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STRONG CONVERGENCE OF APPROXIMATED SEQUENCES

FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES

NAOKI SHIOJI AND WATARU TAKAHASHI

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper, we study the convergence of the sequence defined
by

x0 ∈ C, xn+1 = αnx + (1− αn)Txn, n = 0, 1, 2, . . . ,

where 0 ≤ αn ≤ 1 and T is a nonexpansive mapping from a closed convex
subset of a Banach space into itself.

1. Introduction

Let C be a closed, convex subset of a Banach spaceE and let T be a nonexpansive
mapping from C into C, i.e., ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We deal with
the iterative process

x0 ∈ C, xn+1 = αnx + (1− αn)Txn, n = 0, 1, 2, . . . ,(1.1)

where 0 ≤ αn ≤ 1 and αn → 0. Concerning this process, Reich [5] posed the
following problem:

Problem. Let E be a Banach space. Is there a sequence {αn} such that whenever
a weakly compact, convex subset C of E possesses the fixed point property for
nonexpansive mappings, then the sequence {xn} defined by (1.1) converges to a
fixed point of T for all x in C and all nonexpansive T : C → C?

Though Reich [4, 5] showed an answer in the case when E is uniformly smooth
and αn = n−a with 0 < a < 1, the problem has been generally open. Recently,
Wittmann [7] solved the problem in the case when E is a Hilbert space and {αn}
satisfies

0 ≤ αn ≤ 1, lim
n→∞αn = 0,

∞∑
n=0

αn = ∞ and
∞∑
n=0

|αn+1 − αn| <∞.(1.2)

In this paper, we extend Wittmann’s result to Banach spaces. Our result is the
following:

Theorem. Let E be a Banach space whose norm is uniformly Gâteaux differen-
tiable and let C be a closed, convex subset of E. Let T be a nonexpansive mapping
from C into C such that the set F (T ) of fixed points of T is nonempty. Let {αn}
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be a sequence which satisfies (1.2). Let x ∈ C and let {xn} be the sequence defined
by (1.1). Assume that {zt} converges strongly to z ∈ F (T ) as t ↓ 0, where for
0 < t < 1, zt is a unique element of C which satisfies zt = tx + (1 − t)Tzt. Then
{xn} converges strongly to z.

If C satisfies additional assumptions then {zt} defined above converges strongly
to a fixed point of T . We know the following [4, 6]:

Let E be a Banach space whose norm is uniformly Gâteaux differentiable, let C
be a weakly compact, convex subset of E and let T be a nonexpansive mapping
from C into C. Let x ∈ C and let zt be a unique element of C which satisfies
zt = tx+(1−t)Tzt for 0 < t < 1. Assume that each nonempty, T -invariant, closed,
convex subset of C contains a fixed point of T . Then {zt} converges strongly to a
fixed point of T .

So our theorem gives an answer to Reich’s problem in the case when the norm
of E is uniformly Gâteaux differentiable and each nonempty, closed, convex subset
of C possesses the fixed point property for nonexpansive mappings.

2. Preliminaries and notations

Throughout this paper, all vector spaces are real and we denote by N and N+,
the set of all nonnegative integers and the set of all positive integers, respectively.
Let E be a Banach space and let E′ be its dual. The value of y ∈ E′ at x ∈ E will
be denoted by 〈x, y〉. We also denote by J the duality mapping from E into 2E

′
,

i.e.,

Jx = {y ∈ E′ : 〈x, y〉 = ‖x‖2 = ‖y‖2}, x ∈ E.

Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be uniformly Gâteaux
differentiable if, for each y ∈ U , the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists uniformly for x ∈ U . E is said to be uniformly smooth if the limit (2.1)
exists uniformly for x, y ∈ U . It is well known that if the norm of E is uniformly
Gâteaux differentiable then the duality mapping is single-valued and norm to weak
star, uniformly continuous on each bounded subset of E.

Let µ be a continuous, linear functional on l∞ and let (a0, a1, · · · ) ∈ l∞. We
write µn(an) instead of µ((a0, a1, · · · )). We call µ a Banach limit [1] when µ satisfies
‖µ‖ = µn(1) = 1 and µn(an+1) = µn(an) for all (a0, a1, · · · ) ∈ l∞.

To prove our result, we need the following propositions, which can be deduced
by the same lines as those in [3]. For the sake of completeness, we give the proofs
in our appendix.

Proposition 1. Let a be a real number and let (a0, a1, · · · ) ∈ l∞. Then µn(an) ≤ a
for all Banach limits µ if and only if for each ε > 0, there exists p0 ∈ N+ such that

an + an+1 + · · ·+ an+p−1

p
< a + ε for all p ≥ p0 and n ∈ N.(2.2)

Proposition 2. Let a be a real number and let (a0, a1, · · · ) ∈ l∞ such that µn(an) ≤
a for all Banach limits µ and lim

n→∞
(an+1 − an) ≤ 0. Then lim

n→∞
an ≤ a.
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3. Proof of Theorem

The following is obtained in [7]. For the sake of completeness, we give the proof.

Lemma 1. lim
n→∞ ‖xn+1 − xn‖ = 0.

Proof. We remark that {xn} and {Txn} are bounded by F (T ) 6= ∅. Set M =
sup{‖Txn‖ : n ∈ N}. Then since ‖xn+1 − xn‖ ≤ |αn − αn−1|(‖x‖ + M)+
(1− αn)‖xn − xn−1‖ for each n ∈ N+, we have

‖xn+m+1 − xn+m‖

≤
(n+m−1∑

k=m

|αk+1 − αk|
)

(‖x‖+M) +

(n+m−1∏
k=m

(1 − αk+1)

)
‖xm+1 − xm‖

≤
(n+m−1∑

k=m

|αk+1 − αk|
)

(‖x‖+M) + exp

(
−

n+m−1∑
k=m

αk+1

)
‖xm+1 − xm‖

for all m,n ∈ N. So the boundedness of {xn} and
∑∞

k=0 αk = ∞ yield

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+m+1 − xn+m‖ ≤
( ∞∑
k=m

|αk+1 − αk|
)

(‖x‖+M)

for all m ∈ N. Hence by
∑∞

k=0 |αk+1 − αk| <∞, we get the conclusion.

Using Proposition 2, we obtain the following.

Lemma 2. lim
n→∞

〈x − z, J(xn − z)〉 ≤ 0.

Proof. Let µ be a Banach limit and let 0 < t < 1. Since {αn} converges to 0, T is
nonexpansive and µ is a Banach limit, we get

µn‖xn − Tzt‖2 ≤ µn‖xn − zt‖2.

From (1− t)(xn − Tzt) = (xn − zt)− t(xn − x), we have

(1− t)2‖xn − Tzt‖2 ≥ ‖xn − zt‖2 − 2t〈xn − x, J(xn − zt)〉
= (1 − 2t)‖xn − zt‖2 + 2t〈x− zt, J(xn − zt)〉

for each n ∈ N. These inequalities yield

t

2
µn‖xn − zt‖2 ≥ µn〈x − zt, J(xn − zt)〉.

Tending t to 0, we get

0 ≥ µn〈x − z, J(xn − z)〉,
because E has a uniformly Gâteaux differentiable norm. On the other hand, we
have

lim
n→∞

∣∣〈x− z, J(xn+1 − z)〉 − 〈x − z, J(xn − z)〉∣∣ = 0

by Lemma 1. Hence by Proposition 2, we obtain

lim
n→∞

〈x − z, J(xn − z)〉 ≤ 0.
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Now we can prove our theorem.

Proof of Theorem. Since (1− αn)(Txn − z) = (xn+1 − z)− αn(x− z), we have

‖(1− αn)(Txn − z)‖2 ≥ ‖xn+1 − z‖2 − 2αn〈x− z, J(xn+1 − z)〉,
which yields

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2(1− (1− αn))〈x− z, J(xn+1 − z)〉
for each n ∈ N. Let ε > 0. By Lemma 2, there exists m ∈ N such that

〈x− z, J(xn − z)〉 ≤ ε

2

for all n ≥ m. Then we have

‖xn+m − z‖2 ≤
(n+m−1∏

k=m

(1− αk)

)
‖xm − z‖2 +

(
1−

n+m−1∏
k=m

(1− αk)

)
ε

for all n ∈ N. Hence by
∑∞

k=0 αk = ∞, we get

lim
n→∞

‖xn − z‖2 = lim
n→∞

‖xn+m − z‖2 ≤ ε.

Since ε is an arbitrary positive real number, {xn} converges strongly to z.

Remark. Halpern [2] showed that αn → 0 and
∑∞

n=0 αn = ∞ are necessary con-
ditions for the convergence of the sequence {xn} defined by (1.1). The condition∑∞

n=0 |αn+1 − αn| <∞ is used only to show xn+1 − xn → 0. For other conditions
which ensure xn+1 − xn → 0, see [7].

Appendix

In this appendix, we prove Proposition 1 and Proposition 2.

Proof of Proposition 1. First we shall prove the only if part. Assume that µn(an) ≤
a for all Banach limits µ. Define a sublinear functional q from l∞ into the set of
real numbers by

q((b0, b1, · · · )) = lim
p→∞

sup
n∈N

1

p

n+p−1∑
i=n

bi, (b0, b1, · · · ) ∈ l∞.

We write qn(bn) instead of q((b0, b1, · · · )) for (b0, b1, · · · ) ∈ l∞. By the Hahn-Banach
theorem, there exists a linear functional µ from l∞ into the set of real numbers such
that µ ≤ q and µn(an) = qn(an). It is easy to see that µ is a Banach limit. From
the assumption, we have qn(an) ≤ a. So for each ε > 0, there exists p0 ∈ N+ which
satisfies (2.2).

Next we shall prove the if part. Assume that for each ε > 0, there exists p0 ∈ N+

which satisfies (2.2). Let µ be a Banach limit and let ε > 0. By the hypothesis,
there exists p0 ∈ N+ which satisfies (2.2). So we have

µn(an) = µn

(
an + an+1 + · · ·+ an+p0−1

p0

)
≤ a+ ε.

Since ε is an arbitrary positive real number, we get µn(an) ≤ a.
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CONVERGENCE OF APPROXIMATED SEQUENCES 3645

Proof of Proposition 2. Let ε > 0. By Proposition 1, there exists p ≥ 2 such that

an + an+1 + · · ·+ an+p−1

p
< a +

ε

2

for all n ∈ N. Choose n0 ∈ N such that an+1 − an < ε/(p− 1) for all n ≥ n0. Let
n ≥ n0 + p. Then we have

an =an−i + (an−i+1 − an−i) + (an−i+2 − an−i+1) + · · ·+ (an − an−1)

≤ an−i +
iε

p− 1

for each i = 0, 1, · · · , p− 1. So we get

an ≤ an + an−1 + · · ·+ an−p+1

p
+

1

p
· p(p− 1)

2
· ε

p− 1
≤ a+ ε.

Hence we have

lim
n→∞

an ≤ a+ ε.

Since ε is an arbitrary positive real number, we get the conclusion.
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