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Abstract: We reformulate the concept of connection on a Hopf—Galois exteBsiorP

in order to apply it in computing the Chern—Connes pairing between the cyclic coho-
mology HC?'(B) andKo(B). This reformulation allows us to show that a Hopf-Galois
extension admitting a strong connection is projective and left faithfully flat. It also enables
us to conclude that a strong connection is a Cuntz—Quillen-type bimodule connection.
To exemplify the theory, we construct a strong connection (super Dirac monopole) to
find out the Chern—Connes pairing for the super line bundles associated to a super Hopf
fibration.

Introduction

A noncommutative-geometric concept of principal bundles and characteristic classes is
given by the Hopf-Galois theory of algebra extensions and the pairing between cyclic
cohomology and -theory, respectively. In the spirit of the Serre-Swan theorem, the
guantum vector bundles are given as finitely generated projective modules associated to
an H-Galois extension via a corepresentation of Hopf algébrahe K-class of such

a module can then be paired with the cohomology class of a cyclic cocycle to produce an
invariant playing the role of an integrated characteristic class of a vector bundle. To obtain
these invariants, we provide a theory of connections on Hopf—Galois extensions which
can be used in calculating projector matrices of associated quantum vector bundles. A
main point of this paper is that strong connections onHafbsalois extensiorB C P

are equivalent to lefB-linear right H-colinear unital splittings of the multiplication
mapB ® P — P. Since connections can be considered as appropriate liftings of the
translation map (restricted inverse of the canonical Galois map), knowing a connection
yields automatically aaexplicit expression for the translation map. Vice-versapqahicit
formula for the translation map might immediately indicate a formula for connection.
(This is important from the practical point of view.) If a connection is strong, then the
simple machinery presented herein helps one to extract the projective module data of
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an associated quantum vector bundle. One can then plug it into the computation of the
pairing. In the classical geometry, characteristic classes of associated vector bundles can
be computed from connections pnincipal bundles. Our approach parallels to some
extent this idea in the quantum-geometric setting.

We work within the general framework of noncommutative geometry, quantum
groups and Galois-type theories. For an introduction to Hopf-Galois extensions we
refer to [M-S93,S-HJ94] and for a comprehensive description of the Chern—Connes
pairing to [C-A94,L-JL97]. The point of view advocated in here was already employed
to compute projector matrices [HM99] and the Chern numbers [H-PMOO] of the quan-
tum Hopf line bundles from the Dirag-monopole connection [BM93]. Thus, although
this work is antedated by [HM99] and [H-PMO0O], it conceptually precedes these pa-
pers, and can be viewed as a follow up of the theory of connections, strong connections
and associated quantum vector bundles developed in [BM93,H-PM96] and [D-M96],
respectively. (See [D-M97a, Sect. 5] and [D-M97c¢, D-Ma] for an alternative theory of
characteristic classes on quantum principal bundles.)

We begin in Sect. 1 by recalling basic facts and definitions. In Sect. 2 we first refor-
mulate the concept of general connections so as to make transparent the characterisation
of a strong connection as an appropriate splitting of the multiplicationb@@P — P,
whereP is anH-Galois extension oB. Then we prove the equivalence of four different
definitions of a strong connection, which is the main claim of this paper, and study its
consequences. As a quick illustration of the theory, we apply itto a strong and non-strong
connection on quantum projective sp&22. We obtain, as a by-product, the definition
of the “tangent bundle” of the Podiegquator quantum sphere. We also show that there
are infinitely many canonical strong connections on the quantum Hopf fibration, and
prove that they all coincide with the Dirac monopole in the classical limit. A super Dirac
monopole is presented in Sect. 3. We adapt to the Hopf—Galois setting the construction
of a super Hopf fibration. Then, employing the super monopole, we compute projector
matrices of the super Hopf line bundles. Taking advantage of the functoriality of the
Chern—Connes pairing, we conclude that the values of the pairing for the super and
classical Hopf line bundles coincide. Hence we infer the non-cleftness of the super Hopf
fibration. We end Sect. 3 by proving that, in analogy with the classical situation, the
direct sum of spin-bundle modules (Dirac spinors) is free of rank two for both the super
and the quantum Hopf fibration. In Appendix, we complement the four descriptions of a
strong connection by providing (appropriately adapted) four equivalent actions of gauge
transformations on connections.

1. Preliminaries

Throughout the paper algebras are assumed to be unital and ovekaTietunadorned

tensor product stands for the tensor product @v€ur approach is algebraic, so that we

use finite sums. We use the Sweedler notatiégn= %) ® 1(2) (Summation understood)

and its derivatives. The lettérande signify the antipode and counit, respectively. The
convolution product of two linear maps from a coalgebra to an algebra is denoted in
the following way: (f * g)(¢) = f(ca))g(cz). We use the word “colinear” with
respect to linear maps that preserve the comodule structure. (Such maps are also called
“covariant.”) We work with right Hopf—Galois extensions and skip writing “right” for
brevity. For anH-Galois extensiorB C P we write the canonical Galois isomorphism

as

X =mQid)o(d®p Agr): PR P — P Q H, (1.1)
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whereAg : P — P® H stands for the comodule-algebra coactiap =: po)® p(1);

again, summation understood), andor the multiplication mapP @ P — P.We say

that a Hopf—Galois extension is cleft iff there exists a (unital) convolution-invertible
colinear map® : H — P, and call® a cleaving map. The concept of cleftness is
close but, as explained in the last paragraph of [DHS99, Sect. 4], not tantamount to the
idea of triviality of a principal bundle. (Trivial is cleft but not vice-versa.) A cleaving
map is usually assumed to be unital, but since any non-ubitan be unitalised (e.qg.,

see [DT86, p. 813] or [HM99, Sect. 1]), this assumption, though technically useful,
is conceptually redundant. It also follows from the defining propertie® dat it is
injective (e.g., see [HM99, Sect. 1]).

Next, note that the canonical map although cannot be an algebra homomorphism
in general, is always determined by its values on generators. The same is tgue for
The left P-linearity of x ~ makes it practical to restrict it from® ® H to H, and define
the translation map

T:H—> PP, th) :=x1A®h = 1 e®gh? (summation understood).

(1.2)

The following are properties af compiled from [S-HJ90b, B-T96]:
(id®pg Agp)ot=(t®Iid) o A, (1.3)
(fipoAR)®pid)oT=(S®1T)0 A, (1.4)
Apgyp o7 = (t ®Iid) o Adg, (1.5)
mot =g, (1.6)
t(hh) = MR @ p h12512), (1.7)

Here Apg,p is the coaction onP ® 5 P obtained via the canonical surjectian :
P ® P — P ®p P from the diagonal coaction

Apgp:p®p > po)® P ® Payr ), (1.8)

and Adg (h) := h(2) ® S(h))hg) is the right adjoint coaction.

To fix convention and clarify some basic issues, let us recall that the universal differ-
ential calculus2! A (grade one of the universal differential algebra) can be defined by
the exact sequence

0—Q4A—A®A— A—0, (1.9)

i.e., asthe kernel of the multiplication map. The differential is givendbyd 1Qa—a®1.
We can identify21A with A ® A/k as leftA-modules via the maps

QA 5 Zai Qal Zai Qma(a) e AQ A/k>x @ma(y) — xdy € Qla,
i i

(1.10)

whererr, : A — A/k is the canonical surjection. Similarly, one can idenfifyA with
A/k ® A asrightA-modules §; a; ® a] — ), ma(a;) ® a;). Consequently, for any
left A-moduleN, we haveQ2'A @4 N = A/k ® N. For any splitting : A/k — A of
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the canonical surjectionr(; oz = id), we have an injection®id : A/kQ N — AQN.
Thus there is an injection
i QAQ4N — AQN,

fl (Zaij ®az{j ®a nj) = Z(l onA)(aij) ®al{jnj_

i,j i,J

(1.11)

On the other hand, we have a natural map coming from tensoring (1.9) on the right with
N:

fn:QA®AN — A®N, fn (Zdi; ® aj; ®a ”j) = aij ® ajn;.
i.j i.j
(1.12)

Sincerrs o1 = id, we have(rs ® id) o fv = (74 ® id) o f,, whence
(Glomp)®id)o fy = (loma) ®id) o f; = f,. (1.13)

It follows now from the injectivity off, that fy is injective. Thus we have shown that
(1.9) yields the exact sequence:

0— QAN — A®N — N — 0. (1.14)

If Bisasubalgebraa?, then we can also writ€2! B) P for the kernel of the multiplica-

tionmapB® P — P.Indeedm((Q21B)P) = 0,and ify", bi®@ p; € Ker(B®P 5P,
then

Y bi®@pi=) bi®pi—1Qbip)=—) (dbi)pi € (@'B)P.  (1L.15)

1

To sum up, we have (cf. [HM99, p. 251])
QB P=Ker(B® P 5 P)=(Q'B)P. (1.16)

The following are the universal-differential-calculus versions of general-calculus def-
initions in [BM93, H-PM96]:

Definition 1.1 (BM93]). Let B C P be an H-Galois extension. Denote by Q1P the
universal differential calculus on P and by Aqg1p the restriction of Apgp to Qlrp. A
left P-module projection IT on Q1P is called a connectioniff

KerTl = P(Q2'B)P (horizontal forms), (1.17)

Agipo =TT Q®id) o Agip (right colinearity). (1.18)

Definition 1.2 (BM93]). Let P, H, B and Q1P be as above. A k-homomorphism o :
H — Q1P suchthat w(1) = Oiscalled a connection formiff it satisfies the following
properties:

1. m®id)o (id® Ag) ow = 1® (id — &) (fundamental vector field condition),
2. Agip ow = (0 ®id) o Adg (right adjoint colinearity).
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For every Hopf—Galois extension there is a one-to-one correspondence between connec-
tions and connection forms (see [BM93, p. 606] or [M-S97, Prop. 2.1]). In particular,
the connectiodI® associated to a connection foemis given by the formula:

”(dp) = poyw(pa))- (1.19)

(SinceIl?® is a left P-module homomaorphism, it suffices to know its values on exact
forms.)

Definition 1.3 ([H-PM96]). Let IT be a connection in the sense of Definition 1.1. It is
called strong iff (id — IT)(d P) € (Q1B) P. We say that a connection form is strong iff
its associated connection is strong.

Let us now have a closer look at the concept of connection. For the sake of brevity
we put

¥=m®id)o(d®Ag): PP — P H, (1.20)

denote byy its restriction ta2! P, and byH * the kernel of the counit map (augmentation
ideal). Sincg(id ® ¢) o ¥) (21 P) = 0, we haveg(Q1P) = P Ht. ConsiderP ® H,
and similarlyP ® H™, as a right comodule via the map

ApgH 1 p ®h+—> po) ® he) ® pa)Sthay)hm). (1.21)

Then there is a one-to-one correspondence between connections atihefar right
H-colinear splittings ofy [BM93, p. 606]. Sinced = H' @ k, we can define

o(p®h) forhe H'

1.22
pQRhlp forh ek, ( )

o(p®h) = {
whereo is a splitting ofy. On the other hand, we can consider unital leflinear right
H-colinear splittings of the canonical surjectiomg : P® P — P ®p P. Thisleadsto
the following commutative diagram of exact rows of IBftmodules right-comodules
(see above for the comodule structures): 7

—_
00— PEOBP— QP «—— PIHT — 0

Ly

e
0— P(QB)P — PRP «—— PRH — 0 (1.23)
o
| L
B

—_—
0—> PQBP — PP «— PR P — 0.
r

One can check thag intertwines the relevant comodule structures
(Apgr o X)(p ® p)) = Apgn(ppig) ® Pl1)
= POPo) ® P(3) ® P11 P(1)S(P(2) Play
= PO P ® Py ® POP(2) (1.24)
=X ®id)(p© ® po ® PPy
= ((X®id) o Apgp) (p ® p).
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Other calculations to verify that this diagram is a commutative diagram of Aght
comodules are of the same kind. To see that#er= P(Q1B)P one can argue as
above (1.16).

Yet another description of a connection as a splitting is as follows. Dengi@'p)
by Q}QP (relative differential forms as in [CQ95, Sect. 2]). The commutativity of the
diagram (1.23) implies that the restriction of the canonical rj@am}gP — PQHT
is an isomorphism. Laeb be a connection form and its restriction toH *. Similarly,
let T be the restriction tdd ™ of the translation map. Recall thatis the left P-module
extension ofo [BM93, p.606]. Hence the commutativity of (1.23) implies also (for
any®) np o @ = T. Since the translation mapis unital, knowingz is tantamount to
knowingz. Thus a connection form yields arplicit expression for the translation map.
On the other hand, viewing/ ™ as a right comodule under the right adjoint coaction
Adpy allows one to define equivalently a connection aslaear lifting of the restricted
translation mag. Indeed, we can complete the equatityo @ = 7 to the commutative
diagram

7
QP — P®H*

Té \Yt Ti (1.25)

Y —  Qlp

and directly verify this assertion. This explains the close resemblance between the for-
mulas for the translation maps and connection forms. For example, compare (3.5) with
(3.10-3.11) and the proof of [H-PM96, Prop. 2.10] with [H-PM96, 2.14]. Compare also
[DHS99, Cor. 2.3] and [BM93, Prop. 5.3].

A natural next step is to consider associated quantum vector bundles. More precisely,
what we need here is a replacement of the module of sections of an associated vector
bundle. In the classical case such sections can be equivalently described as “functions
of type o" from the total space of a principal bundle to a vector space. We follow
this construction in the quantum case by consideagimodules of colinear maps
Hom, (V, P) associated with af/-Galois extensiorB C P via a corepresentation :

V — V ® H (see [D-M97a, Appendix B] or [D-M96]).

Proposition 2.5 gives a formula for a splitting of the multiplication mag
Hom, (V, P) — Hom,(V, P), and a splitting of the multiplication map is almost the
same as a projector matrix, for it is an embedding of Hovh P) in the freeB-module
B®Hom,(V, P). However, to turn a splitting into a concrete recipe for producing finite
size projector matrices of finitely generated projective modules, we need the following
general lemma:

Lemma 1.4 (HM99]). Let A bean algebraand M a projectiveleft A-module generated
by linearly independent generators g1, ..., g,. Also, let {g,}.cr be a completion of
{g1,...,gn) toalinear basisof M, f> bealeft A-linear splitting of the multiplication
map A ® M — M given by the formula fo(gx) = >/ 1 au ® g + Z#a Ak @ 8
and ¢,; € A a choice of coefficients such that g, = >/ cug. Then Eyy = ay +
Zﬂe, akucy definesa projector matrixof M, i.e., E € M, (A), E?2 = E and A”E (row
times matrix) and M are isomorphic as left A-modules.

For our later purpose, we also need the following general digression (cf. [R-J94,
Lemma 1.2.1]). LetA be an algebra, and I&, F be idempotents i1, (A), M, (A),
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respectively. It can be verified that the projective modul&€ andA” F are isomorphic

if there exist mapg. andL, ;

An‘l An

[ w26

_
A"E «— A"F
such that

ELF=LF, FLE=LE, ELL=E, FLL=F. (1.27)

2. Connections

We begin this section by considering general connections on Hopf—Galois extensions as
appropriate splittings. It is known that, under the assumption of faithful flatness, there
always exists a connection on a Hopf—Galois extension [S-P93, Satz 6.3.5] (cf. [D-M97a,
Theorem 4.1]). (For a comprehensive review of faithful flatness see [B-N72].) Chasing
diagram (1.23) and playing around with appropriate modifications of its rows we obtain:

Proposition 2.1.Let B C P be an H-Galois extension. Denote by C(P) the space of
connection forms on P, by R(P) the space of unital left P-linear right H-colinear
splittings » of the canonical surjectionnp : P® P — P ®p P, and by S(P) the space
of unital left B-linear right H-colinear mapss : P — P ® P satisfying (;mg o s)(p) =
1®p p. Then the formulas

V(@) (p®@s p) = pp' ® L+ pployo(ply). V@) () = (roT)(h —e(h), (2.1)

define mutually inverse bijections C(P) il R(P) % C(P) and, similarly, the formulas

E(r)(p) =r(L®@s p), E(s)(p®pp)=psp). (2.2)

determine mutually inverse bijections R(P) g S(P) Y R(P).

Proof. Let usfirst check tha¥ (C(P)) C R(P). Itis clear that, foranw € C(P), ¥ (w)
is unital and leftP-linear. To see tha¥ (w) is H-colinear, we use (1.19) and (1.18):

(Apgp oW (w) (p ®p p') = Apgr(pp’ ® 1+ T1°(pdp))
= (PO P ® 1+ T°(p©dp(p)) ® payr(
= W (w)(p©) ®5 P(o) ® PP
= (¥(@) ®id) o Apg,p) (p ®5 p).

To verify thatW (w) is a splitting of the canonical surjectiorg, recall that Ketrg =
P(9'B)P and note thatT1®)2 = I1* entails Kel1® = (id — I1¢)(QP). Thus, by
(1.17), we have Kerp = (id — I1¢)(Q'P). Combining this with (1.19) we obtain

(2.3)

(id—npoW(w) (pRpp)=np(p®p —pp' ®1—M"(pdp")

= (713 o (id — I'I’”)) (pdp") =0. (24)
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The next step is to check th&t(R(P)) C C(P). To see thal (r) (H) C QP forany
r € R(P), we take advantage of property (1.6) of the translation mamnd compute:

(m ° xif(r)) (h) = (momngorort)(h—eh)
=(mot)(h—e¢eh) =¢eth—e(h)) =0.

(2.5)

(Here we abuse the notation and denote alsa ltije multiplication map orP ® 5 P.)
It is immediate that¥(r)(1) = 0. Furthermore, using the colinearity ofand (1.6),
we verify the colinearity ofs (r): Agip o W (r)(h) = (w ® id) o Adg. To check the
fundamental-vector-field condition

(Xorot)(h—e(h) =1Q (h—e(h)) (2.6)

we note that it is equivalent to the equalify o r o x ~1) = id, which follows from the
commutativity of (1.23).

It remains to show tha¥ o W = id andW¥ o ¥ = id. To this end, taking advantage
of the unitality of ¥ (w), (1.3) and (1.6), we compute:

(@ ow)@)) () = (W) o) (h — £(h)
=V()HM @ ) —e(h) @1
=e() @1+ hhA g wn? ) —e(h) @ 1
= hayMhaPohe)
=e(h)wlhe) = wh).

Similarly, taking advantage of the unitality and Iéftlinearity of r, we compute

2.7)

(W) (p&s p) = pp' @1+ prlo (¥0)) (Pla)

= pp' ® 14 ppig)(r o T)(piyy — &(p(g)))
, , 2.8)
=pp ®1+r (PPQO)T(PED)) — pPye(p1y) ® 1

=r (x_l(x(p ®B p’))) =r(p®pp).

Finally, the proof concernin@ and & is straightforward. o

Corollary 2.2. An H-Galoisextension B € P admitsa connection, if there existsa (not
necessarily unital) left B-linear right H-colinear map s : P — P ® P satisfying
(mpos)(p) =1®sp p.

Proof. Denote byS(P) the space of all mapsdefined in the corollary. To construct a
“unitalising” map7 : S(P) — S(P), we need to upgrade the constant correction term
1®1—75(1) to aleft B-linear rightH -colinear function opp whose image is in the kernel

of the multiplication map. A very simple way to do so is to replace ip¥® 1 —5(1)).
Now, we can define

TG)(p) =5(p) + pA®1—-5(1)). (2.9)

It is straightforward to check thgt(S(P)) € S(P), as needed. O
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When we think of a connection as an elemerd S(P), then the strongness con-
dition (see Definition 1.3) can be put asP) € B ® P. (Shift the second term on
the right hand side to the left hand side in [M-S97, (11)].) Describing strong connec-
tions as strong elements &(P) is the main point of the theorem below. The second
description is in terms of a covariant differential, and was hinted at in [H-PM96, Re-
mark 4.3]. The third one coincides with the definition of a strong connection except that
we change the inclusion conditigit — IT)(dP) € (Q21B) P to the equivalent equality
condition (id — IT)(BdP) = (21B)P. The last description is precisely the definition
of a strong connection form. Proving the equivalence of a strong connection to an ap-
propriate splitting of the multiplication map ® P — P enables us to derive several
desirable consequences. We write everything explicitly so as to provide a self-contained
and coherent treatment of the strong connection.

Theorem 2.3.Let B C P be an H-Galois extension. The following are equivalent de-
scriptions of a strong connection:

1) Aunital left B-linear right H-colinear splitting s of the multiplication map B ® P zr;
P. :
2) Aright H-colinear homomorphism D : P — (QB) P annihilating 1 and satisfying
the Leibnizrule: D(bp) = bDp +db.p, Vb e B, p € P.
3) Aleft P-linear right H-colinear projection IT : QP — QP (I12 = 1) such that
(id — T)(BdP) = (21B) P.
4) A homomorphisme : H — QP vanishing on 1 and satisfying:
a) Agip ow = (0w ® id) o Adg,
b)(m®id) o ((d® Ag) cow = 1® (id — &),
c) dp — pyw(pw) € (QB)P, ¥p € P.

Proof. Let V;,i € {1, 2,3, 4}, denote the corresponding spaces of homomorphisms
defined in points 1)-4). We need to construct 4 mappings

Ji:Vi—=> Vo, Jo:Vo—> V3, J3:V3— Vs, Jg:Vs— Vq, (2.10)
satisfying 4 identities:
Jao Jzo Jo 0 J1 =id and cyclicly permuted versions. (2.112)

PutJi(s)(p) = 1® p —s(p). (Compare with the right-handed version [CQ95, (55)].)
Evidently, J1(s) is a right H-colinear homomorphism fron® to (QB)P = Ker(m :
B ® P — P) (see (1.16)) annihilating 1. As for the Leibniz rule, we have

Ji(s)(bp) =1®@bp — s(bp) =db.p +b® p — bs(p) = db.p + bJ1(s)(p). (2.12)

This established; as a map fronVy to V».

Next, putJ2(D)(p’'dp) = p’(d — D)(p). Observe first thafz(D) is a well-defined
(left P-linear right H-colinear) endomorphism &®'P becaused1 = 0 (see (1.10)).
Choose); € B, p; € P,suchthatDp = )", (db;)p; = Y ;(d(b; p;) — bidp;). It follows
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from the Leibniz rule thatl>(D) o d is a left B-module map. Thus we have:
(J2(D)? — J2(D))(p'dp) = J2(D)(p'dp) — J2(D)(p' Dp) — J2(D)(p'dp)
==Y p'J2(D)(d(b; pi) — bidpi)
==Y P (JaD)od) (bip)) + Y p'bi (J2(D) o d) (pi)

=0
(2.13)

HenceJ2(D) is a projection. Furthermore, note that for anye B, p; € P, we have

(id — Jz(D))(Zbi.dpi) = Zbi.Dpi € (QB)P, (2.14)

i.e.,(id — Jo(D))(BdP) C (21B) P. To see the reverse inclusion, take Myb; @ p; €
Ker(B® P = P) = (QB)P. Then, using the above calculation and the Leibniz rule,

we obtain
0= Dbip)=y biDpi+ Y dbi.pi
i i i

= (id — Jo(D)) (Z bi.dp,-> S bi®pi

i.e.,) ;bi ® pi € Im(id — J2(D)), as needed.
To construct/a, note firstthatITod) : P — Q1P isleft B-linear. Indeed, sincB?2 =
I1, the condition(id — IT)(BdP) = (1B) P entailsI1((21B)P) = 0. Consequently

(2.15)

d(bp) = T1(db.p) + [(bdp) = b(IT o d)(p), (2.16)

as claimed. Therefore it makes sense to.dtl) (k) = AUT1(dR[2) (see (1.2)). This
formula defines a homomorphism frofhto 1P vanishing on 1. Furthermore, by the
right H-colinearity ofIT and property (1.5) of the translation map, we have
(Agip 0 J3(ID) () = i o TT(dn1 (0)) @ R gy n1
= h(z)[l]l_[(dh(z) [2]) ® S(ha)ha (2.17)
= ((J3(I1) ® id) o Adg) (h).
As for the property b), note first théd — IT)(BdP) = (Q'B) P implies, by the leftP-

linearity of IT, that(id — IT) (21P) = P(Q2'B) P. Secondly, recall thgg (P (2B)P) = 0
(see (1.23)). Hence

(% 0 J3(T) (h) = h!Y ((m @ id) o (id ® Ag)) (Hdh[zl + (id — H)dh[z])

=t (m@id) o (d® Ap) 1@ hH — 1P @ 1) (2.18)
— h[l]h[z](o) ® h[2](1) —ppl2l o1
=1® (h — e(h)).
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To verify ¢), we compute:

dp — poypa MM (dpw)'?) = (d — M(dp) € (2'B)P.

Consequently/s is a mapping froni/z to Vj.
Finally, put

Ja(w)(p) = p® 1+ poyw(pw)-
To see that/4(w) takes values irB ® P, note that

p®1+ powipw) =r®1-10p+1Q p+ poye(pa)
=1® p—(dp — pow(pa)) €BRP

(2.19)

(2.20)

(2.21)

by property ¢) ofv. The rightH -colinearity of J4(w) follows from property a) ofo. The

remaining needed properties éf(w) are immediate. Consequentli is a mapping

from V4 to V1.
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To end the proof, we need to showo J30 J20 J1 = id and its three cyclicly permuted
versions. We use recurrently the fact that the translationmpepvides the inverse of the
canonical magy, so thatp o, p1yM'®5 py? = 1@ p andhWh? o @1 1) = 1h.

(JaoJzoJooJ)()(p)=pR®1+ P(0) (JaoJoo J]_)(S)(p(l))
=p®1+ popw™ (J20 J1)(s) (dp(l)[z])
=p®1+ (J20J1)(s)(dp)

=p®L1+dp— Ji(s)(p)
=1®p—-1Q p+s(p) =s(p).

(J3o J20 J10 Ja)(@)(h) = h™M (J2 0 J1 0 J4) () (dh!?)
= h (d = (J1 0 Ja) (@) (W)
= (d-1®id+ Jaw)) (%)
= Y (Jgw) —id @ 1) (h1?)
= WM g (12 1) = w(h).

(J2o0 Jio Jao J3)(IT)(dp) = dp — (J1 0 J4 0 J3)(IT)(p)
=1®p—-p®1-1® p+ (Jao J3) ID(p)
=—-p®1+p®1+ po (J3(ID) (p))

= poyrayMdpe @) = Mdp).

(JioJao J30 J2)(D)(p) =1® p — (Jao Jzo J2)(D)(p)
=dp — p) (J3o J2) (D)(p))
=dp — poy M J2(D)(dpa) )
=dp — J2(D)(dp) = Dp.

This shows that the maps are bijective. O

(2.22)

(2.23)

(2.24)

(2.25)
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Corollary 2.4. If B C P isan H-Galois extension admitting a strong connection, then

1) P isprojective asa left B-module,
2) B isadirect summand of P asaleft B-module,
3) P isleft faithfully flat over B.

Proof. Lets : P — B ® P be the splitting associated to a strong connection. Due to
the unitality of B the multiplication mapB ® P — P is surjective. Thu< is a direct
summand oB ® P via s, and the projectivity of? follows from the freeness & ® P.

Let fg : P — B be alinear map which is identity aB. Thenm o (id ® fp) osisa
left B-linear map splitting the inclusioB € P. HenceB is a direct summand a?.

Finally, sinceP is projective it is flat. On the other hand, sinfecontainsB as a
direct summand, it is also faithfully flat.c

In fact, sinces embedsP in B® P colinearly, we can say tha&t is anH -equivariantly
projective left B-module. Next, we translate to the setting of associated quantum
bundles so as to be able to compute their projector matrices with the help of Lemma 1.4.

Proposition 2.5.Lets : P — B ® P bethe splitting associated to a strong connection
on the H-Galoisextension BC P,andletp : V — V ® H be any finite dimensional
corepresentation of H. Denote by ¢ the canonical isomorphism B ® Hom(V, P) —
Hom(V, B ® P). Thentheformula

5p6) =T ‘(s 08) (2.26)

gives a left B-linear splitting of the multiplication map B ® Hom,(V,P) —
Hom, (V, P).

Proof. Note first that, since is right colinears o (Hom, (V, P)) € Hom,(V, B® P).
We need to show thdt(B ® Hom, (V, P)) = Hom,(V, B® P), wheret(b ® £)(v) =
b ® &(v). For this purpose we can reason as in the proof of [HM99, Prop. 2.3] and
construct the following commutative diagram with exact rows:
id®p
0—— B ® Hom,(V, P) — B ® Hom(V, P) — B @ Hom(V, P @ H)

l l e (2.27)

o
0— Hom,(V, B® P) — Hom(V, B ® P) — Hom(V, B® P ® H).

Herep is defined byp(¢) = (£ ® id) o p — Ag o &, and similarlyp. The mapt is the
appropriate canonical isomorphism. Completing the diagram to the left with zeroes and
applying the Five Isomorphism Lemma shows that the restrictiétmB @Hom, (V, P)
is anisomorphism onto HopiV, B® P), as needed. Thug is amap from Horp(V, P)

to B ® Hom, (V, P), as claimed. Explicitlnyl is given by

Tl =Y plend =) gpent™ @ p(en¥e, (2.28)

where{e; } is abasis of/, {¢'} its dual, and we put(v) = ¢(v)["H®¢(v)!% (summation
understood). Similarly, we can writg (£) = s, ()71 ® s, (&)[9. The left B-linearity
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of s, follows from the left B-linearity of s and¢. Finally, s, splits the multiplication
map because splits the multiplication map:

(m 0 5,)(E) (V) = 5,(E) s, (&) (v)

m (€ (s, () ()

m ((s 0 &)(v)) (2.29)
= (mosof&)(v)

=£(v).

O

Applying the standard reasoning as used in the proof of Corollary 2.4, we can infer
(under the assumptions of Proposition 2.5) that Hov) P) is projective as a lefB-
module. On the other hand, i is left faithfully flat over B and the antipode off is
bijective, one can prove that HoitV, P) is finitely generated as a left-module [S-P].
Thus point 3) of Corollary 2.4 leads to the following conclusion (cf. [D-M97a, App. B]):

Corollary 2.6. Let H be a Hopf algebra with a bijective antipode, B € P an H-Galois
extension admitting a strong connection, and p : V — V ® H a finite-dimensional
corepresentation of H. Then the associated module of colinear maps Hom, (V, P) is
finitely generated projective as a left B-module.

Closely related ta-bimodule Hom (V, P) is B-bimodule

Poi= Y @(V)CP

peHom, (V,P)

(cf. [D-M97a, App. B]). It turns out that such submodulesiore invariant under the
splitting associated to a strong connection:

Proposition 2.7.Let s bethe splitting associated to a strong connection on an H-Galois
extension BC P.Letp : V — V ® H beafinite-dimensional corepresentation of H
and P, := ZweHomp(V’P) (V). Thens(P,) S B® P,.

Proof. If p € P, then there exists finitely mary, € Hom,(V, P) such that

dimV dimV

p= Zwu(vv) =Y vuduler) = Z @i (er). (2.30)

v k=1

Here{e:} is a basis ofV andgy := >, v« @,. (Sincev,; are simply the coefficients
of v, with respect to{ex}, we haveg, € Hom,(V, P).) Next, we can always write
s(p) = Z fu ® (p)u, where{f,} is a linear basis oB. (We have the strongness
condmons(P) C B ® P.) Sinces andg; are both colinear, so is their composition
s o ¢y, and we have

dimV dimV
Apgp(sog)(er) = Y s(pelen) @uby =D D" fu ® (prlem))y ® uly,,
m=1 m=1 [

(2.31)
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whereuﬁuZ are the matrix elements of corepresentago®n the other hand, remember-
ing thats(P) € B ® P, we have

Apgp(sopr)(ed) = ) fu ® Ag (g(e0), - (2.32)
"

Combining the above two equalities and using the linear independerfiewe obtain

dimV
AR (pr(ee) = Y (prlem))u @ ul,. (2.33)

m=1

Hence we can define a bi-index family pfcolinear maps by the equality, (e¢) =
(¢ (er)),.. Consequently, due to (2.30), we have

dimV dimV
s(p) =s (Z w(q)) =YY fu® @le)u
k=1

k=1 n
dimv (2.34)

=Y e <Z m(e@) €B® P,
n

k=1
as claimed. O

Remark 2.8. Just as we defing, in the proof of Theorem 2.3, we can define the covariant
derivative on Hom(V, P) via the formula

V : Hom,(V, P) — QB @ Hom,(V, P), VE=1Q& —s,(£). (2.35)

Using identifications in Theorem 2.3 (isomorphisis one can check that (2.35) agrees
with [HM99, (2.2)].

We now proceed to establishing a link between strong connections and Cuntz—Quillen
connections on bimodules [CQ95, p. 283]. I(¢be a coalgebra anl;, N right C-
comodules. Denote by := Hom(C, k) the algebra dual t€'. ThenN; and N, enjoy
the following natural leftA-module structure (e.g., see [M-S93, Sect. 1.6]):

A®N;>a®n+— nqua(na) € N;, ie€f{l 2} (2.36)

With respect to this structure, akyhomomorphism fromvi to N is right C-colinear

if and only if it is right A°P-linear. Thus, for arH -Galois extensioB C P, algebraP is

a(B, (H*)°P)-bimodule, wheregd* := Hom(H, k) is the algebra dual t& considered

as a coalgebra. By Theorem 2.3 (Point 2), a strong connection can be given as a right
(H*)°P-linear mapD : P — Q1B ®3 P (see (1.16)) satisfying the left Leibniz rule and
vanishing on 1. Therefore it seems natural to generalize the concept of a left bimodule
connection [CQ95, p. 284] to

Definition 2.9. Let N be an (A1, Ap)-bimodule. Wesay that V; : N — QA1 @4, N
isaleft bimodule connectioniff itisright A,-linear and satisfiesthe left Leibnizrule:
Vi(an) =aVy(n) +0da ®4,n, Ya e A1, n € N.

We can now say that gtrong connection on H-Galois extension B C P is a left
(B, (H*)°P)-bimodule connection on P vanishing on 1. In an analogous way, we can
define a right bimodule connectidrk. Then we can put them together and, in the spirit
of [CQ95, p. 284], define a bimodule connection as:
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Definition 2.10.Let N bean (A1, A2)-bimoduleand V;, and Vg aleft and right bimod-
ule connection, respectively. We call a pair (Vy, V) a bimodule connectionon N.

Reasoning precisely as in [CQ95], one can show th&aianA»)-bimoduleN admits
a bimodule connection if and only if it is projective as a bimodule (i.e., as a module over
A1 ® Agp). In a similar fashion, one can see that strong connections correspond to
equivariant connections in the algebraic-geometry setting [R-D98, (20)].

Remark 2.11. Within the framework of the Hopf—Galois theory the right coactio®id
AR : B®P — B®QP®H andtherestriction g p of the diagonal coactiol pg,p (1.8)
coincide. Therefore one can use either of them to define the colinearity of a splitting
the multiplicationmapB® P — P.Inthe general setting @f-Galois extensions [BH99,
Def. 2.3], the diagonal coactiohpgp : PQ P — P ® P ® C (coinciding with (1.8) for
Hopf—Galois extensions) can be defined by the formuig p = (id ® V) o (Ar ® id)
[BM98a, Prop. 2.2],wher¢r : CQ P — P®C isan entwining structure antlg : P —

P ®C, Ar(p) = po) ® p, a coaction (see [BMOO, Sect. 3] for details) Bfis the
subalgebra o of C-coinvariants, i.e.B ={b € P | Ar(bp) = bAr(p), V¥V p € P},
then

Apop(b® p) = (id® ¥)(Ar(b1) ® p)

. 2.37
= (i[d® ¥) (bl ® 11 ® p) = blo ® ¥ (11 ® p). ( )

On the other hand, iB C P is C-Galois andy is its canonical entwining structure
[BH99, (2.5)], then, by [BH99, Theorem 2.7},is a(P, C, ¥)-module [B-T99], so that
we haveAg(p'p) = péo)w(pzl) ® p). In particular,Ar(p) = 1oy (1) ® p). Hence

([d®ARbB®p)=b® Loy ® p). (2.38)

Therefore we need to distinguish betwe®ps p and id® Ay in the C-Galois casé.

If we define a strong connection onGalois extensionB C P as a unital left
B-linear right C-colinear (with respect ta\ g p) splitting of the multiplication map
B ® P — P, then such a strong connection yields a connection in the sense of [BMOO,
Def. 3.5]. Indeed, let be such a splitting, and* (rdp) := r(s(p) — p®1). One can see
that this formula gives a well-defined lgftlinear endomorphism a2 P. Furthermore,
by the left B-linearity of s, for any ", db;.p; € (2'B) P, we have:

° () dbi.pi) = Y 1° (d(bi.pi) — bidpi)

' (2.39)
=Y s(bipi) —bipi ® 1= bi(s(pi) — pi ®1) = 0.

Hence P(Q1B)P C KerII® by the left P-linearity of IT°. On the other hand, since
mos = idands(P) C BQP,wehaverg(s(p)) = 1®p p,whererg : PQP — PQpP
is the canonical surjection. Consequently,

mp(IF(p'dp)) = wp(p'(s(p) — p® D) = p'rp(s(p) — p'p @5 1

j ) . (2.40)
=p' ®pp—pp®pl=mnp(pdp).

1 We are grateful to T. Brzemgki for suggesting to us this way of arguing.
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Therefore, since® (Q1B) P = Kernp (see below (1.23)), we obtain
KerIl* € P(Q'B)P.
Thus KerTI* = P(Q1B)P. Next, take any € P. It follows froms(P) € B ® P that
dp—TFdp) =1 p—pR1l—s(p)+pR1=1Q0 p—s(p) e B P. (2.41)

Since alson(1® p — s(p)) = 0, we have ¢ — IT°(dp) € (R1B)P C KerIT*. By the
left P-linearity of IT1* we can conclude now th&t® o (id — IT*) = 0, i.e.,(IT¥)2 = I1°. It
remains to show thak pgp o IT° o d = ((IT* o d) ® id) o Ag. The propertyy(c® 1) =
1 ® c entails

Apgr(p®1) =po @ ¥(pa)®1D = po @1 pw. (2.42)
Therefore

Apgp(IT°(dp)) = Apgp(s(p)) — Apgpr(p ® 1)
=s(p©) ® P — PO ®1® p) (2.43)
= (IT* o d) ® id) (Ar(p))

by the colinearity of. ConsequentlyT* is a connection, as claimed.

To exemplify Proposition 2.1 and Theorem 2.3, let us translate the strong and non-
strong connection forms on quantum projective S®E§ [H-PM96, Ex. 2.8] to the
language of splittings.

Example 2.12 (Quantum projective space RPqZ). First let us recall how to define the

coordinate algebra(S;oo) of the equator quantum sphere of Pad|B-P87]. To this

end, we modify the convention in [H-PM96] by replaciady ¢~ and rewriting the
generators as follows:

V2L + 4%

1142 X13. (2.44)

X =X11, Yy =X12, Z=

Now we can defineﬁx(Sg’oo) asC(x, y, z)/14,00, WwhereC(x, y, z) is the (unital) free
algebra generated by y, z andl,  is the two-sided ideal generated by

g*—1
24y 42—, Xy —yx —i 4+122,
2 -2 -2 2 2 (iz 2 -2 (2.45)
xz—q +a zx—iq 4 2y yz——q +a zy—i—q —1 zx
2 2 ’ 2 2

To makeA(Sjoo) into a MafZ,, C)-comodule algebra we use the formulas (see above
Sect. 6 in [P-P87] for the related quantum-sphere automorphisms)

ARX)=x®y, AR() =yQ®y, Ar(2) =z®Y, (2.46)

wherey(+1) = +1. The coordinate ring of quantum projective spqu is then
defined as the Maf.», C)-coinvariant subalgebra 04(55’00). (The aIgebraA(Rqu)
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is the subalgebra oA(S ~) generated by the monomials of even degree.) The ex-
tensmnA(RPz) - A(S2 OO) is a MapZ,, C)-Galois extension which is not cleft. The
non- cIeftness can be proved by reasoning exactly as in [HM99, Appendix]. Indeed,
since 1 andy are linearly independent group-likead = ¢ ® ¢), a cleaving map

® : Map(Zz, C) — A(S(f)oo) would have to map them to linearly independent (injec-
tivity of @) invertible (convolution invertibility of®) elements inA( oo)- Butthisis
impossible as&\(S2 00) € A(SL4(2)), and the only invertible elements m(SL,(2)

are non-zero numbers [HM99, App] Translating the formula [H-PM96, Prop 2.14] for
a strong connection to our setting, we have

oy)=xdr+ydy+zdz=x®@x+y®y+z®z—-1x 1L (2.47)

The splitting corresponding  is then, due to its unitality and Ieﬁ(RPZ) -linearity,
determined by

s(x)y=xt, s(y)=yt, s(zy=zt, where r=xQx+yQy+zQz. (2.48)

Thus one can directly see that the image &f in A(RP?) ® A(SZ ).

Next, consider a non-strong connectidfy) = w(y) — 2dx? [H-PM96, Prop. 2.15].
Again, we compute the corresponding splitting:

5(x) = s(x) —2xdx?, §(y) =s(y) —2ydx?, §(z) =s(z) —2zdx2.  (2.49)

As in the proof of [H-PM96, Prop. 2.15], we can invoke the representation theory con-
tained in [P-P87] to conclude thatlx? # 0. Consequently,

((d @ flip) o (Ag ®id —id® 1®id)) (xdx?) = xdx®® (y — 1) #0.  (2.50)
Hence the image dfis notin A(RP?) ® A(SZ ).

Remark 2.13. Let x, y, z be as above. Sino& + y? 4z = 1 (which was the reason for
rescaling the generators) and, with respect to the star structure inheritesifiia@), we
havex* = x, y* =y, z* = z, we cantreat the generatarsy, z as the Cartesian coor-
dinates ofS(f,oo. (See [HMS, Sect. 2] for the Cartesian coordinates for all Pspiberes.)

Having this in mind, we take the idempotefit= (x, y, 2)7 (x, y,z) € M3(A(S2 )
(here” stands for the matrix transpose) and define the projective module of the normal
bundle ofs? , asA(S2 ,,)3F. Therefore, one can define the projective module of the
tangent bundle of the equator Podles quantum sphereasA(SZ )3(13 — F), wherels is

the identity matrix inM3(A(S2 ).

Let us now consider strong connections mincipal homogeneous Hopf-Galois
extensions, i.e., P/I-Galois extensions given by a Hopf idefain a Hopf algebraP.
Here the coaction is given by the formulg; = (id® ;) o A, wherern; is the canonical
surjectionP — P/I.For such extensions, itis known (e.g., see [DHS99, Theorem 2.1])
thatif B = P P/ then] = BT P,whereBt = KerenB. If s isthe splitting associated
to a strong connection, then, due to the Rftinearity of s,

s(BY*P)=B*s(P)SBTB® P =Bt ®P. (2.51)
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Hences descends to a splittingof the canonical surjectioR — P/(B* P):
_—

P <« B®P

m

l , l (2.52)

l

H=P/(BTP) «—— (B® P)/(BT® P) = P.

Explicitly, we havei(p) = ((¢ ® id) o s) (p). (The map is well-defined because of
(2.51).) Puts(p) = s(»)9 ® s(p) (summation understood). Then,as s = id and,
forbe B, p e P,e(b)p = bp mod BT P, we have

1 oD@ =1 (6P Ds (M) =71 (s()s(Y) = (rr om0 5)(p) = B
(2.53)

Furthermore, sinceis unital, so is. The right colinearity of follows from the strongness
(s(P) € B ® P) and the right colinearity of:

(Aro D)@ =2 (s() s & sy,

=((¢®id®id) o Apgp o) (p) (2.54)
= ((e®id)os) (pa) ® P2y
=i(pa) ®pe =i(Pw) ®P)-

Thus one can associate to any strong connection on a principal homogeneous Hopf—
Galois extension a total integral of Doi [D-Y85] (unital right colinear niéap~> P). Re-

call that total integrals always exist on faithfully flat Hopf-Galois extensions ([S-HJ90a,
Theorem 1], [D-Y85, (1.6)], [S-HJ90a, Remark 3.3]). This is in agreement with Point 3
of Corollary 2.4, although we claim there only the left faithful flatness, and faithfully
flat Hopf—-Galois extensionB C P are defined as Hopf-Galois extensions such that

is B-faithfully-flat on both sides. Note also that we could equally well proceed as in
[BM98b, Prop. 3.6] and definevia a connection form. If is the splitting associated to

a connection fornw, i.e.,s = J4(w) (see (2.20)), then

i(p) = (e ®id) 0 Ja(@)) (p)
=(®id (p® 1+ pno(da))
=e(p) ® 1+ e(p)e(@(P2)?) ® 0(p2)? (2.55)
=en(P) ® 1+ e(p) (e ® id)(@(P))
=en(P) @ 1+ (e ®id) 0 w) (P),

wherew(h) = o(h)® ® w(h)@, summation understood, arg; denotes the counit

on H. (See [BM98b, Prop. 3.6] for this kind of splitting in the case of non-universal
calculus.) Ifi is also left colinear, then, by [HM99, Prop. 2.4], the formula= (S *

d) o i associates tba strong connection. (Such connections are called canonical strong
connections.) It turns out that applying the above described way of associating a total
integral to a strong connection in the canonical case is simply solving the equation
o = (§*d)oi fori.Indeed, sincev(h) = Si(h)q)di(h)@e ande(@(p)) = e(p)
(because(p) — p € Kernr; C Kerg), we have

Ja(w)(p) = p® 1+ pyw(P2) = Pw)Si(P2)a) ®i(PR)2)- (2.56)



Strong Connections and Chern—Connes Pairing in Hopf—-Galois Theory 319

Applying ¢ ® id yields
i(p) = ((¢ ®id) o Ja(w)) (p), (2.57)
as claimed.

Example 2.14 (Quantum and classical Hopf fibration). The above described formalism
applies to the quantum Hopf fibration. We refer to [HM99] for the computation of pro-
jector matrices of the quantum Hopf line bundles from the Dirac g-monopole connection
[BM93], and to [H-PMOO] for the computation of the Chern—Connes pairing of these
matrices with the cyclic cocycle (trace) of [MNW9L1, (4.4)]. (This pairing yields numbers
called “Chern numbers” or “charges”. See Proposition 3.7 for the freeness of the direct
sum of charge-1 and charge 1 quantum Hopf line bundles, cf. [DS94, (4.2)] for a local
description of such bundles.) Here we only remark that this quantum principal fibration
admits infinitely many canonical strong connections. Indeed, for the injective antipode
(which is the case here), [HM99, Cor. 2.6] classifies the canonical strong connections
by unital bicolinear splittings. On the other hand, by [MMNNU91, p. 363], all unital
bicolinear splittings : C[z, z71] — A(SL4(2)) are of the form:

i(Z") = A+ ¢pa()a”,
i(z7") = A4 ¢ra(€))s8",

where p,, r, are arbitrary polynomials if := —g~18y. (Here,a, 8, y, 8 are the
generators ofA(SL,(2)) as in [HM99].) Since the equality = (S * d) o i can be
solved fori (see (2.57)), different splittings yield different connections. Hence there are
infinitely many connections.

However, forg = 1, after passing to the de Rham forms, all the canonical strong
connections coincide with the classical Dirac monopole. More preciselyplgbe the
canonical projection from the universal onto the de Rham differential calculug &ed
the splitting corresponding to the Dirac monopole (i.e., given by (2.58)myite 0 = r,,
for all n). Then

(2.58)

apro(S*xd)oi =mpro(Sxd)oig forall i. (2.59)
Indeed, we have

((S xdpp) o (io — 1)) (2) = (S x dpr)(By p1(—=By)). (2.60)

Furthermore, using the commutativity of functions with forms and functions, and the
Leibniz rule, we obtain

(S *dpgr)(hh') = S(h1))S(h(3))dpr (h(2)h(7)
— S(hg))hp S(hw)dprh + S(ha)he S(hy)dprhl,  (2.61)
e(h')S(h@)dprh) + &(h)S(hig))dpRrA ).

Substitutingz = B and h’ = y p1(—By)a, and noting thats(8) = 0 and
e(y p1(—=By)a) = 0, one can conclude thas * dpr)(i(z)) = (S * dpgr)(io(z)). On
the other hand, for any connection fotwe have

(Tpr o w)(uu') = (Tpr o @)We) + &) (mpr o ) (u"). (2.62)

Therefore(S «dpr) oi and(S xdpr) oig coincide on any power af, whence are equal,
as claimed.
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3. Chern—Connes Pairing for the Super Hopf Fibration

The super Hopf fibration leading to the super sphere has an interesting history. To the
best of our knowledge, it was first introduced by Landi and Marmo [LM87]. They treated
supersymmetric abelian gauge fields in general and worked out details for the super group
UOSP(1, 2). Everything was formulated within the Grassmann envelope of the super
algebrauosp(1, 2). The super manifold theory has been used in the work of Teofilatto
[T-P88]. He defines and studies super Riemann surfaces. As the simplest example, he
treated the super sphere wisR as its body. Ideas of noncommutative geometry were
used in [GKP96, GKP97] to introduce an ultraviolet regularization for quantum fields
defined ons?. The fuzzy sphere [M-J92] was introduced through suitable embeddings
of the algebra ofvV x N matrices. In [GKP96], similar embeddings of modules led to
approximation of sections of line bundles o Also in [GKP96], there is a study

of fermions and supersymmetric extensions of the fuzzy sphere. An extensive treatment
of the approximation of super-graded functions over the super sphere, and sections of
a bundle through sequences of graded modules, as well as the treatment of the graded
de Rham complex, is given in [GR98]. The description of the monopole on the super
sphere that we provide can be related to that given in [BBL90]. A detailed study of the
super monopole using the super-geometry approach can be found in [L-G01b].

Our approach here to the super Hopf fibration is purely algebraic. First, we show that
the super Hopf fibration can be considered ag{afalois extensiom(Ssz) - A(Sf),
whereH = C[z, z~1] is the Hopf algebra generated by an invertible group-like ele-
mentz. The polynomial aIgebraA(Sf’) andA(Sf) are taken as nilpotent extensions (by
two Grassmann variablas;) of the (complex) coordinate rings of the 3-dimensional
spheres® and 2-dimensional sphesg, respectively (see [GKP96]). This is summed up
in the following commutative diagram with exact columns (but not rows):

ASH N (Ag) — ()

l l

ASH) — AS}H — H (3.1)

| L]
A(S?) — AS®]) — H

Thus, in a sense, the super Hopf fibration can be viewed as a Grassmann covering of the
classical (complex) Hopf fibration.

Definition 3.1. Let R = Cla, b, ¢, d] be the polynomial ring in four variables. Put
D = ad — bc. Let I be the two-sided ideal in the (unital) free algebra R(A4, A_)
generated by

A2, A2, ApA_+AoAg, ApA_+D -1 (3.2)

W call the quotient algebra A(Sf) := R{A4, A_)/I the coordinate ring of 3-dimens-
ional super sphere 2.

It can be easily verified that the (matrix) formula

a b a®l b®1
el c al=|co1r ao1 (1‘5311@0_1) 3.3)
Ay Al r®li®1 N
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defines a coactiomg : A(S3) — A(S3) ® H making A(S3) a right H-comodule
algebra.

Lemma 3.2.Let A(S?) := {a € A(S3) | Agr(a) = a ® 1} be the algebra of H-
coinvariants. Then A(S?) isthe subalgebra of A(S3) generated by

1,ab, bc, cd, ryb, rid, r_a, r_c, Ayh_. (3.4)

Proof. Evidently, the algebra generated by (3.4) is containeti(i$¢). For the opposite
inclusion, note first that every elementf A(Ss3) can be written as a linear combination

of (coefficient-free) monomialey o such thatA g (my ¢) = my_e ® z¥. Since the powers

of z form a basis ofH, if a € A(SSZ), thena must be a linear combination of non-zero
monomialsmg . On the other hand, any & mqg, # 1 is a word composed of the
same number of letters coming from the alphdbet, A} and the alphabéb, d, 1_}.
Furthermore, since all letters commute or anti-commute, we can always pair the letters
coming from different alphabets. Heneg) , can be expressed in terms of (3.4), as
needed. O

Proposition 3.3.The extension of algebras A(S?) C A(S?) is H-Galois.
Proof. Define the map : H — A(S?) ®acs2) A(S2) by the formulas« € N):

n
(@) = A +nia) Y. (Z)d"_k(—b)k sz a" ek,

k=0 (3.5)

f(z_n) = (1 + I’ZA.+)\,,) Z (Z)an—k(_c)k ®A(SY2) dn_kbk.
k=0
We are going to prove that := (m ® id) o (id ® 1) is the inverse of the canonical map
x - (This means that is the translation map.) Singeand y are both IeftA(Sf’)—Iinear

maps by construction, it suffices to chegls x = id andx o x = id on elements of the
form 1® h and 1® A(S2) P respectively. To verify the first identity, we recall that any

h € H is a linear combination of*”, n € N, and compute:

G0 DA = At nrsr 3 (1)d" ™ (=b) kA Oacsp el
k=0

=1+ nrsrl) (2”: (Z)dn_k(—b)ka"_kck) ® "

k=0
=A+nriid)(ad —bo)" ® 7"
= A+ )L — A A) @ 2"
=Q+nriri )Ll —nid)®7"
=1®7".

In the fourth equality we used the determinant relatiQia_ + ad — be = 1. Similarly,
we obtain:

(3.6)

(X0 NA®z™) = L+nir)) (Z)a"—"(—c)kx(l ®asz d" =107
k=0
(3.7)
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Thusy o ¥ = id. For the other identity, we note that it is sufficient to check it on the
monomialsn, (as in the proof of Lemma 3.2 but with the second index suppressed).
SinceAg(m4y) = mi, ® 7, we haven,d"*b* e A(S?) andm_,a"*ck e A(S?).
Hence, using the centrality of, A_ € A(Ssz), we can compute:

(xox)(1 ®a(s2) Mn) = myx(1®z")

n
= mn(l + nk+k_)z (Z)dnik(—b)k ®A(53) anikc‘k
k=0

= A +niirl) )mad" (=) ® 452 @ TF
,;,@ i (3.8)

n
= 1@z L+nipr)y (Z)mnd”_k(—b)ka”_kck
' k=0
=1®(s2) ma(L+ nridr-)(ad — be)"
=1 ®A(S.y2) my.
Here the last step is as in the previous calculation. Similarly, we get:

n
(% 0 0AB 52y M) = A+ i d )Y ({)mona" ™ (=e)F @x52) d" bk 9)
k=0 '

=1 ®A(Ss2) m_py.
Thereforey is the inverse of, and the extension i#-Galois. O

We use the idea of colinear lifting (1.25) to construct a connection form. We consider
this connection as the (universal-calculus) super Dirac monopole. Since it is strong,
we can conclude that the extensidiis?) C A(S?) enjoys all properties itemized in
Corollary 2.4.

Proposition 3.4.Let w : H — Q1A(S2) be the linear map defined by (n € N)

@) = A+ i) 3 (1)d" ™ =bda b, (3.10)
k=0

W@ ™) = L+ nigho) Yy (;)a"—k (—o)kd@pk). (3.11)
k=0

Then w is a strong connection form.

Proof. Note first thaiw(1) = 0 andA g1 pw(z") = w(z") ® 1. Furthermore, taking
advantage of (3.5) and the determinant relatidn- bc = 1 — A, A;, we have:
(n@idyo (id® Ap) ow) ) = x (1) — 1@, 1)

(3.12)
=1® (5" — e(z™)).
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This proves that is a connection form. It remains to check the strongness condition.
By linearity, it suffices to do it on monomiais.,, (see the proof of Proposition 3.3).
Putting

pF =@+ nx+/\_)(z)d"*’<(—b)’<, g = a" ek,
(3.13)
pp = (1+n)»+)\_)(',z>a”_k(—c)k, 9 = d" kB,

and applying the Leibniz rule and using again the determinant relation bc =
1— A4, we obtain:

n
+ +q4 =+
Ay — Mman@ (") = dmay — Y maypjdg;
k=0

=dmy, —d (mi,, Z p,fq,f) + Z d(mjt,,pki).q;IE (3.14)
k=0 k=0

=Y domenp) ;€ (QLAGSIASY).
k=0

Consequently, for any € A(Sf’), we have(id — I1%)(da) € (QlA(Ssz))A(Sf), i.e.,w
is strong. O

Our next step is to consider super Hopf line bundles. Precisely as in the case of
quantum Hopf line bundles [HM99, Def. 3.1], since we are dealing with one-dimensional
corepresentations @f (o, (1) = 1® z~*), we can identify the colinear mags C —

A(Sf) with their values at 1/((¢) := £(1)), and define them as the following bimodules
overA(S?):

A(Sd), ={ac ASD) | Ara=a @z ")}, p e (3.15)

Reasoning in a similar manner as in the proof of Lemma 3.2, one can see tha)(

n n—1

A =D ASHA" T+ ASHa Ry, (3.16)
k=0 k=0
n n—1

ASDn =Y ASHA" b+ ASHA B (3.17)
k=0 k=0

Note that, since the powersoform a basis o/, we have the direct sum decomposition
A(S3) = @B,z A(S3), asA(S?)-bimodules. Observe also that the bimoduls?),,
provide examples of bimodule?, defined in Proposition 2.7 (cf. [D-M97a, App. B]).

Our goal is to compute projector matrices of these modules and their pairing with the
appropriate cyclic cocycle on(sf). The strategy for computing the projector matri-

ces is to use the splitting associated to the super Dirac monopole (Proposition 3.4) and
Lemma 1.4. To apply the aforementioned lemma, first we need to show that the mono-
mials occurring in formula (3.16) are linearly independent, and that the same holds for
the monomials in (3.17).



324 L. Dabrowski, H. Grosse, P. M. Hajac

Lemma 3.5.
n n—1
Zaka”_kck + Z,Bga”_l_zce)\_,_ =0 = ar=0=8y, Vk{; (3.18)
k=0 ¢=0

n n—1
Yoaud" B+ Y Bd" A =0 = a=0=p, Vit  (3.19)
k=0 =0

Proof. Let R = C[a, b, &, d]/{ad — bé — 1) denote the coordinate ring 6fL(2, C)
andC[x]/(*?) be the algebra of dual numbers. We have the following homomorphism
of algebras:
71 AS3) — R®CIA/(A2),
@) =a®l 7(b)=b®1 7(c)=¢®L 7(d)=d®1, 7(hs) =1® A

(3.20)
Applying 7 to the first equality in (3.18) yields
n n—1
dad Tt @1+ ) pa et er=0. (3.21)
k=0 =0

Since the monomial&”—*¢&* are part of the PBW basis &, they are linearly indepen-
dent. Hencex, = 0 = By, Vk, £, by the linear independence of 1 ahdThe second
implication can be proved in the same wayl

Note now that the above described identificatjallows one to identify,,, of (2.26)
with the restriction of to A(SS3) » (see Proposition 2.7):

A3, 2E ((id ®n) o5y, 0 nfl) &) € AS?) ® A(S3),. (3.22)
(id@n o5y, 0n) @ =7 (55,07 E)) W = (5007 @) ® = 5.
(3.23)

On the other hand, remembering the formula for the universal differential and using
again the fact thalud — bc)" = 1—ni4 A, we can write (3.10) in the following form:

n
0@ = L+ nrgr) Y (;’)d"—@(—b)Z ®a" ' —1®1 (3.24)
£=0
Substituting this to (2.20), we obtain
s(al’lfkck) — an*kck ® 1+ anikcka)(zn)
n
= Za"ﬁkck(l + n)»+k_)(2>d”7e(—b)e Qa" bt
=0
S(an_l_kck)\.+) — a}'l—l—kck)\‘+ ® l + an—l—kck)\'+a)(zn)

n

= a”_l_kck)ur('l_f)d"_l(—b)‘Z Qa" et (3.25)
(=0
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Similarly, substituting

o) = A+niih) Y (’,})a"—‘f(—c)“ ®d" % —191  (3.26)
£=0

to (2.20), we get

n
$@ 7 = Y A+ i ao)(f)a" T (=0 @ a1,

=0 (3.27)

n
S(dn_l_kbk)\.f) — Zdn_l_kbk)\.7 (Z)an—f(_c)f ® dn—fbf.
=0

Hence, by Lemma 3.5 and Lemma 1.4, we can concludettt®) _, = A(S?)?"1E_,
as IeftA(SsZ)-moduIes, wheré&_, = P,ann (symbol” stands for the matrix trans-
pose) with

PT = (A4 niir)
x (an’ . an—kck’ . C”, an—l)ur’ e an—l—kck)uﬂ N Cn_l)ur) ,
T o= (d”, o (’g)d"—‘(—b)‘, e (=b)",0, - ,0). (3.28)

In an analogous manner, we infer thets?), = A(S2)2'+1E, as leftA(S2)-modules,
whereE, = P, QI with

Pl = Q+nrnro)
% (dn . dnfkbk R dnil)u_ . dnflfkbk)\’_ . b}l*l;»_)

ol = (a e (Z)a”_g(—c)e, e (=™, 0, - ,o) . (3.29)

To show the non-freeness of the above projective modules, we determine the Chern—
Connes pairing between their classesfd@(A(Ssz)) and the cyclic cocycle om(sf)
obtained by the pull-back* (see (3.1)) of the cyclic 2-cocycle on A(S52) given by

the integration ors2. We have:

(9" (c2), [Exn]) = (c2, [P«E4n]) = £n. (3.30)

Here the last equality follows from the fact that the matgix E+,)i,j := o ((E+n)i,j)

is a projector matrix of the classical Hopf line bundle with the Chern number eqttal. to
Furthermore, since every free module can be represent&g by the identity matrix,
the Chern number of any free(SSZ)-moduIe always vanishes. (The Chern number of a
trivial bundle is zero.) Thus the left modulﬂ$Ss3)u, u # 0, are not (stably) free. Also,
they are pairwise non-isomorphic. Now, reasoning as in [HM99, Sect. 4], we obtain:

Corollary 3.6. The H-Galois extension A(S52) C A(S3) (super Hopf fibration) is not
cleft.
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Let us remark that projectos.,, are not hermitian with respect to the involution
a*=d, b*=—-c, "=-b, d*=a, I, =-rs. (3.31)
Nevertheless, one can slightly modify.,, to find hermitian projectors., = Fln such

that the moduleg (522" *+1EL, andA(52)?*+1F., are isomorphic. They are given by
the formulasf, = Ui,,ULl, where ¢ > 0)

-1 1
U_Tn =1+ " 5 ArA) <a”, cee (Z)zanfkck, Ly W
%
(n;l) anflfkck)\_i_’ o ,cnl)w_) ,
nil s (3.32)
U,,T =1+ ArA_) (d”, . (Z)Zd"—kbk’ b A,
3
(n;l) AR pka ’bn—l)\> .

The matricedy, are hermitian by construction. To check that they are idempotent, we
compute:

t _ n—1 2  (n n—k, 3 ~k
Ul U = (A4 = =hiho) ];)(k>(ad) (—bc)

n—1
N B (e [ e GO, (3.33)
k=0

=@+ 0 —Drr)(ad — be)" + Aypr_(ad — be)" L
=1+ 0 —DAprh)A—nigr) +Apri (1 — (n — DAgrl)
=1

In the same manner, we cheUl{Un = 1. It remains to verify that the projective mod-
ulesA($2)2*+1E,, andA(S?)" 1 F., are isomorphic. For this purpose, we use (1.26)
and take ad., L, the matriced.s, := Py, UL, Liy = U+, 0L, € Mo, 1(A(S2),
respectively. A calculation similar to (3.33) shows tigdf, P.,, = 1. This together with
(3.33) and U,TUn = 1 implies thatLs, and L4, satisfy (1.27). (Note that
LinLyn, = E4, and Ly,Ly, = Fi,.) Thus the modulesA($?)?'*1EL, and
A(§%)2"*+LF,,, are isomorphic, as claimed. This hermitian presentation of the projective
modulesA(Sf’)in, n > 0, agrees with [L-GO1a, (3.25)] for the projectors of the clas-
sical Hopf line bundles, and resembles the appropriate formulas obtained in [L-GO1b,
Sect. 4.2]. (The case= 0 is trivial.)

Finally, we want to show that

Proposition 3.7. A(53)_1 @ A(S%); = A(5?)? asleft A(S?)-modules.
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Proof. We can infer from the preceding considerations that the matrix fliag F1) is
a projector matrix ofA(S3)_1 @ A(S2);. First, it turns out to be technically convenient

to conjugater; by
010
=1 0 0}. (3.34)
001

ThenFy := MFiM is evidently equivalent (i.e., giving an isomorphic projective mod-
ule) to F1 (Just takeL = L = M in (1.27)), whence dla(g?_l, F1) is equivalent to
diag(F_1, F1). (Note that this way we have_ 1F1=0= FiF_1. ) To prove the propo-
sition we employ (1.26-1.27), and pht = diag(F_1, F1) and E = diag(1, 1). The
point is to findL, L satisfying (1.27). Since

Foi=(a,c,2p)'(d, —b,—A_) andF1 = (1+2h4A_)(b,d, 2) (—c,a, —hy),
(3.35)

we look for L of the form

a b
- <§+) F= (Ai ) (s vs)s  fo= (;z_ ) (_.vl).  (3.36)

and forL of the form

X_ X4+
L= — 5 ), — = d, —b, —A_ . = —C, a, —A .
(800 o= (1) )= (1) 2
(3.37)
Here to ensure thdt € Mex2(A(S?)) andL € Maxs(A(S?)) we takeut, vy, x4, y4 €

A(S3andu_,v_, x_, y_ € A(S3)_1. Using the super determinant relatiei — bc +
A+A_ =1, one can verify that

uy = d, Vy = —b, X4 = (1+ 3)\+)\,_)b, Y+ = (1+ 3)»4_)\_)(1, (338)
Uu_=—c, v_=a, xo=A+r2)a, y-=@A4+xrir)c, (3.39)
is a solution of (1.27), as neededa

By analogy with the classical situation, we calis%)_; and A(S%); the super-spin-
bundle modules. Proposition 3.7 is a super version of the fact that the module of Dirac
spinors, i.e., the direct sum of the spin-bundle modules, is free both for the classical and
guantum sphere [LPS]. In fact, the freeness of the mod&ule®d P; [HM99, p. 257]

of Dirac spinors on the quantum sphere can be shown by precisely the same method as

in the super-sphere case. It suffices to take in the proof of PropositicM3:7(2 cl,)
Foi=(a, )" 3, —gB), F1= (5, B (@, ¢ y),

r=(5)6-am . n=(5) o), (3.40)
e =(5)6. ). o= (§) ca v, 34

wherea, 8, y, § are the generators @f(SL,(2)) as in [HM99].
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4. Appendix: Gauge Transformations

We follow here the definition of a gauge transformation used in [H-PM96]. For an
H-Galois extensiorB C P, it is defined as a unital convolution-invertible homomor-
phism f : H — P satisfyingAg o f = (f ® id) o Adg. We treat this definition as

the first approximation of an appropriate concept of gauge transformations on Hopf-
Galois extensions (see [D-Mb] and the paragraph above Proposition 3.4 in [H-PM96],
cf. [D-M97a, Sects. 6.1-6.2], [D-M97b], [B-T96, Sect. 5]). It turns out that the space
of strong connections is closed under the action of gauge transformations [H-PM96,
Prop. 3.7]. The following theorem describes this action.

Theorem 4.1.Let B C P bean H-Galois extension admitting a strong connection. The
following describes a left action of gauge transformations on strong connections which
is compatible with the identifications of Theorem 2.3:

1) (f > 9)(p) = s (po f(p)) @),

2) (f > D)(p) == D (po f(P)) f @),

3) (f &> M(rdp) == rT (d(po) f(Pw))) fL(p@) + rpo f(P@)df Hp@),
4) (f > w)(h) == f(hapohe) fhae) + fha)dfLhe).

Proof. We need to study the following diagrams:
GT(P) x V; SN Vi

lidx];_,‘ l-]_ij (41)
o
GT(P) x V; —> V;
Herea;’s are the corresponding left actions specified abovesarsl i, j € {1, 2, 3, 4}
are obtained in an obvious way by composing suitable bijectiristroduced in the

proof of Theorem 2.3. We know that, is a well-defined left action [H-PM96, Prop. 3.4].
It suffices to show that

o = Jg o040 (Id X Ji4) for i e {1, 2,3, } (42)
Fori = 3 itis proved in [H-PM96, Prop. 3.5]. Fér= 2, we have

Jaz (f > J24(D)) (p)
= (J120 Ja1) (f > (J3a0 J23)(D)) (p)
=1® p — Jar (f > (J3a0 J23)(D)) (p)
=1®p—p®1—po (f > (Jaao J23)(D)) (p))
=dp — po f(p) Jaao J23) (D)(p2) f (@) — po f(pa)df pe)
=d(po f(p)) @) — po f(pay) pe M 2s(D)(dpe) [2])f_1(10(3)()£;r 3

Note now that, sinc® admits a strong connection, it is projective (Corollary 2.4) and
hence flat as a lelB-module. Consequently ® H is left B-flat and

Ker (A —id®1) @pid®id) = B®s P ® H. (4.4)
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Using property (1.4) of the translation map and thg;Amblinearity of f, we obtain

(AR —id®1) (P(O)f(P(l))P(Z)[ll) ®8 P22 ® pa =0. (4.5)
Hence
p0 f(pa)r2™M @5 p2? ® pe € Bz P H, (4.6)

and we have:
Ja2 (f > J24(D)) (p)

=d(po f(pw)) Y p@) — (Jas(D) o d) (P(O)f(P(l))P(Z)[l]P(Z)[Z]) pre)

=d(po f(Pw)) FYpe) + (D —d (P f(P)) Y re)
=D (po f(Pw)) o)

= az2(f, D)(p).
(4.7)

Similarly, we compute:

Ja1 (f > J1a(s)) (p)
=p® 1+ pof(pw) 1) (P2) fHp@) + o f(pa)df Hpe). (4.8)
On the other hand,
J1a(s)(h) = (Jaa 0 Jaz o J12)(s)(h)
= 1M (Jz3.0 J12)(dn'?)
= n(d — J12(s)) (h1?) (4.9)
=nlls —id @ 1)(hl?
= hYsn?y —e(h) ® 1.
Therefore, taking advantage of the I8ftlinearity of s, (4.6) and (1.6), we obtain
Jar (f > J1a(s)) (p)
=pof(Pw) ® f @) + ro f(rw)pa™Ms(pe®) fpe)
- po f(ra) ® fHpe) (4.10)
=s(po f(pa)) o)
= a1(/f, s)(p),
as needed. O

Remark 4.2. The gauge transformations on tHeGalois extensioB C P are in on-to-
one correspondence with the gauge automorphisms understood as uniBalifeftr
right H-colinear automorphisms a? [B-T96, Prop. 5.2]. Iff : H — P is a gauge
transformation, therf” : P — P, F(p) := po) f(p@) is a gauge automorphism.
Analogously, fore € Q'P, we putF(e) := (([d®m)o (id®id® f) o Agip) ().
(The other way round we hayih) = hY F (h?).) Due to the righ# -colinearity of the
covariant differentiaD, we can re-write point 2) of the above theorem{Bs« F)(p) =
F~Y(DF(p)). This formula coincides with the usual formula for the action of gauge
transformations on projective-module connections (e.g., see [C-A94, p. 554]).
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Remark 4.3. In the sense of the definition considered here, the connections in Exam-
ple 2.14 are not gauge equivalent. This is because, for the quantum Hopf fibration, any
gauge transformatiorf acts trivially on the space of connections. Indeed, siHCE
spanned by group-like elemenigjs convolution-invertible, and the only invertible el-
ements inA(SL,(2)) are non-zero complex numbers [HM99, Appendit]must be

C\ {0}-valued. This effect is due to working with non-completed (polynomial) algebras.
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