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Abstract: In this paper, we study the problem of finding a common solution of the pseudomonotone
variational inequality problem and fixed point problem for demicontractive mappings. We introduce
a new inertial iterative scheme that combines Tseng’s extragradient method with the viscosity method
together with the adaptive step size technique for finding a common solution of the investigated problem.
We prove a strong convergence result for our proposed algorithm under mild conditions and without prior
knowledge of the Lipschitz constant of the pseudomonotone operator in Hilbert spaces. Finally, we present
some numerical experiments to show the efficiency of our method in comparison with some of the existing
methods in the literature.
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1 Introduction

Let H be a real Hilbert space with inner product ⟨⋅ ⋅⟩, and induced norm ‖⋅‖. In this paper, we consider the
variational inequality problem (VIP) of finding a point ∈p C such that

⟨ − ⟩ ≥ ∀ ∈Ap x p x C, 0, , (1)

where C is a nonempty closed convex subset of H , and →A H H: is a nonlinear operator. We denote by
( )VI C A, the solution set of the VIP (1).
Variational inequality theory, which was first introduced independently by Fichera [1] and Stampac-

chia [2], is a vital tool in mathematical analysis, and has a vast application across several fields of study,
such as optimisation theory, engineering, physics, operator theory, economics, and many others (see [3–6]
and references therein). Over the years, several iterative methods have been formulated and adopted in
solving VIP (1) (see [7–11] and references therein). There are two common approaches to solving the VIP,
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namely, the regularised methods and the projection methods. These approaches usually require that the
nonlinear operator A in VIP (1) has certain monotonicity. In this study, we adopt the projection method and
consider the case in which the associated nonlinear operator is pseudomonotone (see definition below) –
a larger class than monotone mappings.

Now, we review some nonlinear operators in nonlinear analysis.

Definition 1.1. A mapping →A H H: is said to be
(1) γ-strongly monotone on H if there exists a constant >γ 0 such that

⟨ − − ⟩ ≥ ‖ − ‖ ∀ ∈Ax Ay x y γ x y x y H, , , .2 (2)

(2) γ-inverse strongly monotone on H if there exists a constant >γ 0 such that

⟨ − − ⟩ ≥ ‖ − ‖ ∀ ∈Ax Ay x y γ Ax Ay x y H, , , .2

(3) Monotone on H , if

⟨ − − ⟩ ≥ ∀ ∈Ax Ay x y x y H, 0, , . (3)

(4) γ-strongly pseudomonotone on H , if there exists a constant >γ 0 such that

⟨ − ⟩ ≥ ⇒ ⟨ − ⟩ ≥ ‖ − ‖ ∀ ∈Ay x y Ax x y γ x y x y H, 0 , , , .2 (4)

(5) Pseudomonotone on H , if

⟨ − ⟩ ≥ ⇒ ⟨ − ⟩ ≥ ∀ ∈Ay x y Ax x y x y H, 0 , 0, , . (5)

(6) Lipschitz-continuous on H , if there exists a constant >L 0 such that

‖ − ‖ ≤ ‖ − ‖ ∀ ∈Ax Ay L x y x y H, , . (6)

If [ )∈L 0, 1 , then A is said to be a contraction mapping.
(7) Sequentially weakly continuous on H , if for each sequence { }xn ,

⇀ ⇀ ∈x x Tx Tx x Himplies , .n n

From the above definitions, we observe that ( ) ( ) ( )⇒ ⇒1 3 5 and ( ) ( ) ( )⇒ ⇒1 4 5 . However, the con-
verses are not generally true. Moreover, if A is γ- strongly monotone and L- Lipschitz continuous, then A is
γ
L2 - inverse strongly monotone (see [12,13]).

The simplest known projection method for solving VIP is the gradient method (GM), which involves a
single projection onto the feasible set C per iteration. However, the algorithm only converges weakly under
some strict conditions that the operator is either strongly monotone or inverse strongly monotone, but fails
to converge if A is monotone. The classical gradient projection algorithm proposed by Sibony [14] is given
as follows:

( )= −+x P x λAx ,n C n n1 (7)

where A is strongly monotone and L-Lipschitz continuous, with step size ( )∈λ 0, L
2 .

Korpelevich [15] and Antipin [16] proposed the extragradient method (EGM) for solving VIP (1), thereby
relaxing the conditions placed in (7). The initial algorithm proposed by Korpelevich was employed in
solving saddle point problems, but was later extended to VIPs in both Euclidean space and infinite dimen-
sional Hilbert spaces. The EGM method is given as follows:

⎧

⎨

⎩

( )

( )

∈

= −

= −+

x C
y P x λAx
x P x λAy ,

n C n n

n C n n

0

1

(8)

where ( )∈λ 0, L
1 , A is monotone and L-Lipschitz continuous, and PC denotes the metric projection from H

ontoC. If the set ( )VI C A, is nonempty, then the algorithm only converges weakly to an element in ( )VI C A, .
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Over the years, EGM has been of interest to several researchers. Also, many results and variants have
been developed from this method, using the assumptions of Lipschitz continuity, monotonicity, and pseu-
domonotonicity, see [17–20] and references therein.

Due to the extensive amount of time required in executing the EGM method, as a result of calculating
two projections onto the closed convex set C in each iteration, Censor et al. [8] proposed the subgradient
extragradient method (SEGM) in which they replaced the second projection onto C by a projection onto a
half-space, thus, making computation easier and convergence rate faster. The SEGM is presented as follows:

⎧

⎨

⎩

( )

{ }

( )

= −

= ∈ ⟨ − − − ⟩ ≤

= − ∀ ≥+

y P x λAx
T w H x λAx y w y
x P x λAy n

: , 0
, 0,

n C n n

n n n n n

n T n n1 n

(9)

where ( )∈λ 0, L
2 . The authors only obtained a weak convergence result for the proposed method. However,

they later introduced a hybrid SEGM in [7] and obtained a strong convergence result. Likewise, Tseng [21],
in the bid to improve on the EGM, proposed Tseng’s extragradient method (TEGM), which only requires one
projection per iteration, as follows:

⎧
⎨
⎩

( )

( )

= −

= + − ∀ ≥+

y P x λAx
x y λ Ax Ay n, 0,

n C n n

n n n n1
(10)

where A is monotone, L-Lipschitz continuous, and ( )∈λ 0, L
2 . The TEGM (10) converges to a weak solution

of the VIP with the assumption that ( )VI C A, is nonempty. The TEGM is also known as the forward-backward
method. Recently, some authors have carried out some interesting works on the TEGM (see [22,23] and
references therein).

In this work, we consider the inertial algorithm, which is a two-step iteration process and a technique
for accelerating the speed of convergence of iterative schemes. The inertial extrapolation technique was
derived by Polyak [24] from a dynamic system called the heavy ball with friction. Due to its efficiency, the
inertial technique has become a centre of attraction and interest to many researchers in this field. Over the
years, researchers have studied the inertial algorithm and applied it to solve different optimisation pro-
blems, see [25–28] and references therein.

Very recently, Tan and Qin [29] proposed the following Tseng’s extragradient algorithm for solving
pseudomonotone VIP:

⎧

⎨

⎪

⎩
⎪

( )

( )

( )

( ) ( )

= + −

= −

= − −

= + −

−

+

s x δ x x
y P s ψ As
z y ψ Ay As
x α f z α z1 ,

n n n n n

n C n n n

n n n n n

n n n n n

1

1

(11)

⎧

⎨

⎩

⎧
⎨⎩

⎫
⎬⎭= ‖ − ‖

≠
−

−δ
ε

x x
δ x x

δ

min , if

, otherwise.
n

n

n n
n n

1
1

⎧

⎨

⎪

⎩
⎪

⎧
⎨⎩

⎫
⎬⎭=

‖ − ‖

‖ − ‖
− ≠

+ψ
ϕ s y
As Ay

ψ As Ay

ψ

min , if 0

, otherwise,
n

n n

n n
n n n

n

1

where f is a contraction and A is a pseudomonotone, Lipschitz continuous, and sequentially weakly
continuous mapping. The authors proved a strong convergence result for the proposed method under
mild conditions on the control parameters.

Another area of interest in this study is the fixed point theory. Let →U H H: be a nonlinear map.
The fixed point problem (FPP) is to find a point ∈p H (called the fixed point of U ) such that

=Up p. (12)
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In this work, we denote the set of fixed points of U by ( )F U . Our interest in this study is to find a common
element of the fixed point set, ( )F U , and the solution set of the variational inequality, ( )VI C A, . That is, the
problem of finding a point ∈∗x H such that

( ) ( )∈ ∩∗x VI C A F U, . (13)

Many algorithms have been proposed over the years and in recent times for solving the common solution
problem (13) (see [30–40] and references therein). Common solution problem of this type has drawn the
attention of researchers because of its potential application to mathematical models whose constraints can
be expressed as FPP and VIP. This arises in areas like signal processing, image recovery, and network
resource allocation. An instance of this is in network bandwidth allocation problem for two services in a
heterogeneous wireless access networks in which the bandwidth of the services is mathematically related
(see [37,41,42] and references therein).

Recently, Cai et al. [22] proposed the following inertial Tseng’s extragradient algorithm for approxi-
mating the common solution of pseudomonotone VIP and FPP for nonexpansive mappings in real Hilbert
spaces:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )

( )

( ) ( )[ ( ) ]

∈

= + −

= −

= − −

= + − + −

−

+

x x H
w x θ x x
y P w ψAw
z y ψ Ay Aw
x α f x α β Tz β z

,

1 1 ,

n n n n n

n C n n

n n n n

n n n n n n n n

0 1

1

1

(14)

where f is a contraction,T is a nonexpansive mapping, A is pseudomonotone, L-Lipschitz and sequentially
weakly continuous, and ( )∈ψ 0, L

1 . They proved a strong convergence result for the proposed algorithm
under some suitable conditions.

One of the major drawbacks of Algorithm (14) is the fact that the step sizeψ of the algorithm depends on
the Lipschitz constant of the cost operator. In many cases, this Lipschitz constant is unknown or even
difficult to estimate. This makes it difficult to implement algorithms of this nature.

Very recently, Thong and Hieu [23] proposed an iterative scheme for finding a common element of the
solution set of monotone variational inequality and set of fixed points of demicontractive mappings as
follows:

⎧

⎨

⎪

⎩
⎪

( )

( )

( ) ( )[ ( ) ]

= −

= − −

= + − + −+

y P x ψ Ax
z y ψ Ay Ax
x α f x α β Uz β z1 1 ,

n C n n n

n n n n n

n n n n n n n n1

(15)

⎧

⎨

⎪

⎩
⎪

⎧
⎨⎩

⎫
⎬⎭=

‖ − ‖

‖ − ‖
− ≠

+ψ
μ x y
Ax Ay

ψ Ax Ay

ψ

min , if 0

, otherwise,
n

n n

n n
n n n

n

1

where A is monotone and L-Lipschitz continuous, U is a demicontractive mapping such that −I U is
demiclosed at zero, and f is a contraction. The authors proved a strong convergence result under suitable
conditions for the proposed method.

Motivated by the above results and the ongoing research activities in this direction, in this paper our
aim is to introduce an effective iterative technique, which employs the efficient combination of the inertial
technique, TEGM together with the viscosity method for finding a common solution of FPP of demicon-
tractive mappings and pseudomonotone VIP with Lipschitz continuous and sequentially weakly contin-
uous operator in Hilbert spaces. In line with this goal, we construct an algorithm with the following
features:
(i) Our algorithm approximates the solution of a more general class of VIP and FPP.
(ii) The proposed method only requires one projection per iteration onto the feasible set, which guarantees

the minimal cost of computation.
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(iii) Moreover, our method is computationally efficient. It employs an efficient self-adaptive step size
technique which makes the algorithm independent of the Lipschitz constant of the cost operator.

(iv) We employ the combination of the inertial technique together with the viscosity method, which are two
of the efficient techniques for accelerating the rate of convergence of iterative schemes.

(v) We prove a strong convergence theorem for the proposed algorithm without following the conven-
tional “two-cases” approach often employed by researchers (e.g. see [22,23,29,43–45]). This makes our
results in this paper to be more concise and precise.

Furthermore, by several numerical experiments, we demonstrate the efficiency of our proposed method
over many other existing methods in related literature.

The remainder of this paper is organised as follows. In Section 2, useful definitions and lemmas
employed in the study are presented. In Section 3, we present the proposed algorithm and highlight
some of its notable features. Section 4 presents the convergence analysis of the proposed method.
In Section 5, we carry out some numerical experiments to illustrate the computational advantage of our
method over some of the existing methods in the literature. Finally, in Section 6 we give a concluding
remark.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . We denote the weak and
strong convergence of sequence { } =

∞xn n 1 to x by ⇀x xn , as → ∞n and →x xn , as → ∞n .
Themetric projection [46,47], →P H C:C is defined, for each ∈x H , as the unique element ∈P x CC such

that

{ }‖ − ‖ = ‖ − ‖ ∈x P x x z z Cinf : .C

It is a known fact that PC is nonexpansive, i.e. ‖ − ‖ ≤ ‖ − ‖ ∀ ∈P x P y x y x y C,C C . Also, the mapping PC
is firmly nonexpansive, i.e.

‖ − ‖ ≤ ⟨ − − ⟩P x P y P x P y x y, ,C C C C
2

for all ∈x y H, . Some results on the metric projection map are given below.

Lemma 2.1. [48] Let C be a nonempty closed convex subset of a real Hilbert space H. For any ∈x H and
∈z C, Then,

= ⇔ ⟨ − − ⟩ ≥ ∈z P x x z z y for all y C, 0, .C

Lemma 2.2. [48,49] Let C be a nonempty, closed, and convex subset of a real Hilbert space H, ∈x H . Then:
(1) ∣∣ ∣∣− ≤ ⟨ − − ⟩ ∀ ∈P x P y x y P x P y y C, ,C C C C

2 .
(2) ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣− + − ≤ − ∀ ∈x P x y P x x y y C,C C

2 2 2 .
(3) ∣∣( ) ( ) ∣∣ ( ) ( )− − − ≤ ⟨ − − − − ⟩ ∀ ∈I P x I P y x y I P x I P y y C, ,C C C C

2 .

Definition 2.3. A mapping →T H H: is said to be
(1) Nonexpansive on H , if there exists a constant >L 0 such that

‖ − ‖ ≤ ‖ − ‖ ∀ ∈Tx Ty x y x y H, , .

(2) Quasi-nonexpansive on H , if ( ) ≠ ∅F T and

( )‖ − ‖ ≤ ‖ − ‖ ∀ ∈ ∈Tx p x p p F T x H, , .

(3) λ-strictly pseudocontractive on H with ≤ <λ0 1, if

( ) ( )‖ − ‖ ≤ ‖ − ‖ + ‖ − − − ‖ ∀ ∈Tx Ty x y λ I T x I T y x y H, , .2 2 2
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(4) β-demicontractive with ≤ <β0 1 if

( ) ( )‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖ ∀ ∈ ∈Tx p x p β I T x p F T x H, , ,2 2 2

or equivalently

( )⟨ − − ⟩ ≤
−

‖ − ‖ ∀ ∈ ∈Tx x x p β x Tx p F T x H, 1
2

, , ,2

or equivalently

( )⟨ − − ⟩ ≤ ‖ − ‖ +
−

‖ − ‖ ∀ ∈ ∈Tx p x p x p β x Tx p F T x H, 1
2

, , .2 2

Remark 2.4. It is known that every strictly pseudocontractive mapping with a nonempty fixed point set is
demicontractive. The class of demicontractive mappings includes all the other classes of mappings defined
above (see [23]).

Next, we give some examples of the class of demicontractive mappings, as shown in [23,50].

Example 2.5.
(a) Let H be the real line and [ ]= −C 1, 1 . Define T on C by:

⎧

⎨
⎩

=
≠

=

Tx x
x

x

x

2
3

sin 1 , 0

0 if 0.

Then T is demicontractive.
(b) Consider a mapping [ ] [ ]− → −T : 2, 1 2, 1 defined such that,

= − −Tx x x.2

Then T is a demicontractive map that is neither quasi-nonexpansive nor strictly pseudocontractive.

We have the following lemmas which will be employed in our convergence analysis.

Lemma 2.6. [25] For each ∈x y H, , and ∈ �δ , we have the following results:
(1) ∣∣ ∣∣ ∣∣ ∣∣+ ≤ + ⟨ + ⟩x y x y x y2 ,2 2 ;
(2) ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣+ = + ⟨ ⟩ +x y x x y y2 ,2 2 2;
(3) ∣∣ ( ) ∣∣ ∣∣ ∣∣ ( )∣∣ ∣∣ ( )∣∣ ∣∣+ − = + − − − −δx δ y δ x δ y δ δ x y1 1 12 2 2 2.

Lemma 2.7. [51] Let { }an be a sequence of nonnegative real numbers, { }αn be a sequence in ( )0, 1 with
∑ = ∞

=

∞ αn n1 , and { }bn be a sequence of real numbers. Assume that

( )≤ − + ≥+a α a α b for all n1 , 1,n n n n n1

if ≤→∞blim sup 0k nk for every subsequence { }ank of { }an satisfying ( )− ≥→∞ +
a alim inf 0k n nk k1 , then →∞limn

=a 0n .

Lemma 2.8. [52] Assume that →T H H: is a nonlinear operator with ( ) ≠F T 0. Then, −I T is said to be
demiclosed at zero if for any { }xn in H, the following implication holds: ⇀x xn and ( ) ( )− → ⇒ ∈I T x x F T0n .

Lemma 2.9. [53] Assume that D is a strongly positive bounded linear operator on a Hilbert space H with
coefficient >γ̄ 0 and ∣∣ ∣∣< ≤ −ρ D0 1. Then ∣∣ ∣∣− ≤ −I ρD ργ1 ¯.
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Lemma 2.10. [54]Let →U H H: be β-demicontractivewith ( ) ≠ ∅F U and set ( )= − +U λ λU1λ , ( )∈ −λ β0, 1 .
Then,
(i) ( ) ( )=F U Fix Uλ .

(ii) ( ) ( ) ( )‖ − ‖ ≤ ‖ − ‖ − − − ‖ − ‖ ∀ ∈ ∈U x z x z β λ I U x x H z F U1 , ,λ λ λ
2 2 1 2 .

(iii) ( )F U is a closed convex subset of H.

Lemma 2.11. [55] Consider the problem with C being a nonempty, closed, convex subset of a real Hilbert space
H and →A C H: being pseudomonotone and continuous. Then p is a solution of VIP (1) if and only if

⟨ − ⟩ ≥ ∀ ∈Ax x p x C, 0, .

3 Proposed algorithm

In this section, we propose an inertial viscosity-type Tseng’s extragradient algorithm with self adaptive step
size and highlight some of its important features. We establish the convergence of the algorithm under the
following conditions:

Condition A
(A1) The feasible set C is closed, convex, and nonempty.
(A2) The solution set denoted by ( ) ( )= ∩VI C A F UΩ , is nonempty.
(A3) The mapping A is pseudomonotone, L-Lipschitz continuous on H , and sequentially weakly contin-

uous on C.
(A4) The mapping →U H H: is a τ-demicontractive map such that −I U is demiclosed at zero.
(A5) →D H H: is a strongly positive bounded linear operator with coefficient γ̄.
(A6) →f H H: is a contraction with coefficient ( )∈ρ 0, 1 such that < <γ0 γ

ρ
¯ .

Condition B
(B1) { } ( )⊂α 0, 1n such that =→∞αlim 0n n and ∑ = ∞

=

∞ αn n1 .

(B2) The positive sequence { }εn satisfies { } ( )= ⊂ −→∞ β a τlim 0, , 1n
ε
α n

n

n
for some >a 0.

Now, the algorithm is presented as follows:

Algorithm 3.1. Inertial TEGM with self-adaptive stepsize
_____________________________________________________________________________________________

Step 0. Given ( )> > ∈δ ψ ϕ0, 0, 0, 11 . Select initial data ∈x x H,0 1 , and set =n 1.
Step 1. Given the ( −n 1)th and nth iterates, choose δn such that ≤ ≤ ∀ ∈ �δ δ n0 ˆ ,n n with δ̂n defined by

⎧

⎨

⎩

⎧
⎨⎩ ∣∣ ∣∣

⎫
⎬⎭= −

≠
−

−δ
ε

x x
δ x x

δ

ˆ min , , if ,

, otherwise .
n

n

n n
n n

1
1 (16)

Step 2. Compute

( )= + − −r x δ x x .n n n n n 1

Step 3. Compute

( )= −y P r ψ Ar .n C n n n

If =y rn n, then set =z rn n and go to Step 5. Else go to Step 4.
Step 4. Compute

( )= − −z y ψ Ay Ar .n n n n n
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Step 5. Compute

( ) ( )[( ) ]= + − − ++x α γf r I α D β z β Uz1 .n n n n n n n n1

Step 6. Compute

⎧

⎨

⎪

⎩
⎪

⎧
⎨⎩

∣∣ ∣∣

∣∣ ∣∣

⎫
⎬⎭=

−

−
− ≠

+ψ
ϕ r y
Ar Ay

ψ Ar Ay

ψ

min , , if 0,

, otherwise .
n

n n

n n
n n n

n

1 (17)

Set ≔ +n n 1 and return to Step 1.
_____________________________________________________________________________________________

Below are some of the interesting features of our proposed algorithm.

Remark 3.2.
(i) Observe that Algorithm 3.1 involves only one projection onto the feasible set C per iteration, which

makes the algorithm computationally efficient.
(ii) The step size ψn in (17) is self-adaptive and supports easy and simple computations, which makes it

possible to implement our algorithm without prior knowledge of the Lipschitz constant of the cost
operator.

(iii) We also point out that in Step 1 of the algorithm, the inertial technique employed can easily be
implemented in numerical computation, since the value of ∣∣ ∣∣− −x xn n 1 is known prior to choosing δn.

Remark 3.3. It can easily be seen from (16) and condition (B1) that

∣∣ ∣∣ ∣∣ ∣∣− = − =
→∞

−
→∞

−δ x x δ
α

x xlim 0 and lim 0.
n

n n n
n

n

n
n n1 1

4 Convergence analysis

First, we establish some lemmas which will be employed in the convergence analysis of our proposed
algorithm.

Lemma 4.1. The sequence { }ψn generated by (17) is a nonincreasing sequence and = ≥→∞ψ ψlimn n

{ }ψmin , ϕ
L1 .

Proof. It follows from (17) that ≤ ∀ ∈+ �ψ ψ n,n n1 . Hence, { }ψn is nonincreasing. Also, since A is Lipschitz
continuous, we have

‖ − ‖ ≤ ‖ − ‖Ar Ay L r y ,n n n n

which implies that

‖ − ‖

‖ − ‖
≥

r y
Ar Ay L

1 .n n

n n

Consequently, we obtain

‖ − ‖

‖ − ‖
≥ − ≠

ϕ r y
Ar Ay

ϕ
L

Ar Ay, when 0.n n

n n
n n

Combining this together with (17), we obtain

⎧

⎨
⎩

⎫

⎬
⎭

≥ψ ψ ϕ
L

min , .n 1
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Since { }ψn is nonincreasing and bounded below, we can conclude that

⎧

⎨
⎩

⎫

⎬
⎭

= ≥
→∞

ψ ψ ψ ϕ
L

lim min , . □
n n 1

Lemma 4.2. Let { }rn and { }yn be two sequences generated by Algorithm 3.1, and suppose that conditions
(A1)–(A3) hold. If there exists a subsequence{ }rnk of { }rn convergent weakly to ∈z H and ‖ − ‖ =→∞ r ylim 0n n nk k

,

then ( )∈z VI C A,

Proof. Using the property of the projection map and ( )= −y P r ψ Arn C n n n , we obtain

⟨ − − − ⟩ ≤ ∀ ∈r ψ Ar y x y x C, 0 ,n n n n nk k k k k

which implies that

⟨ − − ⟩ ≤ ⟨ − ⟩ ∀ ∈
ψ

r y x y Ar x y x C1 , , .
n

n n n n n
k

k k k k k

From this we obtain

⟨ − − ⟩ + ⟨ − ⟩ ≤ ⟨ − ⟩ ∀ ∈
ψ

r y x y Ar y r Ar x r x C1 , , , .
n

n n n n n n n n
k

k k k k k k k k (18)

Since{ }rnk converges weakly to ∈z H , we have that{ }rnk is bounded. Then, from the Lipschitz continuity of A
and‖ − ‖ →r y 0n nk k

, we obtain that { }Arnk and { }ynk
are also bounded. Since { }≥ψ ψ ,n

ϕ
L1k
, from (18) it follows

that

⟨ − ⟩ ≥ ∀ ∈
→∞

Ar x r x Clim inf , 0 .
k

n nk k (19)

Moreover, we have that

⟨ − ⟩ = ⟨ − − ⟩ + ⟨ − ⟩ + ⟨ − ⟩Ay x y Ay Ar x r Ar x r Ay r y, , , , .n n n n n n n n n nk k k k k k k k k k (20)

Since ‖ − ‖ =→∞ r ylim 0k n nk k
, then by the Lipschitz continuity of A we have ‖ − ‖ =→∞ Ar Aylim 0k n nk k

.
This together with (19) and (20) gives

⟨ − ⟩ ≥
→∞

Ay x ylim inf , 0.
k n nk k

Now, choose a decreasing sequence { }θk of positive numbers such that →θ 0k as → ∞k . For any k,
we represent the smallest positive integer with Nk such that:

⟨ − ⟩ + ≥ ∀ ≥Ay x y θ j N, 0 .n n k kj j (21)

It is clear that the sequence { }Nk is increasing since θk is decreasing. Furthermore, for any k, from { } ⊂y CNk
,

we can assume ≠Ay 0Nk
(otherwise, yNk

is a solution) and set:

=
‖ ‖

υ
Ay
Ay

.N
N

N
2k

k

k

Consequently, we have ⟨ ⟩ =Ay υ, 1N Nk k , for each k . From (21), one can easily deduce that

⟨ + − ⟩ ≥ ∀Ay x θ υ y k, 0, .N k N Nk k k

By the pseudomonotonicity of A, we have

( )⟨ + + − ⟩ ≥A x θ υ x θ υ y, 0,k N k N Nk k k

which implies that

( )⟨ − ⟩ ≥ ⟨ − + + − ⟩ − ⟨ ⟩Ax x y Ax A x θ υ x θ υ y θ Ax υ, , , .N k N k N N k Nk k k k k (22)
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Next, we show that =→∞θ υlim 0k k Nk . Indeed, since ⇀r znk and ‖ − ‖ =→∞ r ylim 0k n nk k
, we obtain ⇀y z,Nk

→ ∞k . Since { } ⊂y Cn , we obtain ∈z C. By the sequentially weakly continuity of A on C, we have
{ } ⇀Ay Aznk

. We can assume that ≠Az 0 (otherwise, z is a solution). Since the norm mapping is sequen-
tially weakly lower semicontinuous, we have

< ‖ ‖ ≤ ‖ ‖
→∞

Az Ay0 lim .
k nk

By the fact that { {} }⊂y yN nk k
and →θ 0k as → ∞k , we obtain

⎜ ⎟
⎛

⎝

⎞

⎠

≤ ‖ ‖ =
‖ ‖

≤
‖ ‖

=
→∞ →∞

→∞

→∞

θ υ θ
Ay

θ
Ay

0 lim sup lim sup lim sup
lim inf

0,
k

k N
k

k

N

k k

k n
k

k k

and this implies that =→∞θ υlim sup 0k k Nk . Now, by the facts that A is Lipschitz continuous, sequences
{ } { }y υ,N Nk k are bounded and =→∞θ υlim 0k k Nk , we conclude from (22) that

⟨ − ⟩ ≥
→∞

Ax x ylim inf , 0.
k Nk

Consequently, we have

⟨ − ⟩ = ⟨ − ⟩ = ⟨ − ⟩ ≥ ∀ ∈
→∞ →∞

Ax x z Ax x y Ax x y x C, lim , lim inf , 0, .
k N k Nk k

Thus, by Lemma 2.11, ( )∈z VI C A, as required. □

Lemma 4.3. Let sequences { }zn and { }yn be two sequences generated by Algorithm 3.1 such that conditions
(A1)–(A3) hold. Then, for all ∈p Ω we have

⎛

⎝
⎜

⎞

⎠
⎟‖ − ‖ ≤ ‖ − ‖ − − ‖ − ‖

+

z p r p ϕ
ψ

ψ
r y1 ,n n

n

n
n n

2 2 2
2

1
2

2 (23)

and

‖ − ‖ ≤ ‖ − ‖
+

z y ϕ
ψ

ψ
r y .n n

n

n
n n

1
(24)

Proof. By applying the definition of { }ψn , we have

‖ − ‖ ≤ ‖ − ‖ ∀ ∈
+

�Ar Ay ϕ
ψ

r y n, .n n
n

n n
1

(25)

Clearly, if =Ar Ayn n, then inequality (25) holds. Otherwise, from (17) we have

⎧
⎨⎩

⎫
⎬⎭

=
‖ − ‖

‖ − ‖
≤

‖ − ‖

‖ − ‖
+ψ

ψ r y
Ar Ay

ψ
ϕ r y
Ar Ay

min , .n
n n

n n
n

n n

n n
1

It then follows that

‖ − ‖ ≤ ‖ − ‖
+

Ar Ay ϕ
ψ

r y .n n
n

n n
1

Thus, the inequality (25) is valid both when =Ar Ayn n and ≠Ar Ayn n. Now, from the definition of zn and
applying Lemma 2.6 we have

( )‖ − ‖ = ‖ − − − ‖

= ‖ − ‖ + ‖ − ‖ − ⟨ − − ⟩

= ‖ − ‖ + ‖ − ‖ + ⟨ − − ⟩ + ‖ − ‖ − ⟨ − − ⟩

= ‖ − ‖ + ‖ − ‖ − ⟨ − − ⟩ + ⟨ − − ⟩ + ‖ − ‖

− ⟨ − − ⟩

= ‖ − ‖ − ‖ − ‖ + ⟨ − − ⟩ + ‖ − ‖ − ⟨ − − ⟩

z p y ψ Ay Ar p
y p ψ Ay Ar ψ y p Ay Ar
r p y r y r r p ψ Ay Ar ψ y p Ay Ar
r p y r y r y r y r y p ψ Ay Ar

ψ y p Ay Ar
r p y r y r y p ψ Ay Ar ψ yn p Ay Ar

2 ,
2 , 2 ,
2 , 2 ,

2 ,
2 , 2 , .

n n n n n

n n n n n n n n

n n n n n n n n n n n n n

n n n n n n n n n n n n n

n n n n

n n n n n n n n n n n n

2 2

2 2 2

2 2 2 2

2 2 2 2

2 2

(26)
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Since ( )= −y P r ψ Arn C n n n , then by the projection property, we obtain

⟨ − + − ⟩ ≤y r ψ Ar y p, 0,n n n n n

or equivalently,

⟨ − − ⟩ ≤ − ⟨ − ⟩y r y p ψ Ar y p, , .n n n n n n (27)

So, from (25), (26), and (27), we have

⎛

⎝
⎜

⎞

⎠
⎟

‖ − ‖ ≤ ‖ − ‖ − ‖ − ‖ − ⟨ − ⟩ + ‖ − ‖ − ⟨ − − ⟩

= ‖ − ‖ − − ‖ − ‖ − ⟨ − ⟩

+

+

z p r p y r ψ Ar y p ϕ
ψ

ψ
r y ψ y p Ay Ar

r p ϕ
ψ

ψ
r y ψ y p Ay

2 , 2 ,

1 2 , .

n n n n n n n
n

n
n n n n n n

n
n

n
n n n n n

2 2 2 2
2

1
2

2

2 2
2

1
2

2

(28)

Now, from ( )∈p VI C A, , we have that

⟨ − ⟩ ≥ ∈Ap y p y C, 0, .n n

Then, by the pseudomonotonicity of A, we obtain

⟨ − ⟩ ≥Ay y p, 0.n n (29)

Combining (28) and (29), we have that

⎛

⎝
⎜

⎞

⎠
⎟‖ − ‖ ≤ ‖ − ‖ − − ‖ − ‖

+

z p r p ϕ
ψ

ψ
r y1 .n n

n

n
n n

2 2 2
2

1
2

2

Moreover, from the definition of zn and (25), we obtain

‖ − ‖ ≤ ‖ − ‖
+

z y ϕ
ψ

ψ
r y ,n n

n

n
n n

1

which completes the proof. □

Theorem 4.4. Assume conditions ( )A and ( )B hold. Then, the sequence { }xn generated by Algorithm 3.1
converges strongly to an element ∈p Ω,where ( )( )= − +p P I D γf pΩ is a solution of the variational inequality

( )⟨ − − ⟩ ≤ ∀ ∈D γf p p q q, 0, Ω.

Proof. We divide the proof of Theorem 4.4 as follows:
Claim 1. The sequence { }xn generated by Algorithm 3.1 is bounded.

First, we show that ( )− +P I D γfΩ is a contraction of H . For all ∈x y H, , we have

( )( ) ( )( ) ( )( ) ( )( )

( ) ( )

( )

( ( ))

‖ − + − − + ‖ ≤ ‖ − + − − + ‖

≤ ‖ − − − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

= − − ‖ − ‖

P I D γf x P I D γf y I D γf x I D γf y
I D x I D y γ fx fy

γ x y γρ x y
γ γρ x y

1 ¯
1 ¯ .

Ω Ω

It shows that ( )− +P I D γfΩ is a contraction. Thus, by the Banach contraction principle there exists
an element ∈p Ω such that ( )( )= − +p P I D γf pΩ . Next, setting ( )= − +g β z β Uz1n n n n n and applying (23)
we have

( )

( )( ) ( )

( ) ( )

‖ − ‖ = ‖ − + − ‖

= ‖ − − + − ‖

= − ‖ − ‖ + ‖ − ‖ + − ⟨ − − ⟩

g p β z β Uz p
β z p β Uz p

β z p β Uz p β β Uz p z p

1
1

1 2 1 ,

n n n n n

n n n n

n n n n n n n n

2 2

2

2 2 2 2

(30)
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( ) [ ] ( ) ⎡
⎣

⎤
⎦

( ( )( )

( )

⎛

⎝
⎜

⎞

⎠
⎟ ( )

≤ − ‖ − ‖ + ‖ − ‖ + ‖ − ‖ + − ‖ − ‖ −
−

‖ − ‖

= ‖ − ‖ + − − − ‖ − ‖

= ‖ − ‖ − − − ‖ − ‖

≤ ‖ − ‖ − − ‖ − ‖ − − − ‖ − ‖

+

β z p β z p τ z Uz β β z p τ z Uz

z p β β τ β τ z Uz
z p β τ β z Uz

r p ϕ
ψ

ψ
r y β τ β Uz z

1 2 1 1
2

1 1
1

1 1 .

n n n n n n n n n n n

n n n n n n

n n n n n

n
n

n
n n n n n n

2 2 2 2 2 2 2

2 2

2 2

2 2
2

1
2

2 2

By the condition on βn, from this we obtain

⎛

⎝
⎜

⎞

⎠
⎟‖ − ‖ ≤ ‖ − ‖ − − ‖ − ‖

+

g p r p ϕ
ψ

ψ
r y1 .n n

n

n
n n

2 2 2
2

1
2

2 (31)

From Lemma 4.1, we have that

⎛

⎝
⎜

⎞

⎠
⎟− = − >

→∞
+

ϕ
ψ

ψ
ϕlim 1 1 0.

n
n

n

2
2

1
2

2

This implies that there exists ∈ �n0 such that − >
+

ϕ1 0ψ
ψ

2 n

n

2

1
2 for all ≥n n0. Hence, from (31) we obtain

‖ − ‖ ≤ ‖ − ‖ ∀ ≥g p r p n n .n n
2 2

0 (32)

Also, by definition of rn and triangle inequality,

( )‖ − ‖ = ‖ + − − ‖ ≤ ‖ − ‖ + ‖ − ‖ = ‖ − ‖ + ‖ − ‖− − −r p x δ x x p x p δ x x x p α δ
α

x x .n n n n n n n n n n n
n

n
n n1 1 1 (33)

From Remark 3.3, we have ‖ − ‖ →−x x 0δ
α n n 1

n

n
as → ∞n . Thus, there exists a constant >G 01 that satisfies:

‖ − ‖ ≤ ∀ ≥−
δ
α

x x G n, 1.n

n
n n 1 1 (34)

So, from (32), (33), and (34) we obtain

‖ − ‖ ≤ ‖ − ‖ ≤ ‖ − ‖ + ∀ ≥g p r p x p α G n n, .n n n n 1 0 (35)

Now, by applying Lemma 2.6 and (35), ∀ ≥n n0 we have

( ) ( )

( ( ) ) ( )( )

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

( ( )) ( ) ( ( ))

( ( )) ( )⎡

⎣
⎢

( ) ⎤

⎦
⎥

⎧
⎨⎩

( ) ⎫
⎬⎭

⎧
⎨⎩

( ) ⎫
⎬⎭

‖ − ‖ = ‖ + − − ‖

= ‖ − + − − ‖

≤ ‖ − ‖ + − ‖ − ‖

≤ ‖ − ‖ + ‖ − ‖ + − ‖ − ‖ +

≤ ‖ − ‖ + ‖ − ‖ + − ‖ − ‖ +

≤ ‖ − ‖ + + ‖ − ‖ + − ‖ − ‖ +

= − − ‖ − ‖ + ‖ − ‖ + − −

≤ − − ‖ − ‖ + −
‖ − ‖

−
+

−

≤ ‖ − ‖
‖ − ‖

−
+

−

⋮

≤ ‖ − ‖
‖ − ‖

−
+

−

+x p α γf r I α D g p
α γf r Dp I α D g p

α γf r Dp α γ g p
α γf r γf p α γf p Dp α γ x p α G
α γρ r p α γf p Dp α γ x p α G
α γρ x p α G α γf p Dp α γ x p α G

α γ γρ x p α γf p Dp α γ γρ α G

α γ γρ x p α γ γρ γf p Dp
γ γρ

G
γ γρ

x p γf p Dp
γ γρ

G
γ γρ

x p γf p Dp
γ γρ

G
γ γρ

1 ¯
1 ¯

1 ¯
1 ¯

1 ¯ 1 ¯

1 ¯ ¯
¯ ¯

max ,
¯ ¯

max ,
¯ ¯

.

n n n n n

n n n n

n n n n

n n n n n n

n n n n n n

n n n n n n n

n n n n n

n n n

n

n

1

1

1

1 1

1

1

1

1
0

Hence, the sequence { }xn is bounded, and so { }rn , { }yn , { }zn are also bounded.
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Claim 2. The following inequality holds for all ∈p Ω and ∈ �n

⎜ ⎟∣∣ ∣∣ ⎛

⎝

( )

( )
⎞

⎠
∣∣ ∣∣

( )

( )
⎧
⎨⎩ ( )

(( ) )

( )
∣∣ ∣∣

( )
( ) ⎫

⎬⎭

( )

( )

⎧

⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟ ( )

⎫

⎬
⎭

− ≤ −
−

−
− +

−

− −

+
− +

−
− +

−
⟨ − − ⟩

−
−

−
− ‖ − ‖ + − − ‖ − ‖

+

− +

+

x p α γ γρ
α γρ

x p α γ γρ
α γρ

α γ
γ γρ

G

G α γ α γρ
γ γρ

δ
α

x x
γ γρ

γf p Dp x p

α γ
α γρ

ϕ
ψ

ψ
r y β τ β Uz z

1 2 ¯
1

2 ¯
1

¯
2 ¯

3 1 ¯
2 ¯

1
¯

,

1 ¯
1

1 1 .

n
n

n
n

n

n

n

n n n

n
n n n

n

n

n

n
n n n n n n

1
2 2

2
3

2
2

1 1

2
2

2

1
2

2 2

Using the Cauchy-Schwartz inequality and Lemma 2.6, we obtain

∣∣ ∣∣ ∣∣ ( ) ∣∣

∣∣ ∣∣ ∣∣ ∣∣

∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣∣∣ ∣∣

∣∣ ∣∣ ∣∣ ∣∣( ∣∣ ∣∣ ∣∣ ∣∣)

∣∣ ∣∣ ∣∣ ∣∣

∣∣ ∣∣ ∣∣ ∣∣

− = + − −

= − + − + ⟨ − − ⟩

≤ − + − + − −

= − + − − + −

≤ − + −

= − + −

−

− −

− −

− −

−

−

r p x δ x x p
x p δ x x δ x p x x
x p δ x x δ x x x p
x p δ x x δ x x x p
x p G δ x x

x p G α δ
α

x x

2 ,
2

2
3

3 ,

n n n n n

n n n n n n n n

n n n n n n n n

n n n n n n n n

n n n n

n n
n

n
n n

2
1

2

2 2
1

2
1

2 2
1

2
1

2
1 1

2
2 1

2
2 1

(36)

where {∣∣ ∣∣ ∣∣ ∣∣}≔ − − >∈ −�G x p θ x xsup , 0n n n n n2 1 .

Now, by applying Lemma 2.6, (30), and (36) we have

⎜ ⎟

∣∣ ∣∣ ∣∣ ( ) ( ) ∣∣

∣∣ ( ( ) ) ( )( )∣∣

( ) ∣∣ ∣∣ ( )

( )
⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟ ( )

⎞

⎠
⎟

( ) ( ) ( )

( )
⎛

⎝
⎜

∣∣ ∣∣
⎛

⎝
⎜

⎞

⎠
⎟ ( )

⎞

⎠
⎟

( ) ( )

( )
⎛

⎝
⎜

∣∣ ∣∣ ∣∣ ∣∣
⎛

⎝
⎜

⎞

⎠
⎟

( ) ) ⎛

⎝
∣∣ ∣∣ ∣∣ ∣∣ ⎞

⎠

( )

− = + − −

= − + − −

≤ − − + ⟨ − − ⟩

≤ − ‖ − ‖ − − ‖ − ‖ − − − ‖ − ‖

+ ⟨ − − ⟩ + ⟨ − − ⟩

≤ − − − − ‖ − ‖ − − − ‖ − ‖

+ ‖ − ‖ + ‖ − ‖ + ⟨ − − ⟩

≤ − − + − − − ‖ − ‖

− − − ‖ − ‖ + − + − + ‖ − ‖

+ ⟨ − − ⟩

+

+

+

+ +

+

+ +

−

+

− +

+

x p α γf r I α D g p
α γf r Dp I α D g p

α γ g p α γf r Dp x p

α γ r p ϕ
ψ

ψ
r y β τ β Uz z

α γ f r f p x p α γf p Dp x p

α γ r p ϕ
ψ

ψ
r y β τ β Uz z

α γρ r p x p α γf p Dp x p

α γ x p G α δ
α

x x ϕ
ψ

ψ
r y

β τ β Uz z α γρ x p G α δ
α

x x x p

α γf p Dp x p

1 ¯ 2 ,

1 ¯ 1 1

2 , 2 ,

1 ¯ 1 1

2 ,

1 ¯ 3 1

1 3

2 , .

n n n n n

n n n n

n n n n n

n n
n

n
n n n n n n

n n n n n

n n
n

n
n n n n n n

n n n n n

n n n
n

n
n n

n

n
n n

n n n n n n n
n

n
n n n

n n

1
2 2

2

2 2
1

2 2 2
2

1
2

2 2

1 1

2 2 2
2

1
2

2 2

2
1

2
1

2 2
2 1

2
2

1
2

2

2 2
2 1 1

2

1

Consequently, we obtain

∣∣ ∣∣
( ( ) )

( )
∣∣ ∣∣

(( ) )

( )
∣∣ ∣∣

( )
( )

( )

( )

⎧

⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟ ( )

⎫

⎬
⎭

( )

( )
∣∣ ∣∣

( )

( )
∣∣ ∣∣

(( ) )

( )
∣∣ ∣∣

( )
( )

( )

( )

⎧

⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟ ( )

⎫

⎬
⎭

− ≤
− + +

−
− +

− +

−
−

+
−

⟨ − − ⟩ −
−

−
− ‖ − ‖ + − − ‖ − ‖

=
− +

−
− +

−
−

+
− +

−
− +

−
⟨ − − ⟩

−
−

−
− ‖ − ‖ + − − ‖ − ‖

+ −

+

+

− +

+

x p α γ α γ α γρ
α γρ

x p G α γ α γρ
α γρ

α δ
α

x x

α
α γρ

γf p Dp x p α γ
α γρ

ϕ
ψ

ψ
r y β τ β Uz z

α γ α γρ
α γρ

x p α γ
α γρ

x p

G α γ α γρ
α γρ

α δ
α

x x α
α γρ

γf p Dp x p

α γ
α γρ

ϕ
ψ

ψ
r y β τ β Uz z

1 2 ¯ ¯
1

3 1 ¯
1

2
1

, 1 ¯
1

1 1

1 2 ¯
1

¯
1

3 1 ¯
1

2
1

,

1 ¯
1

1 1

n
n n n

n
n

n n

n
n

n

n
n n

n

n
n

n

n

n

n
n n n n n n

n n

n
n

n

n
n

n n

n
n

n

n
n n

n

n
n

n

n

n

n
n n n n n n

1
2

2
2

2
2

1

1
2

2
2

1
2

2 2

2
2

2

2
2

1 1

2
2

2

1
2

2 2
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(
( )

( )
)∣∣ ∣∣

( )

( )
⎧
⎨⎩ ( )

(( ) )

( )
∣∣ ∣∣

( )
( ) ⎫

⎬⎭

( )

( )

⎧

⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟ ( )

⎫

⎬
⎭

≤ −
−

−
− +

−

− −

+
− +

−
− +

−
⟨ − − ⟩

−
−

−
− ‖ − ‖ + − − ‖ − ‖

− +

+

α γ γρ
α γρ

x p α γ γρ
α γρ

α γ
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where {∣∣ ∣∣ }≔ − ∈ �G x p nsup :n3
2 . This gives the required inequality.

Claim 3. The sequence { }‖ − ‖x pn
2 converges to zero.

Let ( )( )= − +p P I D γf pΩ . From Claim 2, we obtain
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(37)

To establish Claim 3, in view of Lemma 2.7, Remark 3.3, and the fact that =→∞αlim 0n n , it suffices to show
that ( )⟨ − − ⟩ ≤→∞ +γf p Dp x plim sup , 0k n 1k for every subsequence { }‖ − ‖x pnk of { }‖ − ‖x pn satisfying

( )‖ − ‖ − ‖ − ‖ ≥
→∞

+x p x plim inf 0.
k

n n1k k

Suppose that { }‖ − ‖x pnk is a subsequence of { }‖ − ‖x pn such that

( )‖ − ‖ − ‖ − ‖ ≥
→∞

+x p x plim inf 0.
k

n n1k k (38)

Again, from Claim 2 we obtain
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Applying (38) and the fact that =→∞αlim 0k nk , we have
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By the conditions on the control parameters, we obtain

‖ − ‖ → → ∞r y k0, .n nk k (39)

Following similar argument, from Claim 2 we have

‖ − ‖ → → ∞Uz z k0, .n nk k (40)

From (24) and (39), we obtain

‖ − ‖ → → ∞z y k0, .n nk k (41)

Combining (39) and (41), we have

‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖ → → ∞r z r y y z k0, .n n n n n nk k k k k k (42)
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By Remark 3.3 and the definition of rn, we obtain

‖ − ‖ = ‖ − ‖ → → ∞−x r δ x x k0, .n n n n n 1k k k k k (43)

From (39), (42), and (43), we obtain

‖ − ‖ → → ∞ ‖ − ‖ → → ∞x y k x z k0, , 0, .n n n nk k k k (44)

Also, from (40) and (44), we obtain

‖ − ‖ → → ∞x Uz k0, .n nk k (45)

Using (44) and (45), we have

( )‖ − ‖ ≤ − ‖ − ‖ + ‖ − ‖ → → ∞x g β x z β x Uz k1 0, .n n n n n n n nk k k k k k k k (46)

Combining this together with the fact that =→∞αlim 0k nk , we obtain

( ) ( )‖ − ‖ ≤ ‖ − ‖ + − ‖ − ‖ → → ∞+x x α γf r x α γ g x k1 ¯ 0, .n n n n n n n n1k k k k k k k k (47)

To complete the proof, we need to show that ( ) ⊂w x Ωω n . Since { }xn is bounded, then ( )w xω n is nonempty. Let
( )∈∗x w xω n be an arbitrary element. Then there exists a subsequence { }xnk of { }xn such that ⇀ ∗x xnk as

→ ∞k . By Lemma 4.2 and (39), it follows that ( )∈∗x VI C A, . Consequently, we have ( ) ( )⊂w x VI C A,ω n .
From (44), we have that ⇀ ∗z xnk as → ∞k . Since −I U is demiclosed at zero, then it follows from (40) that

( )∈∗x F U . That is, ( ) ( )⊂w x F Uω n . Therefore, we have ( ) ⊂w x Ωω n .
Moreover, from (44) it follows that { } { } { }= =w y w x w zω n ω n ω n . By the boundedness of { }xnk , there exists

a subsequence { }xnkj
of { }xnk such that ⇀x xn

†
kj
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Since ( )( )= − +p P I D γf pΩ , it follows from (48) that

( ) ( ) ( )⟨ − − ⟩ = ⟨ − − ⟩ = ⟨ − − ⟩ ≤
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Hence, from (47) and (49), we obtain
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Applying Lemma 2.7 to (37), and using (50) together with the fact that ∣∣ ∣∣− =→∞ −x xlim 0n
θ
α n n 1

n

n
and

=→∞αlim 0n n , we deduce that ∣∣ ∣∣− =→∞ x plim 0n n as required. □

Taking =γ 1 and =D I in Theorem 4.4, where I is the identity mapping, then we have the following
corollary.

Corollary 4.5. Let H be a Hilbert space and suppose →U H H: is a τ-demicontractive map. Let { }xn be
a sequence generated as follows:

Algorithm 4.6.
_____________________________________________________________________________________________

Step 0. Given ( )> ∈δ ϕ0, 0, 1 , select initial data ∈x x H,0 1 , >λ 00 , and set =n 1.
Step 1. Given the ( −n 1)th and nth iterates, choose δn such that ≤ ≤ ∀ ∈ �δ δ n0 ,n with δn defined by:

⎧

⎨

⎩

⎧
⎨⎩ ∣∣ ∣∣

⎫
⎬⎭= −

≠
−

−δ
ε

x x
δ x x

δ

min , , if ,

, otherwise .
n

n

n n
n n

1
1 (51)
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Step 2. Compute

( )= + − −r x δ x x .n n n n n 1 (52)

Step 3. Compute the projection:

( )= −y P r ψ Ar ,n C n n n (53)

If =y rn n, then set =y rn n and go to Step 5. Else go to Step 4.
Step 4. Compute

( )= − −z y ψ Ay Ar .n n n n n (54)

Step 5. Compute

⎧

⎨

⎪

⎩
⎪

⎧
⎨⎩

∣∣ ∣∣

∣∣ ∣∣

⎫
⎬⎭=

−

−
− ≠

+ψ
ϕ r y
Ar Ay

ψ Ar Ay

ψ

min , , if 0,

, otherwise .
n

n n

n n
n n n

n

1 (55)

Step 6. Compute

( ) ( )[( ) ]= + − − ++x α f r α β z β Uz1 1 .n n n n n n n n1 (56)

Set ≔ +n n 1 and return to Step 1.
_____________________________________________________________________________________________

Assume that ( ) ( )= ∩ ≠VI C A F UΩ , 0 and other assumptions in conditions A and B are satisfied. Then
the sequence { }xn generated by Algorithm 4.6 converges strongly to a point ∈p Ω where ( )= ∘p P f pΩ
is a solution of the variational inequalities.

( )⟨ − − ⟩ ≤ ∈I f p p z for all z, 0 Ω.

Remark 4.7. The result in Corollary 4.5 complements the result of Tan and Qin [29], Gang et al. [22] and
Thong and Hieu [23] in the following ways:
(i) Our result in Corollary 4.5 extends the result of Tan and Qin [29] from pseudomonotone VIP to common

solution problem of pseudomonotone variational inequality and FPPs of demicontractive maps.
(ii) Corollary 4.5 result extends the result of Cai et al. [22] from FPP of nonexpansive maps to FPP

of demicontractive maps.
(iii) The result of Cai et al. [22] requires the knowledge of the Lipschitz constant of the cost operator while

our result in Corollary 4.5 does not require any knowledge of the Lipschitz constant of the cost
operator.

(iv) The result of Corollary 4.5 extends the result of Thong and Hieu [23] from monotone VIP to pseudo-
monotone VIP.

(v) Unlike the result of Thong and Hieu [23], our result in Corollary 4.5 employs inertial technique to speed
up the rate of convergence of the algorithm.

(vi) As shown in our convergence analysis, we did not adopt the conventional “two cases” approach
employed in several papers to prove strong convergence. Our procedure is more concise and easy
to comprehend.

5 Numerical examples

In this section, we proceed to perform two numerical experiments to show the computational efficiency of
our Algorithm 3.1 in comparison with some other algorithms in the literature. The graph of errors is plotted
against the number of iterations in each case. All numerical computations were carried out using Matlab
2019(b). We use ‖ − ‖ ≤+

−x x 10n n1
2 as the stopping criterion. The parameters are chosen as follows:
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• Let ( ) =f x x1
5 , then =ρ 1

5 is the Lipschitz constant for f . Let ( ) =D x x
3 with constant =γ̄ 1

3 , then we take

=γ 1, which satisfies < <γ0 γ
ρ
¯ . Let = −Ux x3

2 . Choose =δ 0.8,
( )

= = = =
+ +

ψ ϕ α ε0.6, 0.7, , ,n n n n1
1

3
1

3 3

=
+

+
βn

n
n

3 1
5 3 in our Algorithm 3.1.

• Take
( )

= = =
+

Tx ψ θ, ,x
L n n2

0.8 1
3 2 in Algorithm (14).

• Let = − = = =
+ +

Gx x x γ ω ρ, , 0.09,n n n
n

n1
1

1 2 1 in Appendix 6.1.

• Take = − = = = = = = =
+

T x x λ m μ σ τ γ μ, , , , ,n n n n n n n
2

mod 5
1
2

1
3

1
3

1
6

1
2 , in Appendices 6.2 and 6.3.

Example 5.1. Consider the linear operator ( )→ =� �A m: 5, 10, 15, 20m m as follows: ( ) = +A x Fx g ,
where ∈ �g m and = + +F BB M ET , matrix ∈ ×�B m m, matrix ∈ ×�M m m, is skew symmetric, and matrix

∈ ×�E m m is a diagonal matrix whose diagonal terms are nonnegative (which implies that F is positive
symmetric definite). We choose the feasible set as { }= ∈ − ≤ ≤ = …�C x x i m: 2 5, 1, ,m

i . It can easily be
verified that the mapping A is strongly pseudomonotone and Lipschitz continuous with = ‖ ‖L F . In this
example, both B and M entries are generated randomly in [ ]−2, 2 , E is generated randomly in [ ]0, 2 , and

=g 0. The initial values =x x0 1 are generated randomly by ( )mrand , 1 .

The stopping criterion used for our computation is ‖ − ‖ <+
−x x 10n n1

2. We plot the graphs of errors
against the number of iterations in each case. The numerical results are reported in Figure 1 and Table 1.
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Figure 1: Top left: =m 5; top right: =m 10; bottom left: =m 15; bottom right: =m 20.
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Example 5.2. We consider the next example in the infinite dimensional Hilbert space ([ ])=H L 0, 12 with
inner product

( ) ( )∫⟨ ⟩ ≔ ∈x y x t y t t x y H, d for all , ,
0

1
(57)

and induced norm

⎜ ⎟∣∣ ∣∣ ⎛

⎝
∣ ( )∣ ⎞

⎠
∫≔ ∈x x t t x Hd for all .

0

1
2

1
2

(58)

Table 1: Numerical results for Example 5.1

Algorithm 14 Appendix 6.1 Appendix 6.2 Appendix 6.3 Algorithm 3.1

=m 5 No. of Iter. 10 11 11 22 6
CPU time (s) 1.7148 0.9880 0.8846 1.9379 0.4792

=m 10 No. of Iter. 11 11 11 22 6
CPU time (s) 1.4375 1.1026 0.9923 1.9712 0.5256

=m 15 No. of Iter. 11 11 11 24 6
CPU time (s) 1.4107 0.9337 1.0554 1.9888 0.6284

=m 20 No. of Iter. 11 11 12 25 6
CPU time (s) 1.2953 0.8184 0.9771 1.6142 0.4390
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Figure 2: Top left: Case I; top right: Case II; bottom left: Case III; bottom right: Case IV.
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Now, define →A H H: by ( )( ) { ( )}=A x t x tmax 0, , for all [ ]∈ ∈t x H0, 1 , . It is easy to see that A is
pseudomonotone and 1-Lipschitz continuous on H . It can easily be verified that all the conditions of
Theorem 4.4 are satisfied.

We choose four different initial values as follows:

Case I: =
+x t

0
2 1

3

3
and = + +x t t3 11

5 2 ;

Case II: ( )= −x texp0 and =x tcos21 ;
Case III: = + +x t t 50

3 and ( )= −x texp 21 ;
Case IV: = + +x t t2 30

5 2 and = − +x t t2 31
3 2 .

The stopping criterion used for our computation is ‖ − ‖ <+
−x x 10n n1

2. We plot the graphs of errors
against the number of iterations in each case. The numerical results are reported in Figure 2 and Table 2.

6 Conclusion

We studied the pseudomonotone VIP with a fixed point constraint. We introduced a new inertial TEGMwith
an adaptive step size for approximating a solution of the pseudomonotone VIP, which is also a fixed point of
demicontractive mappings. We proved strong convergence results for the proposed algorithm without the
knowledge of the Lipschitz constant of the cost operator. Finally, we presented several numerical experi-
ments to demonstrate the efficiency of our proposed method in comparison with some of the existing
methods in the literature.
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Table 2: Numerical results for Example 5.2

Algorithm 14 Appendix 6.1 Appendix 6.2 Appendix 6.3 Algorithm 3.1

No. of Iter. 6 8 12 5 4
No. of Iter. 6 8 12 5 4
No. of Iter. 6 8 12 5 4
No. of Iter. 9 11 17 8 5
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Appendix

Appendix 6.1. (Algorithm 3.3 in [56])

Take ∈x H1 , >ψ 01 , ⎤
⎦(∈

−ω 0, β1
2 and ( )∈ϕ 0, 1 . Choose the sequences { }αn and { }γn satisfying the

assumptions made on the control parameters
Step 1. Compute

( ( ))= −y P x ψ A xn C n n n .

Step 2. Compute
( ( ))= −z P x ψ A y ,n H n n nn

where
{ ( ) }≔ ∈ ⟨ − − − ⟩ ≤H x H x ψ A x y x y: , 0 ,n n n n n n

and

⎧

⎨
⎩

( ) ( )
∣∣ ∣∣

∣∣ ( ) ( ) ∣∣{ }≔
− ≠

+

−

−ψ
ψ A x A y

ψ

min , , if 0,

, otherwise .
n

ϕ x y
A x A y n n n

n

1

n n

n n

Step 3. Compute
( )≔ − +t ρ x ρ z1 .n n n n n

Step 4. Compute
( )= −v t γ G t .n n n n

Step 5. Compute
[( ) ]= − ++x ω I ωU v1 .n n1

Let = +n n 1 and return to Step 1.

Appendix 6.2. (Algorithm 1 in [57])

Initial step: Given ∈x x H,0 1 arbitrarily. Let >γ 0, ( )∈m 0, 1 ( )∈μ 0, 1
Iteration steps: Compute +xn 1 below:
Step 1. Put ( )= − −−v x σ x xn n n n n1 and calculate ( )= −u P v l Avn C n n n , where ln is picked to be the largest

{ }∈ …l λ λ λ, , ,m m2
s.t

‖ − ‖ ≤ ‖ − ‖l Av Au μ v un n n n .
Step 2. Calculate

( ) ( ( )) ( )= − − +z α P v l A u α f x1 ,n n C n n n n nn

where
{ }≔ ∈ ⟨ − − − ⟩ ≥C v H v l Av u u v: , 0 .n n n n n n

Step 3. Compute
( )= − + ++x γ P v l Au μ T z τ xn n C n n n n n n n n1 n .

Update = +n n 1 and return to Step 1.
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Appendix 6.3. (Algorithm 2 in [57])

Initial step: Given ∈x x H,0 1 arbitrarily. Let >γ 0, ( )∈m 0, 1 ( )∈μ 0, 1
Iteration steps: Compute +xn 1 below:
Step 1. Put ( )= − −−v x σ x xn n n n n1 and calculate

( )= −u P v l Avn c n n n , where ln is picked to

be the largest { }∈ …l λ λ λ, , ,m m2
s.t

‖ − ‖ ≤ ‖ − ‖l Av Au μ v un n n n

Step 2. Calculate
( ) ( ( )) ( )= − − +z α P v l A u α f x1 ,n n C n n n n nn

where
{ }≔ ∈ ⟨ − − − ⟩ ≥C v H v l Av u u v: , 0n n n n n n

Step 3. Compute
( )= − + ++x γ P v l Au δ T z β vn n C n n n n n n n n1 n

Update = +n n 1 and return to Step 1.
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