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Abstract: In this paper, we consider the regression model with fixed design:Y g x εi i i( )= + , i n1 ≤ ≤ , where

xi{ } are the nonrandom design points, and εi{ } is a sequence of martingale, and g is an unknown function.

Nonparametric estimator g xn( ) of g x( ) will be introduced and its strong convergence properties are estab-

lished.
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1 Introduction

The estimation of a regression function g x E y x( ) ( ∣ )= is an important statistical problem. Usually, g x( ) has

a specified functional form and parameter estimates are obtained according to certain desirable criteria.

When the errors are normal random variables, we can test the appropriateness of the hypothesized model.

However, one may wish to have an estimation technique applicable for an arbitrary g x( ). Priestley and Chao

[1] considered the problem of estimating an unknown regression function g x( ) given observations at a fixed

set of points. Their estimate is nonparametric in the sense that g x( ) is restricted only by certain smoothing

requirements.

1.1 Priestley-Chao estimate

Let Y Y, , n1 … be n observations at fixed x x, , n1 … according to the model

Y g x ε i n, 1 ,i i i( )= + ≤ ≤

where g x( ) is an unknown function defined in 0, 1[ ] and the errors εi{ } are i.i.d. random variables with zero

mean and finite variance σ2. Without loss of generality we assume x x0 1n1≤ ≤⋯≤ ≤ . The Priestley-Chao

estimate of g x( ) is
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where K is a weight function satisfying
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−∞

∞

−∞

∞

(1.2)



* Corresponding author: Yingxia Chen, School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China,

e-mail: yingxiachen@whu.edu.cn

Open Mathematics 2021; 19: 1056–1068

Open Access. © 2021 Yingxia Chen, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0

International License.

https://doi.org/10.1515/math-2021-0090
mailto:yingxiachen@whu.edu.cn


and hn{ } is a sequence of positive real numbers with

h nh n0, , as .n n→ → ∞ → ∞

The estimate g xn( ) can be viewed as a moving average of sampleY s whose weights are based on a class of

kernels suggested by Rosenblatt [2] and Parzen [3].

Priestley and Chao [1] established the consistency of the estimate g xn( ). Benedetti [4] studied the strong

convergence and asymptotic normality for g xn( ). Specially, the optimal choice of a weighting function was

considered. Gasser and Müller [5] established a new kernel estimate which was superior to the one intro-

duced by Priestley and Chao [1]. Their results were not restricted to positive kernels, but extended to classes

of kernels satisfying certain moment conditions. Cheng [6] used linear combinations of sample quantile

regression functions to estimate the unknown function g . Csörgő and Mielniczuk [7] considered the fixed-

design regression model with long-range dependent normal errors and showed that the finite-dimensional

distributions of the properly normalized Gasser and Mülller [5] and Priestley and Chao [1] estimators of the

regression function converge to those of a white noise process. Burman [8] dealt with the convergence of

spline regression estimators under mixing conditions. Robinson [9] studied central limit theorems for an

estimator for the regression function of a fixed-design model when the residuals come from a linear process

of martingale differences. Tran et al. [10] discussed the asymptotic normality of g xn( ) assuming that the

errors form a linear time series, more precisely, a weakly stationary linear process based on a martingale

difference sequence. Yang and Wang [11] and Liang and Jing [12] established the strong consistency of

regression function estimator for negative associated samples. Niu and Li [13] discussed the asymptotic

normality of the weighted kernel estimators of g x( ) when the censoring variable is known or unknown.

Zhang et al. [14] studied the strong convergence of the estimate g xn( ) when the errors are the mixingale

sequence. Yang [15] obtained the strong consistency of the Georgiev estimates of the regression function

when the errors are martingale differences.

Motivated by the above works, in the present paper, we shall establish the strong consistency and

uniform strong consistency of Priestley-Chao estimate of regression function based on the errors of mar-

tingale difference sequences and extend the results of Li [16] and Yin et al. [17]. In Section 2, we state the

main results, and the proofs of these theorems are given in Section 3.

2 Main results

We consider the following regression model with fixed design

Y g x ε i n, 1 ,i i i( )= + ≤ ≤ (2.1)

where x x0 1n1≤ ≤⋯≤ ≤ are the nonrandom design points, and Y Y, , n1 … are the observed sample items.

The sequence ε i, , 0i i�{ }≥ is a martingale difference sequence with ε 00 = and g x( ) is an unknown

function. Denote δ x xmaxn i n i i1 1( )= −≤ ≤ − , and we assume that the following regularity conditions are

satisfied:

(a) Let K( )⋅ be a weighted bounded function satisfying

K u u K u ud 1, d .( ) ∣ ( )∣∫ ∫= < ∞
−∞

+∞

−∞

+∞

(b) Let g K,( ) ( )⋅ ⋅ satisfy Lipschitz conditions of orders α β, , respectively.

(c) Assume that the sequence δ 0n → , as n → ∞.

(d) Suppose that hn{ } is a sequence of positive real numbers satisfying h 0n → and

h
δ h δ

1
0,

n
n n

β
n
α{( ) }/ + →

as n → ∞.
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Throughout the following paper, C denotes a positive constant, which may take different values when-

ever it appears in different expression. AI( ) denotes the indicator function of the event A. xlog denotes

x eln max ,{ }, where ln is the natural logarithm. ξ‖ ‖ denotes the essential supremum of random variable ξ ,

namely ξ c P ξ cinf 0 : 1{ (∣ ∣ ) }‖ ‖ = > ≤ = . The estimate g xn( ) of the unknown function g x( ) is defined as (1.1).

Theorem 2.1. Under conditions (a)–(d), assume that

(i) for some r1 2< < and b 0≥ ,

ε b a.s.sup ,
i

i
r

i
1

1� �(∣ ∣ ∣ ) ≤
≥

−
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1r r

1 1
( )( )/ = − − ,
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Theorem 2.2. Under conditions (a)–(d), assume that
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−

(ii) δ h o n nlogn n
1r r

1 1
( )( )/ = − − − , and there exists d 0> satisfying

n h as n, ,d
n → ∞ → ∞

then we have (2.2) and
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n x τ τ

n
,1

1( ) ( ) ( )
[ ]

= ∀ ∈
→∞ ∈ −

−
(2.3)

Remark 2.1. The assumptions of δ hn n/ in Theorems 2.1 and 2.2 are weaker than those of Theorem 4 in [16],

in which

δ h O n n ρlog , 1.n n
ρ1r

1
( ( ) )( )/ = >− − +

Remark 2.2. The assumptions for the weighted function K in [4] are stronger than ones in the present

paper. Besides the condition (a), Benedetti [4] assumed that the weighted function K satisfied

K u u K u K ud and .2( ) ( ) ( )∫ < ∞ = −
−∞

∞

Suppose that the exponential moments of the errors εi{ } exist, then we have the following results.

Theorem 2.3. Under conditions (a)–(d), assume that

(i) for some b 0≥ ,

ε bsup exp ,
i

i
1

�( (∣ ∣)) ≤
≥

(ii) δ h On n
n

n

log
δ1( )/ = + , for some δ0 1< < ,

then we have (2.2).
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Theorem 2.4. Under conditions (a)–(d) and additional assumptions that,

(i) for some r1 2< < and b 0≥ ,

ε b a.s.exp ,i
r

i 1� �( (∣ ∣ )∣ ) ≤−

(ii) δ h o n nlogn n
1r r

1 1
( )( )/ = − − , and there exists d 0> satisfying

n h as n, ,d
n → ∞ → ∞

then we have (2.2) and (2.3).

3 Auxiliary results

In this section, we give some lemmas in order to prove our main results.

Lemma 3.1. [11, Theorem 1] Under conditions (a)–(d), we have,

g x g x xlim , 0, 1 ,
n

n�( ( )) ( ) ( )= ∀ ∈
→∞ (3.1)

g x g x τlim sup 0, 0, 2 .
n x τ τ

n
,1

1
�∣ ( ( )) ( )∣ ( )

[ ]

− = ∀ ∈
→∞ ∈ −

−
(3.2)

Lemma 3.2. [11, Lemma 4] Under conditions (a), (c), and (d), we have
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Lemma 3.3. If for some r 1> , ξ r
�∣ ∣ < ∞, then we have
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Proof. Note that n nlog{ }/ is an increasing sequence, so it is easy to check that,
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Lemma 3.4. [18, Theorem 1] Let ξ n, 1n{ }≥ be a sequence of nonnegative random variables defined on

PΩ, ,�( ) and n, 0n�{ }≥ be a sequence of sub-σ-algebras of � (to which ξ n, 1n{ }≥ need to be adapted).

If n, 0n�{ }≥ is nondecreasing, then
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Lemma 3.5. Let ξ i, , 1i i�{ }≥ be a martingale difference sequence with ξ 1i∣ ∣ ≤ a.s., then for any ε 0> ,

we have
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Proof. For any t 0> , by Lemma 1 in [19] and Markov’s inequality, we have
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4 Proof of main results

In this section, we give the proofs of main results. Let
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Proof of Theorem 2.1. Define
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then it follows that ε ξ ηi i i= + , S x S x S xn n n( ) ( ) ( )= ′ + ″ , and ξ i, , 1i i�{ }≥ , η i, , 1i i�{ }≥ are martingale differ-
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From the elementary inequality that,
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in which the equality is valid as r1 2< < . From (4.4) and (4.5), we get,
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From Lemma 3.3, we get
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(4.10)

Thus by (4.9) and (4.10), we get (4.8). The proof of the theorem is completed. □
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Proof of Theorem 2.2. For i n1 ≤ ≤ , denote
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and define ξi, ηi, S xn( ), S xn( )′ , S xn ( )″ as (4.3).

In order to prove (4.1) and (4.2), it is sufficient to prove that for any x 0, 1( )∈ and any τ 0, 2 1( )∈ − ,

S x S x0 a.s., sup 0 a.s.,n
x τ τ

n
,1

∣ ( )∣ ∣ ( )∣
[ ]
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(4.11)
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n
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(4.12)

Since
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then by using the similar proof to (4.7), we can get,
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By choosing t 1> , we can obtain S x 0n∣ ( )∣′ → a.s.
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Thus for all n large enough, we obtain from (4.13)
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(4.14)

By letting t 2
β

β β

d 1 1( )> + ++ in (4.14), we get,
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From Borel-Cantelli lemma, we have S xsup 0x τ τ n,1 ∣ ( )∣[ ] ′ →∈ − a.s.
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Next we show (4.12). By denoting T x a x ε 2n i
n

ni i1
( ) ( ) ( )= ∑ = , we have
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It is not difficult to see
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in which the equality is valid as r 1> and the last inequality is from Lemma 3.2. Furthermore, we have
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Let
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then it is easy to check (see the second inequality in (4.15))
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then from Kronecker lemma and (4.16), we have,
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x τ τ

n
,1

∣ ( )∣
[ ]

→
∈ − (4.17)

Combining (4.15) and (4.17), it is obvious that

S x τsup 0 a.s., 0, 2 .
x τ τ

n
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1∣ ( )∣ ( )
[ ]

″ → ∀ ∈
∈ −

−

Moreover, it follows that

S x x0 a.s., 0, 1 .n∣ ( )∣ ( )″ → ∀ ∈

From the above discussions, we can obtain the desired results. □
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Proof of Theorem 2.3. Fixed a 0> , denote

ε ε ε an ε ε ε an1 I , 2 Ii i i i i i( ) {∣ ∣ } ( ) {∣ ∣ }≔ ≤ ≔ >

and define ξi, ηi, S xn( ), S xn( )′ , S xn ( )″ as (4.3), then it is easy to see that ε ξ ηi i i= + , S x S x S xn n n( ) ( ) ( )= ′ + ″ ,

and ξ i η i, , 1 , , , 1i i i i� �{ } { }≥ ≥ are martingale difference sequences. For any given ε 0> and t 0, 1( )∈ ,

it is obvious that
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By noting that
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Letting F x ε xi i�( ) {∣ ∣ }= > , then from ε bexp i�( (∣ ∣)) ≤ , we have
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Here the last equality holds by the fact that η i, , 1i i�{ }≥ is a martingale difference sequence. Furthermore,

by comparing (4.19) with (4.20), we can choose the constant a satisfying an
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From (4.19), (4.20), and (4.21), we obtain
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From Borel-Cantelli lemma, (4.1) follows. □

Proof of Theorem 2.4. For i n1 ≤ ≤ , denote
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Thus for any ε 0> , λ 0> , we have
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Now by taking λ ε n blog n1 2( )= − , we get
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Furthermore, it is easy to see that for every i n1 ≤ ≤ ,
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From Borel-Cantelli lemma, we can obtain the desired results. □
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