⊂

[
m⋂

i=1

con(Ci − x)

]
+ BH ,

which proves (6.16). By the definition of the normality constant and (6.16), we
obtain (6.8).

(6.8) ⇒ (6.4) Using the definition of the normality constant and (6.8), we obtain[
m⋂

i=1

(
con(Ci − x) +

1
γ̄ρ

BH

)]
(6.17)

⊂
(

m⋂
i=1

con(Ci − x)

)
+ BH for all x ∈ C with ‖x‖ < ρ,

where γ̄ρ > γρ. Note that(
m⋂

i=1

con(Ci − x)

)
+ BH =

(
m⋂

i=1

⋃
θ>0

θ(Ci − x)

)
+ BH

=

(⋃
θ>0

m⋂
i=1

θ(Ci − x)

)
+ BH =

⋃
θ>0

[
θ(C − x) + BH

]
=
⋃
θ>0

θ
(
C − x +

1
θ
BH

)
,
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where the second equality follows from Lemma 2.2. Similarly,
m⋂

i=1

(
con(Ci − x) +

1
γ̄ρ

BH

)
=

m⋂
i=1

([⋃
θ>0

θ(Ci − x)

]
+

1
γ̄ρ

BH

)

=
m⋂

i=1

⋃
θ>0

(
θ(Ci − x) +

1
γ̄ρ

BH

)
=
⋃
θ>0

[
θ

m⋂
i=1

(
Ci − x +

1
θγ̄ρ

BH

)]
,

where the third equality follows from Lemma 2.2. Therefore, (6.17) can be rewritten
as ⋃

θ>0

[
θ

m⋂
i=1

(
Ci − x +

1
θγ̄ρ

BH

)]
(6.18)

⊂
⋃
θ>0

θ
(
C − x +

1
θ
BH

)
for all x ∈ C with ‖x‖ < ρ.

Let δ > 0 and ‖y‖ < ρ be such that

y ∈
m⋂

i=1

(
Ci +

δ

γ̄ρ
BH

)
.(6.19)

Since C is closed, there is y∗ ∈ C such that ‖y − y∗‖ = d(y, C). Then, by (6.19),
we get that

1
δ
(y − y∗) ∈ 1

δ

m⋂
i=1

(
Ci − y∗ +

δ

γ̄ρ
BH

)
.

Since 0 ∈ C, by the second statement in Lemma 2.6, we have ‖y∗‖ < ρ. So (6.18)
holds for x = y∗. That is, there exist θ∗ > 0, z ∈ C, and u ∈ BH such that

1
δ
(y − y∗) = θ∗(z − y∗) + u,(6.20)

which can be rewritten as follows:
1

θ∗δ
(y − y∗) = z +

u

θ∗
− y∗.(6.21)

Since d(y, C) = ‖y − y∗‖, by the first statement in Lemma 2.6, we have y − y∗ ∈
(C − y∗)�. By (6.21), it follows that z + u

θ∗ − y∗ ∈ (C − y∗)�, which implies∥∥∥z +
u

θ∗
− y∗

∥∥∥ = d
(
z +

u

θ∗
, C
)
≤ ‖z +

u

θ∗
− z‖ =

∥∥∥ u

θ∗

∥∥∥ =
1
θ∗

,(6.22)

where the first equality follows from the first statement in Lemma 2.6. Thus, it
follows from (6.21) and (6.22) that

‖y − y∗‖ = θ∗δ
∥∥∥z +

u

θ∗
− y∗

∥∥∥ ≤ δ, i.e., y ∈ C + δBH .(6.23)

This proves that (6.5) holds with γρ and ρ being replaced by γ̄ρ and ρ̄ < ρ, respec-
tively. Using the implication (6.5) ⇒ (6.4) that was proved above, we obtain that

d (x, C) ≤ γ̄ρ max
1≤i≤m

d(x, Ci) whenever ‖x‖ ≤ ρ̄,(6.24)

where γ̄ρ > γρ and ρ̄ < ρ. Letting γ̄ρ → γρ and ρ̄ → ρ in (6.24), and using the
continuity of the distance function, we obtain (6.4).

The above proof shows that (6.4) ⇔ (6.5) ⇒ (6.6) ⇒ (6.7) ⇒ (6.4) and (6.5) ⇒
(6.8) ⇒ (6.4). This completes the proof of Lemma 6.1. �
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From Lemma 6.1 we can easily derive characterizations of (bounded) linear reg-
ularity for convex sets. For linear regularity, Lemma 6.1 actually shows that the
linear regularity constant (the smallest γ that satisfies (6.2)) is equal to the normal-
ity constant of scaling or shifting of {C1, . . . , Cm}. Such quantitative relationships
between linear regularity and normality are stated next.

Theorem 6.1. Let C1, . . . , Cm be closed convex subsets of H with C :=
⋂m

i=1 Ci 	=
∅, γ > 0, and τ > 0. Then the following statements are equivalent:

(1) d(x, C)≤γ max1≤i≤m d(x, Ci) for all x∈H (Linear Regularity Property);

(2) λN

(
θC1, . . . , θCm

)
≥ 1

γ
for all θ > 0 (Uniform Normal Property);

(3) λN

(
θC1, . . . , θCm

)
≥ 1

γ
for all θ ≥ 1

τ
;

(4) λN

(
con(C1 − x), . . . , con(Cm − x)

)
≥ 1

γ
for all x ∈ C;

(5) d(x, C) ≤ γ max
1≤i≤m

d(x, Ci) for all x ∈ H with d(x, C) ≤ τ

γ
.

Proof. Note that for any x ∈ H, the normality constant and the linear regularity
constant for {C1, . . . , Cm} are the same as those for {C1 − x, . . . , Cm − x}. Thus,
without loss of generality (by replacing the sets Ci by Ci−x0 for some point x0 ∈ C
if necessary), we may assume that 0 ∈ C.

(1) ⇒ (5) This is obvious.
(5) ⇒ (1) Since (6.7) holds for γρ = γ and any ρ > 0, by Lemma 6.1, (6.4) holds

for γρ = γ and any ρ > 0. Thus, (1) holds.
(1) ⇒ (2) Since (6.4) holds for γρ = γ and any ρ > 0, Lemma 6.1 implies that

(6.5) holds for γρ = γ and any ρ > 0, i.e.,
m⋂

i=1

(
Ci +

δ

γ
BH

)
⊂ C + δBH for every δ > 0.(6.25)

Dividing both sides of (6.25) by δ and setting θ = 1/δ, we get

m⋂
i=1

(
θCi +

1
γ

BH

)
⊂
(

m⋂
i=1

θCi

)
+ BH for every θ > 0.(6.26)

Using Definition 4.2 for normality constants, (2) follows from (6.26).
(2) ⇒ (4) Using Definition 4.2, (2) implies that

m⋂
i=1

(
θCi +

1
γ̄

BH

)
⊂
(

m⋂
i=1

θCi

)
+ BH for every θ > 0 and γ̄ > γ.(6.27)

Since (6.27) implies that (6.5) holds for γρ = γ̄ and any ρ > 0, Lemma 6.1 implies
that (6.8) holds for γρ = γ̄ and any ρ > 0. Thus,

λN

(
con(C1 − x), . . . , con(Cm − x)

)
≥ 1

γ̄
for all x ∈ C.(6.28)

Letting γ̄ → γ in (6.28), we obtain (4).
(4) ⇒ (1) Since (6.8) holds for γρ = γ and any ρ > 0, Lemma 6.1 implies that

(6.4) holds for γρ = γ and any ρ > 0. Therefore (1) holds.
(2) ⇒ (3) This is obvious.
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(3) ⇒ (1) By Definition 4.2, for any γ̄ > γ, we have
m⋂

i=1

(
θCi +

1
γ̄

BH

)
⊂
(

m⋂
i=1

θCi

)
+ BH for all θ ≥ 1

τ
.(6.29)

Let δ = 1/θ. Dividing both sides of (6.29) by θ yields
m⋂

i=1

(
Ci +

δ

γ̄
BH

)
⊂
(

m⋂
i=1

Ci

)
+ δBH for every 0 < δ ≤ τ.(6.30)

By (6.30), (6.6) holds for γρ = γ̄ and any ρ > 0. By Lemma 6.1, (6.4) holds for
γρ = γ̄ and any ρ̄ > 0. Since γ̄ > γ is arbitrary, (6.4) holds for γρ = γ and any
ρ > 0, i.e., (1) holds. This completes the proof of Theorem 6.1. �

Remark 6.2. A more general form of the implication of (5) ⇒ (1) was given by
Li and Singer [33, Theorem 4] that shows how to establish global error bounds
for convex multifunctions by using error bounds for approximate solutions in a
small neighborhood of the solution set. In fact, let Γ(t) := {y | d(y, Ci) ≤ t for
1 ≤ i ≤ m}. Then C = Γ(0). Applying Theorem 4 in [33] with x0 = 0 and X = R,
we get the implication (5) ⇒ (1).

To make the quantitative relationship between linear regularity and normality
more transparent, we formulate the following corollary of Theorem 6.1.

Corollary 6.1. Let C1, . . . , Cm be closed convex subsets of H with C :=
⋂m

1 Ci 	= ∅.
Then

inf
x�∈C

max
1≤i≤m

d(x, Ci)

d(x, C)
= inf

x∈C
λN

(
con(C1 − x), . . . , con(Cm − x)

)

= inf
θ>0

λN

(
θC1, . . . , θCm

)
= inf

0<θ≤τ
λN

(
θC1, . . . , θCm

)
,

where τ > 0 is any positive constant.

Proof. Fix any τ > 0 and define the scalars λi (i = 1, 2, 3, 4) by

λ1 := inf
x�∈C

max
1≤i≤m

d(x, Ci)

d(x, C)
,

λ2 := inf
x∈C

λN

(
con(C1 − x), . . . , con(Cm − x)

)
,

λ3 := inf
θ>0

λN

(
θC1, . . . , θCm

)
,

λ4 := inf
0<θ≤τ

λN

(
θC1, . . . , θCm

)
.

Theorem 6.1 shows that if one λk is positive, then all λk are positive. So we may
assume that λk > 0 for every k ∈ {1, 2, 3, 4}. For any such k, the definition of λk

shows that Theorem 6.1(k) must hold for γ = 1/λk. Thus, by Theorem 6.1,

λj ≥ 1
γ

=
1

(1/λk)
= λk for all 1 ≤ j ≤ 4.

Since 1 ≤ k ≤ 4 was arbitrary, we obtain that λ1 = λ2 = λ3 = λ4. This proves
Corollary 6.1. �
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Remark 6.3. Note that {θC1, . . . , θCm} is a scaling of the original collection of
convex sets, and

con(Ci − x) =
⋃
θ>0

θ(Ci − x)

is the union of shifting (subtracting by x) and scaling (multiplying by θ) of Ci with
respect to θ > 0. The above corollary shows how the linear regularity constant is
related to the normality constants of families of convex sets generated by shifting
and scaling of {C1, . . . , Cm}.

The above corollary clearly describes the quantitative relationship between the
linear regularity and the normal property, but it is less transparent about the
qualitative relationship between linear regularity and normality. To remedy this,
we include various characterizations of linear regularity in the following theorem.

Theorem 6.2. Let C1, . . . , Cm be closed convex subsets of H with C :=
⋂m

1 Ci 	= ∅.
Then the following statements are equivalent:

(1) {C1, . . . , Cm} has the linear regularity property;
(2) {C1, . . . , Cm} has the uniform normal property;
(3) There exist positive constants τ and γ such that

m⋂
1

(
Ci +

δ

γ
BH

)
⊂ C + δBH for all 0 < δ ≤ τ ;(6.31)

(4) There exists a positive constant γ such that

m⋂
1

(
con(Ci − x) +

1
γ

BH

)
⊂ con(C − x) + BH for all x ∈ C;(6.32)

(5) {C1, . . . , Cm} has the CHIP, and there exists a positive constant γ̂ such that

BH ∩
(

m∑
i=1

(Ci − x)�
)

⊂
m∑

i=1

(
1
γ̂

BH

)
∩ (Ci − x)� for all x ∈ C.(6.33)

Proof. The equivalence of (1)–(4) follows from Theorem 6.1. It suffices to prove
the equivalence of (4) and (5).

First assume that (5) holds. Note (Ci − x)� = [con(Ci − x)]◦ and the strong
CHIP implies the closed intersection property of {con(C1 − x), . . . , con(Cm − x)}
(see Theorem 5.1). If (6.33) holds, then Theorems 4.2 and 4.3 imply that

1
γ̂

≤ λG

(
[con(C1 − x)]◦, . . . , [con(Cm − x)]◦

)
≤ m · λD

(
[con(C1 − x)]◦, . . . , [con(Cm − x)]◦

)
= m · λN

(
con(C1 − x), . . . , con(Cm − x)

)
for all x ∈ C,

which implies that (4) holds with any γ > mγ̂.
On the other hand, if (6.32) holds, then Theorem 3.1(4) implies that

{con(C1 − x), . . . , con(Cm − x)} has the closed intersection property. Using
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Theorems 4.2 and 4.3, we obtain that
1
γ
≤ λN

(
con(C1 − x), . . . , con(Cm − x)

)
= λD

(
[con(C1 − x)]◦, . . . , [con(Cm − x)]◦

)
= λD

(
(C1 − x)�, . . . , (Cm − x)�

)
≤ λG

(
(C1 − x)�, . . . , (Cm − x)�

)
for all x ∈ C.

Thus (5) holds for γ̂ > γ. This completes the proof of Theorem 6.2. �
Remark 6.4. The implication (5) ⇒ (1) in Theorem 6.2 was proved earlier in [9,
Theorem 4.2].

Similarly, from Lemma 6.1 we can easily derive various characterizations of
bounded linear regularity for convex sets.

Theorem 6.3. Let C1, . . . , Cm be closed convex subsets of H with C :=
⋂m

1 Ci 	= ∅.
Then the following statements are equivalent:

(1) {C1, . . . , Cm} has the bounded linear regularity property;
(2) For any ρ > 0, there exists γρ > 0 such that

(ρBH) ∩
[

m⋂
1

(
Ci +

δ

γρ
BH

)]
⊂ C + δBH for all δ > 0;(6.34)

(3) Let τ > 0 be a fixed positive constant. For any ρ > 0, there exists γρ > 0
such that

(ρBH) ∩
[

m⋂
1

(
Ci +

δ

γρ
BH

)]
⊂ C + δBH for all 0 < δ ≤ τ ;(6.35)

(4) For any ρ > 0, there exists γρ > 0 such that

m⋂
1

(
con(Ci − x) +

1
γρ

BH

)
⊂ con(C − x) + BH for all x ∈ C with ‖x‖ ≤ ρ;

(6.36)

(5) {C1, . . . , Cm} has CHIP, and for any ρ > 0, there exists γρ > 0 such that

BH ∩
(

m∑
i=1

(Ci − x)�
)
⊂

m∑
i=1

(
1
γ̂ρ

BH

)
∩ (Ci − x)� for all x ∈ C with ‖x‖ ≤ ρ.

(6.37)

Proof. The equivalence of (1)–(4) follows from Lemma 6.1. Replacing x ∈ C by
x ∈ C ∩ (ρBH), γ by γρ, and γ̂ by γ̂ρ in the proof of Theorem 6.2, we get a proof
of the equivalence of (4) and (5) in Theorem 6.3. �

Finally, when applied to closed convex cones, we obtain the following charac-
terizations of linear regularity. The equivalence of the first four statements in the
following corollary are known (see [26, Theorem 2.1] and [9, Theorem 6.5]).

Corollary 6.2. Let K1, . . . , Km be closed convex cones in H. Then the following
statements are equivalent:

(1) {K1, . . . , Km} is boundedly linearly regular;
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(2) {K1, . . . , Km} is linearly regular;
(3) {K1, . . . , Km} has the normal property;
(4) {K◦

1 , . . . , K◦
m} has property (G);

(5) {K◦
1 , . . . , K◦

m} has the dual normal property;
(6) {K1, . . . , Km} has the uniform normal property.

Proof. The equivalence of (1) and (2) was proved earlier in [4, Theorem 6.5]. By
Theorem 6.2, {K1, . . . , Km} is linearly regular if and only if it has the uniform
normal property. Thus (2) and (6) are equivalent. By Theorem 3.1(3), the uniform
normal property is equivalent to the normal property, so (3) and (6) are equivalent.
Since Ki are closed, {K1, . . . , Km} has the closed intersection property. By Corol-
lary 4.1, (3) and (4) are equivalent. Finally, (3) and (5) are equivalent by Theorem
4.2. This completes the proof of Corollary 6.2. �
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