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Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution.

The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so

far been ignored in the MCMC community. We present a class of multivariate spectral variance estimators

for the asymptotic covariance matrix in the Markov chain central limit theorem and provide conditions for

strong consistency. We examine the finite sample properties of the multivariate spectral variance estimators

and its eigenvalues in the context of a vector autoregressive process of order 1.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods are often required for parameter estimation in the

statistical models encountered in modern applications. The typical MCMC experiment consists

of simulating a Markov chain in order to estimate a vector of quantities, such as moments or

quantiles, associated with the target distribution. However, the multivariate nature of the esti-

mation has only rarely been acknowledged in the MCMC literature. We consider the situation

where estimation of a vector of means is of interest. Given a multivariate Markov chain central

limit theorem (CLT) for the sample mean vector, we show that a class of multivariate spectral

variance estimators (MSVEs) are strongly consistent estimators of the covariance matrix in the

asymptotic normal distribution. We also establish strong consistency of the eigenvalues of any

strongly consistent estimator of the asymptotic covariance matrix.

We know of no other comparable work in the context of MCMC. Kosorok [41] did propose

estimators of the asymptotic covariance matrix which generalized work in the univariate case by

Geyer [23]. However, these estimators are asymptotically conservative and are based on the prop-

erties of reversible Markov chains, an assumption we do not make. There has been a substantial

amount of work in the univariate setting. In particular, Atchadé [4] and Flegal and Jones [19] es-

tablished strong consistency of certain univariate spectral variance estimators, but the multivari-

ate problem is more complicated and requires much new work. Moreover, our work represents

a substantial generalization of the univariate results and requires much weaker conditions on the

Markov chain. Thus, we also improve the current results in the univariate setting.
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We will give a more formal description of the problem studied here. Let F be a probability

distribution with support X, equipped with a countably generated σ -field B(X) and let g : X →R
p

be an F -integrable function such that

θ := EF g =
∫

X

g(x)dF

is the p-dimensional vector of interest. Note that X and θ often have different dimensions. It is

common to resort to MCMC methods to estimate θ when it is difficult to obtain θ analytically

or to produce independent samples from F . MCMC is popular because it is straightforward to

simulate a Harris ergodic (i.e., aperiodic, F -irreducible, and positive Harris recurrent) Markov

chain having invariant distribution F (Geyer [24], Liu [43], Robert and Casella [50]). Letting

X = {X1,X2,X3, . . .} denote such a Markov chain, estimation is easy since, for any initial dis-

tribution, with probability 1,

θn := 1

n

n∑

t=1

g(Xt ) → θ as n → ∞. (1.1)

Of course, for any n there will be an unknown Monte Carlo error in estimation, θn − θ , and

assessment of this Monte Carlo error is critical to the reliability of the simulation results (Flegal

et al. [18], Flegal and Jones [20], Geyer [23], Jones and Hobert [37]). However, the multivariate

nature of the Monte Carlo error has been largely ignored in the MCMC literature (but see Gong

and Flegal [26]).

Instead, the primary focus has been on assessing the univariate Monte Carlo error. Let g(i),

θ
(i)
n , and θ (i), denote the ith components of g, θn, and θ , respectively. Then θ

(i)
n − θ (i) is the

unknown Monte Carlo error of the ith component. The approximate sampling distribution of this

error is available via a Markov chain CLT if there exists 0 < σ 2
i < ∞ such that, as n → ∞,

√
n
(
θ (i)
n − θ (i)

) d→ N
(
0, σ 2

i

)
. (1.2)

(See Jones [35] and Roberts and Rosenthal [52] for a discussion of the conditions for (1.2).) Due

to serial correlation in X, VarF g(i) �= σ 2
i , except in trivial cases. Nevertheless, consistent esti-

mation of σ 2
i is key to constructing asymptotically valid confidence intervals for θ (i) and hence

in assessing the reliability of the simulation results (Flegal and Gong [17], Flegal et al. [18],

Glynn and Whitt [25], Jones et al. [36], Jones and Hobert [37]). Thus consistent estimation of σ 2
i

has received significant attention; Atchadé [4], Damerdji [10], and Flegal and Jones [19] studied

spectral variance estimators, Hobert et al. [28] and Mykland et al. [46] investigated estimators

based on regenerative simulation, and Jones et al. [36] studied nonoverlapping batch means.

Geyer [23] introduced asymptotically conservative estimators based on the spectral properties

of reversible Markov chains. Doss et al. [13] considered univariate estimators in the context of

estimating quantiles.

In the multivariate setting, the approximate sampling distribution of the Monte Carlo error is

available via a Markov chain CLT if there exists a positive definite p × p matrix � such that

√
n(θn − θ)

d→ Np(0,�) as n → ∞. (1.3)
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We consider a class of MSVEs of � and provide conditions for strong consistency. Our main as-

sumption on the process is the existence of a multivariate strong invariance principle (SIP); that

is, we assume that the centered and appropriately scaled partial sum process is similar to a Brow-

nian motion. Specifically, an SIP holds for {g(Xt )}t≥1 if there exists a p × p lower triangular

matrix L and an increasing function ψ on the integers such that, with probability 1,

n(θn − θ) = LB(n) + O
(
ψ(n)

)
as n → ∞,

where B(n) denotes a p-dimensional standard Brownian motion and LLT = �. If ψ is such that

ψ(n)/
√

n → 0 as n → ∞, the SIP implies a strong law, a CLT, and a functional CLT for θn. Un-

der moment conditions on g, an SIP with ψ(n) = n1/2−λ for some λ > 0 holds for polynomially

ergodic Markov chains.

There has been a substantial amount of work in the context of MCMC on establishing that

Markov chains are at least polynomially ergodic. An incomplete list is given by Acosta et

al. [1], Doss and Hobert [14], Fort and Moulines [21], Hobert and Geyer [27], Jarner and

Hansen [30], Jarner and Roberts [31,32], Johnson and Geyer [34], Johnson and Jones [33], Jones

et al. [38], Marchev and Hobert [44], Petrone et al. [47], Roberts and Rosenthal [51], Roberts

and Tweedie [53], Rosenthal [54], Roy and Hobert [55], Tan and Hobert [57], Tan et al. [58],

and Tierney [59]. While establishing that a Markov chain is at least polynomially ergodic can be

challenging, it is not the obstacle that it once was.

1.1. Motivating example

As motivation for the use of multivariate methods, we present a simple Bayesian logistic regres-

sion model. For i = 1, . . . ,K , let Yi be a binary response variable. For the ith observation, let

Xi = (xi1, xi2, . . . , xi5) be the observed vector of predictors, then

Yi |Xi, β
ind∼ Bernoulli

(
1

1 + e−Xiβ

)
and β ∼ N5(0, I5). (1.4)

The resulting posterior F is intractable and hence MCMC is used to obtain estimates of the

regression coefficient, β . We use the logit dataset in the mcmc R package which con-

tains four predictors and 100 observations. The goal is to estimate the posterior mean of

β = (β0, β1, β2, β3, β4)
T . Thus, g here is the identity function mapping to R

5.

To sample from the posterior, we use the Polya-Gamma Gibbs sampler of Polson et al. [49]

(see the R package BayesLogit) which was shown to be uniformly ergodic by Choi and

Hobert [7]. Although the chain mixes fairly quickly as seen in the autocorrelation plot for β0

in Figure 1, the cross-correlation plot between β0 and β2 indicates correlation across these com-

ponents that is ignored by univariate methods. As a result in Figure 2, the multivariate confidence

ellipse is oriented along non-standard axes (see Vats et al. [61] for details on how to construct

such confidence regions). The ellipse is compared to two univariate confidence boxes; the smaller
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Figure 1. Autocorrelation plot for β0 and the cross-correlation plot between β0 and β2 for a Monte Carlo

sample size of n = 105.

Figure 2. 90% confidence regions constructed using univariate and multivariate methods. The solid ellipse

is constructed using an MSVE, the dotted smaller box is constructed using an uncorrected univariate spectral

variance estimator and the dashed larger box is constructed using a univariate spectral variance estimator

corrected by Bonferroni.
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Table 1. Volume to the pth (p = 5) root and coverage probabilities for 90% confidence regions constructed

using MSVE, uncorrected univariate spectral estimators and Bonferroni corrected univariate spectral esti-

mators. Replications = 1000 and standard errors are indicated in parenthesis

n MSVE Bonferroni corrected Uncorrected

Volume to the 5th root

1e3 0.0574 (4.93e–05) 0.0687 (7.02e–05) 0.0483 (4.93e–05)

1e4 0.0189 (7.50e–06) 0.0226 (1.12e–05) 0.0160 (7.90e–06)

1e5 0.0061 (1.10e–06) 0.0073 (1.50e–06) 0.0051 (1.10e–06)

Coverage probabilities

1e3 0.853 (0.0112) 0.871 (0.0106) 0.549 (0.0157)

1e4 0.882 (0.0102) 0.904 (0.0093) 0.612 (0.0154)

1e5 0.895 (0.0097) 0.910 (0.0090) 0.602 (0.0155)

uncorrected for multiple testing and the larger corrected for two tests using a Bonferroni correc-

tion.

We assess the performance of these confidence regions by comparing their coverage probabil-

ities and volumes over 1000 independent replications for varying Monte Carlo sample sizes. In

particular we look at the volume to the pth root (p = 5 in this example). The “true” posterior

mean is determined by obtaining a Monte Carlo estimate from a sample of length 109. Results

are presented in Table 1. Note that as the Monte Carlo sample size increases, the multivariate

methods produce confidence regions with the nominal coverage probability of 90% with sig-

nificantly lower volume compared to the Bonferroni corrected regions. The uncorrected regions

have far from desirable coverage probabilities.

One reason for the reduction in volume of the ellipsoid is that multivariate methods capture

information ignored by univariate analysis. This also leads to a better understanding of the effec-

tive samples obtained in an MCMC sample. Vats et al. [61] provide the following estimator of

effective sample size

n

( |�̂|
|�̂|

)1/p

,

where �̂ is the sample covariance matrix for g(Xt ), �̂ is a strongly consistent estimator of �,

and | · | denotes determinant. They demonstrate the superiority of this estimator to the univariate

estimator of effective sample size of Kass et al. [39] and Gong and Flegal [26].

The rest of the paper is organized as follows. In Section 2, we formally define the MSVE and

present conditions for strong consistency. We also establish strong consistency of the eigenvalues.

Section 3 contains a simulation study where we investigate the finite sample properties of the

MSVE in the context of a vector autoregressive process. Finally, we present a discussion in

Section 4. Many technical details of the proofs from Section 2 are deferred to the Appendices.
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2. Spectral estimators and results

2.1. Definition of MSVE

Let Yt = g(Xt ) − θ , t = 1,2,3, . . . and define the lag s, s ≥ 0, autocovariance matrix as

γ (s) = γ (−s)T = EF

[
YtY

T
t+s

]
.

Define Is as Is = {1, . . . , (n − s)} for s ≥ 0 and as Is = {(1 − s), . . . , n} for s < 0. Let Ȳn =
n−1

∑n
t=1 Yt and define the lag s sample autocovariance as

γn(s) = 1

n

∑

t∈Is

(Yt − Ȳn)(Yt+s − Ȳn)
T . (2.1)

The MSVE is a weighted and truncated sum of the lag s sample autocovariances,

�̂S =
bn−1∑

s=−(bn−1)

wn(s)γn(s), (2.2)

where wn(·) is the lag window and bn is the truncation point.

2.2. Strong consistency of MSVE

2.2.1. Strong invariance principle

While Markov chains are our primary interest, we only require {Xt }t≥1 to be a stochastic process

which satisfies a strong invariance principle or SIP. In the interest of clarity, the SIP was stated

somewhat loosely in Section 1. What follows is a formal statement of our assumption.

Recall that F is a distribution having support X, g : X →R
p , and we are interested in estimat-

ing θ = EF g. We assume g2 (where the square is element-wise) is an F -integrable function. Set

h(Xt ) = [g(Xt ) − θ ]2, let ‖ · ‖ denote the Euclidean norm, and let B(t) denote a p-dimensional

standard Brownian motion.

We will require an SIP for the partial sums of both g and h. We assume there exists a p × p

lower triangular matrix L, an increasing function ψ on the integers, a finite random variable D,

and a sufficiently rich probability space such that, with probability 1,

∥∥∥∥∥

n∑

t=1

g(Xt ) − nθ − LB(n)

∥∥∥∥∥ < Dψ(n). (2.3)

We also assume there exists a finite p-vector θh, a p×p lower triangular matrix Lh, an increasing

function ψh on the integers, a finite random variable Dh, and a sufficiently rich probability space

such that, with probability 1,

∥∥∥∥∥

n∑

t=1

h(Xt ) − nθh − LhB(n)

∥∥∥∥∥ < Dhψh(n). (2.4)



1866 D. Vats, J.M. Flegal and G.L. Jones

Remark 1. Strong invariance principles have attracted much research interest and have been

shown to hold for a wide variety of processes; see Section 4 for some discussion on this point.

Results from Kuelbs and Philipp [42] show that for the Markov chains commonly encountered in

MCMC settings, (2.3) and (2.4) hold with ψ(n) = ψh(n) = n1/2−λ for some λ > 0. The correla-

tion of the process is measured indirectly by ψ (Philipp and Stout [48]); a large serial correlation

implies λ is closer to 0 while for less correlated processes λ is closer to 1/2.

2.2.2. Strong consistency

In (2.2), we define the MSVE as the weighted and truncated sum of the lag s sample autocovari-

ances. We make the following assumptions on the lag window wn(·) and the truncation point bn.

Condition 1. The lag window wn(·) is an even function defined on Z such that

(a) |wn(s)| ≤ 1 for all n and s,

(b) wn(0) = 1 for all n, and

(c) wn(s) = 0 for all |s| ≥ bn.

Anderson [2] gives a list of lag windows that satisfy Condition 1. We will consider some of

these further in Section 2.2.4.

The following Conditions 2 and 3 are technical conditions ensuring that bn grows at the right

rate compared to n.

Condition 2. Let bn be an integer sequence such that bn → ∞ and n/bn → ∞ as n → ∞ where

bn and n/bn are non-decreasing.

Condition 3. Let bn be an integer sequence such that

(a) there exists a constant c ≥ 1 such that
∑

n(bn/n)c < ∞,

(b) bnn
−1 logn → 0 as n → ∞,

(c) b−1
n logn = O(1), and

(d) n > 2bn.

If bn = ⌊nν⌋, where 0 < ν < 1, then Condition 3 is satisfied if n > 21/(1−ν).

Define

�1wn(k) = wn(k − 1) − wn(k)

and

�2wn(k) = wn(k − 1) − 2wn(k) + wn(k + 1).

Condition 4. Let bn be an integer sequence, wn be the lag window, and ψ(n) and ψh(n) be

positive functions on the integers such that,

(a) bnn
−1

∑bn

k=1 k|�1wn(k)| → 0 as n → ∞,

(b) bnψ(n)2 logn(
∑bn

k=1 |�2wn(k)|)2 → 0 as n → ∞,
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(c) ψ(n)2
∑bn

k=1 |�2wn(k)| → 0 as n → ∞,

(d) b−1
n ψh(n) → 0 as n → ∞, and

(e) b−1
n ψ(n) → 0 as n → ∞.

Condition 4(a) connects the truncation point bn to the lag window wn. In Section 2.2.4, we

will present examples of lag windows that satisfy this condition. The functions ψ(n) and ψh(n)

in Conditions 4(b), (c), (d), and (e) correspond to the functions described in (2.3) and (2.4)

and thus these four conditions connect the truncation point bn, the lag window wn, and the

correlation of the process, measured indirectly by ψ(n) and ψh(n). In Lemma 1, we present

sufficient conditions for Conditions 4(a), (b), and (c).

Theorem 1. Suppose the strong invariance principles (2.3) and (2.4) hold. If Conditions 1, 2, 3,

and 4 hold, then �̂S → �, with probability 1, as n → ∞.

Outline of proof. The proof is split into several lemmas; see the Appendix for details. Define

for l = 0, . . . , (n − bn), Ȳl(k) = k−1
∑k

t=1 Yl+t and

�̂w,n = 1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
[
Ȳl(k) − Ȳn

][
Ȳl(k) − Ȳn

]T
.

For t = 1, . . . , n, define Zt = Yt − Ȳn. Then, in Lemma 4 we show that �̂w,n = �̂S − dn, where

dn = 1

n

{
bn∑

t=1

�1wn(t)

(
t−1∑

l=1

ZlZ
T
l +

n∑

l=n−bn+t+1

ZlZ
T
l

)

+
bn−1∑

s=1

[
bn−s∑

t=1

�1wn(s + t) (2.5)

×
(

t−1∑

l=1

(
ZlZ

T
l+s + Zl+sZ

T
l

)
+

n−s∑

l=n−bn+t+1

(
ZlZ

T
l+s + Zl+sZ

T
l

)
)]}

.

Notice that in (2.5) we use the convention that empty sums are zero. In Lemma 9, we show that

dn → 0 as n → ∞ with probability 1. Thus, �̂w,n − �̂S → 0, with probability 1, as n → ∞. In

Lemma 14, we show that �̂w,n → �, with probability 1, as n → ∞, and the result follows. �

We use Theorem 1 to give conditions for the strong consistency of �̂S when the underlying

stochastic process is a Harris ergodic Markov chain having invariant distribution F , but first we

need a couple of definitions. Recall that F has support X and B(X) is a countably generated σ -

field. For n ∈ N = {1,2,3, . . .}, let the n-step Markov kernel associated with X starting at x ∈ X

be P n(x, dy). Then if A ∈ B(X) and r ∈ {1,2,3, . . .}, P n(x,A) = Pr(Xr+n ∈ A|Xr = x). Let

‖ · ‖TV denote the total variation norm. The Markov chain is polynomially ergodic of order ξ
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where ξ > 0 if there exists M : X → R
+ with EF M < ∞ such that

∥∥P n(x, ·) − F(·)
∥∥

TV
≤ M(x)n−ξ . (2.6)

Notice that polynomial ergodicity is weaker than geometric or uniform ergodicity; see Meyn and

Tweedie [45].

Remark 2. Polynomial ergodicity is often proved by establishing the following drift condition.

For a function V : X → [1,∞) there exists d > 0, b < ∞, and 0 ≤ τ < 1 such that for x ∈ X

E
[
V (Xn+1)|Xn = x

]
− V (x) ≤ −d

[
V (x)

]τ + bI (x ∈ C),

where C is a small set. In order to verify that EF M < ∞, it is sufficient to show that EF V < ∞
by Theorem 14.3.7 in Meyn and Tweedie [45].

Theorem 2. Suppose EF ‖g‖4+δ < ∞ for some δ > 0. Let X be a polynomially ergodic Markov

chain of order ξ ≥ (1 + ε)(1 + 2/δ) for some ε > 0. Then (2.3) and (2.4) hold with

ψ(n) = ψh(n) = n1/2−λ,

for some λ > 0 that depends on p, ε, and δ. If Conditions 1, 2, 3, and 4 hold, then �̂S → �, with

probability 1, as n → ∞.

Proof. See Appendix A.4. �

Remark 3. We rely on results provided by Kuelbs and Philipp [42] to establish the existence of

(2.3) and (2.4) in Theorem 2. The precise relationship of λ with p, ε, and δ is not investigated in

Kuelbs and Philipp [42] and remains an open problem.

Remark 4. When p = 1, the MSV estimator reduces to the spectral variance estimator (SVE)

considered by Atchadé [4], Damerdji [10], and Flegal and Jones [19]. However, our result re-

quires weaker conditions. First notice that Flegal and Jones [19] required weaker conditions than

Damerdji [10]. Thus we only need to compare Theorem 2 to the results in Atchadé [4] and Fle-

gal and Jones [19], both of whom required the Markov chains to be geometrically ergodic and to

satisfy a one-step minorization condition. Thus Theorem 2 substantially weakens the conditions

on the underlying Markov chain, while extending the results to the p ≥ 1 setting.

2.2.3. Strong consistency of eigenvalues

Having obtained a strongly consistent estimator of �, it is natural to consider the eigenvalues of

the estimator.

Theorem 3. Let �̂ be any strongly consistent estimator of � and let λ1 ≥ λ2 ≥ · · · ≥ λp > 0 be

the eigenvalues of �. Let λ̂1, . . . , λ̂p be the p eigenvalues of �̂ such that λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ,

then λ̂k → λk , with probability 1, as n → ∞ for all 1 ≤ k ≤ p.
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Proof. Let ‖ · ‖F denote the Frobenius norm. By Weyl’s inequality (Franklin [22]), for ε > 0, if

‖�̂ − �‖F ≤ ε, then for all 1 ≤ k ≤ p, |λ̂k − λk| ≤ ε, which gives the desired result. �

Remark 5. Theorem 3 immediately implies that under the conditions of either Theorem 1 or

Theorem 2 the sample eigenvalues of the MSVE are consistent for the population eigenvalues.

That is, λ̂k → λk , with probability 1, as n → ∞ for all 1 ≤ k ≤ p.

Sample eigenvalues can play an important role in multivariate analyses. For example, the

length of any axis of the confidence region constructed from �̂S is determined by the magni-

tude of the relevant estimated sample eigenvalue. Thus the largest eigenvalue is associated with

the axis having the largest estimated Monte Carlo error. This also suggests that dimension reduc-

tion methods could be useful in assessing the reliability of the simulation effort. Although this is

a potentially interesting research direction it is beyond the scope of this paper.

2.2.4. Lag window conditions

The following generalization of Lemma 7 in Flegal and Jones [19] is useful for checking that a

lag window satisfies the conditions of Theorem 1.

Lemma 1. Reparameterize wn such that wn is defined on [0,1] and wn(0) = 1 and wn(1) = 0.

Further assume that wn is twice continuously differentiable and that there exists finite constants

D1 and D2 such that |w′
n(x)| ≤ D1 and |w′′

n(x)| < D2. Then as n → ∞,

1. Condition 4(a) holds if b2
nn

−1 → 0,

2. Conditions 4(b) and (c) holds if b−1
n ψ(n)2 logn → 0.

Proof. The argument is the same as that of Lemma 7 in Flegal and Jones [19] and hence is

omitted. �

Remark 6. It is common to use bn = ⌊nν⌋ in which case Conditions 4(a), (b), and (c) hold, if we

choose 0 < ν < 1/2 such that n−νψ(n)2 logn → 0 as n → ∞.

Remark 7. We now consider some examples of lag windows which satisfy Condition 1 and

consider whether Conditions 4(a), (b), and (c) hold.

1. Simple truncation: wn(k) = I (|k| < bn). Using this window the estimator obtained is trun-

cated at bn but weighted identically. In this case, �2wn(k) = 0 for k = 1, . . . , bn − 2,

�2wn(bn − 1) = −1 and �2wn(bn) = 1. It is easy to see that Condition 4(c) is not sat-

isfied.

2. Blackman–Tukey: wn(k) = [1 − 2a + 2a cos(π |k|/bn)]I (|k| < bn) where a > 0. This is a

generalization for the Tukey–Hanning window where a = 1/4. For fixed a, the Blackman–

Tukey window satisfies the conditions of Lemma 1, thus Conditions 4(a), (b), and (c) hold

if b2
nn

−1 → 0 and b−1
n ψ(n)2 logn → 0 as n → ∞.

3. Parzen: wn(k) = [1 − |k|q/b
q
n]I (|k| < bn) for q ∈ Z

+. When q = 1 this is the modified

Bartlett window. It is easy to show that the Parzen window satisfies the conditions for
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Figure 3. Plot of three lag windows, modified Bartlett (Bartlett), Tukey–Hanning and the scale-parameter

Bartlett with scale parameter 2 (Scaled-Bartlett).

Lemma 1, and thus Conditions 4(a), (b), and (c) hold if b2
nn

−1 → 0 and b−1
n ψ(n)2 logn →

0 as n → ∞.

4. Scale-parameter modified Bartlett: wn(k) = [1 − η|k|/bn]I (|k| < bn) where η is a positive

constant not equal to 1. Then �1wn(k) = ηb−1
n for k = 1,2, . . . , bn − 1 and �1wn(bn) =

1 − η + ηb−1
n so that Condition 4(a) is satisfied when b2

nn
−1 → 0 as n → ∞. Also,

�2wn(k) = 0 for k = 1,2, . . . , bn − 2, �2wn(bn − 1) = η − 1 and �2wn(bn) = 1 − η +
ηb−1

n . We conclude that
∑bn

k=1 |�2wn(k)| does not converge to 0 and hence Condition 4(c)

is not satisfied.

Figure 3 provides a graph of the three lag windows we consider in the next section, specifically,

the modified Bartlett, Tukey–Hanning, and scale-parameter modified Bartlett windows. It is evi-

dent that the modified Bartlett and Tukey–Hanning windows are similar and the scale-parameter

modified Bartlett window weighs the lags more severely.

3. Simulation

We consider some finite sample properties of the MSVE in the context of a vector autoregressive

process of order 1 or VAR(1). Let

yt = �yt−1 + εt , (3.1)
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Table 2. Simulation settings 1 through 6

Setting p Eigenvalues of � for i = 0, . . . , p − 1

1 10 λi = 0.01 + i(0.20 − 0.01)/(p − 1)

2 10 λi = 0.40 + i(0.60 − 0.40)/(p − 1)

3 10 λi = 0.70 + i(0.90 − 0.70)/(p − 1)

4 50 λi = 0.01 + i(0.20 − 0.01)/(p − 1)

5 50 λi = 0.40 + i(0.60 − 0.40)/(p − 1)

6 50 λi = 0.70 + i(0.90 − 0.70)/(p − 1)

where yt ∈ R
p for all t , � is a p × p matrix, εt

i.i.d.∼ Np(0,W), and y0 is the zero vector. While

this is a simple model, it is useful to study since we can control the correlation of the process.

We assume that the largest eigenvalue of �, φmax, is less than 1 in absolute value, in which

case the stationary distribution for the process is F = Np(0,V ) where vec(V ) = (Ip2 − � ⊗
�)−1 vec(W). Here ⊗ denotes Kronecker product and Ip2 is the p2 × p2 identity matrix. With

some algebra it can be shown that the lag s autocovariance matrix for s > 0 is

γ (s) = �sV and γ (−s) = V
(
�T

)s
.

Consider estimating EF y with ȳn, the Monte Carlo estimate. Tjøstheim [60] showed that the

process is geometrically ergodic as long as |φmax| < 1. In fact, the smaller the largest eigenvalue,

the faster the process mixes. Since F has a moment generating function, a CLT holds with

� =
∞∑

s=−∞
γ (s)

=
∞∑

s=0

γ (s) +
0∑

s=−∞
γ (s) − V

(3.2)

=
∞∑

s=0

�sV +
0∑

s=−∞
V

(
�T

)s − V

= (1 − �)−1V + V
(
1 − �T

)−1 − V.

For this process, we investigate the performance of the class of MSVE in estimating �. We

set W to be the first order autoregressive covariance matrix with correlation ρ = 0.5 and present

simulation results for different settings of � and p. These settings are presented in Table 2. For

Settings 1 and 4, φmax = 0.2, Settings 2 and 5, φmax = 0.6 and Settings 3 and 6, φmax = 0.9.

Thus, these three pairs of settings yield processes with different mixing rates.

We compare the performance of three lag windows: modified Bartlett, Tukey–Hanning, and

scale-parameter modified Bartlett with scale = 2. In Section 2, we showed that the modified

Bartlett and the Tukey–Hanning windows satisfy the conditions of Theorem 1 while the scale-

parameter modified Bartlett does not.
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Figure 4. ‖�̂S − �‖F /‖�‖F for the three lag windows at different Monte Carlo sample sizes for all six

settings averaged over 100 iterations.

For each setting, we do the following in each of 100 independent replications. We observe

the process for a Monte Carlo sample size of 1e5, and calculate the three MSVEs at samples

{1e3,5e3,1e4,5e4,1e5} with bn = ⌊n1/3⌋. The error in estimation is determined by calculating

the average relative difference in Frobenius norm, i.e. ‖�̂ − �‖F /‖�‖F for each of the three

windows at all five Monte Carlo sample sizes.

In Figure 4, we plot the results for all settings for all three lag windows. For Settings 1 and 4, all

three lag windows perform equally well while for Settings 3 and 6, the scale parameter modified

Bartlett window performs poorly. In all settings, the modified Bartlett and the Tukey–Hanning
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windows perform similarly, but the Tukey–Hanning window is slightly better when the chain

mixes more slowly. The plots also indicate that as φmax increases, a larger Monte Carlo sample

size is required for a desired error in estimation threshold. This is as expected since we know for

higher values of φmax, the process mixes more slowly.

In Section 2, we presented the proof for the convergence of the eigenvalues of the MSVE

in Remark 5. To study the finite sample properties of the maximum eigenvalue, we observe its

behavior for the three different lag windows at different Monte Carlo sample sizes over each of

100 independent replications. At each replication, we observe the relative error in estimation,

|λ̂1 − λ1|/λ1. The results are presented in Figure 5 and are similar to what was observed for the

convergence of the MSVEs. For Settings 2, 3, 5 and 6, the scale-parameter modified Bartlett win-

dow performs significantly worse than the Tukey–Hanning and the modified Bartlett windows.

When the chain mixes more slowly, the Tukey–Hanning window appears to give slightly better

results.

It is natural to investigate the stability of estimation of the largest eigenvalue. We study this

empirically for Setting 1 by observing the shape of the distribution of the maximum eigenvalue

for the estimates of � obtained through the three lag windows at varying Monte Carlo sam-

ple sizes over the 100 independent replications. Using (3.2), the true maximum eigenvalue for

this setting is 2.683. In Figure 6, we notice that as the Monte Carlo sample size increases, the

shape of the density of the largest eigenvalue is increasingly symmetric and centered at this true

value. In addition, as the Monte Carlo sample size increases, the variance of the largest estimated

eigenvalue decreases. This is observed for all three lag windows.

4. Discussion

Estimation of the asymptotic covariance matrix in the CLT as in (1.3) has received little at-

tention in the MCMC literature thus far. Due to the results of this paper, practitioners are

now equipped with a class of strongly consistent multivariate spectral variance estimators

of �.

However, multivariate spectral variance estimators are also encountered outside of the MCMC

context. For example, they are often used for heteroscedastic and autocorrelation consistent

(HAC) estimation of covariance matrices which, for example, arise in the study of generalized

method of moments and autoregressive processes with heteroscedastic errors. See Andrews [3]

for motivating examples. In the context of HAC estimation, DeJong [11] obtained conditions

under which the class of MSVEs are strongly consistent. However, these conditions are restric-

tive in the context of MCMC. In particular, his Assumption 2 (DeJong [11], page 264) will

not be satisfied in many typical MCMC applications. Additionally, we require weaker mixing

conditions on the underlying stochastic process. That is, although Markov chains are the pri-

mary focus for us, our results hold for much more general stochastic processes as we explain

below.

Our main assumption on the underlying stochastic process are the SIPs as stated in (2.3)

and (2.4). The existence of an SIP has attracted much research interest. Consider the univari-

ate case. For independent and identically distributed (i.i.d.) processes, the first result of this

kind is due to Strassen [56] who showed ψ(n) = √
n log logn. Komlós et al. [40] found that
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Figure 5. |λ̂1 − λ1|/λ1 for the three lag windows at different Monte Carlo sample sizes for all six settings

averaged over 100 iterations.

if EF |g|2+δ < ∞, then ψ(n) = n1/2−λ for λ > 0 (often called the KMT bound). Komlós et al.

[40] also showed that if g has all moments in a neighborhood of 0, then ψ(n) = logn. The results

of Komlós et al. [40] are the strongest to date in the i.i.d. setting. The main reference for a uni-

variate strong invariance principle for dependent sequences is Philipp and Stout [48] who prove

bounds similar to that of Komlós et al. [40] for a variety of weakly dependent processes including

φ-mixing, regenerative and strongly mixing processes. Also, see Wu [63] for a univariate strong

invariance principle for certain classes of dependent processes.
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(a) n = 103 (b) n = 104

(c) n = 105

Figure 6. Kernel density of the maximum eigenvalue for the three MSVEs over 100 replications and in-

creasing Monte Carlo sample sizes for Setting 1. The vertical line indicates the true eigenvalue of 2.683

calculated using (3.2).

Many of the univariate SIPs have been extended to the multivariate setting. For independent

processes, Berkes and Philipp [5], Einmahl [16], and Zaitsev [64] extend the results of Komlós

et al. [40]. For correlated processes, Eberlein [15] showed the existence of a strong invariance

principle for Martingale sequences and Horvath [29] proved the KMT bound for multivariate

extended renewal processes. For φ-mixing, strongly mixing, and absolutely regular processes,

Kuelbs and Philipp [42] and Dehling and Philipp [12] extended the Philipp and Stout [48] results

to the multivariate case.
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Appendix: Strong consistency of MSVE

Before we begin the proof of Theorem 1 we note some useful properties of Brownian motion and

lag windows which will be used often throughout the proof.

A.1. Brownian motion

Recall that {B(t)}t≥0 denotes a p-dimensional standard Brownian motion and that B(i) denotes

the ith component of B(t).

Lemma 2 (Csörgő and Révész [9]). Suppose Condition 2 holds, then for all ε > 0 and for

almost all sample paths, there exists n0(ε) such that for all n ≥ n0 and all i = 1, . . . , p

sup
0≤t≤n−bn

sup
0≤s≤bn

∣∣B(i)(t + s) − B(i)(t)
∣∣ < (1 + ε)

(
2bn

(
log

n

bn

+ log logn

))1/2

,

sup
0≤s≤bn

∣∣B(i)(n) − B(i)(n − s)
∣∣ < (1 + ε)

(
2bn

(
log

n

bn

+ log logn

))1/2

and

∣∣B(i)(n)
∣∣ < (1 + ε)

√
2n log logn.

Let L be a lower triangular matrix and set � = LLT . Define C(t) := LB(t) and if C(i)(t) is

the ith component of C(t), define

C̄
(i)
l (k) := 1

k

(
C(i)(l + k) − C(i)(l)

)
and C̄(i)

n := 1

n
C(i)(n).

Since C(i)(t) ∼ N(0, t�ii), where �ii is the ith diagonal of �, C(i)/
√

�ii is a 1-dimensional

standard Brownian motion. As a consequence, we have the following corollaries of Lemma 2.

Corollary 1. Suppose Condition 2 holds, then for all ε > 0 and for almost all sample paths there

exists n0(ε) such that for all n ≥ n0 and all i = 1, . . . , p

∣∣C(i)(n)
∣∣ < (1 + ε)(2n�ii log logn)1/2, (A.1)

where �ii is the ith diagonal entry of �.

Corollary 2. Suppose Condition 2 holds, then for all ε > 0 and for almost all sample paths,

there exists n0(ε) such that for all n ≥ n0 and all i = 1, . . . , p

∣∣C̄(i)
l (k)

∣∣ ≤ 1

k
sup

0≤l≤n−bn

sup
0≤s≤bn

∣∣C(i)(l + s) − C(i)(l)
∣∣ <

1

k
2(1 + ε)(bn�ii logn)1/2, (A.2)

where �ii is the ith diagonal entry of �.
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A.2. Basic properties of lag windows

Recall that the lag window wn(·) is such that it satisfies Condition 1. We will require the follow-

ing results about the lag window wn(·).

Lemma 3 (Damerdji [10]). Under Condition 1,

(i) �1wn(s) =
∑bn

k=s �2wn(k),

(ii)
∑bn

k=s+1 �1wn(k) = wn(s), and

(iii)
∑bn

k=1 �1wn(k) = 1.

A.3. Proof of Theorem 1

Recall that

�̂w,n = 1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
[
Ȳl(k) − Ȳn

][
Ȳl(k) − Ȳn

]T
. (A.3)

For t = 1,2, . . . , n, define Zt = Yt − Ȳn and

dn = 1

n

{
bn∑

t=1

�1wn(t)

(
t−1∑

l=1

ZlZ
T
l +

n∑

l=n−bn+t+1

ZlZ
T
l

)

+
bn−1∑

s=1

[
bn−s∑

t=1

�1wn(s + t) (A.4)

×
(

t−1∑

l=1

(
ZlZ

T
l+s + Zl+sZ

T
l

)
+

n−s∑

l=n−bn+t+1

(
ZlZ

T
l+s + Zl+sZ

T
l

)
)]}

.

Notice that in (A.4) we use the convention that empty sums are zero.

Lemma 4.

Under Condition 1, �̂w,n = �̂S − dn.

Proof. For i, j = 1, . . . , p, let �̂w,ij denote the (i, j)th entry of �̂w,n. Then,

�̂w,ij = 1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
[
Ȳ

(i)
l (k) − Ȳ (i)

n

][
Ȳ

(j)

l (k) − Ȳ
(j)
n

]

= 1

n

n−bn∑

l=0

bn∑

k=1

�2wn(k)

[
k∑

t=1

Y
(i)
l+t − kȲ (i)

n

][
k∑

t=1

Y
(j)
l+t − kȲ

(j)
n

]

(A.5)



1878 D. Vats, J.M. Flegal and G.L. Jones

= 1

n

n−bn∑

l=0

bn∑

k=1

�2wn(k)

[
k∑

t=1

Z
(i)
l+t

][
k∑

t=1

Z
(j)
l+t

]

= 1

n

n−bn∑

l=0

bn∑

k=1

�2wn(k)

[
k∑

t=1

Z
(i)
l+tZ

(j)

l+t +
k−1∑

s=1

k−s∑

t=1

Z
(i)
l+tZ

(j)

l+t+s +
k−1∑

s=1

k−s∑

t=1

Z
(j)

l+tZ
(i)
l+t+s

]
.

Notice that in (A.5), we use the convention that empty sums are zero. We will consider each term

in (A.5) separately. For the first term, changing the order of summation and then using Lemma 3,

1

n

n−bn∑

l=0

bn∑

k=1

k∑

t=1

�2wn(k)Z
(i)
l+tZ

(j)
l+t

= 1

n

n−bn∑

l=0

bn∑

t=1

bn∑

k=t

�2wn(k)Z
(i)
l+tZ

(j)

l+t

= 1

n

n−bn∑

l=0

bn∑

t=1

�1wn(t)Z
(i)
l+tZ

(j)
l+t

= 1

n

bn∑

t=1

�1wn(t)

n−bn∑

l=0

Z
(i)
l+tZ

(j)

l+t (A.6)

=
bn∑

t=1

�1wn(t)

[
γn,ij (0) − 1

n

(
Z

(i)
1 Z

(j)

1 + · · · + Z
(i)
t−1Z

(j)

t−1

+ Z
(i)
n−bn+t+1Z

(j)

n−bn+t+1 + · · · + Z(i)
n Z

(j)
n

)]

= γn,ij (0) − 1

n

bn∑

t=1

�1wn(t)

(
t−1∑

l=1

Z
(i)
l Z

(j)

l +
n∑

l=n−bn+t+1

Z
(i)
l Z

(j)

l

)
by Lemma 3.

For the second term in (A.5), we change the order of summation from l, k, s, t to l, s, k, t to

l, s, t, k to get

1

n

n−bn∑

l=0

bn∑

k=1

k−1∑

s=1

k−s∑

t=1

�2wn(k)Z
(i)
l+tZ

(j)

l+t+s

= 1

n

n−bn∑

l=0

bn−1∑

s=1

bn∑

k=s+1

k−s∑

t=1

�2wn(k)Z
(i)
l+tZ

(j)
l+t+s

= 1

n

n−bn∑

l=0

bn−1∑

s=1

bn−s∑

t=1

bn∑

k=t+s

�2wn(k)Z
(i)
l+tZ

(j)

l+t+s
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= 1

n

n−bn∑

l=0

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)Z
(i)
l+tZ

(j)

l+t+s by Lemma 3

= 1

n

bn−1∑

s=1

n−bn∑

l=0

bn−s∑

t=1

�1wn(s + t)Z
(i)
l+tZ

(j)
l+t+s

(A.7)

= 1

n

bn−1∑

s=1

bn−s∑

t=1

n−bn∑

l=0

�1wn(s + t)Z
(i)
l+tZ

(j)

l+t+s

= 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

n−bn∑

l=0

Z
(i)
l+tZ

(j)

l+t+s

=
bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

[
γn,ij (s) − 1

n

t−1∑

l=1

Z
(i)
l Z

(j)

l+s − 1

n

n−s∑

l=n−bn+t+1

Z
(i)
l Z

(j)

l+s

]

=
bn−1∑

s=1

wn(s)γn,ij (s)

− 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

[
t−1∑

l=1

Z
(i)
l Z

(j)

l+s +
n−s∑

l=n−bn+t+1

Z
(i)
l Z

(j)

l+s

]
by Lemma 3.

Repeating the same steps as in the second term, we reduce the third term in (A.5) to

1

n

n−bn∑

l=0

bn∑

k=1

k−1∑

s=1

k−s∑

t=1

�2wn(k)Z
(j)

l+tZ
(i)
l+t+s

=
bn−1∑

s=1

wn(s)γn,ji(s)

− 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

[
t−1∑

l=1

Z
(j)
l Z

(i)
l+s +

n−s∑

l=n−bn+t+1

Z
(j)
l Z

(i)
l+s

]
(A.8)

=
bn−1∑

s=1

wn(−s)γn,ij (−s)

− 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

[
t−1∑

l=1

Z
(j)

l Z
(i)
l+s +

n−s∑

l=n−bn+t+1

Z
(j)

l Z
(i)
l+s

]
.
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Using (A.6), (A.7), and (A.8) in (A.5)

�̂w,ij = γn,ij (0) +
bn−1∑

s=1

wn(s)γn,ij (s) +
−1∑

s=−(bn−1)

wn(s)γn,ij (s)

− 1

n

bn∑

t=1

�1wn(t)

(
t−1∑

l=1

Z
(i)
l Z

(j)
l +

n∑

l=n−bn+t+1

Z
(i)
l Z

(j)
l

)

− 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

×
[

t−1∑

l=1

(
Z

(i)
l Z

(j)

l+s + Z
(i)
l+sZ

(j)

l

)
+

n−s∑

l=n−bn+t+1

(
Z

(i)
l Z

(j)

l+s + Z
(i)
l+sZ

(j)

l

)
]

=
bn−1∑

s=−(bn−1)

γn,ij (s)wn(s) − dn,ij = �̂S,ij − dn,ij .
�

Let γ̃n(s), �̃S, �̃w,n and d̃n be the Brownian motion analogs of (2.1), (2.2), (A.3), and (A.4).

Specifically, for t = 1, . . . , n, define Brownian motion increments Ut = B(t) − B(t − 1), so that

U1, . . . ,Un are
i.i.d.∼ Np(0, Ip) where Ip is the p × p identity matrix. For l = 0, . . . , n − bn and

k = 1, . . . , bn define B̄l(k) = k−1(B(l + k) − B(l)), B̄n = n−1B(n), and Tt = Ut − B̄n. Then

γ̃n(s) = 1

n

∑

t∈Is

(Ut − B̄n)(Ut+s − B̄n)
T = 1

n

∑

t∈Is

TtT
T
t+s, (A.9)

�̃S =
bn−1∑

s=−(bn−1)

wn(s)γ̃n(s), (A.10)

�̃w,n = 1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
[
B̄l(k) − B̄n

][
B̄l(k) − B̄n

]T
, (A.11)

d̃n = 1

n

{
bn∑

t=1

�1wn(t)

(
t−1∑

l=1

TlT
T
l +

n∑

l=n−bn+t+1

TlT
T
l

)

+
bn−1∑

s=1

[
bn−s∑

t=1

�1wn(s + t) (A.12)

×
(

t−1∑

l=1

(
TlT

T
l+s + Tl+sT

T
l

)
+

n−s∑

l=n−bn+t+1

(
TlT

T
l+s + Tl+sT

T
l

)
)]}

.
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Notice that in (A.12) we use the convention that empty sums are zero. Our goal is to show

that �̃w,n → Ip as n → ∞ with probability 1 in the following way. In Lemma 5, we show that

�̃w,n = �̃S − d̃n and in Lemma 7 we show that the end term d̃n → 0 as n → ∞ with probability 1.

Lemma 12 shows that �̃S → Ip as n → ∞ with probability 1, and hence �̃w,n → Ip as n → ∞
with probability 1.

Lemma 5. Under Condition 1, �̃w,n = �̃S − d̃n.

Proof. For i, j = 1, . . . , p, let �̃w,ij denote the (i, j)th entry of �̃w,n. Then,

�̃w,ij = 1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
[
B̄

(i)
l (k) − B̄(i)

n

][
B̄

(j)
l (k) − B̄

(j)
n

]

= 1

n

n−bn∑

l=0

bn∑

k=1

�2wn(k)
[
B(i)(k + l) − B(i)(l) − kB̄(i)

n

]

×
[
B(j)(k + l) − B(j)(l) − kB̄

(j)
n

]
(A.13)

= 1

n

n−bn∑

l=0

bn∑

k=1

�2wn(k)

[
k∑

t=1

U
(i)
t+l − kB̄(i)

n

][
k∑

t=1

U
(j)
t+l − kB̄

(j)
n

]

= 1

n

n−bn∑

l=0

bn∑

k=1

�2wn(k)

[
k∑

t=1

T
(i)
t+l

][
k∑

t=1

T
(j)

t+l

]

= 1

n

n−bn∑

l=0

bn∑

k=1

�2wn(k)

[
k∑

t=1

T
(i)
l+tT

(j)

l+t +
k−1∑

s=1

k−s∑

t=1

T
(i)
l+tT

(j)

l+t+s +
k−1∑

s=1

k−s∑

t=1

T
(j)

l+t T
(i)
l+t+s

]
.

In (A.13), we continue to use convention that empty sums are zero. We will look at each of the

terms in (A.13) separately. For the first term, changing the order of summation and then using

Lemma 3,

1

n

n−bn∑

l=0

bn∑

k=1

k∑

t=1

�2wn(k)T
(i)
l+tT

(j)
l+t

= 1

n

n−bn∑

l=0

bn∑

t=1

bn∑

k=t

�2wn(k)T
(i)
l+tT

(j)

l+t

= 1

n

n−bn∑

l=0

bn∑

t=1

T
(i)
l+tT

(j)

l+t �1wn(t) (A.14)
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= 1

n

bn∑

t=1

�1wn(t)

n−bn∑

l=0

T
(i)
l+tT

(j)
l+t

= γ̃n,ij (0) − 1

n

bn∑

t=1

�1wn(t)

(
t−1∑

l=1

T
(i)
l T

(j)

l +
n∑

l=n−bn+t+1

T
(i)
l T

(j)

l

)
.

For the second term in (A.13), we change the order of summation from l, k, s, t to l, s, k, t then

to l, s, t, k and use Lemma 3 to get

1

n

n−bn∑

l=0

bn∑

k=1

k−1∑

s=1

k−s∑

t=1

�2wn(k)T
(i)
l+tT

(j)

l+t+s

= 1

n

n−bn∑

l=0

bn−1∑

s=1

bn∑

k=s+1

k−s∑

t=1

�2wn(k)T
(i)
l+tT

(j)

l+t+s

= 1

n

n−bn∑

l=0

bn−1∑

s=1

bn−s∑

t=1

bn∑

k=t+s

�2wn(k)T
(i)
l+tT

(j)

l+t+s

= 1

n

n−bn∑

l=0

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)T
(i)
l+tT

(j)

l+t+s

= 1

n

bn−1∑

s=1

n−bn∑

l=0

bn−s∑

t=1

�1wn(s + t)T
(i)
l+tT

(j)

l+t+s

(A.15)

= 1

n

bn−1∑

s=1

bn−s∑

t=1

n−bn∑

l=0

�1wn(s + t)T
(i)
l+tT

(j)

l+t+s

= 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

n−bn∑

l=0

T
(i)
l+tT

(j)
l+t+s

= 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

n−bn+t∑

l=t

T
(i)
l T

(j)

l+s

=
bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

[
γ̃n,ij (s) − 1

n

t−1∑

l=1

T
(i)
l T

(j)

l+s − 1

n

n−s∑

l=n−bn+t+1

T
(i)
l T

(j)

l+s

]

=
bn−1∑

s=1

wn(s)γ̃n,ij (s) − 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

[
t−1∑

l=1

T
(i)
l T

(j)
l+s +

n−s∑

l=n−bn+t+1

T
(i)
l T

(j)
l+s

]
.
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Repeating the same steps as in the second term, we reduce the third term in (A.13) to

1

n

n−bn∑

l=0

bn∑

k=1

k−1∑

s=1

k−s∑

t=1

�2wn(k)T
(j)
l+t T

(i)
l+t+s

=
bn−1∑

s=1

wn(s)γ̃n,ji(s)

− 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

[
t−1∑

l=1

T
(j)

l T
(i)
l+s +

n−s∑

l=n−bn+t+1

T
(j)

l T
(i)
l+s

]
(A.16)

=
bn−1∑

s=1

wn(−s)γ̃n,ij (−s)

− 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

[
t−1∑

l=1

T
(j)
l T

(i)
l+s +

n−s∑

l=n−bn+t+1

T
(j)
l T

(i)
l+s

]
.

Using (A.14), (A.15), and (A.16) in (A.13), we get

�̃w,ij = γ̃n,ij (0) +
bn−1∑

s=1

wn(s)γ̃n,ij (s) +
−1∑

s=−(bn−1)

wn(s)γ̃n,ij (s)

− 1

n

bn∑

t=1

�1wn(t)

(
t−1∑

l=1

T
(i)
l T

(j)

l +
n∑

l=n−bn+t+1

T
(i)
l T

(j)

l

)

− 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

×
[

t−1∑

l=1

(
T

(i)
l T

(j)
l+s + T

(i)
l+sT

(j)
l

)
+

n−s∑

l=n−bn+t+1

(
T

(i)
l T

(j)
l+s + T

(i)
l+sT

(j)
l

)
]

=
bn−1∑

s=−(bn−1)

γ̃n,ij (s)wn(s) − d̃n,ij

= �̃S,ij − d̃n,ij . �

Next, we show that as n → ∞, d̃n → 0 with probability 1 implying �̃w,n − �̃S → 0 with

probability 1 as n → ∞. To do so, we require a strong invariance principle for independent and

identically distributed random variables.
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Theorem 4 (Komlós et al. [40]). Let B(n) be a 1-dimensional standard Brownian motion. If

X1,X2,X3 . . . are independent and identically distributed univariate random variables with

mean μ and standard deviation σ , such that E[e|tX1|] < ∞ in a neighborhood of t = 0, then

as n → ∞
n∑

i=1

Xi − nμ − σB(n) = O(logn).

We begin with a technical lemma that will be used in a couple of places in the rest of the proof.

Lemma 6. Let Conditions 1 and 2 hold. If, as n → ∞, bnn
−1

∑bn

k=1 k|�1wn(k)| → 0, then

bn

n

(
bn∑

t=1

∣∣�1wn(t)
∣∣ + 2

bn−1∑

s=1

bn−s∑

t=1

∣∣�1wn(s + t)
∣∣
)

→ 0.

Proof.

bn

n

(
bn∑

t=1

∣∣�1wn(t)
∣∣ + 2

bn−1∑

s=1

bn−s∑

t=1

∣∣�1wn(s + t)
∣∣
)

= bn

n

(
bn∑

t=1

∣∣�1wn(t)
∣∣ + 2

bn−1∑

s=1

bn∑

k=s+1

∣∣�1wn(k)
∣∣
)

= bn

n

(
bn∑

t=1

∣∣�1wn(t)
∣∣ + 2

bn∑

k=2

k−1∑

s=1

∣∣�1wn(k)
∣∣
)

= bn

n

(
bn∑

t=1

∣∣�1wn(t)
∣∣ + 2

bn∑

k=2

(k − 1)
∣∣�1wn(k)

∣∣
)

= bn

n

(
bn∑

t=1

∣∣�1wn(t)
∣∣ + 2

bn∑

k=1

(k − 1)
∣∣�1wn(k)

∣∣
)

≤ bn

n

(
2

bn∑

k=1

k
∣∣�1wn(k)

∣∣
)

→ 0 by assumption. �

Lemma 7. Let Conditions 1 and 2 hold and let n > 2bn. If bnn
−1

∑bn

k=1 k|�1wn(k)| → 0 and

b−1
n logn = O(1) as n → ∞, then d̃n → 0 with probability 1 as n → ∞.
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Proof. For i, j = 1, . . . , p, we will show that as n → ∞ with probability 1, d̃n,ij → 0. Recall

d̃n,ij = 1

n

bn∑

t=1

�1wn(t)

(
t−1∑

l=1

T
(i)
l T

(j)

l +
n∑

l=n−bn+t+1

T
(i)
l T

(j)

l

)

+ 1

n

bn−1∑

s=1

bn−s∑

t=1

�1wn(s + t)

×
[

t−1∑

l=1

(
T

(i)
l T

(j)
l+s + T

(i)
l+sT

(j)
l

)
+

n−s∑

l=n−bn+t+1

(
T

(i)
l T

(j)
l+s + T

(i)
l+sT

(j)
l

)
]
,

(A.17)

|d̃n,ij | ≤ 1

n

bn∑

t=1

∣∣�1wn(t)
∣∣
(

t−1∑

l=1

∣∣T (i)
l T

(j)

l

∣∣ +
n∑

l=n−bn+t+1

∣∣T (i)
l T

(j)

l

∣∣
)

+ 1

n

bn−1∑

s=1

bn−s∑

t=1

∣∣�1wn(s + t)
∣∣

×
[

t−1∑

l=1

(∣∣T (i)
l T

(j)

l+s

∣∣ +
∣∣T (i)

l+sT
(j)

l

∣∣) +
n−s∑

l=n−bn+t+1

(∣∣T (i)
l T

(j)

l+s

∣∣ +
∣∣T (i)

l+sT
(j)

l

∣∣)
]
,

where we use the convention that empty sums are zero. Using the inequality |ab| ≤ (a2 + b2)/2

in the first and second terms in (A.17), we have for t = 1, . . . , bn

t−1∑

l=1

∣∣T (i)
l T

(j)

l

∣∣ ≤ 1

2

t−1∑

l=1

(
T

(i)2
l + T

(j)2
l

)
≤ 1

2

2bn∑

l=1

T
(i)2
l + 1

2

2bn∑

l=1

T
(j)2
l ,

n∑

l=n−bn+t+1

∣∣T (i)
l T

(j)

l

∣∣ ≤ 1

2

n∑

l=n−bn+t+1

(
T

(i)2
l + T

(j)2
l

)
≤ 1

2

n∑

l=n−2bn+1

T
(i)2
l + 1

2

n∑

l=n−2bn+1

T
(j)2
l .

Similarly, for the third and fourth terms in (A.17), for t = 1, . . . , bn − 1 and s = 1, . . . , bn − 1

t−1∑

l=1

∣∣T (i)
l T

(j)

l+s

∣∣ +
t−1∑

l=1

∣∣T (i)
l+sT

(j)

l

∣∣

≤ 1

2

2bn∑

l=1

T
(i)2
l + 1

2

2bn∑

l=1

T
(j)2
l + 1

2

bn∑

l=1

T
(j)2
l+s + 1

2

bn∑

l=1

T
(i)2
l+s

≤ 1

2

2bn∑

l=1

T
(i)2
l + 1

2

2bn∑

l=1

T
(j)2
l + 1

2

2bn∑

l=1

T
(j)2
l + 1

2

2bn∑

l=1

T
(i)2
l
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=
2bn∑

l=1

T
(i)2
l +

2bn∑

l=1

T
(j)2
l ,

n∑

l=n−bn+t+1

∣∣T (i)
l T

(j)

l+s

∣∣ +
n∑

l=n−bn+t+1

∣∣T (i)
l+sT

(j)

l

∣∣

≤ 1

2

n∑

l=n−2bn+1

(
T

(i)2
l + T

(j)2
l

)
+ 1

2

n∑

l=n−bn+1

(
T

(j)2
l+s + T

(i)2
l+s

)

≤ 1

2

n∑

l=n−2bn+1

(
T

(i)2
l + T

(j)2
l

)
+ 1

2

n∑

l=n−2bn+1

(
T

(j)2
l + T

(i)2
l

)

=
n∑

l=n−2bn+1

T
(i)2
l +

n∑

l=n−2bn+1

T
(j)2
l .

Combining the above results in (A.17) we get,

|d̃n,ij | ≤ 1

n

(
1

2

2bn∑

l=1

T
(i)2
l + 1

2

2bn∑

l=1

T
(j)2
l + 1

2

n∑

l=n−2bn+1

T
(i)2
l + 1

2

n∑

l=n−2bn+1

T
(j)2
l

)
bn∑

t=1

∣∣�1wn(t)
∣∣

+ 1

n

bn−1∑

s=1

[(
2bn∑

l=1

T
(i)2
l +

2bn∑

l=1

T
(j)2
l +

n∑

l=n−2bn+1

T
(i)2
l +

n∑

l=n−2bn+1

T
(j)2
l

)

×
bn−s∑

t=1

∣∣�1wn(s + t)
∣∣
]

(A.18)

= 1

bn

(
1

2

2bn∑

l=1

T
(i)2
l + 1

2

2bn∑

l=1

T
(j)2
l + 1

2

n∑

l=n−2bn+1

T
(i)2
l + 1

2

n∑

l=n−2bn+1

T
(j)2
l

)

× bn

n

(
bn∑

t=1

∣∣�1wn(t)
∣∣ + 2

bn−1∑

s=1

bn−s∑

t=1

∣∣�1wn(s + t)
∣∣
)

.

We will show that the first term in the product in (A.18) remains bounded with probability 1

as n → ∞. Consider,

1

2bn

2bn∑

l=1

T
(i)2
l = 1

2bn

2bn∑

l=1

(
U

(i)
l − B̄(i)

n

)2

= 1

2bn

2bn∑

l=1

U
(i)2
l − 2B̄(i)

n

1

2bn

2bn∑

l=1

U
(i)
l +

(
B̄(i)

n

)2
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≤
∣∣∣∣∣

1

2bn

2bn∑

l=1

U
(i)2
l

∣∣∣∣∣ + 2
∣∣B̄(i)

n

∣∣
∣∣∣∣∣

1

2bn

2bn∑

l=1

U
(i)
l

∣∣∣∣∣ +
∣∣B̄(i)

n

∣∣2

<

∣∣∣∣∣
1

2bn

2bn∑

l=1

U
(i)2
l

∣∣∣∣∣ +
∣∣∣∣∣

1

2bn

2bn∑

l=1

U
(i)
l

∣∣∣∣∣

(
2

n
(1 + ε)(2n log logn)1/2

)

+
(

1

n
(1 + ε)(2n log logn)1/2

)2

by Lemma 2

<

∣∣∣∣∣
1

2bn

2bn∑

l=1

U
(i)2
l

∣∣∣∣∣ +
∣∣∣∣∣

1

2bn

2bn∑

l=1

U
(i)
l

∣∣∣∣∣O
((

n−1 logn
)1/2) + O

(
n−1 logn

)
.

Since U
(i)
l are Brownian motion increments, U

(i)
l

i.i.d.∼ N(0,1) and by the classical strong law

of large numbers, the above remains bounded with probability 1. Similarly (2bn)
−1

∑2bn

l=1 T
(j)2
l

remains bounded with probability 1 as n → ∞. Next, consider Rn =
∑n

l=1 U
(i)2
l . Since U

(i)
l ∼

N(0,1), Rn ∼ χ2
n . Thus, Rn has a moment generating function and an application of Theorem 4

implies there exists a finite random variable CR such that, for sufficiently large n,

∣∣Rn − n − 2B(i)(n)
∣∣ < CR logn. (A.19)

Consider

|Rn − Rn−2bn | =
∣∣(Rn − n − 2B(i)(n)

)
−

(
Rn−2bn − (n − 2bn) − 2B(i)(n − 2bn)

)

− (n − 2bn) + n + 2B(i)(n) − 2B(i)(n − 2bn)
∣∣

≤
∣∣(Rn − n − 2B(i)(n)

)∣∣ +
∣∣(Rn−2bn − (n − 2bn) − 2B(i)(n − 2bn)

)∣∣

+
∣∣2bn + 2B(i)(n) − 2B(i)(n − 2bn)

∣∣ (A.20)

< CR logn + CR log (n − bn) + 2bn

+ 2(1 + ε)

(
2(2bn)

(
log

n

2bn

+ log logn

))1/2

by (A.19) and Lemma 2

< 2CR logn + 2bn + 4(1 + ε)(2bn logn)1/2.

Finally,

1

2bn

n∑

l=n−2bn+1

T
(i)2
l

= 1

2bn

n∑

l=n−2bn+1

(
U

(i)
l − B̄(i)

n

)2
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= 1

2bn

n∑

l=n−2bn+1

U
(i)2
l − 2B̄

(i)
n

2bn

n∑

l=n−2bn+1

U
(i)
l +

(
B̄(i)

n

)2

= 1

2bn

(Rn − Rn−2bn) − 2

n
B(i)(n)

1

2bn

(
B(i)(n) − B(i)(n − 2bn)

)
+

(
1

n
B(i)(n)

)2

<
1

2bn

|Rn − Rn−2bn | +
2

n

∣∣B(i)(n)
∣∣ 1

2bn

∣∣B(i)(n) − B(i)(n − 2bn)
∣∣ +

(
1

n

∣∣B(i)(n)
∣∣
)2

<
1

2bn

(
2CR logn + 2bn + 4(1 + ε)(2bn logn)1/2

)

+ 2

n
(1 + ε)(2n log logn)1/2 1

2bn

(1 + ε)

(
2(2bn)

(
log

n

2bn

+ log logn

))1/2

+
(

1

n
(1 + ε)(2n log logn)1/2

)2

by (A.20) and Lemma 2

< CRb−1
n logn + 1 + 4(1 + ε)(2bn logn)1/2

2bn

+ 1

nbn

(1 + ε)2(2n logn)1/2(8bn logn)1/2

+ (1 + ε)2

n
(2 logn)

< CRb−1
n logn + 1 + 2(1 + ε)

(
2b−1

n logn
)1/2

+ 4(1 + ε)2

(
logn

n

)1/2(
b−1
n logn

)1/2 + 2(1 + ε)2 logn

n
.

Since b−1
n logn = O(1) as n → ∞, the above term remains bounded with probability 1 as n →

∞. Similarly, (2bn)
−1

∑n
l=n−2bn+1 T

(j)2
l remains bounded with probability 1 as n → ∞. The

second term in the product in (A.18) converges to 0 by Lemma 6 and hence d̃n,ij → 0 with

probability 1 as n → ∞. �

Recall that h(Xt ) = Y 2
t for t = 1,2,3, . . . , where the square is element-wise.

Lemma 8. Let a strong invariance principle for h hold as in (2.4). If Condition 2 holds,

b−1
n ψh(n) → 0 and b−1

n logn = O(1) as n → ∞, then

1

bn

bn∑

k=1

h(Xk) and
1

bn

n∑

k=n−bn+1

h(Xk),

stay bounded with probability 1 as n → ∞.

Proof. Equation (2.4) implies that b−1
n

∑bn

k=1 h(Xk) → EF h if b−1
n ψh(bn) → 0 as n → ∞.

Since by assumption b−1
n ψh(n) → 0 as n → ∞ and ψh is increasing, b−1

n

∑bn

k=1 h(Xk) remains
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bounded w.p. 1 as n → ∞. Next, for all ε > 0 and sufficiently large n(ε),

1

bn

∥∥∥∥∥

n∑

k=n−bn+1

h(Xk)

∥∥∥∥∥

= 1

bn

∥∥∥∥∥

n∑

k=1

h(Xk) −
n−bn∑

k=1

h(Xk)

∥∥∥∥∥

= 1

bn

∥∥∥∥∥

n∑

k=1

h(Xk) − nEF h + (n − bn)EF h + bnEF h − LhB(n) + LhB(n − bn)

+ Lh

(
B(n) − B(n − bn)

)
−

n−bn∑

k=1

h(Xk)

∥∥∥∥∥

≤ 1

bn

∥∥∥∥∥

n∑

k=1

h(Xk) − nEF h − LhB(n)

∥∥∥∥∥ + 1

bn

∥∥∥∥∥

n−bn∑

k=1

h(Xk) − (n − bn)EF h − LhB(n − bn)

∥∥∥∥∥

+ 1

bn

∥∥Lh

(
B(n) − B(n − bn)

)
+ bnEF h

∥∥

<
1

bn

Dhψh(n) + 1

bn

Dhψh(n − bn) + 1

bn

∥∥Lh

(
B(n) − B(n − bn)

)∥∥ + ‖EF h‖ by (2.4)

≤ 1

bn

Dhψh(n) + 1

bn

Dhψh(n − bn) + 1

bn

‖Lh‖
(

p∑

i=1

∣∣B(i)(n) − B(i)(n − bn)
∣∣2

)1/2

+ ‖EF h‖

≤ 1

bn

Dhψh(n) + 1

bn

Dhψh(n − bn)

+ 1

bn

‖Lh‖
(

p∑

i=1

sup
0≤s≤bn

∣∣B(i)(n) − B(i)(n − s)
∣∣2

)1/2

+ ‖EF h‖

<
2

bn

Dhψh(n) + p1/2

bn

‖Lh‖(1 + ε)

(
2bn

(
log

n

bn

+ log logn

))1/2

+ ‖EF h‖ by Lemma 2

< ‖EF h‖ + 2

bn

Dhψh(n) + O
((

b−1
n logn

)1/2)
.

Thus by the assumptions b−1
n ‖

∑n
k=n−bn+1 h(Xk)‖ stays bounded w.p. 1 as n → ∞. �

Lemma 9. Suppose the strong invariance principles (2.3) and (2.4) hold. In addition, sup-

pose Conditions 1 and 2 hold and n > 2bn, bnn
−1

∑bn

k=1 k|�1wn(k)| → 0, b−1
n ψ(n) → 0,

b−1
n ψh(n) → 0 as n → ∞ and b−1

n logn = O(1). Then, dn → 0 with probability 1 as n → ∞.
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Proof. For i, j = 1, . . . , p, let dn,ij denote the (i, j)th element of the matrix dn. We can follow

the same steps as in Lemma 7 to obtain

|dn,ij | ≤
1

bn

(
1

2

2bn∑

l=1

Z
(i)2
l + 1

2

2bn∑

l=1

Z
(j)2
l + 1

2

n∑

l=n−2bn+1

Z
(i)2
l + 1

2

n∑

l=n−2bn+1

Z
(j)2
l

)

× bn

n

(
bn∑

t=1

∣∣�1wn(t)
∣∣ + 2

bn−1∑

s=1

bn−s∑

t=1

∣∣�1wn(s + t)
∣∣
)

.

The second term in the product converges to 0 by Lemma 6. It remains to show that the following

remains bounded with probability 1 as n → ∞,

1

bn

(
1

2

2bn∑

l=1

Z
(i)2
l + 1

2

2bn∑

l=1

Z
(j)2
l + 1

2

n∑

l=n−2bn+1

Z
(i)2
l + 1

2

n∑

l=n−2bn+1

Z
(j)2
l

)
.

We have,

1

2bn

2bn∑

l=1

Z
(i)2
l = 1

2bn

2bn∑

l=1

(
Y

(i)
l − Ȳ (i)

n

)2 = 1

2bn

2bn∑

l=1

Y
(i)2
l − 2Ȳ

(i)
2bn

Ȳ (i)
n +

(
Ȳ (i)

n

)2
.

By the strong invariance principle for g, Ȳ
(i)
n → 0, Ȳ

(i)
2bn

→ 0, and (Ȳ
(i)
n )2 → 0 w.p. 1 as n → ∞.

By Lemma 8, (2bn)
−1

∑2bn

l=1 Y
(i)2
l remains bounded w.p. 1 as n → ∞. Thus, (2bn)

−1
∑2bn

l=1 Z
(i)2
l

remains bounded w.p. 1 as n → ∞. Similarly (2bn)
−1

∑2bn

l=1 Z
(j)2
l stay bounded w.p. 1 as n →

∞. Now consider

1

2bn

n∑

l=n−2bn+1

Z
(i)2
l = 1

2bn

n∑

l=n−2bn+1

(
Y

(i)
l − Ȳ (i)

n

)2

(A.21)

= 1

2bn

n∑

l=n−2bn+1

Y
(i)2
l − 2Ȳ (i)

n

1

2bn

n∑

l=n−2bn+1

Y
(i)
l +

(
Ȳ (i)

n

)2
.

We will first show that (2bn)
−1

∑n
l=n−2bn+1 Y

(i)
l remains bounded with probability 1. Let �ii

denote the ith diagonal entry of �, then

1

2bn

n∑

l=n−2bn+1

Y
(i)
l

= 1

2bn

(
n∑

l=1

Y
(i)
l −

n−2bn∑

l=1

Y
(i)
l

)
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= 1

2bn

(
n∑

l=1

Y
(i)
l −

√
�iiB

(i)(n)

)
− 1

2bn

(
n−2bn∑

l=1

Y
(i)
l −

√
�iiB

(i)(n − 2bn)

)

+ 1

2bn

√
�ii

(
B(i)(n) − B(i)(n − 2bn)

)

<
1

2bn

∣∣∣∣∣

n∑

l=1

Y
(i)
l −

√
�iiB

(i)(n)

∣∣∣∣∣ + 1

2bn

∣∣∣∣∣

n−2bn∑

l=1

Y
(i)
l −

√
�iiB

(i)(n − 2bn)

∣∣∣∣∣

+ 1

2bn

∣∣√�ii

(
B(i)(n) − B(i)(n − 2bn)

)∣∣

<
1

2bn

Dψ(n) + 1

2bn

Dψ(n − 2bn) + 1

2bn

√
�ii sup

0≤s≤2bn

∣∣B(i)(n) − B(i)(n − s)
∣∣ by (2.3)

<
2D

2bn

ψ(n) +
√

�ii

1

2bn

(1 + ε)

[
2(2bn)

(
log

n

2bn

+ log logn

)]1/2

by Lemma 2

< Db−1
n ψ(n) +

√
�ii(1 + ε)

(
2b−1

n logn
)1/2

= O
(
b−1
n ψ(n)

)
+ O

((
b−1
n logn

)1/2)
.

By the strong invariance principle for g, Ȳ
(i)
n → 0 and (Ȳ

(i)
n )2 → 0 w.p. 1 as n → ∞. By

Lemma 8, (2bn)
−1

∑n
l=n−2bn+1 Y

(i)2
l remains bounded w.p. 1 as n → ∞. Combining these

results in (A.21), (2bn)
−1

∑n
l=n−2bn+1 Z

(i)2
l remains bounded w.p. 1 as n → ∞. Similarly

(2bn)
−1

∑n
l=n−2bn+1 Z

(j)2
l remains bounded w.p. 1 as n → ∞. �

Lemma 10 (Billingsley [6]). For a family of random variables {Xn : n ≥ 1}, if E(|Xn|) ≤ sn
where sn is a sequence such that

∑∞
n=1 sn < ∞, then Xn → 0 w.p. 1 as n → ∞.

Lemma 11 (Whittle [62]). Let R1, . . . ,Rn be i.i.d. standard normal variables and A =∑n
l=1

∑n
k=1 alkRlRk where alk are real coefficients, then for c ≥ 1 and for some constant Kc ,

we have

E
[
|A − EA|2c

]
≤ Kc

(∑

l

∑

k

a2
lk

)c

.

Lemma 12. Let Conditions 1 and 2 hold and assume that

(a) there exists a constant c ≥ 1 such that
∑

n(bn/n)c < ∞,

(b) bnn
−1 logn → 0 as n → ∞,

then �̃S → Ip w.p. 1 as n → ∞.

Proof. Under the same conditions, Theorem 4.1 in Damerdji [10] shows �̃S,ii → 1 as n → ∞
w.p. 1. It is left to show that for all i, j = 1, . . . , p, and i �= j , �̃S,ij → 0 w.p. 1 as n → ∞. Recall
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that

�̃S,ij =
bn−1∑

s=−(bn−1)

wn(s)γ̃n,ij (s)

= γ̃n,ij (0) + 1

n

[
bn−1∑

s=1

wn(s)

n−s∑

t=1

(
U

(i)
t − B̄(i)

n

)(
U

(j)
t+s − B̄

(j)
n

)

+
−1∑

s=−(bn−1)

wn(s)

n∑

t=1−s

(
U

(i)
t − B̄(i)

n

)(
U

(j)
t+s − B̄

(j)
n

)
]

= γ̃n,ij (0) + 1

n

[
bn−1∑

s=1

wn(s)

n−s∑

t=1

(
U

(i)
t − B̄(i)

n

)(
U

(j)
t+s − B̄

(j)
n

)

+
bn−1∑

s=1

wn(s)

n∑

t=1+s

(
U

(i)
t − B̄(i)

n

)(
U

(j)
t−s − B̄

(j)
n

)
]

= γ̃n,ij (0) +
bn−1∑

s=1

wn(s)
1

n

[
n−s∑

t=1

(
U

(i)
t U

(j)
t+s − B̄(i)

n U
(j)
t+s − B̄

(j)
n U

(i)
t + B̄(i)

n B̄
(j)
n

)

+
n∑

t=1+s

(
U

(i)
t U

(j)
t−s − B̄(i)

n U
(j)
t−s − B̄

(j)
n U

(i)
t + B̄(i)

n B̄
(j)
n

)
]
.

Since

n−s∑

t=1

U
(j)
t+s = B(j)(n) − B(j)(s),

n−s∑

t=1

U
(i)
t = B(i)(n − s),

n∑

t=1+s

U
(j)
t−s = B(j)(n − s) and

n∑

t=1+s

U
(i)
t = B(i)(n) − B(i)(s),

we get �̃S,ij =

= γ̃n,ij (0) +
bn−1∑

s=1

wn(s)

[
1

n

n−s∑

t=1

U
(i)
t U

(j)
t+s − 1

n
B̄(i)

n

(
B(j)(n) − B(j)(s)

)
− 1

n
B̄

(j)
n B(i)(n − s)

+
(

n − s

n

)
B̄(i)

n B̄
(j)
n + 1

n

n∑

t=1+s

U
(i)
t U

(j)
t−s − 1

n
B̄(i)

n B(j)(n − s) − 1

n
B̄

(j)
n

(
B(i)(n) − B(i)(s)

)

+
(

n − s

n

)
B̄(i)

n B̄
(j)
n

]
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= γ̃n,ij (0) +
bn−1∑

s=1

wn(s)

[
1

n

n−s∑

t=1

U
(i)
t U

(j)
t+s + 1

n

n∑

t=1+s

U
(i)
t U

(j)
t−s

+ 2

(
1 − s

n

)
B̄(i)

n B̄
(j)
n − 2B̄(i)

n B̄
(j)
n

+ 1

n
B̄(i)

n B(j)(s) − 1

n
B̄

(j)
n B(i)(n − s) − 1

n
B̄(i)

n B(j)(n − s) + 1

n
B̄

(j)
n B(i)(s)

]

(A.22)

= γ̃n,ij (0) +
bn−1∑

s=1

wn(s)

[
1

n

n−s∑

t=1

U
(i)
t U

(j)
t+s + 1

n

n∑

t=1+s

U
(i)
t U

(j)
t−s − 2

(
1 + s

n

)
B̄(i)

n B̄
(j)
n

+ B̄(i)
n B̄

(j)
n − 1

n
B̄

(j)
n B(i)(n − s) + B̄(i)

n B̄
(j)
n − 1

n
B̄(i)

n B(j)(n − s)

+ 1

n
B̄(i)

n B(j)(s) + 1

n
B̄

(j)
n B(i)(s)

]

= γ̃n,ij (0) +
bn−1∑

s=1

wn(s)

[
1

n

n−s∑

t=1

U
(i)
t U

(j)
t+s + 1

n

n∑

t=1+s

U
(i)
t U

(j)
t−s − 2

(
1 + s

n

)
B̄(i)

n B̄
(j)
n

+ 1

n
B̄

(j)
n

(
B(i)(n) − B(i)(n − s)

)
+ 1

n
B̄(i)

n

(
B(j)(n) − B(j)(n − s)

)
+ 1

n
B̄(i)

n B(j)(s)

+ 1

n
B(i)(s)B̄

(j)
n

]
.

We will show that each of the terms goes to 0 with probability 1 as n → ∞.

1.

γ̃n,ij (0) = 1

n

n∑

t=1

T
(i)
t T

(j)
t

= 1

n

n∑

t=1

(
U

(i)
t − B̄(i)

n

)(
U

(j)
t − B̄

(j)
n

)
(A.23)

= 1

n

n∑

t=1

U
(i)
t U

(j)
t − B̄

(j)
n

1

n

n∑

t=1

U
(i)
t − B̄(i)

n

1

n

n∑

t=1

U
(j)
t + B̄(i)

n B̄
(j)
n .

We will show that each of the terms in (A.23) goes to 0 with probability 1, as n → ∞. First, we

will use Lemma 11 to show that n−1
∑n

t=1 U
(i)
t U

(j)
t → 0 with probability 1 as n → ∞. Define

R1 = U
(i)
1 ,R2 = U

(i)
2 , . . . ,Rn = U (i)

n ,Rn+1 = U
(j)

1 , . . . ,R2n = U
(j)
n .
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Thus, {Ri : 1 ≤ i ≤ 2n} is an i.i.d. sequence of normally distributed random variables. Define for

1 ≤ l, k,≤ 2n,

alk =

⎧
⎨
⎩

1

n
, if 1 ≤ l ≤ n and k = l + n,

0 otherwise.

Then,

A :=
2n∑

l=1

2n∑

k=1

alkRlRk =
n∑

t=1

1

n
U

(i)
t U

(j)
t .

By Lemma 11, for all c ≥ 1 there exists Kc such that

E
[
|A − EA|2c

]
≤ Kc

(∑

l

∑

k

a2
lk

)c

.

Since i �= j,E[A] = 0,

E

(∣∣∣∣∣
1

n

n∑

t=1

U
(i)
t U

(j)
t

∣∣∣∣∣

2c)
≤ Kc

(
2n∑

l=1

2n∑

k=1

a2
lk

)c

= Kc

(
n∑

t=1

1

n2

)c

= Kcn
−c.

Note that
∑∞

n=0 n−c < ∞ for all c > 1, hence by Lemma 10, n−1
∑n

t=1 U
(i)
t U

(j)
t → 0 with

probability 1 as n → ∞. Next in (A.23),

B̄
(j)
n

1

n

n∑

t=1

U
(i)
t ≤ 1

n

∣∣B(j)(n)
∣∣
∣∣∣∣∣
1

n

n∑

t=1

U
(i)
t

∣∣∣∣∣

<
1

n
(1 + ε)

√
2n log logn

∣∣∣∣∣
1

n

n∑

t=1

U
(i)
t

∣∣∣∣∣ by Lemma 2

<
√

2(1 + ε)

(
logn

n

)1/2
∣∣∣∣∣
1

n

n∑

t=1

U
(i)
t

∣∣∣∣∣.

By the classical SLLN

∣∣∣∣∣
1

n

n∑

t=1

U
(i)
t

∣∣∣∣∣ → 0 w.p. 1 as n → ∞.

Similarly,

B̄(i)
n

1

n

n∑

t=1

U
(j)
t → 0 w.p. 1 as n → ∞.
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Finally,

B̄(i)
n B̄

(j)
n ≤ 1

n2

∣∣B(i)(n)
∣∣∣∣B(j)(n)

∣∣

<
1

n2
(1 + ε)2(2n log logn) by Lemma 2

< 2(1 + ε)2

(
logn

n

)

→ 0 as n → ∞.

Thus, γ̃n,ij (0) → 0 with probability 1 as n → ∞.

2. Now consider the term
∑bn−1

s=1 wn(s)n
−1

∑n−s
t=1 U

(i)
t U

(j)
t+s . Define

R1 = U
(i)
1 ,R2 = U

(i)
2 , . . . ,Rn = U (i)

n ,

R(n+1) = U
(j)

1 , . . . ,R2n = U
(j)
n .

Thus, {Ri : 1 ≤ i ≤ 2n} is an i.i.d. sequence of normally distributed random variables. Next,

define for 1 ≤ l, k ≤ 2n

alk =

⎧
⎪⎪⎨
⎪⎪⎩

1

n
wn

(
k − (n + l)

)
,

if 1 ≤ l ≤ n − 1, n + 2 ≤ k ≤ 2n, and 1 ≤ k − (n + l) ≤ bn − 1,

0, otherwise.

Then,

A :=
2n∑

l=1

2n∑

k=1

alkRlRk

=
n−1∑

l=1

2n∑

k=n+2

I
{
1 ≤ k − (n + l) ≤ bn − 1

}1

n
wn

(
k − (n + l)

)
RlRk

=
n−1∑

l=1

n−l∑

s=2−l

I {1 ≤ s ≤ bn − 1}1

n
wn(s)RlRn+l+s letting k − (n + l) = s

=
n−1∑

s=1

n−s∑

l=1

I {1 ≤ s ≤ bn − 1}1

n
wn(s)RlRn+l+s

+
0∑

s=(3−n)

n−1∑

l=(2−s)

I {1 ≤ s ≤ bn − 1}1

n
wn(s)RlRn+l+s
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=
bn−1∑

s=1

n−s∑

l=1

1

n
wn(s)U

(i)
l U

(j)

l+s since n > 2bn ≥ 2

=
bn−1∑

s=1

n−s∑

l=1

1

n
wn(s)U

(i)
l U

(j)
l+s .

Using Lemma 11, for c ≥ 1 and some constant Kc ,

E

[(
bn−1∑

s=1

wn(s)
1

n

n−s∑

t=1

U
(i)
t U

(j)
t+s

)2c]
≤ Kc

(∑

l

∑

k

a2
lk

)c

,

where

∑

l

∑

k

a2
lk =

bn−1∑

s=1

n−s∑

t=1

1

n2
w2

n(s) = 1

n2

bn−1∑

s=1

(n − s)w2
n(s) ≤ n

n2

bn−1∑

s=1

1 ≤ bn

n
.

Thus, by Assumption (a) and Lemma 10,

bn−1∑

s=1

wn(s)
1

n

n−s∑

t=1

U
(i)
t U

(j)
t+s → 0 w.p. 1 as n → ∞.

3. By letting t − s = l,

bn−1∑

s=1

wn(s)
1

n

n∑

t=1+s

U
(i)
t U

(j)
t−s =

bn−1∑

s=1

wn(s)
1

n

n−s∑

l=1

U
(i)
l+sU

(j)

l .

This is similar to the previous part with just the i and j components interchanged. A similar

argument will lead to
∑bn−1

s=1 wn(s)n
−1

∑n
t=1+s U

(i)
t U

(j)
t−s → 0 with probability 1 as n → ∞.

4.

bn−1∑

s=1

2wn(s)

(
1 + s

n

)
B̄(i)

n B̄
(j)
n

≤
∣∣∣∣∣

bn−1∑

s=1

2wn(s)

(
1 + s

n

)
B̄(i)

n B̄
(j)
n

∣∣∣∣∣

≤
bn−1∑

s=1

2
∣∣wn(s)

∣∣
(

1 + s

n

)∣∣B̄(i)
n

∣∣∣∣B̄(j)
n

∣∣

≤ 2

n2

bn−1∑

s=1

(
1 + s

n

)∣∣B(i)(n)
∣∣∣∣B(j)(n)

∣∣ since
∣∣wn(s)

∣∣ ≤ 1
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<
2

n2
(1 + ε)22n log logn

bn−1∑

s=1

(
1 + s

n

)
by Lemma 2

< 4(1 + ε)2n−1 logn

bn−1∑

s=1

2

≤ 8(1 + ε)2bnn
−1 logn

→ 0.

5. Next,

bn−1∑

s=1

wn(s)
1

n
B̄

(j)
n

(
B(i)(n) − B(i)(n − s)

)

≤
∣∣∣∣∣

bn−1∑

s=1

wn(s)
1

n
B̄

(j)
n

(
B(i)(n) − B(i)(n − s)

)
∣∣∣∣∣

≤
bn−1∑

s=1

1

n2

∣∣B(j)(n)
∣∣∣∣B(i)(n) − B(i)(n − s)

∣∣ since
∣∣wn(s)

∣∣ ≤ 1

≤ 1

n2

∣∣B(j)(n)
∣∣
bn−1∑

s=1

sup
0≤m≤bn

∣∣B(i)(n) − B(i)(n − m)
∣∣

<
1

n2

(
(1 + ε)(2n log logn)1/2

)

× (1 + ε)

(
2bn

(
log

n

bn

+ log logn

))1/2 bn−1∑

s=1

1 by Lemma 2

< 21/2(1 + ε)2 1

n2
(n logn)1/2(4bn logn)1/2bn

< 23/2(1 + ε)2

(
bn

n

)1/2

n−1bn logn

→ 0.

6. Similar to the previous term, but exchanging the i and j indices,

bn−1∑

s=1

wn(s)
1

n
B̄(i)

n

(
B(j)(n) − B(j)(n − s)

)
→ 0 with probability 1 as n → ∞.



1898 D. Vats, J.M. Flegal and G.L. Jones

7.

bn−1∑

s=1

wn(s)
1

n
B̄(i)

n B(j)(s)

≤
∣∣∣∣∣

bn−1∑

s=1

wn(s)
1

n
B̄(i)

n B(j)(s)

∣∣∣∣∣

≤
bn−1∑

s=1

∣∣wn(s)
∣∣ 1

n

∣∣B̄(i)
n

∣∣∣∣B(j)(s)
∣∣

≤ 1

n2

∣∣B(i)(n)
∣∣
bn−1∑

s=1

∣∣B(j)(s)
∣∣ since

∣∣wn(s)
∣∣ ≤ 1

<
1

n2
(1 + ε)(2n log logn)1/2

bn−1∑

s=1

sup
1≤m≤bn

∣∣B(j)(m)
∣∣ by Lemma 2

<
1

n2
(1 + ε)(2n log logn)1/2 sup

1≤m≤bn

∣∣B(j)(m + 0) − B(j)(0)
∣∣
bn−1∑

s=1

1

<
bn

n2
(1 + ε)(2n log logn)1/2 sup

0≤t≤n−bn

sup
0≤m≤bn

∣∣B(j)(t + m) − B(j)(t)
∣∣

<
bn

n2
(1 + ε)(2n log logn)1/2(1 + ε)

(
2bn

(
log

n

bn

+ log logn

))1/2

= 23/2(1 + ε)2 b
1/2
n

n1/2
bnn

−1 logn

→ 0.

8. Similar to the previous term, by exchanging the i and j index,

bn−1∑

s=1

wn(s)
1

n
B̄

(j)
n B(i)(s) → 0 w.p. 1 as n → ∞.

Since each term in (A.22) goes to 0, we get that

�̃S,ij → 0 w.p. 1 as n → ∞. �

Lemma 13. Let Conditions 1 and 2 hold. In addition, suppose there exists a constant c ≥ 1

such that
∑

n(bn/n)c < ∞, n > 2bn, bnn
−1 logn → 0, and bnn

−1
∑bn

k=1 k|�1wn(k)| → 0, then

�̃w,n → Ip w.p. 1 as n → ∞ where Ip is the p × p identity matrix.
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Proof. The result follows from Lemmas 5, 7 and 12. �

The following corollary is an immediate consequence of the previous lemma.

Corollary 3. Under the conditions of Lemma 13, L�̃w,nL
T → LLT = � w.p. 1 as n → ∞.

Lemma 14. Suppose (2.3) holds and Conditions 1 and 2 hold. If as n → ∞,

bnψ(n)2 logn

(
bn∑

k=1

∣∣�2wn(k)
∣∣
)2

→ 0 and (A.24)

ψ(n)2

bn∑

k=1

∣∣�2wn(k)
∣∣ → 0, (A.25)

then �̂w,n → � w.p. 1.

Proof. For i, j = 1, . . . , p, let �ij and �̂w,ij denote the (i, j)th element of � and �̂w,n, respec-

tively. Recall

�̂w,ij = 1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
[
Ȳ

(i)
l (k) − Ȳ (i)

n

][
Ȳ

(j)
l (k) − Ȳ

(j)
n

]
.

We have

|�̂w,ij − �ij |

=
∣∣∣∣∣
1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
[
Ȳ

(i)
l (k) − Ȳ (i)

n

][
Ȳ

(j)
l (k) − Ȳ

(j)
n

]
− �ij

∣∣∣∣∣

=
∣∣∣∣∣
1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
[
Ȳ

(i)
l (k) − Ȳ (i)

n ± C̄
(i)
l (k) ± C̄(i)

n

]

×
[
Ȳ

(j)
l (k) − Ȳ

(j)
n ± C̄

(j)
l (k) ± C̄

(j)
n

]
− �ij

∣∣∣∣∣

=
∣∣∣∣∣
1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
[(

Ȳ
(i)
l (k) − C̄

(i)
l (k)

)
+

(
C̄

(i)
l (k) − C̄(i)

n

)
−

(
Ȳ (i)

n − C̄(i)
n

)]

×
[(

Ȳ
(j)

l (k) − C̄
(j)

l (k)
)
+

(
C̄

(j)

l (k) − C̄
(j)
n

)
−

(
Ȳ

(j)
n − C̄

(j)
n

)]
− �ij

∣∣∣∣∣
(A.26)
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≤
∣∣∣∣∣
1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
(
C̄

(i)
l (k) − C̄(i)

n

)(
C̄

(j)
l (k) − C̄

(j)
n

)
− �ij

∣∣∣∣∣

+ 1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣[∣∣(Ȳ (i)
l (k) − C̄

(i)
l (k)

)(
Ȳ

(j)

l (k) − C̄
(j)

l (k)
)∣∣

+
∣∣(Ȳ (i)

l (k) − C̄
(i)
l (k)

)(
Ȳ

(j)
n − C̄

(j)
n

)∣∣

+
∣∣(Ȳ (i)

l (k) − C̄
(i)
l (k)

)(
C̄

(j)

l (k) − C̄
(j)
n

)∣∣ +
∣∣(Ȳ (i)

n − C̄(i)
n

)(
Ȳ

(j)
n − C̄

(j)
n

)∣∣

+
∣∣(Ȳ (i)

n − C̄(i)
n

)(
Ȳ

(j)

l (k) − C̄
(j)

l (k)
)∣∣ +

∣∣(Ȳ (i)
n − C̄(i)

n

)(
C̄

(j)

l (k) − C̄
(j)
n

)∣∣

+
∣∣(C̄(i)

l (k) − C̄(i)
n

)(
Ȳ

(j)
l (k) − C̄

(j)
l (k)

)∣∣ +
∣∣(C̄(i)

l (k) − C̄(i)
n

)(
Ȳ

(j)
n − C̄

(j)
n

)∣∣].

We will show that each of the nine terms in (A.26) goes to 0 with probability 1 as n → ∞. To

do that, let us first establish a useful inequality. From (2.3), for any component i, and sufficiently

large n,
∣∣∣∣∣

n∑

t=1

Y
(i)
t − C(i)(n)

∣∣∣∣∣ < Dψ(n). (A.27)

1. | 1
n

∑n−bn

l=0

∑bn

k=1 k2�2wn(k)(C̄
(i)
l (k) − C̄

(i)
n )(C̄

(j)
l (k) − C̄

(j)
n ) − �ij |.

Notice that

1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
(
C̄

(i)
l (k) − C̄(i)

n

)(
C̄

(j)

l (k) − C̄
(j)
n

)
,

is equivalent to the ij th entry in L�̃w,nL
T . Then by Corollary 3

∣∣∣∣∣
1

n

n−bn∑

l=0

bn∑

k=1

k2�2wn(k)
(
C̄

(i)
l (k) − C̄(i)

n

)(
C̄

(j)

l (k) − C̄
(j)
n

)
− �ij

∣∣∣∣∣ → 0 as n → ∞ w.p. 1.

2. 1
n

∑n−bn

l=0

∑bn

k=1 k2|�2wn(k)||(Ȳ (i)
l (k) − C̄

(i)
l (k))(Ȳ

(j)

l (k) − C̄
(j)

l (k))|.
Note that for any component i,

∣∣k
(
Ȳ

(i)
l (k) − C̄

(i)
l (k)

)∣∣ =
∣∣∣∣∣

k∑

t=1

Y
(i)
l+t − C(i)(k + l) + C(i)(l)

∣∣∣∣∣

=
∣∣∣∣∣

k+l∑

t=1

Y
(i)
t −

l∑

t=1

Y
(i)
t − C(i)(k + l) + C(i)(l)

∣∣∣∣∣

<

∣∣∣∣∣

l+k∑

t=1

Y
(i)
t − C(i)(k + l)

∣∣∣∣∣ +
∣∣∣∣∣

l∑

t=1

Y
(i)
t − C(i)(l)

∣∣∣∣∣ (A.28)
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≤ Dψ(l + k) + Dψ(l) by (A.27)

≤ 2Dψ(n) since l + k ≤ n.

By (A.28),

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
l (k) − C̄

(i)
l (k)

)(
Ȳ

(j)

l (k) − C̄
(j)

l (k)
)∣∣

<
1

n

n−bn∑

l=0

bn∑

k=1

∣∣�2wn(k)
∣∣(2Dψ(n)

)2

= 4D2

(
n − bn + 1

n

)
ψ(n)2

bn∑

k=1

∣∣�2wn(k)
∣∣

→ 0 as n → ∞ with probability 1.

3. 1
n

∑n−bn

l=0

∑bn

k=1 k2|�2wn(k)||(Ȳ (i)
l (k) − C̄

(i)
l (k))(Ȳ

(j)
n − C̄

(j)
n )|.

Note that for any component i, using (A.27),

∣∣Ȳ (i)
n − C̄(i)

n

∣∣ = 1

n

∣∣∣∣∣

n∑

t=1

Y
(i)
t − C(i)(n)

∣∣∣∣∣ <
1

n
Dψ(n). (A.29)

By (A.28) and (A.29),

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
l (k) − C̄

(i)
l (k)

)(
Ȳ

(j)
n − C̄

(j)
n

)∣∣

<
1

n

n−bn∑

l=0

bn∑

k=1

k
∣∣�2wn(k)

∣∣(2Dψ(n)
)(1

n
Dψ(n)

)

= 2D2ψ(n)2

(
n − bn + 1

n

)
1

n

bn∑

k=1

k
∣∣�2wn(k)

∣∣

≤ 2D2ψ(n)2

(
n − bn + 1

n

)
bn

n

bn∑

k=1

∣∣�2wn(k)
∣∣

→ 0 as n → ∞ with probability 1.

4. Now

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
l (k) − C̄

(i)
l (k)

)(
C̄

(j)

l (k) − C̄
(j)
n

)∣∣
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≤ 1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
l (k) − C̄

(i)
l (k)

)
C̄

(j)
l (k)

∣∣

+ 1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
l (k) − C̄

(i)
l (k)

)
C̄

(j)
n

∣∣.

We will show that both parts of the sum converge to 0 with probability 1 as n → ∞. Consider

the first sum.

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
l (k) − C̄

(i)
l (k)

)
C̄

(j)
l (k)

∣∣

≤ 1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣Ȳ (i)
l (k) − C̄

(i)
l (k)

∣∣∣∣C̄(j)

l (k)
∣∣

≤ 1

n

n−bn∑

l=0

bn∑

k=1

k
∣∣�2wn(k)

∣∣(2Dψ(n)
)(

2(1 + ε)
√

bn�ii

1

k
(logn)1/2

)
by (A.2) and (A.28)

=
(

n − bn + 1

n

)
4D(1 + ε)

√
�iibn lognψ(n)

bn∑

k=1

∣∣�2wn(k)
∣∣

→ 0 by Condition 2 and (A.24).

The second part is

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
l (k) − C̄

(i)
l (k)

)
C̄

(j)
n

∣∣

= 1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣Ȳ (i)
l (k) − C̄

(i)
l (k)

∣∣∣∣C̄(j)
n

∣∣

≤ 1

n

n−bn∑

l=0

bn∑

k=1

k
∣∣�2wn(k)

∣∣(2Dψ(n)
)(1

n
(1 + ε)[2n�ii log logn]1/2

)
by (A.28) and (A.1)

<

(
n − bn + 1

n

)
2
√

2�iiD(1 + ε)ψ(n)
(n logn)1/2

n

bn∑

k=1

k
∣∣�2wn(k)

∣∣

<

(
n − bn + 1

n

)
2
√

2�iiD(1 + ε)ψ(n)
(logn)1/2

n1/2
bn

bn∑

k=1

∣∣�2wn(k)
∣∣
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<

(
n − bn + 1

n

)
2
√

2�iiD(1 + ε)ψ(n)(bn logn)1/2 b
1/2
n

n1/2

bn∑

k=1

∣∣�2wn(k)
∣∣

→ 0 by Condition 2 and (A.24).

5. Next,

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
n − C̄(i)

n

)(
Ȳ

(j)
n − C̄

(j)
n

)∣∣

<
1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣ 1

n2
D2ψ(n)2 by (A.29)

≤
(

n − bn + 1

n

)
D2 b2

n

n2
ψ(n)2

bn∑

k=1

∣∣�2wn(k)
∣∣

→ 0 by Condition 2 and (A.25).

6.

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
n − C̄(i)

n

)(
Ȳ

(j)
l (k) − C̄

(j)
l (k)

)∣∣

<
1

n

n−bn∑

l=0

bn∑

k=1

k
∣∣�2wn(k)

∣∣
(

1

n
Dψ(n)

)(
2Dψ(n)

)

<

(
n − bn + 1

n

)
2D2ψ(n)2 1

n

bn∑

k=1

k
∣∣�2wn(k)

∣∣

<

(
n − bn + 1

n

)
2D2ψ(n)2 bn

n

bn∑

k=1

∣∣�2wn(k)
∣∣

→ 0 by Condition 2 and (A.25).

7.

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
n − C̄(i)

n

)(
C̄

(j)

l (k) − C̄
(j)
n

)∣∣

≤ 1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
n − C̄(i)

n

)
C̄

(j)

l (k)
∣∣

+ 1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
n − C̄(i)

n

)
C̄

(j)
n

∣∣.
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We will show that each of the two terms goes to 0 with probability 1 as n → ∞.

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
n − C̄(i)

n

)
C̄

(j)

l (k)
∣∣

<
1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣
(

1

n
Dψ(n)

)(
2(1 + ε)

√
bn�ii

1

k
(logn)1/2

)

by (A.2) and (A.29)

<

(
n − bn + 1

n

)
2D(1 + ε)

√
�iiψ(n)

√
bn logn

n

bn∑

k=1

k
∣∣�2wn(k)

∣∣

≤
(

n − bn + 1

n

)
2D(1 + ε)

√
�ii

bn

n

√
bn lognψ(n)

bn∑

k=1

∣∣�2wn(k)
∣∣

→ 0 by Condition 2 and (A.24).

For the second term,

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
n − C̄(i)

n

)
C̄

(j)
n

∣∣

= 1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(Ȳ (i)
n − C̄(i)

n

)∣∣∣∣C̄(j)
n

∣∣

<
1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣
(

1

n
Dψ(n)

)(
1

n
(1 + ε)[2n�ii log logn]1/2

)

by (A.29) and (A.1)

≤
(

n − bn + 1

n

)√
2�iiD(1 + ε)

√
n lognψ(n)

n2

bn∑

k=1

k2
∣∣�2wn(k)

∣∣

≤
(

n − bn + 1

n

)√
2�iiD(1 + ε)

b2
n

√
n lognψ(n)

n2

bn∑

k=1

∣∣�2wn(k)
∣∣

≤
(

n − bn + 1

n

)√
2�iiD(1 + ε)

bn

n

b
1/2
n

n1/2
(bn logn)1/2ψ(n)

bn∑

k=1

∣∣�2wn(k)
∣∣

→ 0 by Condition 2 and (A.24).
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8.

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(C̄(i)
l (k) − C̄(i)

n

)(
Ȳ

(i)
l (k) − C̄

(j)
l (k)

)∣∣.

This term is the same as term 4 except for a change of components. Thus, the same argument

can be used to show that it converges to 0 with probability 1 as n → ∞.

9.

1

n

n−bn∑

l=0

bn∑

k=1

k2
∣∣�2wn(k)

∣∣∣∣(C̄(i)
l (k) − C̄(i)

n

)(
Ȳ

(j)
n − C̄

(j)
n

)∣∣.

This term is the same as term 7 except for a change of components. Thus the same argument

can be used to show that it converges to 0 w.p. 1 as n → ∞.

Since each of the nine terms converges to 0 with probability 1, |�̂ij − �ij | → 0 as n → ∞ with

probability 1. �

Since we proved that �̂S = �̂w,n + dn → � + 0 as n → ∞ with probability 1, we have the

desired result for Theorem 1.

A.4. Proof of Theorem 2

Let S = {St }t≥1 be a strictly stationary stochastic process on a probability space (�,F,P ) and

set F l
k = σ(Sk, . . . , Sl). Define the α-mixing coefficients for n = 1,2,3, . . . as

α(n) = sup
k≥1

sup
A∈Fk

1 ,B∈F∞
k+n

∣∣P(A ∩ B) − P(A)P (B)
∣∣.

The process S is said to be strongly mixing if α(n) → 0 as n → ∞. It is easy to see that Harris

ergodic Markov chains are strongly mixing; see, for example, Jones [35].

Theorem 5 (Kuelbs and Philipp [42]). Let f (S1), f (S2), . . . be an R
p-valued stationary pro-

cess such that EF ‖f ‖2+δ < ∞ for some 0 < δ ≤ 1. Let αf (n) be the mixing coefficients of the

process {f (St )}t≥1 and suppose, as n → ∞,

αf (n) = O
(
n−(1+ε)(1+2/δ)

)
for ε > 0.

Then there exists a p-vector θf , a p×p lower triangular matrix Lf , and a finite random variable

Df , such that, with probability 1,

∥∥∥∥∥

n∑

t=1

f (Xt ) − nθf − Lf B(n)

∥∥∥∥∥ < Df n1/2−λf (A.30)

for some λf > 0 depending on ε, δ, and p only.
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Corollary 4. Let EF ‖f ‖2+δ < ∞ for some δ > 0. If X is a polynomially ergodic Markov chain

of order ξ ≥ (1 + ε)(1 + 2/δ) for some ε > 0, then (A.30) holds for any initial distribution.

Proof. Let α be the mixing coefficient for the Markov chain X = {Xt }t≥1 and αf be the mixing

coefficient for the mapped process {f (Xt )}t≥1. Then the elementary properties of sigma-algebras

[cf. Chow and Teicher [8], p. 16] shows that αf (n) ≤ α(n) for all n. Since X is polynomially

ergodic of order ξ we also have that α(n) ≤ EF Mn−ξ for all n and hence if ξ ≥ (1+ε)(1+2/δ),

then αf (n) ≤ EF Mn−ξ = O(n−(1+ε)(1+2/δ)). The result follows from Theorem 5 and thus the

strong invariance principle as stated, holds at stationarity. A standard Markov chain argument

(see, e.g., Proposition 17.1.6 in Meyn and Tweedie [45]) shows that if the result holds for any

initial distribution, then it holds for every initial distribution. �

Proof of Theorem 2. Since EF ‖g‖4+δ < ∞ implies EF ‖g‖2+δ < ∞ and X is a polynomially

ergodic Markov chain of order ξ ≥ (1 + ε)(1 + 2/δ) we have from Corollary 4 that an SIP holds

such that
∥∥∥∥∥

n∑

t=1

g(Xt ) − nθ − LB(n)

∥∥∥∥∥ < Dn1/2−λg

for some λg > 0 depending on ε, δ, and p only.

Since EF ‖g‖4+δ < ∞ implies EF ‖h‖2+δ < ∞ and X is a polynomially ergodic Markov chain

of order ξ ≥ (1 + ε)(1 + 2/δ) we have from Corollary 4 that an SIP holds such that

∥∥∥∥∥

n∑

t=1

h(Xt ) − nθh − LhB(n)

∥∥∥∥∥ < Dhn
1/2−λh

for some λh > 0 depending on ε, δ, and p only.

Setting λ = min{λg, λh} shows that (2.3) and (2.4) hold with

ψ(n) = ψh(n) = n1/2−λ.

The rest now follows easily from Theorem 1. �
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