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Abstract. The Disjunctive Temporal Problem with Uncertainty (DTPU) is an
extension of the Disjunctive Temporal Problem (DTP) that accounts for events
not under the control of the executing agent. We investigate the semantics of
DTPU constraints, refining the existing notion that they are simply disjunctions
of STPU constraints. We then develop the first sound and complete algorithm
to determine whether Strong Controllability holds for a DTPU. We analyze the
complexity of our algorithm with respect to the number of constraints in different
classes, showing that, for several common subclasses of DTPUs, determining
Strong Controllability has the same complexity as solving DTPs.

1 Introduction

The Simple Temporal Problem (STP) [1] is a temporal constraint formalism widely
used for modeling and solving real-world planning and scheduling problems. Several
extensions of this framework have been proposed in the literature. The Disjunctive Tem-
poral Problem (DTP) [2] allows for non-convex and non-binary constraints by introduc-
ing disjunctions of STP constraints. The Simple Temporal Problem with Uncertainty
(STPU) [3] extends the STP by allowing two classes of events, controllable and un-
controllable. Uncontrollable events are controlled by exogenous factors, often referred
to as ‘Nature’. The concept of consistency of an STP is replaced by varying notions
of controllability of an STPU. The level of controllability for a problem describes the
conditions under which an executor can guarantee all constraints will be satisfied, w.r.t.
Nature’s behavior. In problems that exhibit Strong Controllability (SC), there exists a
time assignment to all events that ensures all constraints will be satisfied whatever Na-
ture’s realisation of the uncontrollable events.

The recently introduced Disjunctive Temporal Problem with Uncertainty (DTPU)
[4] allows for both disjunctive constraints and contingent events. Such a coexistence is
intrinsic to many real-world planning and scheduling problems (e.g., [5]). In this paper
we focus on Strong Controllability of DTPUs, which provides an appropriate notion of
solution for application domains such as production planning, and in situations where
the entire schedule of actions must be known in advance. We present a sound and com-
plete algorithm to determine whether Strong Controllability of a DTPU holds. We then
analyze the complexity of the algorithm with respect to the quantity of different con-
straint types and we show that for several common subclasses of DTPUs, determining
SC has the same complexity as solving a classical DTP without uncertainty.
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2 Background

Temporal Problems A Simple Temporal Problem [1] is defined by a set of time-point
variables X, which represent instantaneous events, and a set of quantitative constraints
C, which restrict the temporal distance between events. STP constraints are binary and
convex, taking the form X; — X; € [a; s bij]. A distinguished event, denoted TR, marks
the start of time. Unary domain constraints thus can be modeled as binary relations to
TR. Solving an STP equates to deciding consistency and deriving its minimal network.
An STP is consistent iff it has a solution: an assignment to all variables such that all
constraints are satisfied. Consistency can be tested with an All-Pairs Shortest Path al-
gorithm, requiring O(n?) time for n variables [1]. The minimal network is the tightest
representation of the constraints that includes all solutions to the problem.

The Disjunctive Temporal Problem [2] generalizes the STP by admitting non-binary
temporal relations. DTP constraints consist of disjunctions of STP constraints: X;; —
Xi1 € [ainj1,bigi] V Xjo — Xio € [as2j2,bigj2] V -+ V Xjo — Xie € [airje, bivje].
Note that a variable may appear in more than one disjunct. While the worst-case com-
plexity of solving a DTP is NP-hard [2], in practice efficient solving techniques have
been developed (e.g., [6]), and tractability results are known for some classes of DTPs
(e.g., [7]). A simple way to solve a DTP is to consider the component STPs obtained by
selecting one disjunct from each constraint. A DTP is consistent iff it contains a consis-
tent component STP. A search through the meta space of component STPs is the heart
of most constraint-based DTP solvers (e.g., [6]); these solvers have been shown to be
very efficient. The time complexity of the search depends on the number of component
STPs. In the worst case, for m constraints with a maximum of k disjuncts each, there
are O(k™) component STPs, and the complexity is O(n?mk™) [6].

Temporal Problem with Uncertainty The STP and DTP formalisms assume that all
events are under the complete control of the execution agent. Recognizing that this as-
sumption is often not valid, the Simple Temporal Problem with Uncertainty (STPU) [3]
distinguishes two classes of variables, controllable V, and uncontrollable V,,. The val-
ues of controllable variables are chosen by the execution agent and correspond to events
in standard STPs. The values of uncontrollable variables, by contrast, are determined
by exogenous factors (‘Nature’); such a realisation is observed but cannot be controlled
by the execution agent. The only information known prior to observation of an uncon-
trollable variable A is that Nature will ensure that its value respects a single contingent
constraint A — X € [a,b], with a > 0. Contingent constraints are assumed indepen-
dent, and Nature is assumed to be consistent. Besides contingent constraints, which we
distinguish by using a bold typeface, all other constraints in an STPU are executable.
The semantics of STPU constraints can be summarized as follows:

1. Contingent STPU constraints (S) model a priori information the agent is given
about when an event controlled by Nature can occur (e.g., “An experiment will end
(uncontrollable) between 5 and 10 minutes after it begins (controllable)”).

2. Executable STPU constraints (S.) model requirements the agent has between vari-
ables it controls and those controlled by Nature (e.g., “Data cannot be sent (con-
trollable) until 3 minutes after the experiment ends (uncontrollable)”).



3. (Executable) STP constraints (S.) model temporal constraints between events un-
der the control of the agent (e.g., “The experiment cannot start until after 2 p.m.”).

Controllability of an STPU is the analogue of consistency of an STP. Three forms
have been defined [3]: strong, weak and dynamic. In this paper we extend the notion
of Strong Controllability (SC), a guarantee that a single assignment to all controllable
variables in the STPU will satisfy all constraints, regardless of the realisation. The time
complexity of determining strong controllability of an STPU is in class P [3].

3 Extending the DTP with Contingent Events

In the sequel, we will indicate with constraint a disjunctive temporal constraint and
with disjunct a single simple temporal constraint. Representationally, the extension of
an STPU to a DTPU is straightforward: we relax the restriction that each constraint
be binary and convex, and allow disjunctive constraints [4]. Like the STPU, we divide
the variables into two classes, controllable and uncontrollable, and retain the restriction
that each process of uncertain duration is represented by a single contingent constraint
between the process’s start and end time-points.

Definition 1 (DTPU) A Disjunctive Temporal Problem with Uncertainty is a tuple
(Vey Vi, C, Cy,), where V., V,, are the sets of executable and uncontrollable variables, re-
spectively, C is a finite set of disjunctive temporal constraints over V.UV, and C,, C C
is the set of binary contingent constraints, one for each element of V,,.

Notice that w.r.t. the original definition in [4], the set of contingent constraints now
appears explicitly. A solution to a DTPU, s = s. U s, is a complete assignment to all
variables V' = V, U V,, that satisfies all constraints in C. The controllable part of the
assignment, s, is the decision, and the uncontrollable part, s,,, is the realisation.

Example 1. Consider the example of a Mars rover (Figure 1) tasked with drilling into
arock (D denotes the start of the drilling action, D’ its end), taking an image (I, I'),
and sending data collected during each action back to Earth (S, S’). The drilling task
consists of a preparation phase followed by two minutes of drilling. The preparation
phase has variable duration, depending in part on whether the type of rock requires a
different drill bit than is currently installed. The image task must occur at time 15, which
is when the object to photograph will be visible. Drilling causes significant vibration,
so the image cannot be taken during the last two minutes or during the minute after
drilling ends. Only in the small window [25, 30] can the rover begin data transmission.

The problem can be formalized as a DTPU as follows. The constraints describe
the durations and temporal ordering between the activities. In this example, V. =
{TR,D,S,1,1'}, V,, = {D’,S’}, and C contains nine constraints, two of which are
disjunctive. The filled arrows represent contingent constraints: C,, contains two con-
straints, S’ — S € [4,5] and D’ — D € [5,10] Vv [15, 20].

We define a component STPU P’ of a DTPU P to be an STPU obtained by select-
ing one disjunct from each constraint. Note that P’ may include only a subset of the
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Fig. 1. Dashed arrows depict disjunctive constraints that involve more than two variables.

uncontrollable variables of P. The DTPU in Figure 1 has four component STPUs, one
for each combination of disjuncts in the two disjunctive constraints.
In addition to constraints of type S, S; and S, a DTPU features the types:

1. DTP (D): A disjunction of two or more STP constraints (e.g., “The image action
must be ended 2 minutes before drilling begins (controllable) or the image action
must be started after drilling begins (controllable)”).

2. Executable DTPU (D.): A disjunction of two or more executable STPU disjuncts
(e.g., “The image action must end 2 minutes before drilling ends (uncontrollable) or
the image action must start at least 1 minute after drilling ends (uncontrollable)”).

3. Mixed executable DTPU (D,,.): A disjunction of STP and executable STPU con-
straints (e.g., “The image action must end before drilling starts (controllable) or the
image action must start at least 1 minute after drilling ends (uncontrollable)”).

4. Contingent DTPU (D.): A disjunction of two or more contingent STPU con-
straints. Nature chooses which disjunct will be satisfied. (e.g., “Drilling can take
5-10 minutes or 15-20, depending on whether the correct bit is installed”).

It is important to recognize that by choosing a duration for uncertain processes (i.e.,
choosing a time for an uncontrollable variable), Nature is in effect ‘choosing’ a disjunct
from the contingent constraint modeling that process.

An eighth constraint type would be mixed DTPU constraints that contain both con-
tingent and executable disjuncts. Such constraints are outside our definition of a DTPU,
which specifies exactly one contingent constraint to model each uncontrollable vari-
able. Contingent constraints model the behavior of Nature: what the modeler declares
will happen, not what should happen. Thus, by definition, one of contingent disjuncts
of a mixed DTPU constraint will always be satisfied, making the executable disjuncts
superfluous. If there were a realisation not satisfying one of the contingent disjuncts,
then the model of Nature would be incomplete.

4 Strong Controllability of a DTPU

We now address the problem of testing the Strong Controllability of a DTPU. Motivat-
ing examples for SC include production planning, where schedules must be known in
advance because of possible dependencies among activities performed by other agents,
and safety-critical domains where advanced approval is mandated of the schedule. Ad-
ditionally, when the executing agent lacks resources to reason about dynamic control-
lability, as may be the case for a Mars rover, it can operate with SC.



Let us partition the constraints C into three groups: multi-disjunct contingent con-
straints, Cc = {D.}; multi-disjunct executable constraints with at least one executable
STPU disjunct, Cg = {De, Dy }; and all other constraints, Cs = {5, S,, S., D}. Note
that Cg includes all single disjunct constraints and all multi-disjunct constraints over
controllable variables. In Example 1, Cc = {D’ — D € [5,10] V [15,20]}, Cg =
{D'—=T'€[2,00) VI— D’ €[l,00)}, and the remaining seven constraints in Cg.

In general, it is not true that a DTPU is SC if it contains an SC component STPU,
since Nature can in effect choose a disjunct, and thus a decision strongly controlling
only one disjunct of a contingent DTPU constraint is not sufficient. However, this rela-
tionship does hold if Cc = @, which we say is a Simple-Natured DTPU. The converse
is false unless Cp = @, since an SC solution may satisfy different disjuncts in different
realisations. When Cp = @, we say that the DTPU is Simple-Nature-Dependent, since
all executable constraints that depend on uncontrollables are simple (single-disjunct).

We combine the idea of using the SC test for STPUs [8] with the now-standard
meta-CSP search of a DTP solver [6]. In our algorithm DTPU-SC, the DTPU constraints
are treated as CSP variables whose values correspond to the disjuncts of the DTPU
constraint. Hence, for each DTPU constraint C; € C with disjuncts D(C;), a meta-CSP
variable C; is created with a domain consisting of the disjuncts ¢;; € D(C}).

Pseudocode of DTPU-SC is given in Algorithm 1. The three methods correspond
to the three classes of constraints, Cg, C¢, and Cg, defined above. Initially, DTPU-SC is
called with partial component STPs A and A empty, i.e., DTPU-SC(@, @,Cs,Cc,CE).
DTPU-SC either returns the empty set, indicating that DTPU P is not SC, or it returns a
set of decisions S such that any s, € S strongly controls P.

Since finding a single SC component STPU is not sufficient for determining SC of
DTPUs, DTPU-SC must efficiently keep track of which component STPUs each assign-
ment controls during search. To help explain the operation of the algorithm, we will
first look at three special cases. Then we will address the general case.

Case 1: STPU First, consider the trivial case in which all constraints are single-disjunct.
Since only Cg contains constraints, and all these constraints are simple, the DTPU P is
an STPU; thus SC can be determined with the existing STPU algorithm [8].

Case 2: Totally Simple Second, consider the case in which multi-disjunct constraints
are present, but the sets Cc and Cg are empty. In this common case, all constraints
involving uncontrollable variables have only a single disjunct. The DTPU is Simple-
Natured, and moreover is also Simple-Nature-Dependent; altogether, we describe the
DTPU as Totally Simple. An example of a Totally Simple DTPU is V; = {TR, X'}, V., =
{Z},c={X-TRe[1,2]VI[58,Z—-TR€[8,10],Z — X €[1,5]}.

By the above, we can check SC by checking each component STPU for SC. If a
decision controls any component STPU, it controls the DTPU as well. It is straightfor-
ward to adapt existing meta-CSP DTP solvers to implement this algorithm. The first
method in Algorithm 1 does exactly this; the call to the second method, ALL-PATHS-
SC, in line 4 simply returns the minimal network of A in the case of a Totally Simple
DTPU. Before the incremental consistency check for a disjunct over an uncontrollable
variable (line 10), we convert the disjunct into a set of STP constraints using a call to
sc-transform, which is a transformation adapted from STPUs [8]. sc-transform converts



Algorithm 1 Determine SC, return controlling minimal network
DTPU-SC(A, Ac,Cs, Co, Cg)
I: S—0
2: if Cs = © then { A is a disjunct combination of C g }
3: G < minimal-network(A)

4: S « ALL-PATHS-SC(A, Ac, Cc, Cr, G)

5: else

6: C; < select-variable(Cs), Cs «— Cs — {C;}

7:  for each disjunct ¢;; of D(C}) do

8: o — Ac U Cij { A is an STP that ignores uncontrollable variables }
9: A’ A’ U sctransform(Ag, ¢ij) {Transform c.; ; into disjuncis over controllable variables’y
10: if consistent(A’) then

11: S « DTPU-SC(4’, A¢, Cs, Cco, Cr)

12: if S # @ then return S

13: return S {Set of SC decisions or nil}

ALL-PATHS-SC(A, Ac, Cc, Ci, G)

1: if Cc = @ then G — G N SATISFY-Cx(A, Ac.Cr)
2: else

3:  C; < selectvariable(Cc), Ci +— Cc — {Ci}

4:  for each disjunct ¢;; of D(C}) do

5 AIC — Ac U Cij

6 A’ +— A U sctransform(Ag, cij)

7: if consistent(A’) then

8: G + ALL-PATHS-SC(A’, AL, C4, Cr, G)

9 if G = © then return © { Fail if ANY disjunct fails}
10: else return ©

11: return G

SATISFY-Cx (A, Ac,Ck)

1: H+—0© { H will hold all assignments that satisfy any combination of C 3 }
2: if Ce = @ then H + minimal-network(A) { A represents a complete component STPU}
3: else
4 C; « select-variable(Cg), C; < Cr — {C;}
5. for each disjunct ¢;; of D(C;) do
6: A’ +— A U sctransform(Ac, c;j) {Returns at mast 1 constr}
7 if consistent(A’) then H «— H U SATISFY-Cx(A',Ac, Ck)
8: return H

a single disjunct (i.e., STPU constraint) over uncontrollable variables into an equiva-
lent set of disjuncts over controllable variables. If the input disjunct is contingent, this
set can be as large as the number of constraints over uncontrollable variables; if it is
executable, only a single disjunct will be produced.

The complexity of DTPU-SC for the case of a Totally Simple DTPU is the same as
solving a DTP: O(n2Sk*®), where S = |Cg|. The only additions to the DTP algorithm
are lines 8 and 9, both of which amortize to O(1) time.

Case 3: Simple-Nature-Dependent When C¢ is non-empty, i.e., if the DTPU contains
multi-disjunct contingent constraints, Nature chooses the disjunct that must be satis-



fied for each contingent constraint, and an SC decision must control any combination
of disjuncts from C¢. Contrary to intuition, we cannot simply break the disjunctive
constraints apart. Consider the constraint D’ — D € [5,10] V [15, 20]: if we break the
constraint into two STPU constraints, they will simply be inconsistent with one another.

The second method, ALL-PATHS-SC, extends the partial component STP A (gener-
ated by the first method, i.e., by search through the Cs constraints) using every feasible
disjunct combination of the constraints in C¢. For each combination, it intersects the set
of decisions that control it with the set of decisions that control the previously checked
combinations. Thus, ALL-PATHS-SC returns the set G of all decisions that control each
combination. The call to the third method, SATISFY-Cg, in line 1 simply returns the
minimal network of A if Cg is empty.

For the Simple-Nature-Dependent DTPU, where Cg is empty and Cc non-empty,
the time complexity is O(n?SkS + n?(S)k“k?), where C = |Cc|. The S element
describes the maximum number of consistency checks in ALL-PATHS-SC in line 7.

Case 4: General DTPU In the general case, both Cc and Cg are non-empty. The
constraints in Cg contain uncontrollable variables, but (since they are executable con-
straints) only one disjunct must be satisfied for any realisation, and the agent may
choose which disjunct. With Cg constraints, however, it is possible that a single SC
decision satisfies different disjuncts for different realisations. Hence, for each decision
under consideration, we must determine for each feasible disjunct combination in Co
whether there is a feasible disjunct combination in Cg as well. While this is not difficult
for a single decision, DTPU-SC is searching in the meta-CSP space, and therefore is
effectively reasoning about sets of decisions at once (recall that a minimal network rep-
resents a set of decisions). Hence, method ALL-PATHS-SC must maintain a potentially
non-convex list of decisions G the union of decisions that satisfy at least one disjunct
combination of Cg for each disjunct combination of C considered so far.

The third method in Algorithm 1, SATISFY-Cg, searches through all disjunct combi-
nations of Cg for those consistent with the SC decisions given as input (in the partial
STP A). Upon finding consistent disjunct combinations, it adds the resulting minimal
network to a union H. H therefore represents a non-convex set of decisions that control
the assignment to C¢. Upon return, in line 1 of ALL-PATHS-SC, H is intersected with G,
assuring that G contains only assignments that control all combinations of C consid-
ered so far. We note that efficient data structures and simplification methods for G and
H are key to reducing the complexity in practice of the repeated intersections.

In the general case, DTPU-SC considers ESKCKE disjunct combinations, where
E = |Cg|. Therefore, SATISFY-C, requires O(n? EkFkCkS). Analyzing the intersec-

C
tion performed in line 1 of ALL-PATHS-SC yields O(n2k* Sk ¥ ). Since testing consis-
tency of a DTP is NP-hard, it is no surprise that deciding SC with DTPU-SC is thus in
the complexity class EXPSPACE.

Case 5: Simple-Nature Finally, we specialize the general case to the Simple-Natured
DTPU, where Cg is non-empty but Cc is empty, i.e., all contingent constraints are
simple. Using the above analysis, now C' = 0, reducing the complexity to O(n?k% (S +
EkSKF)). We suspect that Simple-Nature DTPUs occur frequently in practice because
the need to model processes with uncertain, non-convex durations is relatively rare.



5 Related and Future Work

Uncertainty in planning and scheduling tasks has been addressed in the literature in
different ways. For example in the Conditional Temporal Problem [9] it is the presence
in the problem of the variables (all of which are controllable) that is unknown. A simi-
lar type of decision-point based uncertainty is captured in the Temporal Plan Network
[10], where decision nodes are used to explicitly introduce choices in activity execution
that the planner must make. Outside of the literature descended from the STP, there is a
large body of work on fuzziness and uncertainty in temporal reasoning (e.g., [11]). An-
other interesting relation is that between DTPUs and Quantified CSPs [12]. Informally,
Strong Controllability corresponds to a forall-then-exists quantification over uncontrol-
lable and controllable variables, respectively.

For the future, we aim to analyze dynamic and weak controllability of DTPUs and
derive algorithms for testing them. We would also like to explore the potential of mixed
DTPU constraints with suitable semantics to capture decision-point based uncertainty.
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