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STRONG CONVERGENCE OF AN EXTENDED

EXTRAGRADIENT METHOD FOR EQUILIBRIUM

PROBLEMS AND FIXED POINT PROBLEMS

Jong Kyu Kim, Pham Ngoc Anh, and Young Man Nam

Abstract. In this paper, we introduced a new extended extragradient
iteration algorithm for finding a common element of the set of fixed points
of a nonexpansive mapping and the set of solutions of equilibrium prob-

lems for a monotone and Lipschitz-type continuous mapping. And we
show that the iterative sequences generated by this algorithm converge
strongly to the common element in a real Hilbert space.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and f
be a bifunction from C × C to R. We consider the equilibrium problem: Find
x∗ ∈ C such that

EP (f, C) f(x∗, y) ≥ 0 ∀y ∈ C.

The set of solutions of EP (f, C) is denoted by Sol(f, C). These problems
appear frequently in many practical problems arising, for instance, physics,
engineering, game theory, transportation, economics and network, and become
an attractive field for many researchers both theory and applications (see [1,
2, 3, 4, 5, 18, 21]).

If f(x, y) = ⟨F (x), y − x⟩ for every x, y ∈ C, where F is a mapping from C
to H, then the problem EP (f, C) becomes the following variational inequality:
Find x∗ ∈ C such that

V I(F,C) ⟨F (x∗), y − x∗⟩ ≥ 0 ∀y ∈ C.

We denote Sol(F,C) which is the set of solutions of V I(F,C).
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For solving V I(F,C) in the Euclidean space Rn under the assumption that
a subset C ⊆ Rn is nonempty closed convex, F is monotone, L-Lipschitz con-
tinuous and Sol(F,C) ̸= ∅, Korpelevich in [9] introduced the following extra-
gradient method: 

x0 ∈ C,

yk = PrC
(
xk − λF (xk)

)
,

xk+1 = PrC
(
xk − λF (yk)

)
,

for all k ≥ 0, where λ ∈ (0, 1
L ) and PrC is denoted the projection on C. The

author showed that the sequences {xk} and {yk} converge to the same point
x̄ ∈ Sol(F,C).

Takahashi and Toyoda in [17] introduced an extragradient method for finding
a common element of Sol(F,C) and the set of fixed points of a nonexpansive
mapping T (shortly Fix(T )) under the assumption that a subset C ⊆ H is
closed convex and F is α-inverse strongly monotone:{

x0 ∈ C,

xk+1 = αkx
k + (1− αk)TPrC

(
xk − λkF (xk)

)
,

for all k ≥ 0, where {αk} is a sequence in (0, 1) and {λk} is a sequence in
(0, 2α). They proved that if Fix(T ) ∩ Sol(F,C) ̸= ∅, then the sequence {xk}
converges weakly to some x̄ ∈ Sol(F,C) ∩ Fix(T ).

For obtaining a common element of Sol(f, C) and the set of fixed points
of a nonexpansive mapping T , Takahashi and Takahashi in [16] introduced an
iterative scheme by the viscosity approximation method. Sequences {xk} and
{yk} are defined by:

x0 ∈ H,

f(yk, y) + 1
rk
⟨y − yk, yk − xk⟩ ≥ 0 ∀y ∈ C,

xk+1 = αkg(x
k) + (1− αk)T (y

k) ∀k ≥ 0.

The authors showed that under certain conditions over {αk} and {rk}, se-
quences {xk} and {yk} converge strongly to z = PrFix(T )∩Sol(f,C)

(
g(z)

)
.

Recently, iterative algorithms for finding a common element of the set of
solutions of equilibrium problems and the set of fixed points of a nonexpansive
mapping in a real Hilbert space have further developed by some authors (see
[6, 7, 8, 10, 12, 14, 15, 16, 18, 21, 22]). At each iteration k in all of these
algorithms, it requires solving approximation auxiliary equilibrium problems.

In this paper, we introduce a new iterative algorithm for finding a common
element of the set of fixed points of a nonexpansive mapping and the set of
solutions of equilibrium problems for a monotone, Lipschitz-type continuous
bifunction. At each iteration k, we only solve strongly convex problems on C.
The iterative process is based on so-called extragradient method. We obtain a
strong convergence theorem for three sequences generated by this process.
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2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥,
respectively. We list some well known definitions.

Definition 2.1. Let C be a nonempty closed convex subset of H.
(I) The bifunction f : C × C → R is said to be

(i) γ-strongly monotone on C if for each x, y ∈ C,

f(x, y) + f(y, x) ≤ −γ∥x− y∥2;
(ii) monotone on C if for each x, y ∈ C,

f(x, y) + f(y, x) ≤ 0;

(iii) pseudomonotone on C if for each x, y ∈ C,

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0;

(iv) Lipschitz-type continuous on C with constants c1 > 0 and c2 > 0, if
for each x, y ∈ C,

f(x, y) + f(y, z) ≥ f(x, z)− c1∥x− y∥2 − c2∥y − z∥2.
(II) The mapping F : C → H is said to be

(i) monotone on C if for each x, y ∈ C,

⟨F (x)− F (y), x− y⟩ ≥ 0;

(ii) pseudomonotone on C if for each x, y ∈ C,

⟨F (y), x− y⟩ ≥ 0 ⇒ ⟨F (x), x− y⟩ ≥ 0;

(iii) L-Lipschitz continuous on C if for each x, y ∈ C,

∥F (x)− F (y)∥ ≤ L∥x− y∥.
If L = 1, then F is nonexpansive on C.

Now, we define the projection on C, denoted by PrC(·), i.e.,
PrC(x) = argmin{∥y − x∥ : y ∈ C} ∀x ∈ H.

A space X is said to have Opial’s condition ([13]) if for any sequence {xn}
with xn ⇀ x̄, the inequality

lim inf
n→∞

∥xn − x̄∥ < lim inf
n→∞

∥xn − y∥

holds for every y ∈ H with y ̸= x̄,
Note that if F is L-Lipschitz on C, then for each x, y ∈ C, f(x, y) =

⟨F (x), y − x) is Lipschitz-type continuous with constants c1 = c2 = L
2 on

C. Indeed,

f(x, y) + f(y, z)− f(x, z) =⟨F (x), y − x⟩+ ⟨F (y), z − y⟩+ ⟨F (x), z − x⟩
=− ⟨F (y)− F (x), y − z⟩
≥ − ∥F (x)− F (y)∥∥y − z∥
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≥− L∥x− y∥∥y − z∥

≥ − L

2
∥x− y∥2 − L

2
∥y − z∥2

=− c1∥x− y∥2 − c2∥y − z∥2.
Thus f is Lipschitz-type continuous on C.

In this paper, for finding a point of the set Sol(f, C) ∩ Fix(T ), we assume
that the bifunction f satisfies the following conditions:

(i) f is monotone on C;
(ii) f is Lipschitz-type continuous on C;
(iii) for each x ∈ C, y 7→ f(x, y) is convex and subdifferentiable on C;
(iv) f is upper semicontinuous on C;
(v) Sol(f, C) ∩ Fix(T ) ̸= ∅.
Now we are in a position to describe the extended extragradient algorithm

for finding a common element of Sol(f, C) ∩ Fix(T ).

Algorithm 2.2. Choose u ∈ H, positive sequences {λn}, {αn}, {βn} and {γn}
satisfy the conditions:

{λn} ⊂
(
0,min{ 1

2c1
, 1
2c2

}
)
, lim
n→∞

λn = λ ∈ (0, 2δ−1
4c2

],

αn + βn + γn = 1, lim
n→∞

αn = 0,
∞∑

n=0
αn = ∞, lim

n→∞
βn = β ∈ (0, 1).

Step 1. Solve the strongly convex problems:{
yn := argmin{1

2∥y − xn∥2 + λnf(x
n, y) : y ∈ C},

tn := argmin{ 1
2∥t− xn∥2 + λnf(y

n, t) : t ∈ C}.

Step 2. Set xn+1 := αnu+ βnx
n + γnT (t

n).
Increase k by 1 and go to Step 1.

In order to prove the main result in Section 3, we shall use the following
lemmas in the sequel.

Lemma 2.3 (see [5]). Let C be a nonempty closed convex subset of a real
Hilbert space H and g : C → R be convex and subdifferentiable on C. Then x∗

is a solution to the following convex problem

min{g(x) : x ∈ C}
if and only if

0 ∈ ∂g(x∗) +NC(x
∗),

where ∂g(·) denotes the subdifferential of g and NC(x
∗) is the (outward) normal

cone of C at x∗ ∈ C.

Lemma 2.4 (see [11]). Assume that T is a nonexpansive self-mapping of a
nonempty closed convex subset C of a real Hilbert space H. If Fix(T ) ̸= ∅,
then I − T is demiclosed; that is, whenever {xn} is a sequence in C weakly
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converging to some x̄ ∈ C and the sequence {(I − T )(xn)} strongly converges
to some ȳ, it follows that (I − T )(x̄) = ȳ. Here I is the identity operator of H.

Lemma 2.5 (see [20]). Let {xn} and {yn} be bounded sequences in a Banach
space X and let {βn} be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose

xn+1 = (1−βn)y
n+βnx

n ∀n ≥ 0 and lim sup
n→∞

(∥yn+1−yn∥−∥xn+1−xn∥) ≤ 0.

Then, limn→∞ ∥yn − xn∥ = 0.

Lemma 2.6 (see [19]). Let {an} be a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
∞∑

n=1
γn = ∞,

lim sup
n→∞

δn
γn

≤ 0 or
∞∑

n=1
|δn| < ∞.

Then limn→∞ an = 0.

3. Main results

In this section, we prove that the strong convergence of the sequences {xn},
{yn} and {tn} defined by Algorithm 2.2 based on the extragradient method
which solves the problem of finding a common element of two sets Sol(f, C)
and Fix(T ) for a monotone, Lipschitz-type continuous bifunction f in a real
Hilbert space H.

Lemma 3.1. Let f(x, ·) be convex and subdifferentiable on C for all x ∈ C,
and f be pseudomonotone on C. Then for x∗ ∈ Sol(f, C), we have

∥tn−x∗∥2 ≤ ∥xn−x∗∥2−(1−2λnc2)∥tn−yn∥2−(1−2λnc1)∥xn−yn∥2 ∀n ≥ 0.

Proof. Since f(x, ·) is convex on C for each x ∈ C and Lemma 2.3, we obtain

tn = argmin{1
2
∥t− xn∥2 + λnf(y

n, t) : t ∈ C}

if and only if

(3.1) 0 ∈ ∂2{λnf(y
n, y) +

1

2
∥y − xn∥2}(tn) +NC(t

n).

Since f(yn, ·) is subdifferentiable on C, by the well known Moreau-Rockafellar
Theorem (see [5]), there exists w ∈ ∂2f(y

n, tn) such that

(3.2) f(yn, t)− f(yn, tn) ≥ ⟨w, t− tn⟩ ∀t ∈ C.
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For t = x∗ ∈ C, this inequality becomes

(3.3) f(yn, x∗)− f(yn, tn) ≥ ⟨w, x∗ − tn⟩.
From (3.1), it follows that

0 = λnw + tn − xn + w̄,

where w ∈ ∂2f(y
n, tn) and w̄ ∈ NC(t

n). From the last inequality and the
definition of the normal cone NC , we have

(3.4) ⟨tn − xn, t− tn⟩ ≥ λn⟨w, tn − t⟩ ∀t ∈ C.

Using t = x∗ ∈ C, we obtain

(3.5) ⟨tn − xn, x∗ − tn⟩ ≥ λn⟨w, tn − x∗⟩.
It follows from (3.3) and (3.5) that

(3.6) ⟨tn − xn, x∗ − tn⟩ ≥ λn

(
f(yn, tn)− f(yn, x∗)

)
.

Since x∗ ∈ Sol(f, C), f(x∗, y) ≥ 0 for all y ∈ C, and f is pseudomonotone on
C, we have f(yn, x∗) ≤ 0. Then, (3.6) implies that

(3.7) ⟨tn − xn, x∗ − tn⟩ ≥ λnf(y
n, tn).

Now applying Lipschitzian of f with x = xn, y = yn and z = tn, we get

(3.8) f(yn, tn) ≥ f(xn, tn)− f(xn, yn)− c1∥yn − xn∥2 − c2∥tn − yn∥2.
Combinating (3.7) and (3.8), we have

(3.9) ⟨tn−xn, x∗−tn⟩ ≥ λn

(
f(xn, tn)−f(xn, yn)−c1∥yn−xn∥2−c2∥tn−yn∥2

)
.

Similarly, since yn is the unique solution to the strongly convex problem

min{1
2
∥y − xn∥2 + λnf(x

n, y) : y ∈ C},

we have

(3.10) λn

(
f(xn, y)− f(xn, yn)

)
≥ ⟨yn − xn, yn − y⟩ ∀y ∈ C.

Substituting y = tn ∈ C, we obtain

(3.11) λn

(
f(xn, tn)− f(xn, yn)

)
≥ ⟨yn − xn, yn − tn⟩.

From (3.9), (3.11) and

2⟨tn − xn, x∗ − tn⟩ = ∥xn − x∗∥2 − ∥tn − xn∥2 − ∥tn − x∗∥2,
it implies that

∥xn − x∗∥2 − ∥tn − xn∥2 − ∥tn − x∗∥2

≥ 2⟨yn − xn, yn − tn⟩ − 2λnc1∥xn − yn∥2 − 2λnc2∥tn − yn∥2.
Hence, we have

∥tn − x∗∥2

≤ ∥xn − x∗∥2 − ∥tn − xn∥2 − 2⟨yn − xn, yn − tn⟩+ 2λnc1∥xn − yn∥2
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+ 2λnc2∥tn − yn∥2

= ∥xn − x∗∥2 − ∥(tn − yn) + (yn − xn)∥2 − 2⟨yn − xn, yn − tn⟩
+ 2λnc1∥xn − yn∥2 + 2λnc2∥tn − yn∥2

≤ ∥xn − x∗∥2 − ∥tn − yn∥2 − ∥xn − yn∥2+2λnc1∥xn − yn∥2+2λnc2∥tn − yn∥2

= ∥xn − x∗∥2 − (1− 2λnc1)∥xn − yn∥2 − (1− 2λnc2)∥yn − tn∥2.
This completes the proof. □

Lemma 3.2. Suppose that assumptions (i)-(v) hold and T is nonexpansive on
C, for each x ∈ C, f(x, ·) is strongly convex with constant δ > 0 on C. Then
the sequences {xn}, {yn} and {tn} generated by Algorithm 2.2 satisfy

∥xn+1 − x∗∥2 ≤ αn∥u− x∗∥2 + ∥xn − x∗∥2 − (1− 2λnc1)γn∥xn − yn∥2

− (1− 2λnc2)γn∥tn − yn∥2.(3.12)

Consequently,

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

∥tn − yn∥ = 0,

provided limn→∞ ∥xn − yn∥ = 0.

Proof. For each n, it follows from (3.4) that

⟨tn − xn, t− tn⟩ ≥ λn⟨w, tn − t⟩ ∀w ∈ ∂2f(y
n, tn), t ∈ C.

With t = yn ∈ C, we have

⟨tn − xn, yn − tn⟩ ≥ λn⟨w, tn − yn⟩ ∀w ∈ ∂2f(y
n, tn).

Combining f(x, x) = 0 for all x ∈ C, the last inequality and the definition of
w,

f(yn, t)− f(yn, tn) ≥ ⟨w, t− tn⟩ ∀t ∈ C,

we have

⟨tn − xn, yn − tn⟩ ≥ −λn⟨w, yn − tn⟩
≥ λn

(
f(yn, tn)− f(yn, yn)

)
= λnf(y

n, tn).(3.13)

Substituting y = tn ∈ C into (3.10), we get

(3.14) ⟨yn − xn, tn − yn⟩ ≥ λn

(
f(xn, yn)− f(xn, tn)

)
.

Adding two inequalities (3.13) and (3.14), we obtain

⟨tn − yn, yn − xn − tn + xn⟩ ≥ λn

(
f(xn, yn) + f(yn, tn)− f(xn, tn)

)
.

Then, since f is Lipschitz-type continuous on C, we have

−∥tn − yn∥2 ≥ λn

(
− c1∥xn − yn∥2 − c2∥yn − tn∥2

)
,

which follows that

(3.15) (1− λnc2)∥tn − yn∥2 ≤ λnc1∥xn − yn∥2.
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So, we get

(3.16) ∥tn − yn∥2 ≤ λnc1
1− λnc2

∥xn − yn∥2.

For each x∗ ∈ Sol(f, C) ∩ Fix(T ), from Lemma 3.1, it implies that

∥xn+1 − x∗∥2 =∥αnu+ βnx
n + γnT (t

n)− x∗∥2

=∥αn(u− x∗) + βn(x
n − x∗) + γn

(
T (tn)− x∗)∥2

≤αn∥u− x∗∥2 + βn∥xn − x∗∥2 + γn∥T (tn)− T (x∗)∥2

≤αn∥u− x∗∥2 + βn∥xn − x∗∥2 + γn∥tn − x∗∥2(3.17)

≤αn∥u− x∗∥2 + βn∥xn − x∗∥2 + γn∥xn − x∗∥2

=αn∥u− x∗∥2 + (1− αn)∥xn − x∗∥2

≤max{∥u− x∗∥2, ∥u− x∗∥2}.

Therefore {xn} is bounded and it follows from Lemma 3.1 that {xn}, {tn},
{yn} are bounded. Since f(x, ·) is δ-strongly convex on C for all x ∈ C, we
have

f(yn, tn+1)− f(yn, tn) ≥ ⟨w, tn+1 − tn⟩+ δ

2
∥tn+1 − tn∥2,

where w ∈ ∂2f(y
n, tn). Substituting t = tn+1 into (3.4), then we have

⟨tn − xn, tn+1 − tn⟩ ≥ λn⟨w, tn − tn+1⟩

≥ λn

(
f(yn, tn)− f(yn, tn+1)

)
+

λnδ

2
∥tn+1 − tn∥2.(3.18)

Similarly, we also have

⟨tn+1 − xn+1, tn − tn+1⟩

≥ λn+1

(
f(yn+1, tn+1)− f(yn+1, tn)

)
+

λn+1δ

2
∥tn+1 − tn∥2.(3.19)

Adding (3.18) and (3.19), we get

⟨tn+1 − tn, tn − xn − tn+1 + xn+1⟩

≥ λn

(
f(yn, tn)− f(yn, tn+1)

)
+

λnδ

2
∥tn+1 − tn∥2

+ λn+1

(
f(yn+1, tn+1)− f(yn+1, tn)

)
+

λn+1δ

2
∥tn+1 − tn∥2.

From monotonicity and Lipschitz-type continuity of f and ⟨x, y⟩ ≤ 1
2 (∥x∥

2 +

∥y2∥) for all x, y ∈ H, it implies that

1

2
(∥tn+1 − tn∥2 − ∥xn+1 − xn∥2)

≤ ∥tn+1 − tn∥2 − ⟨tn+1 − tn, xn+1 − xn⟩
=− ⟨tn+1 − tn, tn − xn − tn+1 + xn+1⟩
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≤ λn

(
f(yn, tn+1)− f(yn, tn)

)
− λnδ

2
∥tn+1 − tn∥2

+ λn+1

(
f(yn+1, tn)− f(yn+1, tn+1)

)
− λn+1δ

2
∥tn+1 − tn∥2

≤ λn

(
f(tn, tn+1) + c1∥yn − tn∥2 + (c2 −

δ

2
)∥tn+1 − tn∥2

)
+ λn+1

(
f(tn+1, tn) + c1∥yn+1 − tn+1∥2 + (c2 −

δ

2
)∥tn+1 − tn∥2

)
≤ (λn − λn+1)f(t

n, tn+1) +
(
λn + λn+1)c2 − δ

)
∥tn+1 − tn∥2 + c1λn∥yn − tn∥2

+ c1λn+1∥yn+1 − tn+1∥2.

Then we have

mn∥tn+1 − tn∥2 ≤∥xn+1 − xn∥2 + 2(λn − λn+1)f(t
n, tn+1) + 2c1λn∥yn − tn∥2

+ 2c1λn+1∥yn+1 − tn+1∥2,(3.20)

where mn = 1+2δ−2(λn+λn+1)c2. It follows from λ ≤ 2δ−1
4c2

that there exists
n0 such that mn > 0 for all n ≥ n0 and we have

γ2
n+1

(1− βn+1)2
∥tn+1 − tn∥2 − 1

2
∥xn+1 − xn∥2

≤ Mn∥xn+1 − xn∥2 +
2γ2

n+1(λn − λn+1)

mn(1− βn+1)2
f(tn, tn+1)

+
2c1λnγ

2
n+1

(1− βn+1)2
∥yn − tn∥2 +

2c1λn+1γ
2
n+1

(1− βn+1)2
∥yn+1 − tn+1∥2,(3.21)

where

Mn =
γ2
n+1

mn(1− βn+1)2
− 1

2
.

From (iv), (3.21), Lemma 3.1, (3.17), (3.16), limn→∞ ∥xn − yn∥ = 0 and

lim
n→∞

Mn =
1− 2δ + 4λc2

2(1 + 2δ − 4λc2)
≤ 0,

we have

(3.22) lim
n→∞

( γ2
n+1

(1− βn+1)2
∥tn+1 − tn∥2 − 1

2
∥xn+1 − xn∥2

)
≤ 0.

Set xn+1 = (1− βn)z
n + βnx

n. Then, we obtain

zn+1 − zn =
αn+1u+ γn+1T (t

n+1)

1− βn+1
− αnu+ γnT (t

n)

1− βn

=
( αn+1

1− βn+1
− αn

1− βn

)
u+

γn+1

1− βn+1

(
T (tn+1)− T (tn)

)
+
( γn+1

1− βn+1
− γn

1− βn

)
T (tn).(3.23)
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Hence, we have

1

2
(∥zn+1 − zn∥2 − ∥xn+1 − xn∥2)

≤
∣∣ αn+1

1− βn+1
− αn

1− βn

∣∣2∥u∥2 + ( γn+1

1− βn+1

)2

∥tn+1 − tn∥2

+
∣∣ γn+1

1− βn+1
− γn

1− βn

∣∣2∥T (tn)∥2 − 1

2
∥xn+1 − xn∥2,

Combining this, (3.23), and boundedness of the sequences {xn}, {yn}, {tn} and
{T (tn)}, we obtain

(3.24) lim sup
n→∞

(∥zn+1 − zn∥ − ∥xn+1 − xn∥) ≤ 0.

Hence by Lemma 2.5, we obtain limn→∞ ∥zn − xn∥ = 0. Consequently,

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

(1− βn)∥zn − xn∥ = 0.

It follows from (3.20) that limn→∞ ∥tn+1− tn∥ = 0. By (3.17) and Lemma 3.1,
we have

∥xn+1 − x∗∥2

≤ αn∥u− x∗∥2 + βn∥xn − x∗∥2 + γn∥xn − x∗∥2 − (1− 2λnc2)γn∥tn − yn∥2

− (1− 2λnc1)γn∥xn − yn∥2

≤ αn∥u− x∗∥2 + ∥xn − x∗∥2 − (1− 2λnc2)γn∥tn − yn∥2

− (1− 2λnc1)γn∥xn − yn∥2.

This implies (3.12) and

(1− 2λnc2)γn∥tn − yn∥2(3.25)

≤ αn∥u− x∗∥2 + ∥xn − x∗∥2 − ∥xn+1 − x∗∥2

= αn∥u− x∗∥2 + (∥xn − x∗∥ − ∥xn+1 − x∗∥)(∥xn − x∗∥+ ∥xn+1 − x∗∥)
≤ αn∥u− x∗∥2 + (∥xn − xn+1∥)(∥xn − x∗∥+ ∥xn+1 − x∗∥).

From limn→∞ αn = 0 and (3.25), it follows

lim
n→∞

∥tn − yn∥ = 0. □

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert
space H. Suppose that assumptions (i)-(v) hold, for each x ∈ C, f(x, ·) is
strongly convex with constant δ > 0 on C and T is nonexpansive on C. Then
the sequences {xn}, {yn} and {tn} generated by Algorithm 2.2 converge strongly
to the same point x̄ provided limn→∞ ∥xn − yn∥ = 0, where

x̄ = PrSol(f,C)∩Fix(T )(u).
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Proof. It follows from Lemma 3.1 that

∥tn − x∗∥ ≤ ∥xn − x∗∥ ∀n ≥ 0,

and hence, we have

∥T (xn)− xn∥ ≤∥T (xn)− T (tn)∥+ ∥T (tn)− xn+1∥+ ∥xn+1 − xn∥
≤∥xn − tn∥+ ∥T (tn)− xn+1∥+ ∥xn+1 − xn∥
≤∥xn − tn∥+ αn∥T (tn)− u∥+ βn∥T (tn)− xn∥+ ∥xn+1 − xn∥
≤∥xn − tn∥+ αn∥T (tn)− u∥+ βn∥T (tn)− T (xn)∥
+ βn∥T (xn)− xn∥+ ∥xn+1 − xn∥

≤∥xn − tn∥+ αn∥T (tn)− u∥+ βn∥tn − xn∥+ βn∥T (xn)− xn∥
+ ∥xn+1 − xn∥.

Consequently, from Lemma 3.2 and limn→∞ βn ∈ (0, 1), it follows that

(3.26) lim
n→∞

∥T (xn)− xn∥ = 0.

Then, we also have

∥T (tn)− tn∥ ≤ ∥T (tn)− T (xn)∥+ ∥T (xn)− xn∥+ ∥xn − tn∥
≤ ∥tn − xn∥+ ∥T (xn)− xn∥+ ∥xn − tn∥
→ 0 as n → ∞.(3.27)

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} so that

(3.28) lim sup
n→∞

⟨u− x∗, xn − x∗⟩ = lim
j→∞

⟨u− x∗, xnj − x∗⟩,

where x∗ := PrSol(f,C)∩Fix(T )(u). Without loss of generality, we may further
assume that {xnj} converges weakly to x̄ ∈ H. Hence, (3.28) reduces to

(3.29) lim sup
n→∞

⟨u− x∗, xn − x∗⟩ = ⟨u− x∗, x̄− x∗⟩.

From Lemma 2.4, (3.26) and xnj ⇀ x̄ as j → ∞, it follows

(3.30) T (x̄) = x̄.

In fact, assume that x̄ /∈ Fix(T ). From Opial’s condition in [13], we have

lim inf
j→∞

∥tnj − x̄∥ < lim inf
j→∞

∥tnj − T (x̄)∥

≤ lim inf
j→∞

(∥tnj − T (tnj )∥+ ∥T (tnj )− T (x̄)∥)

= lim inf
j→∞

∥T (tnj )− T (x̄)∥

≤ lim inf
j→∞

∥tnj − x̄∥.

This is a contradiction. Thus, x̄ = T (x̄).
From Lemma 3.2 and xnj ⇀ x̄ as j → ∞, it follows

ynj ⇀ x̄, tnj ⇀ x̄ as j → ∞.
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Then, from (3.10), limn→∞ λn = λ ∈ (0, 1) and assumptions of f , it follows

λnj

(
f(xnj , y)− f(xnj , ynj )

)
≥ ⟨ynj − xnj , ynj − y⟩ ∀y ∈ C,

and when j → ∞, we have f(x̄, y) ≥ 0 for all y ∈ C. It means that x̄ ∈
Sol(f, C). Combining this and (3.30), we have

x̄ ∈ Sol(f, C) ∩ Fix(T ).

Then, it is easy to see that

⟨u− x∗, x̄− x∗⟩ ≤ 0.

Thus, combining with (3.29), we have

(3.31) lim sup
n→∞

⟨u− x∗, xn − x∗⟩ ≤ 0.

Now, with x∗ = PrSol(f,C)∩Fix(T )(u), from ∥tn − x∗∥ ≤ ∥xn − x∗∥, Lemma
3.1 and

⟨x, y⟩ ≤ 1

2
(∥x∥2 + ∥y∥2) ∀x, y ∈ H,

it implies

∥xn+1 − x∗∥2

= ⟨αnu+ βnx
n + γnT (t

n)− x∗, xn+1 − x∗⟩
= αn⟨u− x∗, xn+1 − x∗⟩+ βn⟨xn − x∗, xn+1 − x∗⟩

+ γn⟨T (tn)− x∗, xn+1 − x∗⟩

≤ αn⟨u− x∗, xn+1 − x∗⟩+ βn

2
(∥xn − x∗∥2 + ∥xn+1 − x∗∥2)

+
γn
2
(∥T (tn)− x∗∥2 + ∥xn+1 − x∗∥2)

≤ αn⟨u− x∗, xn+1 − x∗⟩+ βn

2
(∥xn − x∗∥2 + ∥xn+1 − x∗∥2)

+
γn
2
(∥tn − x∗∥2 + ∥xn+1 − x∗∥2)

≤ αn⟨u− x∗, xn+1 − x∗⟩+ 1

2
(1− αn)(∥xn − x∗∥2 + ∥xn+1 − x∗∥2),

≤ αn⟨u− x∗, xn+1 − x∗⟩+ (1− αn)∥xn − x∗∥2.

This implies that

∥xn+1 − x∗∥2 ≤ (1− αn)∥xn − x∗∥2 + αnβn,

where βn := ⟨xn+1 − x∗, u − x∗⟩. Then, from an application of Lemma 2.6
and (3.31), it yields that limn→∞ ∥xn − x∗∥ = 0. From Lemma 3.1, it follows
limn→∞ ∥yn − x∗∥ = 0 and limn→∞ ∥tn − x∗∥ = 0. □
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