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Abstract

The strong consistency of regression quantile statistics (Koenker and

Bassett (1978)) in linear models with iid errors is established. Mild regularity

conditions on the regression design sequence and the error distribution are

required. Strong consistency of the associated empirical quantile process

(introduced in Bassett and Koenker (1982)) is also established under analo-

gous conditions. However, for the proposed estimate of the conditional distri-

bution function of Y, no regularity conditions on the error distribution are

required for uniform strong convergence, thus establishing a Glivenko-

Cantelli-type theorem for this estimator.
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1. Introduction

In several recent papers, Koenker and Bassett (1978, 1982) and Bassett

and Koenker (1982), we have explored the problem of estimating linear

models for conditional quantile functions of related random variables. This

approach complements classical least-squares methods for linear models as

well as recent robust methods which focus exclusively on estimation of condi-

tional central tendency.

th
We might hypothesize that the conditional quantile function of

Y , ..., Y is a linear function of a p-vector of exogenous variables x , i.e.,

Q Y (8 | x)=*0, (1.1)

Given this hypothesis, one may ask under what conditions can we con-

sistently estimate the parameter vector |3 ? In Koenker and Bassett (1978)

we showed that for the linear model with iid errors any sequence of solutions

{3 fl
} t° the problem

min E p
9 (y,-

-*,-*) (i.2)

b € R' . ,

» =1

where p(-) is the check function.

Pa(«) =
' e« u s= o

ie - 1)« u. <o

had the property that, under mild conditions on the sequence of designs and

the assumption that F had a positive density in a neighborhood of

Q(9) = F (8), v n (ft _
f$) converged in law to a /:-variate Gaussian



distribution with mean vector £ = (Q (8), 0, ..., 0)' € R . Thus, under the

foregoing conditions p fl
is weakly consistent for B

fl
= B + £ In Koenker

and Bassett (1982) we showed that similar asymptotic behavior prevailed in

sequences of linear models with heteroscedasticity of order 0(I/Vn ).

Here we maintain the hypothesis of iid errors while relaxing our previ-

ous smoothness conditions on the error distribution F . We begin by treat-

ing the behavior of the p -dimensional regression quantiles and conclude by

treating the associated empirical processes introduced in Bassett and

Koenker (1982). Almost sure convergence results are established under mild

regularity conditions on the design and the distribution function of the

errors. In the case of our proposed estimate of the error distribution no

regularity conditions are required on F , thus providing a natural extension

of the Glivenko-Cantelli theorem to the realm of linear models. The latter

result provides an intriguing alternative to methods based on residuals for

assessing distributional features of linear models with iid errors. Applica-

tions to bootstrapping and other model diagnostics immediately suggest

themselves.

2. Strong Consistency of Regression Quantiles

We will assume throughout that we have data generated from the

model,



Y. = x. 8 + u.
,

(2.1)

The errors u. are assumed to be independently and identically distributed

with distribution function F. About F we will assume that it is a proper,

right-continuous distribution function. Its "inverse" will be denoted by

Q(0) =inf{u \F(u)^*} (2.2)

so Q is left continuous on [0, lj. The parameter (3 is an unknown p -vector.

The sequence {x. } of fixed design vectors is assumed to "contain an inter-

cept," that is, x. = 1 for all i and to satisfy the following regularity condi-

tions:

lim inf d = lim inf inf n E \ x. <u |
= d > (Ti\\

n -*
] I

(i)
| |
= 1

-1 2
lim inf D = lim inf sup n E(x. a>) =D < <»

(T)^
71 -*

|
(I)

|
|

= 1

We may now state:

Theorem 1. If Dl and D2 hold and F has a unique 8 quantile then

any sequence of solutions {p (0)} to problem (1.3) satisfies 3 (0) -» (3 + (L

almost surely.

Proof. FLx 8 and consider,

n

*, (8) - n
-1 £ r. (8) (23)

t =1



n

-1

= n £ [p9
(a. - x. 8 - Q (8)) - p,(«. - Q (6))]

t' =1

Since R (0) = 0, and R (8) is a sum of convex functions and therefore con-

vex, it suffices to show that for any A >

lim inf inf R (8) > a.s.

n -x I 18 I I =A
(2.4)

We begin by establishing that

R
n
(8) - E R

n
(8) a.s. (2.5)

Since r. (8) < |
j. 8

|
, Kolmogorov's criterion yields

o o

J7 Var(r. (8))/t * £(*. 8) /•
(2 . 6)

t =1

s
|
|s| I'p'rti.sr/trfx.sn

2

which is convergent so (2.5) follows. This may be strengthened to uniform

convergence on compacts by noting that for any 8 € R , we have.

sup
| R (8) - R (8

Q ) |
< sup{n

A
E

\
x. (8 - 8

Q ) |

}

s - 6
:

s «

(2.7)

€ sup n E
J
X. 0)

I

I leal I -1

n

1/2

So it remains to show that ER (8) is bounded away from 0, for any



8
I I

> 0. For a > 0,

g(a)=E [p e
(ti - a - Q (6)) - p 9 (

U - Q (6)] (2.8)

Q + a * Q + a

= / (1 -e)a<ZF(u) - / a6rfF(it)- / (u-Q)dF(u)

-a g + a Q
and integrating by parts gives,

Q + a

<7(a) = / (F(u) -Q)du . (2.9)

Q

For a < 0, the sign and limits of integration are simply reversed. The func-

tion g is convex, g (0) =0, and g (a) > for any a # by the uniqueness

of the 6 quantile. Now, let h (a) denote the convex hull of g (a) and g (-a)

then we have,

n

^
n
(8)>n

_1

£ * (*,») (2.10)

> n~
l

Eh( \x. 8 |)

-i

h{n~ E |x. 8 |)

>A(<*
| |8| |)

by the symmetry of A , Jensen's inequality and (D2) respectively. The



function h (a) is bounded away from zero for a £ by the uniqueness of the

8 quantile, thus completing the proof.

Reviewing the preceding argument it is clear that uniqueness of the 8

quantile is needed only to argue that ER (8) has a unique minimum at the

origin. When the 8 quantile is not unique then ER (8) has a larger

minimum set, but it is straightforward to show that solutions to (1.3) con-

verge almost surely to elements of this set. See Koenker and Bassett(1984)

for an example of weak but not strong convergence in this framework. The

following result will be used in subsequent sections.

Theorem 2.2. Suppose F is any proper, right continuous distribution

function and D1-D2 prevail. Let A
n
(A) = {5 € RP \ER

n
(8) ^ A}, the A~

level set of ER (8). Then any sequence of solutions to (1.3), {p (6)},

satisfies

P
ft
(e)-p-S

9
€.d

n (4) a.s. (2.11)

for all A > 0.

Proof. When Q (8 + 0) = Q (8) this follows immediately from Theorem 1

since trivially, € A (A) for all A. When,

£(8) = Q(8 + 0) -^(8) >0 (2.12)

the function g (a) is identically zero on [0, £(0)] and therefore ER (8) will

attain a minimum of zero on a set containing the origin. It suffices to verify

that the (necessarily convex) sets A (A) are bounded since we may then, by



the prior argument, finitely cover the boundary of any such set and by the

uniform convergence of R (8) to ER (3) on compacts we may conclude that

any solution to (1.3) lies inside this boundary.

For any A. € A (A) we have h(d \\\ |) ^ A by the argument of

(2.10). Since h(-) is convex and zero only on the bounded interval

[-£(9), £(6)]> f°r an >' -1 > 0, there exists an M < » such that h (a) ^ A

implies |a| < A/ . Thus
|

|X|
|
< M /d for any X. € A (A), and this

completes the proof.

3. Strong Convergence of Empirical Processes Based on Regression Quantiles

In Bassett and Koenker (1982) we proposed an estimate of the condi-

tional quantile function of Y given x
,

QY
(B\x) = m!{xb

|
6 <E 5(6)} (3.1)

where as above

B (9) = {6 € R P
| 27 pf(f

. - x. 6 ) = min!} . (3.2)

There it is shown that at x = x = n Ex., the sample paths of the ran-

dom function

Qr (e) = Q'
r (e|7) (3.3)

are non-decreasing, left continuous jump functions on (0, 1). However,

unlike the ordinary empirical quantile function to which QYW specializes

when X = 1 ; QY (Q), jumps at irregularly spaced points on (0, 1). Simi-

larly, one may show that



Qy (e + 0)» lim gy (
Q + €

)
(3.4)

= sup{B \b € 5(6)}

is a nondecreasing, right- continuous jump function on (0, 1). It was also

shown that properly normalized versions of these processes have finite

dimensional distributions which converge to those of the Brownian bridge

process. Portnoy (1983) has recently strengthened these results to establish

weak convergence of the estimate

FY (y)=sup{Q\QY (Q)^y} (3.5)

to the Brownian bridge.

Here we wish to investigate the strong convergence of QY {Q) and Fy (Q)

using results from the previous section. We may begin by noting that given

th
the iid error assumption of model (1.2), the 6 conditional quantile function

of Y given x may be written as,

QY (9\z)=zl+Q(9) (3.6)

We will restrict attention as previously to

<9r (e) = gr (e|j) = pj + Q(e). (3.7)

We may now state:

Theorem 3.1. If Dl and D2 hold and Q (0) is continuous on a closed

interval 0C(O, 1) then



9

sup
I QY (Q) -QY (Q)\ -0 a.s.

(38)

e € e

Proof. From Theorem 2.1 we have pointwise convergence of QY (Q) and

Q (9 + 0) to QY (Q) and using the monotonicity and continuity of QY (Q)

this may be strengthened to uniform almost sure convergence on 0. See, for

example, the argument in Billingsley (1979, p. 233) for the Glivenko-Cantelli

theorem.

When there are jumps in Q Y (') some new difficulties arise, since QY (Q)

may oscillate between Qy (6) and QY (Q + 0), but based on Theorem 2.2 we

may establish the following result.

Theorem 3.2. If Dl and D2 hold then

Y
\u ) -r y

[u
) |

-u a.s. ^ g
j

« 6 R

sup \FY (u) -FY {u)\ -Q a.s

u 6 R

Proof. We will consider the case of continuous F first; discontinuities in F

are treated in the Appendix. We will begin by fixing 8 and establishing the

inequalities:

liminf Qy (Q) > Qy (Q) a.s.
(3 10)

n - *

lim sup QY {Q + 0) < Q y (Q + 0) a.s. ^ nj

From Theorem 2.2 we have for anv

Q Y (0) ^ QY (Q) + inf {XI
|
X £ ,l

n (^)} (3.12)

and



10

QY (Q + 0) ^ QY (B) + sup {\J
|
X € A

n
(A)} (3.13)

so, by Jensen's inequality, using Dl,

n

-1

{\x
|
X € A

n
(A)} = {\x

|
n ' £ g (x. \) < A}

(3 14)

» =1

C{\x \g{\x) < A} .

Since g (•) is convex and zero only on [0, Q (0 + 0) - Q (8)] we have

-o (A) ^ inf {a
| g (a) < 4} (3.15)

< sup {a
| £ (a) < 4}

<; Q(8 + 0) -Q(Q) + o(zi)

so the inequalities follow letting A - 0. It is straightforward to verify that

(3.10-11) imply

lim sup FY ( Qy (6)) ^ Fy (

g

y (6))
(3 16)

and

lim inf F
y (<?y

(e) -0) a/(<?r (6) -0) .

(3 17)

So by continuity of F we have

lim inf FY (QY (Q)-0)= lim sup Fy (

£

y (6)) = 6 .

(3 lg)

And by standard arguments for the Glivenko-Cantelli theorem, again see,

Billingsley (1979, p. 233), this implies (3.9).
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Appendix

When F has discontinuities some new difficulties arise which are taken

up in this appendix. Principally, we must verify that F converges to a

proper distribution function. See the remark following the the proof of the

lemma. To complete the proof of Theorem 3.2 we will need:

Lemma. Fix 0€(O,1), and assume, £(Q)=F [Q (Q))-F (Q (8)-0) > 0, so

th

F has strictly positive mass at the quantile. Then for any € > 0, there is

an n such that

P{B(e)=p +

J

fl

, n>n
#
}*!-*. (A.l)

Proof. As in (2.3) consider,

#„ (8) =

»

~l

Er
i
(») =

«

"

1

2>«(«,- - *,- 8 - e (
e )) - p

9K - e (ej) (a.2)

and corresponding directional derivitives,

R
n
'(b,w) = n~

l

JJr.'(b }
w) = n~

l

£[\-9 -\sgn* (u. ,x. w )]x. w (A.3)

where sgn* (u ,v ) = sgn (u ) for u ^0 and sgn(v) otherwise. We must

establish,

lim inf inf R' (0,w ) > a. s. fA4l
n - *

|
to

| |

=1

Following the approach used in the proof of Theorem 2.1 we begin by show-

in £ that for fixed w
,



12

R '

n
(0,w ) -ER'

n
(0,w )-0 a.s. (A.5)

Since | r '. (0,tv
) |

^ \x. w application of Kolmogorov's criterion yields,

X

2 ..„ ,2 ,.2
EVar(r'.%w))/i < E(x.w)/i <« (A 6)

i =i » =i •

by (D2). This may be strengthened to uniform convergence on the sphere

\w =1 using (D2) and the continuity of R ' (0,w ) in w . Hence, we

have,

lim inf inf R
n
'(Q,w )

- lim inf inf ER
n
'(0,w ) a.s.

Now,

n v '

n - x
I to I I

=1 n - *
I to I I =1

(A.7)

[F(Q(6))-e]z. w if 1. 1» a
&'(<>,•) = !

' '

(A.8)-[[F(Q (0) - 0)-6]x. w otherwise

so setting m (6) = min{F (<? (6))-6,6-F (Q (8)-0)} we have,

Er.'(0,w) > m(6)
|
or . to |, (A.9)

hence, using (Dl),

lim inf inf ER
n
'(0,w )

> m {Q)d > 0,

n - x
| w I I =1

(A. 10)

which completes the proof.

An immediate consequence of the lemma is that under the same condi-

tions,

P{Q
Y 0) = QYW = Qr

(e+0) = Q r (8+0), n > n
o
}> 1 - X(A.ll)

which implies,



limsupFy (C?r
(e))a:F

r (Qy (e))

n - *

lim inf FY (QY (9-0)) ^ FY (QY (9-0))y\^Y y\^Y

13

(A.12)

(A.13)
n - x

Which together with ( 3.16-17) imply that at points of discontinuity in F we

have the required convergence. Since there are only countably many such

points this completes the proof.

Remark. The following example illustrates the necessity of the lemma.

Let Q (9) =0 for 9€(0,1] so that the associated df is

Consider,

and

F( (0
a <0

1 a >0

QW
\ n

6€((V4]

e*(v]

(A.14)

(A.15)

-1

F(u) =

u < -n

Ml
-l -l

-n <« <n

1
-l

n ^u

(A.16)

Then §() satisfies (3.10-11) but not (A.ll). Q actually converges to Q

uniformly, but

\\mF(QW) =F(0) = *# 1 =F(0)
(A.17)

n -w

so F fails to converge to F . Note that since the pointwise limit of F is



14

neither right or left continuous at the limit fails to be a proper distribution

function.
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