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Strong consistency for maximum quasi-likelihood estimators of re-
gression parameters in generalized linear regression models is studied.
Results parallel to the elegant work of Lai, Robbins and Wei and Lai and
Wei on least squares estimation under both fixed and adaptive designs are
obtained. Let y , . . . , y and x , . . . , x be the observed responses and1 n 1 n

Ž .their corresponding design points p � 1 vectors , respectively. For fixed
designs, it is shown that if the minimum eigenvalue of Ýx x� goes toi i
infinity, then the maximum quasi-likelihood estimator for the regression
parameter vector is strongly consistent. For adaptive designs, it is shown
that a sufficient condition for strong consistency to hold is that the ratio of
the minimum eigenvalue of Ýx x� to the logarithm of the maximumi i
eigenvalues goes to infinity. Use of the results for the adaptive design case
in quantal response experiments is also discussed.

1. Introduction. Since the fundamental work of Nelder and Wedder-
Ž .burn 1972 , there has been continued interest in the development of theory

Ž .and methodology related to generalized linear models. Wedderburn 1974
noted that many likelihood-based procedures are still valid provided that the
mean and variance functions are correctly specified. In that connection, the
concept of quasi-likelihood function was introduced. We refer to McCullagh

Ž .and Nelder 1989 for a comprehensive account of generalized linear models
Ž .and quasi- likelihood-based inference procedures.

An important theoretical issue regarding the maximum quasi-likelihood
Ž .estimator of a regression parameter is the following: under what condition s

will the estimator converge to the true parameter? In the case of linear
regression models, certain minimum conditions have been found that ensure
strong consistency for least squares estimators, under both fixed and adap-

Ž .tive designs. In particular, for a fixed design, Lai, Robbins and Wei 1979
showed that a necessary and sufficient condition for strong consistency of
least squares estimators is that the minimum eigenvalue of the ‘‘information
matrix’’ goes to � as sample size n � �. Note that weak consistency under
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the same condition is a somewhat trivial matter since it can be argued from
the Chebychev inequality and a covariance matrix calculation. For an adap-

Ž .tive design, Lai and Wei 1982 showed via a counterexample that such a
condition is not sufficient and they further proved that if the ratio of the
minimum eigenvalue to the logarithm of the maximum eigenvalue goes to �,
then the least squares estimator is strongly consistent. Note also that with an
adaptive design, even weak consistency is quite challenging.

For generalized linear models with fixed designs, conditions to ensure
convergence of maximum quasi-likelihood estimators of regression parame-

Ž .ters have been studied by many authors: see Haberman 1977 , Anderson
Ž . Ž . Ž .1980 , Nordberg 1980 and Fahrmeir and Kaufmann 1985 , among others.
In the aforementioned papers and related references, conditions assumed for
strong consistency are typically more than the minimal assumption of the
divergence of the information matrix in the neighborhood of the true parame-
ter. For example, strong consistency obtained in Fahrmeir and Kaufmann
Ž .1985 requires the boundedness of the ratio of the largest eigenvalue to the
power of 1�2 � � over the smallest eigenvalue of the information matrices for
some � � 0.

Adaptive design in linear models arises frequently in econometric and
engineering control, where strong consistency of system parameter estima-

˚Ž .tors is of great concern: see Anderson and Taylor 1979 , Astrom and Witten-¨
Ž . Ž . Ž .mark 1973 , Box and Jenkins 1970 and Moore 1978 . Besides extensive use

of adaptive designs in linear systems, where ill-conditioned design matrices
arise naturally, there have also been important applications of such designs

Ž .in nonlinear systems. Dixon and Mood 1948 , in their analysis of quantal
responses in sensitivity experiments, proposed what they called the up-and-
down method for adjusting the level of stimulus at which the probability of a
response is approximately at a targeted value. A fundamental breakthrough
for adaptively approximating an optimal design point was due to Robbins and

Ž .Monro 1951 , who coined the now well-known stochastic approximation
Ž . Ž .method. Cochran and Davis 1965 and Finney 1978 discussed how such

adaptive designs might be used for obtaining efficient sequential sampling
Ž .schemes in biological assays. Lord 1971a, b showed that the Robbins�Monro

approach may be used to design tailored tests in educational measurement.
Ž . Ž .Wetherill 1963 and Wu 1985 contain comprehensive discussions on the

up-to-date developments in the area and propose their own approaches.
In this paper we are concerned with the issue of strong consistency for

maximum quasi-likelihood estimators of regression parameters in general-
ized linear models. The key difference of a generalized linear model from the
usual linear model is obviously the nonlinearity in the link function. We
handle this by establishing a local inverse function theorem. It turns out that
the inverse function theorem also handles the global behavior of the estima-
tor when we utilize convexity of the quasi-likelihood function and certain
sharp probability bounds available in the literature. In doing so, we show

Ž .that the minimum conditions of Lai, Robbins and Wei 1979 for fixed designs
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Ž .and Lai and Wei 1982 for stochastic designs in conjunction with an addi-
tional assumption, essentially to offset the nonlinearity, also ensure strong
consistency for maximum quasi-likelihood estimators.

Generalized linear models with fixed designs are dealt with in Section 2,
where strong consistency of maximum quasi-likelihood estimators is estab-
lished under certain minimum conditions. A parallel result in the case of
adaptive designs is presented in Section 3, where the relevance of such a
result to quantal response experiments is also discussed.

2. Strong consistency for maximum quasi-likelihood estimators in
Ž � .the fixed design case. To fix notation, let y , x , i � 1, . . . , n be n pairs ofi i

responses and design vectors. By a fixed design, we mean that either the xi
are nonrandom p-dimensional vectors or the discussion is valid when condi-
tioning on the x , which may then be regarded as nonrandom. Thus through-i
out this section, the x are assumed to be nonrandom p-vectors.i

Ž . Ž .Let � be a continuously differentiable function such that � t � d� t �dt˙
� 0 for all t. A generalized linear model with � as the link function specifies
the regression relation between response y and design vector x throughi i

2.1 E y � � � � x ,Ž . Ž . Ž .i 0 i

where we use � to denote the true value of regression parameter vector �.0
ˆThe maximum quasi-likelihood estimator, denoted by � , will be the solutionn

to

n
�ˆ2.2 x y � � � x � 0.Ž . Ž .Ý i i n i

i�1

ˆNote that if such � exists, it must be unique. This is easily seen from then
positivity of �.˙

Ž � .Let � � y � � � x . The following two conditions will be used to estab-i i 0 i
ˆlish strong consistency for � :n

Ž . n �C1 The minimum eigenvalue of Ý x x goes to � as n � �.i�1 i i
Ž . � � 4C2 Ý c � converges a.s. for any sequence of constants c satisfyingi�1 i i i

Ý� c2 � �.i�1 i

ˆŽ .Condition C1 is certainly a minimum requirement for � to be consistent.n
Ž .Condition C2 is also extremely mild. In fact, in view of the

� Ž .Khintchine�Kolmogorov convergence theorem Chow and Teicher 1988 ,
� Ž .page 113 for the sum of independent zero-mean random variables, C2 is

implied by either of the following two conditions:

Ž �. 2C2 The � ’s are independent and sup E� � �.i i i
Ž � . Ž .C2 The x ’s are bounded and y ’s are independent with Var y �i i i

2 Ž � . 2� � � x for some � � 0.˙ 0 i
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Ž � . Ž �. Ž .It is clear that C2 implies C2 . Since condition C2 does not require the
observations be independent, it can be used for highly stratified observations

Ž . Ž �.such as those discussed in Liang and Zeger 1986 . Condition C2 handles
the situation in which only the link, not the variance function, is specified. On

Ž � .the other hand, C2 implies that the variance function is also correctly
specified.

Ž .Lai, Robbins and Wei 1979 proved that the least squares estimator for
Ž . Ž .linear regression models is strongly consistent under C1 and C2 . The

following theorem extends their result to generalized linear models.

Ž .THEOREM 1. For a generalized linear model specified by 2.1 with a fixed
design, suppose that

� �2.3 sup x � �Ž . i
i

ˆŽ . Ž .and that C1 and C2 are satisfied. Then � � � a.s. In fact,n 0

1�21��ˆ� �2.4 � � � � o log � n �� n a.s.Ž . Ž . Ž .½ 5n 0 min minž /
Ž . n �for any � � 0, where � n denotes the minimum eigenvalue of Ý x x .min i�1 i i

Ž .REMARK 1. That condition 2.3 is required is due to the nonlinearity of �.
ˆTo see why, we give a counterexample to show that � may not be consistentn

Ž .when 2.3 is dropped. Consider a logistic regression model specified by
Ž . Ž Ž ..�1 Ž .P y � 1 � 1 � exp �� x and x � i. Set � � 1. Clearly both C1i 0 i i 0

Ž .and C2 are satisfied. Choose k to be large enough so that0

k� 0i 1
2.5 � i .Ž . Ý Ýi �2 21 � ei�k �1 i�10

� 4Define the event A � y � 0, i � k and y � 1, i � k � 1 . Then from thei 0 i 0
ˆŽ .Borel�Cantelli lemma it follows that P A � 0. Furthermore, on A, �n

satisfies

kn 0 ˆi i exp � iŽ .n
2.6 � .Ž . Ý Ýˆ ˆ1 � exp � i 1 � exp � iŽ . Ž .i�k �1 i�1n n0

ˆ ˆŽ . Ž .From 2.5 and 2.6 , it follows that � � 1�2 on A. Hence � cannot ben n
consistent.

REMARK 2. If, however, � is bounded away from 0, as in the case of linear˙
ˆregression, then it is easily seen from our proof of Theorem 1 that � is stilln

Ž .strongly consistent without assuming 2.3 .

PROOF OF THEOREM 1. The proof is built upon the key result of Lai,
Ž .Robbins and Wei 1979 and an inverse function theorem, stated as Lemma A
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in the Appendix. Define

2.7 � � y � � � � x ,Ž . Ž .i i 0 i
n

� �2.8 G � � x � � x � � � x .Ž . Ž . Ž . Ž .Ýn i i 0 i
i�1

Ž . Ž .Because of C1 and C2 , we can apply Theorem 1 of Lai, Robbins and Wei
Ž .1979 to get, for any � � 0,

�1n n
�a � x x x �Ý Ýn i i i iž /

i�1 i�1

1�21��Žn. Žn.� �� o max v log v½ 5j j j jž /1�j�p

2.9Ž .

1�21��� o log � n �� n a.s.,Ž . Ž .½ 5min minž /
Žn. Ž n � .�1where v is the jth diagonal element of the matrix Ý x x and thej j i�1 i i

Žn. �1 Ž .last equality follows from the fact that v � � n for all j. Note thatj j min
Ž n � .�1 Ž .Ý x x exists for all large n since � n � �.i�1 i i min

By the mean-value theorem, for any p-vectors � and � ,1 2

n
� �˜2.10 G � � G � � � � x x x � � � ,Ž . Ž . Ž . Ž .˙ Ž .Ýn 1 n 2 i i i i 1 2

i�1

˜where for each i, � lies on the line segment between � and � . Definei 1 2

�1n
�˜2.11 G � � x x G � .Ž . Ž . Ž .Ýn i i nž /

i�1

Ž . Ž . p pSince � t � 0 for any t, 2.10 implies that G is an injection from R to R .˙ n
˜ p p ˜ Ž .Thus, G is also an injection from R to R and G � � 0.n n 0

Ž � .For any 	 � 0, let m � inf � � x . The boundedness of the x˙	 i, � ��� � �	 i i0
Ž . Ž .and the continuity of � entail m � 0. It follows from 2.10 and 2.11 that,˙ 	

� �for any � such that � � � � 	,0

2�1n2 �G̃ � � x x G � � G �Ž . Ž . Ž .Ž .Ýn i i n n 0ž /
i�1

�2n n
� � � �˜� � � � � � x x x x xŽ . ˙ Ž .Ý Ý0 i i i i i iž /
i�1 i�1

n
� �˜� � � x x x � � �Ž .˙ Ž .Ý i i i i 0

i�12.12Ž .
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�2�n n ˜� � x˙ Ž .i i� � � �˜� � � � � � x x x x xŽ . ˙ Ž .Ý Ý0 i i i i i iž /m	i�1 i�1

n
� �˜� � � x x x � � �Ž .˙ Ž .Ý i i i i 0

i�1

2 � � 2� m � � � .	 0

� �In particular, for all � such that � � � � 	,0

2
2 2˜2.13 G � � m 	 � 0.Ž . Ž .n 	

Let 
 � m 	. By applying Lemma A in the Appendix, we get	

˜�1 � � � �� 42.14 G b : b � 
 	 � : � � � � 	 .� 4Ž . Ž .n 0

ˆ � �We now prove the existence and consistency of � . By definition, a � 0n n
˜�1Ž . Ž .a.s. Therefore, 2.14 implies that, for all large n, G a is well defined andn n

� � .� 4lies in � : � � � � 	 . However,0
n n

� ��1 �1˜ ˜ ˜2.15 � x G a � y x � x x G G a � a � 0.Ž . Ž . Ž .Ž . Ž .Ý Ýi n n i i i i n n n n
i�1 i�1

ˆ ˜�1 ˆŽ . � �So, � � G a exists and � � � � 	 for all large n. Since 	 can ben n n n 0
ˆchosen to be arbitrarily small, � � � a.s.n 0

Ž .To derive the rate, that is, 2.4 , we can set 	 � 	 � � maxn 1� j� p
� Žn. � Žn. �1�� 41�2 Ž .v log v , where � is any fixed positive number. By 2.9 we stillj j j j

˜ ˆ ˆŽ . Ž . Ž . � �have G � � a � o 	 a.s. Thus, also in view of 2.14 , we have � � �n n n n n 0
Ž .� 	 for all large n. The desired rate of convergence 2.4 follows since � cann

be arbitrarily small.
Finally, we note that the boundedness of x is only used to ensure m � 0.i 	

If � is bounded away from zero, then the theorem holds without this˙
condition. In addition, in view of the preceding paragraph, the condition may

� � 2 Žn. � Žn. �1�� Ž .be relaxed to max x v log v � O 1 for every 1 � j � p. �i� n i j j j j

3. Strong consistency for maximum quasi-likelihood estimators in
the adaptive design case. In this section, we consider the adaptive design

�case, in which for each i, x may depend on y , j � i � 1. Formally, let FF ,i j i
4 Ž .i � 1 be a sequence of increasing �-fields �-filtration such that y 
 FF andi i

Ž .x 
 FF . The regression relation 2.1 now becomesi i�1

� �3.1 E y FF � � � x ,Ž . Ž .Ž .i i�1 0 i

where again � is the true value for � and � the link function which is0
assumed to be continuously differentiable with a positive derivative function.
As in the fixed design case, we similarly define errors

� �� � y � � � x � y � E y FF .Ž . Ž .i i 0 i i i i�1

� 4 �Clearly � , i � 1 forms a martingale difference sequence with respect to FF ,i i
4 Ž . Ž .i � 1 . As in Section 2, define � n and � n to be the minimum andmin max

maximum eigenvalues of Ýn x x� .i�1 i i
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Ž .In the case of linear regression, that is, � z � z, such adaptive designs
arise naturally in feedback control of linear systems in which all or part of
the x are set sequentially. It turns out that most optimal control rules resulti

Ž . n �in asymptotically ill-conditioned singular design matrices Ý x x in thei�1 i i
Ž . Ž .sense that � n �� n � 0. It is for these cases that the result of Laimin max

Ž .and Wei 1982 becomes very useful.
Many adaptive designs with generalized linear regression models face the

same singularity problem in terms of ill-conditioned design matrices. This
may be illustrated with a logistic regression for the so-called dose-response
problem where dose z and response y for the ith experiment satisfyi i

� �P y � 1 z � 1 � P y � 0 z � exp � � 
 z � 1 � exp � � 
 z .Ž . Ž .Ž . Ž .i i i i i i

� Ž .�An important type of design in biological assay Finney 1978 is one in
which z ’s are sequentially selected so that they converge to the mediani

Ž �lethal dose, or LD50. The LD50 here is equal to ���
 because P y � 1 z �i i
.���
 � 50%. Since for such designs z converges to ���
 as i � �,i

n � � Ž .Ý x x , where x � 1, z , must be asymptotically singular. It is thisi�1 i i i i
singularity and the dependency among the y due to the sequential selectioni
rule that make the usual approach based on the law of large numbers difficult
to apply. Detailed discussions of such designs may be found in Wetherill
Ž . Ž .1963 and Wu 1985, 1986 .

Below, we shall derive the strong consistency result for the generalized
Ž .linear models that parallels that of Lai and Wei 1982 . To do so, we first

introduce the following two conditions:

Ž . Ž . Ž . Ž . Ž .C3 lim � n �log � n � � a.s., where � n and � n are,n�� min max min max
respectively, the minimum and the maximum eigenvalues of Ýn x x� .i�1 i i

Ž . Ž � � � .C4 sup E � � FF � � a.s. for some � � 2.i�1 i i�1

Ž .THEOREM 2. For the generalized linear model as specified by 3.1 with an
adaptive design, suppose

� �3.2 sup x � � a.s.Ž . i
i�1

ˆ Ž . Ž .Then � is strongly consistent under C3 and C4 . More precisely,n
1�2ˆ� �3.3 � � � � O log � n �� n a.s.� 4Ž . Ž . Ž .ž /n 0 max min

REMARK 3. Suppose that in a quantal response experiment with a logistic
Ž . � Ž .��1link, that is, � z � 1 � exp �� � 
 z , the design sequence is generated

by the stochastic approximation algorithm of form
c

z � z � y � 1�2Ž .n n�1 nn
to approximate the optimal design z	 � ���
 . If c � 2�
 , then it follows

Ž . 	from Lai and Robbins 1979 , Theorem 2, that z � z a.s., which impliesn
Ž . Ž . Ž . 1�c
 �2� n �� n � � a.s., and that � n is of order n , which impliesmax min min

Ž .C3 . So the preceding theorem implies that the maximum likelihood estima-
tor is strongly consistent.
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Ž . Ž .REMARK 4. Condition C3 was shown to be sharp by Lai and Wei 1982
for linear regression with an adaptive design.

REMARK 5. As in the fixed design case, the boundedness of x is noti
Ž .needed if � is bounded away from 0. Furthermore, 3.2 can be replaced by a˙

� � 2 Ž Ž . Ž ..slightly weaker condition, max x � o � n �log � n .i� n i min max

PROOF OF THEOREM 2. The proof is similar in spirit to the proof of
Ž � .�1 Ž .Theorem 1. Specifically, define a � Ýx x Ýx � , the same as in 2.9 . Letn i i i i

˜Ž . Ž . Ž .G � be the vector-valued function defined by 2.8 and G � �n n
� �1 ˜Ž . Ž .Ýx x G � . As we argued in the proof of Theorem 1, G and G arei i n n n

p p ˜ Ž .injections from R to R and G � � 0. Thus, letting m �n 0 	

Ž � . Ž .inf � � x , we have, by the argument of 2.12 ,˙i, � ��� � �	 i0

2 22˜ � � � �G � � m � � � for � � � � 	Ž .n 	 0 03.4Ž .
2 2 � �� m 	 � 0 for � � � � 	 .	 0

˜�1 � � � 4So, letting 
 � m 	, we know that G is well defined on b: b � 
 andn n
˜�1Ž� � � 4. � � � 4 Ž .G b: b � 
 	 � : � � � � 	 . Now condition C3 and Lai and Wein 0
Ž . Ž .1982 , Theorem 1, imply that a � 0 a.s. So, by the argument of 2.15 ,n
ˆ ˜�1Ž . � � � 4� � G a exists and falls into � : � � � � 	 for all large n. Then n n 0

ˆ Ž .arbitrariness of 	 entails � � � a.s. Furthermore, 3.3 follows by choosingn 0
Ž . Ž .	 to be of order log � n �� n . �max min

APPENDIX

p p Ž .LEMMA A. Let H be a smooth injection from R to R with H x � y .0 0
Ž . � p � � 4 Ž . Ž . � p �Define B x � x 
 R , x � x � � and S x � �B x � x 
 R , x� 0 0 � 0 � 0

� 4 � Ž . �� x � � . Then inf H x � y � r implies:0 x 
 S Ž x . 0� 0

Ž . Ž . � p � � �4 Ž Ž ..i B y � y 
 R , y � y � r 	 H B x ;r 0 0 � 0
Ž . �1Ž Ž .. Ž .ii H B y 	 B x .r 0 � 0

Ž . Ž .PROOF. Part i , which clearly implies ii , is a straightforward conse-
Ž . Ž Ž ..quence of H being a homeomorphism from B x to H B x and a� 0 � 0

� Ž . �standard result in topology Dugundji 1966 , page 359, Corollary 3.2 . �
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