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Strong Completeness Results for Paraconsistent

Logic Programming *

Howard A. Blairtand V.S. Subrahmaniant

Abstract

In [6], we introduced a means of allowing logic programs to contain negations

in both the head and the body of a clause. Such programs were called generally

Horn programs (GHPs, for short). The model-theoretic semantics of GHPs were

defined in terms of four-valued Belnap lattices [5]. For a class of programs called

well-behaved programs, an SLD-resolution like proof procedure was introduced.

This procedure was proven (under certain restrictions) to be sound (for existen­

tial queries) and complete (for ground queries). In this paper, we remove the

restriction that programs be well-behaved and extend our soundness and com­

pleteness results to apply to arbitrary existential queries and to arbitrary GHPs.

This is the strongest possible completeness result for GHPs. The results reported

llere apply to tIle design of very large knowledge bases and in processing queries

to kno\vledge bases that possibly contain erroneous information.

1 Introduction

In [6,7], we introduced a multi-valued logic for logic progranuning with clauses con­

taining negated atoms both in the head, and the body of clauses. Since such programs

Inay be inconsistent (in the classical two valued sense), any such proposal must be able

to deal "rith inconsistency in a formal and coherent manner. This was done in [6,7] via

the device of a four valued Belnap lattice.

From a pragmatic viewpoint, the proposal in [6,7] is important because it provides

a theoretical framework for developing very large knowledge bases. For example, a very

large expert system ES is typically designed by n kno\vledge engineers each of \vhom

designs a program Pi (after interacting with various "domain" experts). The normal

*This work was supported by U.S. Air Force Contract F30602-85-C-0008.

tSchool of Computer & Information Science, 4-116 Center for Science and Technology, Syracuse

University, Syracuse, NY 13244, U.S.A. Electronic Mail: blair@logiclab.cis.syr.edu

tDepartment of Computer Science, A. \T. Williams Building, University of Maryland, College

Park, I\1aryland 20742, U.S.A. Electronic rVfail: vs@mimsy.umd .edu Address correspondence to V.S.

Subrahmanian.
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procedure then, would be to take ES to be Ui:l Pi. But experts often disagree (this

is a very common occurrence in daily life), and hence the expert system ES may be

inconsistent. The fact that ES is inconsistent may not emerge until ES has already

been in use for some time; thus it is necessary to develop formal methods for reasoning

effectively in the presence of inconsistency. This point has been made independently

by Perlis[36]. The work reported in [6,7] presents a first step towards a solution to this

problem.

Subsequent to the work reported in [6], Fitting showed [14] that the logic set up by

us in [6] may be viewed as a natural generalization of I<ripke's Theory of Truth[26].

This provides an epistemological justification for the logic introduced in [6]. Fitting's

work [15,16] yields an elegant characterization of the model theory and epistemological

aspects of many-valued logic programming, but provides no proof theory. Our aim here

is to rectify the existing situation by showing how to process queries to GHPs. This task

is essentially that of mechanically showing that existentially quantified conjunctions

of atoms (i.e. "queries") are logical consequences of GHPs. The soundness and

completeness results are developed with respect to the notion of logical consequence

derived from the Belnap-style model-theoretic semantics we introduce.

Two proof procedures were given in [6]. The first was based on constructing

AND/OR trees, and it was shown to be sound and complete only for covered! GHPs

and queries whose associated ANDJOR trees were finite. The other procedure was an

SLD-resolution l i l ~ e proof procedure called SLDnh-resolution which was proven to be

sound for existential queries to a class of GHPS called well-behaved GHPS. Complete­

ness was proved for ground queries to well-behaved GHPs.

The principal result of this paper is a modified version of SLDnh-resolution that

is sound and complete for existential queries to arbitrary GHPs. This removes all

restrictions imposed on the query processing algorithms developed in {6}. In the context

of existential query processing, this is the strongest completeness result possible.

The organization of this paper is as follows: in Section 2, we quickly derive the

main theorems and definitions of [6] in the context of programs called pseudo-GHPs.

This extends similar theorems for GHPs in a straightforward way, but, this additional

machinery needs to be set up for deriving our strong soundness and completeness

theorems. The reader interested in full proofs of these theorems will find them in [6].

In Section 3, we define the closure of a generalized Horn program, and develop a proof

procedure called SLDgh-resolution. In Section 4, we show that SLDgh-resolution is

sound and complete for processing existential queries to arbitrary GHPs. Section 5

contains a few illustrative examples.

A quick word on our philosophical views about automatic theorem proving and

non-classical logic programming is in order. Suppose L is a logic equipped with a

suitable model theory, and ,S is a sentence that is a logical consequence of a theory T

1A gh-clause is covered if all variable symbols that occur in its body also occur in its head. A GHP

is covered if all gh-clauses occurring in it are covered. The definition of gh-clause and GHP appear

later on in the paper.
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in L (i.e. S is satisfied by every model of T). \Ve are firmly of the belief tllat a "proof"

that S is a logical consequence of T must be carried out within the logic L itself This,

in our opinion, is fundamental to the notion of logic, i~e. a logic must be robust enough

to do proofs within it. In keeping with this philosphy, we tend to view methods like

those of Morgan [32,33] who translates formulas in one logic to formulas in another

logic, with deep m i s g i v i n g s ~ Our view also appears to be shared by McRobbie and his

co-workers [43,31J.

2 (Pseudo) Generalized Horn Programs

We assume that the reader is familiar with the usual definitions of term, atom, literal,

etc. Let T = {1.., t, f, ...L} be the set of truth values of our logic. A partial ordering ~

is defined on T as for each x E T, x ~ x and ..1 ~ x ~ T. (See Fig. 1.)

Intuitively, ..1 is a truth value representing "unknown" as in !{leene's three valued

logic [25]. Similarly T is a truth value representing "both true and false" or "in­

consistent". This set of truth values is essentially the same as that of Belnap[5] and

V i s s e r [ 4 6 ] ~

Definition 1 If A is an atom, and J.L a truth value, then A : J.l is an annotated atom.

If J-L is one of {t, f} ( r e s p ~ {T, t, f}), then A : J.L is said to be well-annotated ( r e s p ~

definitely annotated).

Definition 2 Suppose AI, . .. , An are a t o m s ~ and 111, . .. ,JLn are annotations in {t, fl.
Then

A o : f..lo {= Al : J.ll & ... & An : f..ln

is a generalized Horn clause if /10 E {t, f} and is a psuedo generalized Horn clause if

J-lo E {T, t, f}. (Pseudo) Generalized Horn clauses are often called (pseudo) gh-clauses

for short. All variable symbols occurring in a (pseudo) Horn clause are assumed to be

implicitly universally quantified.

Thus, pseudo gh-clauses differ from gh-clauses as their heads might be of the form

A : T. However, annotated atoms of the form B : T may not occur in the body of

either a pseudo gh-clause or an ordinary gh-clause. Note that gh-clause is a pseudo

g h - c l a u s e ~

Defillitioll 3 A (pseudo) generalized Horn program is a finite set of (pseudo) gh­

clauses. A (pseudo) generalized Horn program is called a (pseudo) GHP, for short.

Intuitively, the annotated atom A : t (A : f) says that "A is true" (resp. "A is

false" ). Thus, for instance, the pseudo gh-clause

bird(X) : f -¢= donkey(.}{) : t

3



says that if it is true that X is a donkey, then it is false that X is a bird.

In [6,7], we investigated the properties of GHPs - pseudo GHPs were not considered

there as it was thought to be unreasonable for programmers to write sentences of the

form: "If A l : Ill, ... ,An: fLn all hold, then Ao must be inconsistent."This is still our

point of view, and we will continue to insist that GHPs are the only programs that

programmers ought to be allowed to write. We will, however, show how to associate a

pseudo GHP with any given GHP, and then use the pseudo GHP to answer queries to

the GHP with which it is associated. This motivates the (brief) study of the declarative

semantics of pseudo GHPs. The proofs of the theorems on the declarative semantics of

pseudo GHPs are omitted as they are almost identical to the proofs of the corresponding

theorems for GHPs for which the reader may consult the already published [6]. As

usual, we will only consider Herbrand interpretations, and throughout this paper, the

words "interpretation" and "model" will be used to denote Herbrand interpretation

and Herbrand model respectively. We will consider interpretations to be mappings of

the Herbrand Base BG of the (pseudo) GHP G to the set T of truth values.

Definition 4 (Satisfaction) Let I is an interpretation and F a formula. Then IFF

iff I F (V)F. Now, for any closed (i.e. containing no freely occurring variable symbols)

formula F:

1. I l= (V)F iff I l= F' for every ground insta,nce P' of F

2. I l= (:3)F iff I l= pI for some ground instance F' of F

3. I F PI & F2 iff I F F I and I F F2

4. I l= F I V F2 iff I l= F l or I F F2

5. I l= PI ~ F2 iff I l= F1 or I ~ F2

6. I F F I ¢:} F2 iff I F PI '¢= F2 and I F F2 ¢= F I

7. I FA: fL iff fl =S I(A) where A is a ground atom

In cases (4)-(7) above, F I &F2 , F I V F 2 , F 1 {::: F2 and PI ¢:} F2 are all assumed to be

closed formulas, i.e. they contain no free occurrences of any variable.

The above definition of satisfaction tells us what the models of any pseudo GHP

G are. We now define an operator TG from Herbrand interpretations to Herbrand

interpretations as follows:

Defillition 5 Let I be any interpretation, G any pseudo GRP, and A E B G . Then

TG(I)(A) = U{fl I A : fL ¢= B 1 : fLl& ... &Bn : J-ln is a ground instance of a pseudo

gh-clause in G and I l= B1 : fLl& ... &Bn : fLn}.
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The ordering :5 on truthvalues is extended, in a pointwise fashion, to interpreta­

tions, i.e. II :5 12 iff for all A E BG , I1(A) j 12(A).

Tlleorem 1 For any pseudo GHP G, TG is continuous.

Tlleorem 2 I is a model of the pseudo GHP G iff TG (I) ~ I.

o

o

The proofs of the above theorems are very similar in spirit to the proofs of the

corresponding theorems for GHPs. The interested reader may consult [6] for the proofs.

Definition 6 The transfinite upward and downward iterations of TG are defined as:

TG T0 = ~

Ta Ta = TG(Ta T(0; - 1))

TG TA = U 71 <,\TG i 1]

TG 10 = \7

Ta 1a = TG(TG 1 (a - 1))

TG 1 A = n l1<,\TG 1 'Tf

where ~ and \7 are the interpretations that assign ...L and T respectively to all A E Ba,

Q is a successor ordinal, and A is a limit ordinal.

We use the symbol r- to denote logical consequence, i.e. if G is a pseudo GHP and

F a formula, then G r- F iff for every model M of G, it is the case that M F F. The

next theorem follows from the previous two theorems.

Tlleorem 3 Suppose G is a pseudo GHP. Then Ta i w = lfp(TG ) where lfp(Ta)

denotes the least fixed point of Ta. Moreover, for all A E Ba and all fl E T, G r- A : J1

iff Ta i w(A) ~ /1. 0

The proofs of the above theorems are very similar in spirit to the proofs of the

corresponding theorems for GHPs. The interested reader may consult [6] for the proofs.

Defillitioll 7 Suppose G is a pseudoGHP, and I a is a model of G. I is said to be

weakly supported iff for all A E B G such that I(A) = J1 =I ..l, one of the following

conditions holds:

1. There is a pseudo gh-clause in G having a ground instance of the form A : Ji {=

B 1 : /11& .. · &Bn : J.ln such that I F B1 : 111 & .. · &Bn : {In. (This case may

occur if JL is any of T, t,f.

2. (This case may occur only if J-L = T.) There are two pseudo gh-clauses in G

having ground instances of the form

A : t -<= B1 : Jll& ... & Bn : J.ln

A : f {::: D 1 : Pl& .. · & D m : Pm

suell that I F B 1 : J.lI& .. · &Bn : j.ln and I F D 1 : PI & · · · & Dm : Pm.
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Theorem 4 I is a weakly supported model of the pseudo GHP G iff TG(I) = I. 0

The following definition apI)lies only to non pseudo GHPs.

Definition 8 Suppose I is a model of the GHP G. Then I is said to be strongly

supported iff for all A E B a , I(A) = J.l =I ..1 implies that there is a gh-clause in G

having a ground instance of the form

Definition 9 An interpretation I is said to be consistent2 iff for all A E B G , I(A) # T.

Tlleorem 5 Suppose G is a GHP. Then I is a strongly supported model of G iff I is

a consistent fixed-point of Ta. 0

As every GHP is, by definition, also a pseudo GHP, theorem 4 applies to GHPs,

and hence yields a model-theoretic characterization of the fixed-points of Ta is ob­

taineda Strongly supported models were first discussed by Apt, Blair and Walker [3] a

It has been argued, in the context of classical logic programming, by Apt and Blair [2]

that supported ll10dels are important because they yield explanations, based on tIle

program, for why certain atoms are truea

3 Closed Pseudo GHPs

One of the crucial properties of classical logic programming is that if A is true in the

least model M p of a logic program P, then there is a clause in P having a ground

instance of the form A '¢= B 1&. aa&Bn such that {B1 ,. aa, B n } ~ Alp, iae. M p F
B 1 &.. · & B n . Unfortunately, the analog of this, in the setting of GHPs is not truea

Exan1ple 1 The truth value assigned p in the least model of the following GHP G

is T, but there is no (pseudo) gh-clause in P having a ground instance of the form

p : T -¢::: B 1& a •• &Bn such that Ifp(Tc ) F B 1& . .. &Bna

p : t -¢:::

p:f~

Closed GHPs below have the property that the class of weakly supported models

coincides ¥lith the class of strongly supported models.

2Such interpretations were originally called nice interpretations in [6]. We now feel consistent is

more appropriate.
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Definition 10 A (pseudo) GHP is closed iff for every pair C 1 , C 2 (we assume that 0 1

and C2 are standardized apart, i.e. the variables are renamed so that 0 1 , O2 share no

common variables) of (pseudo) gh-clauses in P of the form

Al : J-l1 '¢= B{ : pI & & B~ : p~ (1)

A2
: J.l2 ¢:: B;: 'l/Ji& &B~: t/;:n (2)

such that A I
, A2 are unifiable via mgu () it is the case that

(AI: U{J-l 1 ,J-l 2
} '¢= B ~ : p~ & ... & B~ : p~ &B; : 'l/Ji & ... & B~ : 'l/J?n)B (3)

is a (possibly pseudo) gh-clause of G. The closure of a (psuedo) GHP G, denoted

CL(G), is the closed (possibly pseudo) GHP obtained by repeatedly adding to Gall

clauses C obtained from gh-clauses C1 , C2 whose heads are unifiable.

As we will see below, the (possibly, pseudo) gh-clause (3) above is a logical conse­

quence of gh-clauses (1) and (2). Closing a program G adds certain logical consequences

of G as explicit gh-clauses.

Example 2 Consider the GHP G of the preceding example. Then

CL(G) = G u {p: T ¢=}

Note that even though G is a GHP, CL(G) is a pseudo GHP.

Lemma 1 Suppose G is a (possibly pseudo) GHP, I a weakly supported model of G

and A E BG is such that I(A) = JL #1... Then there is a pseudo gh-clause in C L(G)
having a ground instance of the form

A : /-L {=: B 1 : PI &· .. & Bn : J.ln

such that I F B I : III & . · · & B n : J-ln

Proof. Suppose I(A) = Il =1= 1-, where I is weakly supported. Either condition (1) or

condition (2) in the definition of weakly supported models must hold with respect to

(w.r.t.) A. If condition 1 holds, then the lemma is trivially true; so assume condition

2 holds. Then I(A) = T and there exist pseudo gh-clauses 0 1 , O2 that are variant (cf.

Lloyd[28, p.19]) of gh-clauses in G (standardized apart) where

AI: t ¢= E1 : J-ll& ... &Ek : Ilk

A" : f '¢= D 1 : 'l/Jl& · · ·&Dm : 'l/Jm

such that for some ground instances CIa! and C2 G'2 of C1 , O2 respectively, (where t7i

affects all and only the variable symbols of Ci ), such that I F (E1 : J-ll& · · · &Ek : J-lk)al

and I F (D1 : ¢1& ... &Dm : 'l/Jm)a2. Thus, AI and A" are unifiable (as they have a

common instance A). Let () be the mgu of AI and A". Then the clause C given by

7



is a pseudo gh-clause in CL(G). Since A is a common ground instance of A' and A",

and C1 and C2 may without loss of generality be presumed to be standardized apart,

there is a ground instance of C with head A : T whose body is satisfied by I. 0

Tlleorem 6 1. I is a model of the pseudo GHP G iff I is a model of CL(G), i.e.

G and CL(G) are logically equivalent.

2. Moreover, Ta = TCL(G).

Proof. (1) As CL(G) 2 G, every model of CL(G) is a model of G. To show that

every model of G is a model of CL(G), it suffices to show that if I is a model of G,

then I is a model of CL(G) - G. Suppose

A : Jl. -¢= B 1 : Pl& ... &Bk : Pk&D1 : 'l/JI& ... &Dm : 1/;m

is a ground instance of a pseudo gh-clause in CL(G) - G and I F= B 1 : PI & · · . &Bk :

Pk&D 1 : 1/;1& · · · &Dm : 7/;m. The above pseudo gh-clause must have been derived from

two pseudo gh-clauses in G having ground instance of the form

A: J.l2 -¢= D 1 : 1/Jl&· .. &Dm : 'l/Ym

\vllere I-" = U{1-"1,1-"2}. As I is a model of G, and as I satisfies the body of each of

the above two ground pseudo gh-clauses, it must be the case that I F= A : J.lI a.nd

I F= A : j.l2, i.e. I(A) ~ J.ll and I(A) t Jl2, i.e. I(A) ~ U{/lI, 1l2} = J.l. This completes

the proof.

(2) Since G ~ CL(G), it is immediately apparent that Ta :5 TCL(G). Suppose I is

an interpretation and A E Ba is such that TCL(G)(I)(A) = 1-". \Ve need to show that

Ta(I)(A) t Ji.

Gase 1. If J1 = ..L, then TCL(G)(I)(A) ~ TG(I)(A) trivially.

Case 2. If J.l E {t, f}, then there is a pseudo gh-clause in CL(G) which is in G such

that

A: J-l {= B 1 : J.ll&' .. &Bk : J-lk&

and I F= B1 : J.ll& · · . &Bk : Ilk·

Case 3. I-" = T. Then there is a pseudo gh-clause in CL(G) such that

and I F= B 1 : J.ll&·. · &Bk : J-lk&D 1 : PI& ... &Dm : pm. Then there are tvvo pseudo

gh-clauses in G having ground instances of the form

A: t -¢= B 1 : Jil& &Bk : Ilk

A: f -{= D1 : PI& &Dm : pm

8



It follo\vs that TG(I)(A) ~ U{t,f}, i4e4 TG(I)(A) = T.

This completes the proof. o

The above theorem establishes that a pseudo GHP and its closure have the same

declarative meaning, and moreover that they are equivalent in a computational sense

as Ta = TCL(G). The requirement, in the definition of closure of pseudo GHPs, that

tIle pseudo gh-clauses Cl , C2 be standardized apart is necessary for Lemma 1 to hold,

as is evident from the following example.

Example 3 Consider the GHP G below:

p : t ¢:: q(X) : t

p : f {=: r(X) : t

q(a) : t ¢=

r(b):t{=

Now, TG i w(p) = T. If we construct the closure of G without standardizing apart the

first 2 gh-clauses above, then C L(G) would be:

G U {p: T ¢= q(X) & r(X)}

Note that TCL(G) rw(p) = T, but there is no clause in CL(G) of the form

p : T -{=: B l : III & · · ·& Bn : JLn

such that the weakly supported model TCL(G) i w F= B 1 : J11 &. · . & En : ;.Ln. The only

pseudo gh-clause in CL(G) having p : T as the head is the pseudo gh-clause added to

G above, but TCL(G) i w does not satisfy any of the two instances of the body obtained

by instantiating X to a, b respectively. This example shows that pseudo gIl-clauses

must be standardized apart for Lemma 1 to hold.

4 Query Processing Procedure

Defillition 11 A query Q is an existentially closed conjunction of annotated atoms.

In logic programming, the notion of query is usually restricted to that of existential

queries4 We do not claim that this is the only kind of question one may wish to

ask of a database. We observe that given a formula of the form (\:Ix)F where the

variable symbol x has a free occurrence in F, the problem: "Is (Vx)F true in all

Herbrand models of P?" is a rrg-complete problem. There is a strong feeling, both

in logic programming, and to some extent in AI also, (cf4 Shoham [37]), that all tIle

individuals that affect our domain of discourse are known to exist. This appears to

justify the consideration of Herbrand models. As solutions to rrg-complete problems
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are not effectively implementable on a computer, we do not address such queries. As

far as our semantics is concerned, given a ground implication:

where each Ai : Pi is an annotated atom, we can answer such a query (w.r.t. GHP G)
by simply checking, using our SLDgh-procedure described below, whether Ao : fLo is a

logical consequence of the expanded GHP

In order to consider disjunctive queries, we need to use two Inechanisms that are

known to be highly expensive, viz. factoring and ancestry resolution. As GHPs are

intended to yield a viable programming language, one needs to make a trade-off between

efficiency and ease and implementation on one hand, and expressive power on the other.

Therefore \ve do not consider disjunctive queries in this paper.

Definition 12 Suppose Q=(3)(A1 : jtl & ... & An : fLn) is a query and C =

is a pseudo gh-clause such that C and Q are standardized apart and such that for some

Ai, 1 ~ i ~ n and A are unifiable via mgu () and p t fLi. Then the SLDgh-resolvent of

Q and C on Ai is the query

Ai : /li is called the annotated literal resolved upon.

Exanlple 4 Consider the query Q (3X, 17 )(p(X) : t &q(X, 17
) : f), and the GHP G

below:

(C1) p(a) : t -¢= r(Z) : t

(02) q(a, b) : f <=

(C3) q(a, c) : t {=

TIle SLDgh-resolvent of Q and CIon p(X) : t is

(3Y,Z)(r(Z): t&q(a,Y): f)

TIle SLDgh-resolvent of Q and C2 on q(X, Y) : f is

p(a) : t

There is no SLDgh-resolvent of Q and C3 since t 'i f.

We now show, in the next section that SLDgh-resolution with a slight twist, IS

sound and complete for existential queries to GHPs and pseudo GHPs.
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5 Soundness and Completeness Issues

The main aim of this section is to prove the soundness and completeness of an SLDgh­

resolution based strategy for processing queries to GHPs.

Definition 13 An SLDgh-deduction from the initial query Ql - Al : PI & · · · &An : J-ln

and the GHP (not pseudo GHP !) G is a sequence

where

1. each Ci is a pseudo gh-clause from CL(G) whose variable symbols are renamed so

that Ci contains no variable symbols in common with any Cj, j < i and Q j, j ~ i

2. Qi+l is the SLDgh-resolvent of Qi and Ci and ()i is the mgu used in the SLDgh­

resolution

Definition 14 An SLDgh-refutation of the initial query Ql is a finite sequence

such that the SLDgh-resolvent of Qr and Cr is the empty query.

It is important to note that the (pseudo) gh-clauses used in an SLDgh-deduction

of a query Ql from a GHP G come from the closure of G but not necessarily from G

itself. (This is the "twist" alluded to earlier on in the paper.)

Tlleorem 7 (Soundness) If there exists an SLDgh-refutation of the initial query Ql:

from tIle GHP G ~ then

Proof. Suppose tllere exists an SLDgh-refutation of the initial query Q1 from G of

the following form:

(Q1' C1, 01),.", (Qn, en, On)

We will show by induction on n that TQ i w F Q1.

Base Case: [n == 1] Then the gh-resolvent of Q1 and 0 1 is tIle empty query,i.e. Q1 is a

unit conjunction (i.e. Al : PI) and C1 is a unit pseudo gh-clause,i.e. 0 1 is of the form

A' : f3 -¢:::

11



where (3 t Pt and A 181 = A 181 . As TG i w is a model of the GHP G and hence of

CL(G), it must be a model of Cl , and so it must be true that for every ground instance

A2 of AI, Ta i w(A 2 ) t (3. In particular, for every A3 that is a ground instance of

AIBl , Ta i w(A3) t (3 t PI, hence Ta i w F Q1.

Induction Case: Suppose

is an SLDgh-refutation of Q 1 ~ Then

is an SLDgh-refutation of Q 2 ~ Therefore, by the induction hypothesis, Ta i w F Ql.

But Q2 is the gh-resolvent of Ql and C1. So Q2 has the form:

where C1 is the pseudo gh-clause

such that H81 = A i81 and 8 t Pi (by definition of gh-resolution). Because Ta i w F Q2

it follows that

Ta i W F (E1 : 'l/;l& ~ · · &Er : V;r )()1

(as this is a sub-conjunct of Q2). As TG i w is a model of G and hence of CL(G),

it must satisfy every pseudo gh-clause of CL(G) (and every renamed version of any

pseudo gh-clause in CL(G)). In particular, TG Tw must satisfy CIB t . TG Tw satisfies

the body of C1(}1, so it must satisfy HOt: 8. But H()t == A i 81 ; so Tc Tw F A i B1 : 8.

Therefore, since 8 t Pi, TG i W F Ai(JI : Pi. Thus,

o

Definition 15 An unrestricted SLDgh-refutation of the query Q1 from the pseudo

GHP G is an SLDgh-refutation of Q1 from G except that the requirement that the (}i'S

be most general unifiers is dropped - the Bi's need only be unifiers.

Lemn'la 2 (Mgu Lemma) Let G be a GHP and Q1 a query. Suppose Q1 has an

unrestricted SLDgh-refutation from G ~ Then Q1 has an SLDgh-refutation from G of

the same lengtll. If (}1' ... ,()n are the substitutions from the unrestricted refutation, and

( ) ~ , ~ .. , ( ) ~ are the substitutions from the SLDgh-refutation, then there is a substitution

, such that (}t . · ~ (}n = e~··· (J~ ,.

Proof. By induction on tIle length of the unrestricted refutation.

12
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Lemma 3 (Lifting Lemma) Suppose G is a GHP, Q1 a query and 0 a substitution.

Suppose there is an SLDgh-refutation of Q1(). Then there is an SLDgh-refutation of

Q1 from G of the same length. Moreover, if ()1' ... ,()n are the mgu's from the SLDgh­

refutation of Ql() and ( } ~ , ... , ()~ are the mgu's from the SLDgh-refutation of Ql, then

there is a substitution I such that OBI · .. {)n = (}~ ... ( } ~ /. 0

Tlleorem 8 (Completeness) Suppose G is any GHP. Then if Q1 - (::J)(A1 : P1& ... &

Am : Pm) is a query that is satisfied by Ta i w, then there is an SLDgh-refutation of

Q1 from G.

Proof. If Ta i w 1== (~)(A1 : Pl& .. . &Am : Pm), then Ta i w F= (AI: Pl& ... &Am :

Pm)8 where () is a substitution that makes Ql() = (AI : PI&··. &Am : Pm) ground.

Thus, there is an integer n such that Ta i n F= (AI: PI&. · ·&Am : Pm)(). The proof

proceeds by induction on n.

Base Case. (n == 1) Then for each AiO : Pi there is a unit gh-clause in CL(G) having

a ground instance Ci such that Ci - AiO : Jl~ (where J l ~ t Pi). CL(G). Figure 2 then

shows an unrestricted SLDgh-refutation path for the query Ql(}. By the I\1gu Lemma,

there then exists an SLDgh-refutation of Ql() from G. By the Lifting Lemma, there is

an SLDgh-refutation of Q1 from G.

Inductive Case. (n + 1) Suppose Ta i (n + 1) F= Q10. Then, for each A i () : Pi, either

1. TG i n F= AiB : Pi in which case, by the inductive hypothesis, there is an SLDgh­

refutation of AiB : Pi from G, or

2. Case (1) does not occur, in which case, there is a gh-clause in CL(G) having a

ground instance of the form

AiB: /-l <= B1 : 'l/J1 &... & B k : 'l/Jk

such that jj t Pi and Ta i n F= B 1 : 1/;1 &... & Bk : 'lfJk. By the induction

hypothesis, the ground query B 1 : ¢l & ... & B k : 'l/Jk has an SLDgh-refutation

?R from G; hence the following diagram (Fig. 3) shows an unrestricted SLDgh­

refutation of AiO : Pi from G. By the Mgu Lemma, there is an SLDgh-refutation

of AiO : Pi from G.

Thus, for each 1 S i ~ m, there is an SLDgh-refutation (from G) ~i of AiB : Pi. These

can be combined into an SLDgh-refutation of Q1B from G (see Fig. 4). By the Lifting

Lemma, it follows that there exists an SLDgh-refutation of Q1 from G. 0

6 Applications of GHPs

In this section, we present two examples that demonstrate the application of GHPs

to the development of very large knowledge bases4 The first develops a small expert

system for real estate investment, while the second is a "murder mystery" .

13



Example 5 (Land Investment) The following gh-clauses define a simple GHP for

real estate investment.

buy(X) : t '¢= tourist_resort(X) : t

buy(X) : t '¢= has_oil(X) : t

buy(X) : f -¢= possible_problem(X) : t

possible_problem(X) : t -¢= near_nuclear_plant(X) : t

possible_problem(X) : t ¢ disputed-land(X) : t

tourist_resort(waikiki) : t ¢::

has_oil(el_haciendos) : t ¢

near_nuclear_plant(el_haciendos) : t ¢::

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The first two gh-clauses say that it is worth buying X if X either is a tourist resort,

or has oiL The third gh-clause advocates caution - "don't buy land at a place where

problems may crop up" . gh-clauses (4) and (5) describe two possible problems, viz.

being near a nuclear plant, and being disputed land. The last three clauses tell us that

waikiki is a tourist resort, and that el_haciendos has oil, but is near a nuclear plant.

This GHP contains illconsistent information because, gh-clauses (2) and (7) yield

buy(el-haciendos) : t, while (3),(4),(8) yield buy(el_haciendos) : f. Nonetheless, not

every sentence is derivable from this GHP, e.g. buy(waikiki) : f is not a logical conse­

quence of this GHP, i.e. TG Tw ~ buy(waikiki) : f. The purpose of this example is to

illustrate two facts:

1. Inconsistencies can easily arise while building expert systems. Each of the rules

contained in this GHP could arise, quite legitimately, while designing an expert

system for land acquisition.

2. The framework of this paper is such that inconsistent information about A does

not affect B, unless B is defined in terms of A. Thus, our framework, in some

sense, localizes the i n c o n s i s t e n c ~ y , and permits us to continue reasoning safely

\vith B despite the inconsistent information about A being present.

Example 6 (Murder Mystery) This is a simple GHP for identifying suspects in

a murder mystery. As anyone who has read murder mysteries knows, inconsistencies

abound as people lie to protect themselves, and all that is kno\vn is a tangled web of

lies. TIle scenario here is that Al was killed in his room at 10:30 AM. John, Ann, and

Bill made the following statements:

1. John admits to being at AI's room until 10:00 AM. He has no alibi for 10:30 Alv1.

2. Ann claims to have been at home with Bill from 9 AM to 11 AM.

14



3. Bill was with Ann

The physical evidence at the murder site (AI's room) was that:

1. Al was stabbed

2. two sets of fingerprints were found on the murder weapon; John's, with Ann's

superimposed on his ..

3. The neighbours were asleep and didn't see anything

The information here could be summed up as follows:

alibi(X) : T

opportunity(X) : t & motive(X) : t

at(al.:room, Y, Tl) : t &
superimposed_fingerprint(X, Y) : t &

T> Tl

at(ann_house, ann, T) : t ~ 9 < T < 11

at(ann_house,biil,T): t {:= 9 < T < 11

alibi(X) : T {::: lying(X) : t

superimposed_fingerprint(ann,john) : t <=
lying(X) : t {= at(Placel, X, T) : t &

at(Place2, X, T) : t

Placel =1= Place2

suspect(X) : t

suspect(X) : t

motive(ann) : t

motive(john) : t

opportunity(john) : t

at(al_room, john, 10) : t

at(ai_room, X, T) : t

In addition, we assume that clauses defining the < relation are available. The

above program can be used to identify t\VO suspects. John is a suspect because he

had both the motive, and the opportunity (no alibi for 10:30 AM). Ann becomes a

suspect because she is lying (as her fingerprints were superimposed on those of John,

who admitted being in the room at 10:00 A ~ v 1 ; hence Ann must have been in AI's room

some time after 10:00 AM). Note that as in the case of classical logic programming

[28], the ordering of gh-clauses and the arrangement of literal in the body of a clause

make no difference as far as the model theoretic semantics, fixed point semantics and

existence of refutations are concerned.

The purpose of the above example is to show that our model theory" is robust

enough to allow reasoning in the face of inconsistency (in classical logic) .. Note that

the above GHP possesses models (in the non-classical logic). Of course, a great deal
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of work remains to be done in developing a formal methodology for the construction

of very large logic programs (which may possibly contain erroneous information). The

actual design of such programs is a different issue from that of reasoning about such

programs.

It has been suggested that the Murder mjlstery program can be written in Prolog

itself. This scheme, to our mind is philosophically ill-founded. We have heard of no

system of (first-order) logic in which the truth values can be treated as first-class ob­

jects. Any such attempt must fall within the realm of metalogic - and the semantics

of metalogic programming is not at all well-understood (cf. [20], [39]). Moreover, con­

verting GHPs by adding truth values as arguments to predicate symbols, is essentially

a translational mechanism like those of Morgan [32]. When such translational mecha­

nisms are proposed, formal theoretical relationships between the initial formalism and

its translation need to be carefully studied.

7 Conclusions

Mechanical reasoning in inconsistent formal systems is of vital importance in expert

systems design. This, of course, has been known for some time to both computer

scientists (cf. Perlis[36]) and logicians (notably Newton cia Costa [9,10,11,12] and

Michael Dunn [13]).

To our knowledge, the first attempt at addressing the problem of inconsistencies

in logic programming theory, was that of Fitting [14]; a concurrent effort \vas due to

Blair and Subrahmanian[6,7], as well Subrahmanian [1,38]. Before proceeding to say

any further ~ we emphasize, as we have done in the previous paragraph, that we are not

the first to study the problem of mechanical reasoning in inconsistent formal systems.

This has been done by many individuals in different settings - e.g. Girard [19] and

AvrOll [4] study a s~ystem of relevance logic called linear logic that addresses issues in

concurrent programming. Likewise Patel-Schneider [34,35] addresses the tautological

entailment issue in the context of four-valued terminological logics. The inheritance

net community [45,44] has also studied a relevant-like semantics for inheritance nets.

But it is only recently that a declarative semantics has been proposed for inheritance

nets by I(ifer and llis co-workers [23,24]. Both these works use the setting of annotated

programs introduced in [1,38,6]. Martins and Shapiro [29] develop a theory of non­

monotonic belief revisions based on relevance logic. Their system lacks a simple model

theory. Their implementation, however, is impressive. In logic programming, we are

also concerned with designing a viable programming language, i.e. one that can be

easily implemented. (Note that an extension of the results presented here has been

implemented in an experimental system called QUANTLOG, cf. Subrahmanian and

Umrigar [39]. The truth values of QUANTLOG consist of the reals in the unit interval

[0, 1] together with an additional value T. Tllese truth values are ordered as sho\vn

in Figure 1 below. The special case of tIle QUANTLOG system obtained by allo\ving

annotations to consist only of 0.5, 0, 1, T yields the same logic as the four-valued logic
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\ /
0.5

Figure 1: Lattice of Truth Values in QUANTLOG

we use in this paper.)

A declarative semantics for GHPs was originally presented in [ 6 ] ~ Two proof pro­

cedures were presented in [6].

1~ The first proof procedure was based on an AND /0R tree searching technique,

and was proven to be sound for ground queries to a class of GHPs called well­

coveretF ~

2~ The second proof procedure was an SLD-resolution like technique \vhich was

proven to be sound for all existential queries, but completeness was proved only

for ground queries to well-behaved4 GHPs.

Thus, there \\las scope for strengthening the completeness results obtained in [ 6 ] ~

IN fact, this problem is cited as an open problem at the end of [6]. In tllis paper, vve

have developed a procedure called SLDgh-resolution that is sound and complete for

processing existential queries to arbitrary GHPs. Thus, none of the restrictions (viz.

ground queries, well-coveredness, well-behavedness) are needed in our soundness and

complete11ess results. This is the strongest possible completeness result one can obtain

for the fragment of annotated logics that we are concerned with.

The framework described in this paper does not allow clauses to have disjunctive

heads. Thus, for instance, if we wish to say that "Clyde is either a frog or a squir­

rel, but I am not sure which", we find that we cannot express this as a GHP. In

3 A (psuedo) gh-clause is well-covered iff there are no variables in the body of the (pseudo) gh-clause

that do not occur in the head of that (pseudo) gh-clause. A (pseudo) GHP is well-covered iff each

(pseudo) gh-clause in it is well-covered.

4 A GHP G is well-behaved iff whenever Al : PI and A2 : /12 are the heads of any two gh-clauses in

G such that AI, A 2 are unifiable, it is the case that /11 == J12.
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logic programming too, disjunctions are not allowed to appear in the heads of clauses.

(Note that the clause p +- -'q in logic programming is not operationally equivalent

to (p V q).) This is because resolution systems that are non-I-Iorn require tVJO ex­

pensive tests - factoring and ancestry resolution, for completeness. One of the aims

of logic programming is to provide a viable (easily, and reasonably efficiently imple­

mentable) programming language. One of the trade-offs that have traditionally been

made in programming language development (not just in Prolog) has been to trade-off

expressive power against efficiency gains. In the framework described in this paper,

we have avoided ancestry resolution and factoring in order to gain expressive power.

This is why disjunctions are not allowed to appear in the head of a clause in GHPs.

In addition, many fixed-pointS results collapse for disjunctive programs. A fixed-point

semantics and a proof theory for GHP extended by allowing disjunctions to appear

in clause heads is described in a recent work of Subrahmanian [41]. Unfortunately, in

this extended framework, the relationship between models (resp. supported models)

of a GHP G and the pre-fixed-points (resp. fixed-points) of the Ta operator collapses.

Moreover, ancestry resolution and factoring are required, thus making query process­

ing more inefficient. As a side remark, we emphasize that pure definite clause logic

programs (not GHPs) are computationally expressive enough in the sense that all the

r.e. sets are computable as the success set (cf. Lloyd [28] for a formal definition of suc­

cess set) of a Ibgic program. Thus for computational purposes, Horn clauses seem fine.

(Non-r.e. sets cannot be computed anyway). Thus, there is an additional trade-off to

be made between computational power and expressive power.

7.1 Discussion

The development of a fixed-point semantics for pure logic programs was one of the

central early developments in classical logic programming. These results are clearly and

elegantly described in Lloyd's book [28]. What then, are we to expect of non-classical

logic programs? What semantical properties should these programs have? Is it

reasonable to expect that the models (over a fixed pre-structure, say) be characterizable

in terms of the pre-fixed-points (or fixed-points) of a monotone operator that maps

structures to structures ?

We have no definite answer to the last two questions. OUf inclination, for purely

aesthetic reasons, is to say yes. OUf own research has been, thus far, carried out with

this goal in mind. After all, talking of pre-fixed-points make sense only when the space

of structures is partially ordered. What if no such natural partial ordering exists ?

The other issue surrounding non-classical logics is that of proof tlleory. Do complete

proof procedures exist ? In several cases (e.g. various systems of modal and temporal

logic), the answer is negative. If a program in logic L is a finite set of sentences having

5Fixed-point semantics for programming languages have been studied extensively by Scott et al

[18]. In logic, the best known work linking fixed-point theory and logical consequence is due to Tarski

[42]. Studies of the fixed-point theory associated with relevance and certain kinds of four valued logic

has been conducted by Woodruff[30).
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a certain syntactic form, then an effort must be made to ensure that the set of queries

that are logical consequences of such programs is recursively enumerable. Only then is

the notion of program in logic L a computationally useful one.
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