
STRONG CONVERGENCE OF FORWARD-REFLECTED-BACKWARD SPLITTING

METHODS FOR SOLVING MONOTONE INCLUSIONS WITH APPLICATIONS TO

IMAGE RESTORATION AND OPTIMAL CONTROL

CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

Abstract. In this paper, we propose and study several strongly convergent versions of the forward-reflected-

backward splitting method of Malitsky and Tam for finding a zero of the sum of two monotone operators in a real
Hilbert space. Our proposed methods only require one forward evaluation of the single-valued operator and one

backward evaluation of the set-valued operator at each iteration; a feature that is absent in many other available
strongly convergent splitting methods in the literature. We also develop inertial versions of our methods and

strong convergence results are obtained for these methods when the set-valued operator is maximal monotone

and the single-valued operator is Lipschitz continuous and monotone. Finally, we discuss some examples from
image restorations and optimal control regarding the implementations of our methods in comparisons with known

related methods in the literature.

1. Introduction

Let H be a real Hilbert space. We are interested in the monotone inclusion problem

find ŵ ∈ H such that 0 ∈ (S + T)ŵ,(1.1)

where S : H → 2H and T : H → H are monotone operators. We denote the solution set of (1.1) by (S+T)−1(0).
Problem (1.1) naturally includes many important optimization problems such as variational inequalities, mini-
mization problems, linear inverse problems, saddle-point problems, fixed point problems, split feasibility prob-
lems, Nash equilibrium problems in noncooperative games, and many more (see [12]). Also, many problems in
signal processing, image recovery and machine learning can be formulated as Problem (1.1).

Some of the most commonly used methods for solving the monotone inclusion problem (1.1) are various splitting
methods. These methods involve tackling each of the two operators (S and T) separately (by means of forward
evaluation of the single-valued operator and backward evaluation of the set-valued operator) rather than their
sum. A popular splitting method for solving Problem (1.1) is the forward-backward splitting method [15, 22]

wn+1 = (IH + δ̄S)−1(wn − δ̄Twn), n ≥ 1,(1.2)

where IH is the identity operator on H and δ̄ > 0 is a constant. Method (1.2) requires at each iteration only
one forward evaluation of T and one backward evaluation of S. This method is known to converge weakly to a
solution of Problem (1.1) when T is L−1-cocoercive, δ̄ ∈ (0, 2L−1), S is maximal monotone and (S + T)−1(0) is
nonempty. Apart from the cocoercivity assumption on T (which is strict), other assumptions which guarantee
the convergence of (1.2) are the strong monotonicity of S + T [6] or the use of a backtracking technique [2]
(which are also strict).

Key words and phrases. Forward-reflected-backward method; inertial method; Halpern’s iteration; viscosity iteration; monotone

inclusion; strong convergence.
2010 Mathematics Subject Classification: 47H09; 47H10; 49J20; 49J40

1,2,4Department of Mathematics, The Technion – Israel Institute of Technology, 32000 Haifa, Israel.
3Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China.
1izuchukwu c@yahoo.com; chi.izuchukw@campus.technion.ac.il
2sreich@technion.ac.il
3yekini.shehu@zjnu.edu.cn
4 taiwoa@campus.technion.ac.il; taiwo.adeolu@yahoo.com.

1

ar
X

iv
:2

20
8.

06
87

1v
1

 [
m

at
h.

O
C

]
 1

4
A

ug
 2

02
2

2 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

In order to weaken the cocoercivity assumption on T , the following forward-backward-forward splitting method
was introduced in [34]: {

vn = (IH + δ̄S)−1(wn − δ̄Twn),

wn+1 = vn − δ̄T vn + δ̄Twn, n ≥ 1.
(1.3)

This method converges weakly to a solution of (1.1) under the assumptions that T is monotone and L-Lipschitz
continuous, δ̄ ∈ (0, L−1), S is maximal monotone and (S + T)−1(0) 6= ∅. Note that monotonicity and Lipschitz
continuity are much weaker assumptions than cocoercivity and strong monotonicity [11, Remark 2.1]. However,
the forward-backward-forward splitting method (1.3) requires an additional forward evaluation of T (that is, it
involves two forward evaluations of T and one backward evaluation of S per iteration). This might affect the effi-
ciency of the method especially when it is applied to solving large-scale optimization problems and optimization
problems emanating from optimal control theory, where computations involving pertinent operators are often
very expensive (see [14]).

Strongly convergent variants of both the forward-backward splitting method (1.2) and the forward-backward-
forward splitting method (1.3) have been studied in the literature recently in [3, 9, 29, 32, 36]. In [3], four
modifications of the inertial forward-backward splitting method for solving monotone inclusion problem (1.1)
are discussed. For instance, the authors studied the following inertial viscosity-type forward-backward-forward
splitting method [3, Algorithm 3.4]:

un = wn + ϑn(wn − wn−1),

vn = (IH + δ̄S)−1(un − δ̄Tun),

zn = vn − δ̄T vn + δ̄Twn,

wn+1 = σnUwn + (1− σn)zn, n ≥ 1,

(1.4)

where U is a contraction mapping and ϑn ∈ [0, 1) is the inertial parameter. It was shown in [3, Theorem 3.4]
that {wn} converges strongly to a point in (S + T)−1(0). However, observe that [3, Algorithm 3.4] and other
strongly convergent splitting methods in [3, 9, 23, 29, 30, 32, 36] have the same drawback of at least two forward
evaluations of the single-valued operator T per iteration or the assumption that T is cocoercive.

In order to overcome this disadvantage inherent in the forward-backward-forward splitting method (1.3), Malitsky
and Tam [21] proposed the following forward-reflected-backward splitting method:

wn+1 = (IH + δ̄S)−1(wn − 2δ̄Twn + δ̄Twn−1), n ≥ 1,(1.5)

where δ̄ ∈ (0, 1
2L
−1). Method (1.5) converges weakly to a solution of (1.1) under the same assumptions as the

forward-backward-forward splitting method (1.3), but has the same computational structure as the forward-
backward splitting method (1.2). In other words, it converges weakly when T is monotone and Lipschitz contin-
uous, and S is maximal monotone, but only requires one forward evaluation of T and one backward evaluation
of S. See [5, 10, 18, 19] and references therein for several weakly convergent variants of Method (1.5).

It is worth noting that in infinite dimensional spaces, strong convergence results are much more desirable than
weak convergence results for iterative algorithms. However, due to the computational structure of Method (1.5),
its strongly convergent variants are very rare in the literature (see, e.g., [20]). Note that the strongly convergent
method proposed in [20] is of a hybrid projection type and it tackles the particular case where S in the inclusion
problem (1.1) is the normal cone of a nonempty, closed and convex set.

Our Contributions. Motivated by the above-mentioned results, our contributions in this paper are summarized
below.

• We introduce new strongly convergent splitting methods for solving the monotone inclusion problem
(1.1). In similar computational structure as the forward-reflected-backward splitting method (1.5), our
proposed methods only require one forward evaluation of T and one backward evaluation of S at each
iteration, and strong convergence results are obtained without assuming strong monotonicity of either
S or T . Thus, our results are strongly convergent versions of the weak convergence results obtained in
[5, 10, 21].

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 3

• Our first method employs the anchored (or Halpern type) extrapolation technique for a general maximal
monotone operator S and our convergence analysis is entirely different from that given in [20]. Moreover,
it is known that besides ensuring strong convergence, the anchored extrapolation step improves the
convergence rate of iterative methods (see [23, 37] for details). Viscosity-type approximations are also
discussed and strong convergence results are given under mild assumptions.

• To further increase the convergence speed of our methods, we propose inertial variants of both the
anchored-type and the viscosity-type approximations, and establish their corresponding strong conver-
gent results.

• We conduct numerical experiments arising from image restoration and optimal control problems in
order to illustrate the validity of our proposed methods. Results from the numerical tests show that our
methods are efficient, computationally inexpensive and outperform related methods in the literature.

Organization. The rest of our paper is organized as follows: Section 2 contains basic definitions and results.
In Section 3 we present the first method of this paper and establish its strong convergence. In Section 4 we
present an inertial variant of the first method and obtain some convergence results for it. In Section 5 we
study the viscosity and inertial viscosity variants of our proposed methods. In Section 6 we present several
numerical examples which illustrate the implementation of our algorithms in comparison with known methods
in the literature. We then make some concluding remarks and suggest possible directions for future research in
Section 7.

2. Preliminaries

Throughout this work, 〈·, ·〉 and ‖ · ‖ are the inner product and norm, respectively, of a real Hilbert space H.

The operator T : H → H is called L-cocoercive (or inverse strongly monotone) if there exists L > 0 such that

〈Ta− Tb, a− b〉 ≥ L‖Ta− Tb‖2 ∀a, b ∈ H,

and monotone if

〈Ta− Tb, a− b〉 ≥ 0 ∀a, b ∈ H.

The operator T is called L-Lipschitz continuous if there exists L > 0 such that

‖Ta− Tb‖ ≤ L‖a− b‖ ∀a, b ∈ H.

If L ∈ [0, 1) then T is a contraction.

Let S be a set-valued operator S : H → 2H, then S is said to be monotone if

〈â− b̂, a− b〉 ≥ 0 ∀a, b ∈ H, â ∈ Sa, b̂ ∈ Sb.

The monotone operator S is called maximal if the graph G(S) of S, defined by

G(S) := {(a, â) ∈ H ×H : â ∈ Sa},

is not properly contained in the graph of any other monotone operator. In other words, S is called a maximal

monotone operator if for (a, â) ∈ H ×H, we have that 〈â− b̂, a− b〉 ≥ 0 for all (b, b̂) ∈ G(S) implies â ∈ Sa.
For a set-valued operator S, the resolvent associated with it is the mapping JS

δ̄
: H → 2H defined by

JSδ̄ (a) := (IH + δ̄S)−1(a), a ∈ H, δ̄ > 0.

If S is maximal monotone and T is single-valued, then both JS
δ̄

and JS
δ̄

(IH−δ̄T) are single-valued and everywhere
defined on H [11].

Lemma 2.1. The following equalities are true:

(i) 2〈â, b̂〉 = ‖â‖2 + ‖b̂‖2 − ‖â− b̂‖2 = ‖â+ b̂‖2 − ‖â‖2 − ‖b̂‖2 ∀ â, b̂ ∈ H.
(ii) ‖r̄ â+ (1− r̄)̂b‖2 = r̄‖â‖2 + (1− r̄)‖b̂‖2 − r̄(1− r̄)‖â− b̂‖2 ∀ â, b̂ ∈ H, r̄ ∈ R.

4 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

Lemma 2.2. [24] Suppose that {tn} is a sequence of nonnegative real numbers, {σn} is a sequence of real
numbers in (0, 1) satisfying

∑∞
n=1 σn =∞, and {hn} is a sequence of real numbers such that

tn+1 ≤ (1− σn)tn + σnhn, n ≥ 1.

If lim sup
i→∞

hni
≤ 0 for each subsequence {tni

} of {tn} satisfying lim inf
i→∞

(tni+1 − tni
) ≥ 0, then lim

n→∞
tn = 0.

Lemma 2.3. [13] Suppose that T : H → H is monotone and Lipschitz continuous, and S : H → 2H is maximal
monotone, then (S + T) : H → 2H is maximal monotone.

Lemma 2.4. [17, Lem. 3.1] Suppose that {tn} and {rn} are sequences of nonnegative real numbers such that

tn+1 ≤ (1− σn)tn + sn + rn, n ≥ 1,

where {σn} is a sequence in (0, 1) and {sn} is a real sequence. Let
∑∞
n=1 rn < ∞ and sn ≤ σnM for some

M ≥ 0. Then {tn} is bounded.

3. Modified Forward-Reflected-Backward Splitting Method

Assumption 3.1.

(a) S is maximal monotone,
(b) T is monotone and Lipschitz continuous with constant L > 0,
(c) (S + T)−1(0) is nonempty.

Algorithm 3.2. Let δ0, δ1 > 0, r̄ ∈
(
β̄, 1−2β̄

2

)
with β̄ ∈ (0, 1

4), and choose the sequences {σn} in (0, 1) and

{cn} in [0,∞) such that
∑∞
n=1 cn <∞. For arbitrary v̂, w0, w1 ∈ H, let the sequence {wn} be generated by

wn+1 = JSδn
(
σnv̂ + (1− σn)wn − δnTwn − δn−1(1− σn)(Twn − Twn−1)

)
, n ≥ 1,(3.1)

where

δn+1 =

{
min

{
r̄‖wn−wn+1‖
‖Twn−Twn+1‖ , δn + cn

}
, if Twn 6= Twn+1,

δn + cn, otherwise.
(3.2)

We call Algorithm 3.2 a forward-reflected-anchored-backward splitting method with a self-adaptive step size δn,
an anchor v̂ and an anchoring coefficient σn. Since this algorithm is based on the Halpern iteration, it can also
be viewed as a Halpern-type forward-reflected-backward method. For more information on the convergence of
Halpern-type methods for solving optimization problems, see, for example, [8, 23, 33, 37].

Remark 3.3. By (3.2), lim
n→∞

δn = δ̄, where δ̄ ∈ [min{r̄L−1, δ1}, δ1 + c̄] with c̄ =
∑∞
n=1 cn (see [16]). If cn = 0,

then the step size δn in (3.2) is similar to the one in [10].

We now establish the strong convergence of Algorithm 3.2. We begin with the following lemma.

Lemma 3.4. Let {wn} be generated by Algorithm 3.2 and assume that Assumption 3.1 holds. If lim
n→∞

σn = 0,

then {wn} is bounded.

Proof. Let ŵ ∈ (S + T)−1(0). Then −δnTŵ ∈ δnSŵ. Set an := σnv̂ + (1− σn)wn. Then by (3.1), we have

an − δnTwn − δn−1(1− σn)(Twn − Twn−1)− wn+1 ∈ δnSwn+1.(3.3)

Thus, by the monotonicity of S, we see that

〈an − δnTwn − δn−1(1− σn)(Twn − Twn−1)− wn+1 + δnTŵ, wn+1 − ŵ〉 ≥ 0,

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 5

which implies that

0 ≤ 2 〈wn+1 − an + δnTwn + δn−1(1− σn)(Twn − Twn−1)− δnTŵ, ŵ − wn+1〉
= 2〈wn+1 − an, ŵ − wn+1〉+ 2δn〈Twn − Tŵ, ŵ − wn+1〉+ 2δn−1(1− σn)〈Twn − Twn−1, ŵ − wn〉

+2δn−1(1− σn)〈Twn − Twn−1, wn − wn+1〉
= ‖an − ŵ‖2 − ‖wn+1 − ŵ‖2 − ‖wn+1 − an‖2 + 2δn〈Twn − Tŵ, ŵ − wn+1〉

+2δn−1(1− σn)〈Twn − Twn−1, ŵ − wn〉+ 2δn−1(1− σn)〈Twn − Twn−1, wn − wn+1〉,(3.4)

where the last equation follows from Lemma 2.1(i). Next, since T is monotone, we have that

〈Twn − Tŵ, ŵ − wn+1〉 ≤ 〈Twn − Twn+1, ŵ − wn+1〉.(3.5)

Also, from (3.2), we get

2δn−1〈Twn − Twn−1, wn − wn+1〉 ≤ 2δn−1‖Twn − Twn−1‖‖wn − wn+1‖

≤ 2δn−1

δn
r̄‖wn − wn−1‖‖wn − wn+1‖

≤ δn−1

δn
r̄
(
‖wn − wn−1‖2 + ‖wn+1 − wn‖2

)
.(3.6)

By Remark 3.3 and the condition r̄ ∈
(
β̄, 1−2β̄

2

)
, we get lim

n→∞
δn−1

δn
r̄ = r̄ < 1

2 − β̄. Thus, there exists n0 ≥ 1

such that δn−1

δn
r̄ < 1

2 − β̄ ∀n ≥ n0. Hence, using (3.5) and (3.6) in (3.4), we get

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ ‖an − ŵ‖2 − ‖wn+1 − an‖2 + 2δn−1(1− σn)〈Twn − Twn−1, ŵ − wn〉

+(1− σn)
(1

2
− β̄

)
‖wn − wn−1‖2 +

[
δn−1

δn
r̄(1− σn) +

1

2

]
‖wn+1 − wn‖2 ∀n ≥ n0.(3.7)

Using Lemma 2.1(i), we see that

‖an − ŵ‖2 = ‖(wn − ŵ)− σn(wn − v̂)‖2

= ‖wn − ŵ‖2 + σ2
n‖wn − v̂‖2 − 2σn〈wn − ŵ, wn − v̂〉

= ‖wn − ŵ‖2 + σ2
n‖wn − v̂‖2 − σn‖wn − v̂‖2 − σn‖wn − ŵ‖2 + σn‖v̂ − ŵ‖2.(3.8)

Replacing ŵ by wn+1 in (3.8), we get

‖an − wn+1‖2 = ‖wn − wn+1‖2 + σ2
n‖wn − v̂‖2 − σn‖wn − v̂‖2 − σn‖wn − wn+1‖2

+σn‖v̂ − wn+1‖2.(3.9)

Now, subtracting (3.9) from (3.8), we obtain

‖an − ŵ‖2 − ‖an − wn+1‖2

= (1− σn)‖wn − ŵ‖2 + σn‖v̂ − ŵ‖2 − (1− σn)‖wn+1 − wn‖2 − σn‖wn+1 − v̂‖2.(3.10)

Using (3.10) in (3.7), we get

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn)‖wn − ŵ‖2 + σn‖v̂ − ŵ‖2 − (1− σn)‖wn+1 − wn‖2 − σn‖wn+1 − v̂‖2

+2δn−1(1− σn)〈Twn − Twn−1, ŵ − wn〉+ (1− σn)
(1

2
− β̄

)
‖wn − wn−1‖2

+

[
δn−1

δn
r̄(1− σn) +

1

2

]
‖wn+1 − wn‖2

≤ (1− σn)

[
‖wn − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

]
+σn‖v̂ − ŵ‖2 −

[
1

2
− σn −

δn−1

δn
r̄(1− σn)

]
‖wn+1 − wn‖2 − β̄(1− σn)‖wn − wn−1‖2 ∀n ≥ n0.(3.11)

6 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

Set tn := ‖wn − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+ 1
2‖wn − wn−1‖2. Then for all n ≥ n0,

tn ≥ ‖wn − ŵ‖2 − 2δn−1‖Twn − Twn−1‖‖wn − ŵ‖+
1

2
‖wn − wn−1‖2

≥ ‖wn − ŵ‖2 −
δn−1

δn
r̄
(
‖wn − wn−1‖2 + ‖wn − ŵ‖2

)
+

1

2
‖wn − wn−1‖2

≥ ‖wn − ŵ‖2 + (β̄ − 1

2
)
(
‖wn − wn−1‖2 + ‖wn − ŵ‖2

)
+

1

2
‖wn − wn−1‖2

= (
1

2
+ β̄)‖wn − ŵ‖2 + β̄‖wn − wn−1‖2.(3.12)

Hence, tn ≥ 0 for all n ≥ n0. On the other hand, since lim
n→∞

σn = 0 and r̄ < 1−2β̄
2 , we have

lim
n→∞

[
1

2
− σn −

δn−1

δn
r̄(1− σn)

]
=

1

2
− r̄ > β̄.

Thus, there exists n1 ∈ N, n1 ≥ n0, such that 1
2 − σn −

δn−1

δn
r̄(1 − σn) > β̄ ∀n ≥ n1. Therefore, it follows from

(3.11) that

tn+1 ≤ (1− σn)tn + σn‖v̂ − ŵ‖2 − β̄‖wn+1 − wn‖2 − β̄(1− σn)‖wn − wn−1‖2

≤ (1− σn)tn + σn‖v̂ − ŵ‖2 ∀n ≥ n1 ≥ n0,(3.13)

which by Lemma 2.4 implies that {tn} is bounded. It follows from (3.12) that {wn} is bounded too. �

Theorem 3.5. Let {wn} be generated by Algorithm 3.2 when Assumption 3.1 holds. If lim
n→∞

σn = 0 and
∞∑
n=1

σn =∞, then {wn} converges strongly to P(S+T)−1(0)v̂.

Proof. Let ŵ = P(S+T)−1(0)v̂. Using Lemma 2.1(i), we obtain

‖an − ŵ‖2 = ‖σn(v̂ − ŵ) + (1− σn)(wn − ŵ)‖2

= σ2
n‖v̂ − ŵ‖2 + (1− σn)2‖wn − ŵ‖2 + 2σn(1− σn)〈v̂ − ŵ, wn − ŵ〉(3.14)

Similarly, we obtain

‖an − wn+1‖2 = σ2
n‖v̂ − wn+1‖2 + (1− σn)2‖wn − wn+1‖2 + 2σn(1− σn)〈v̂ − wn+1, wn − wn+1〉

≥ σ2
n‖wn+1 − v̂‖2 + (1− σn)2‖wn+1 − wn‖2 − 2σn(1− σn)‖wn+1 − v̂‖‖wn+1 − wn‖

≥ σ2
n‖wn+1 − v̂‖2 + (1− σn)2‖wn+1 − wn‖2 − 2σn(1− σn)M‖wn+1 − wn‖,(3.15)

where M := sup
n≥1
‖wn+1 − v̂‖ (recall that in view of Lemma 3.4, the sequence {wn} is bounded). Now, using

(3.14) and (3.15) in (3.7), we see that

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ σ2
n‖v̂ − ŵ‖2 + (1− σn)2‖wn − ŵ‖2 + 2σn(1− σn)〈v̂ − ŵ, wn − ŵ〉 − σ2

n‖wn+1 − v̂‖2

−(1− σn)2‖wn+1 − wn‖2 + 2σn(1− σn)M‖wn+1 − wn‖+ 2δn−1(1− σn)〈Twn − Twn−1, ŵ − wn〉

+(1− σn)
(1

2
− β̄

)
‖wn − wn−1‖2 +

[
δn−1

δn
r̄(1− σn) +

1

2

]
‖wn+1 − wn‖2

≤ (1− σn)

(
‖wn − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

)
+σn

(
σn‖v̂ − ŵ‖2 + 2(1− σn)〈v̂ − ŵ, wn − ŵ〉+ 2(1− σn)M‖wn+1 − wn‖

)
−
(

1

2
+ σ2

n − 2σn −
δn−1

δn
r̄(1− σn)

)
‖wn+1 − wn‖2 − β̄(1− σn)‖wn − wn−1‖2 ∀n ≥ n1.(3.16)

Therefore, for all n ≥ n1, we have

tn+1 ≤ (1− σn)tn + σnhn,(3.17)

where hn = σn‖v̂ − ŵ‖2 + 2(1− σn)〈v̂ − ŵ, wn − ŵ〉+ 2(1− σn)M‖wn+1 − wn‖.

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 7

To conclude the proof, it suffices to show, in view of Lemma 2.2, that lim sup
i→∞

hni
≤ 0 for each subsequence

{tni} of {tn} such that lim inf
i→∞

(tni+1 − tni) ≥ 0. To this end, let {tni} be a subsequence of {tn} such that

lim inf
i→∞

(tni+1 − tni
) ≥ 0. Using (3.16), we obtain

lim sup
i→∞

[(
1

2
+ σ2

ni
− 2σni

− δni−1

δni

r̄(1− σni
)

)
‖wni+1 − wni

‖2
]

≤ lim sup
i→∞

[(tni
− tni+1) + σni

(hni
− tni

)]

≤ − lim inf
i→∞

(tni+1 − tni) ≤ 0.

Since lim
i→∞

(
1
2 + σ2

ni
− 2σni −

δni−1

δni
r̄(1− σni)

)
= 1

2 − r̄ > 0, we get

lim
i→∞

‖wni+1 − wni‖ = 0.(3.18)

Also,

lim
i→∞

‖ani
− wni

‖ = lim
i→∞

σni
‖wni

− v̂‖ = 0.(3.19)

Using (3.18) and (3.19), we find that

lim
i→∞

‖wni+1 − ani‖ = 0.(3.20)

Combining the Lipschitz continuity of T and (3.18), we get

lim
i→∞

‖Twni+1 − Twni
‖ = 0.(3.21)

In view of Lemma 3.4, {wni} is bounded. Thus, we can choose a subsequence {wnij
} of {wni} which converges

weakly to some w∗ ∈ H such that

lim sup
i→∞

〈v̂ − ŵ, wni
− ŵ〉 = lim

j→∞
〈v̂ − ŵ, wnij

− ŵ〉 = 〈v̂ − ŵ, w∗ − ŵ〉.(3.22)

Now, consider (x, y) ∈ G(S + T). Then δnij
(y − Tx) ∈ δnij

Sx. Using this, (3.3) and the monotonicity of S, we

find that

〈δnij
(y − Tx)− anij

+ δnij
Twnij

+ δnij
−1(1− σnij

)(Twnij
− Twnij

−1) + wnij
+1, x− wnij

+1〉 ≥ 0.

Thus, using the monotonicity of T , we obtain

〈y, x− wnij
+1〉 ≥

1

δnij

〈δnij
Tx+ anij

− δnij
Twnij

− δnij
−1(1− σnij

)(Twnij
− Twnij

−1)− wnij
+1, x− wnj+1〉

= 〈Tx− Twnij
+1, x− wnij

+1〉+ 〈Twnij
+1 − Twnij

, x− wnij
+1〉

+
δnij

−1

δnij

(1− σnij
)〈Twnij

−1 − Twnij
, x− wnij

+1〉+
1

δnij

〈anij
− wnij

+1, x− wnij
+1〉

≥ 〈Twnij
+1 − Twnij

, x− wnij
+1〉+

δnij
−1

δnij

(1− σnij
)〈Twnij

−1 − Twnij
, x− wnij

+1〉

+
1

δnij

〈anij
− wnij

+1, x− wnij
+1〉.(3.23)

As j →∞ in (3.23), we get, using (3.20) and (3.21), that 〈y, x−w∗〉 ≥ 0. Thus, since S+T is maximal monotone
(see Lemma 2.3), we get that w∗ ∈ (S + T)−1(0).
Since ŵ = P(S+T)−1(0)v̂, it follows from (3.22) and the characterization of the metric projection that

lim sup
i→∞

〈v̂ − ŵ, wni − ŵ〉 = 〈v̂ − ŵ, w∗ − ŵ〉 ≤ 0.(3.24)

Using (3.18), (3.24) and the condition lim
i→∞

σni
= 0, we find that lim sup

i→∞
hni
≤ 0. Thus, in view of the condition

∞∑
n=1

σn =∞ and Lemma 2.2, it follows from (3.17) that lim
n→∞

tn = 0. Hence, using (3.12), we conclude that {wn}

converges strongly to ŵ = P(S+T)−1(0)v̂, as asserted. �

8 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

The step size defined in (3.2) makes it possible for Algorithm 3.2 to be applied in practice even when the Lipschitz
constant L of T is not known. However, when this constant is known or can be calculated, we simply adopt the
following variant of Algorithm 3.2:

Algorithm 3.6. Let δ̄ ∈
(

0, 1
2L

)
and choose the sequence {σn} in (0, 1). For arbitrary v̂, w0, w1 ∈ H, let the

sequence {wn} be generated by

wn+1 = JSδ̄
(
σnv̂ + (1− σn)wn − δ̄Twn − δ̄(1− σn)(Twn − Twn−1)

)
, n ≥ 1.

Remark 3.7. Using arguments similar to those in Lemma 3.4 and Theorem 3.5, we can establish that the sequence
{wn} generated by Algorithm 3.6 converges strongly to P(S+T)−1(0)v̂.

4. Inertial Modified Forward-Reflected-Backward Splitting Method

In this section we first propose and then study the following inertial variant of Algorithm 3.2.

Algorithm 4.1. Let δ0, δ1 > 0, ϑ̄ ∈ [0, 1), r̄ ∈
(
β̄, 1−2β̄

2

)
with β̄ ∈ (0, 1

4), and choose sequences {σn} in (0, 1)

and {cn} in [0,∞) such that
∑∞
n=1 cn <∞. For arbitrary v̂, w0, w1 ∈ H, let the sequence {wn} be generated by

wn+1 = JSδn
(
σnv̂ + (1− σn)(wn + ϑ̄(wn − wn−1))− δnTwn − δn−1(1− σn)(Twn − Twn−1)

)
, ∀n ≥ 1,

where the step size δn is defined by (3.2).

Algorithm 4.1 combines the anchored step, inertial extrapolation step and the forward-reflected-backward split-
ting technique. Therefore, it can be referred to as an inertial forward-reflected-anchored-backward splitting
method.

Lemma 4.2. Let {wn} be generated by Algorithm 4.1 when Assumption 3.1 holds. If 0 ≤ ϑ̄ < min
{
β̄
2 ,

1
2−r̄

2

}
and lim

n→∞
σn = 0, then the sequence {wn} is bounded.

Proof. Let ŵ ∈ (S+T)−1(0) and set an := σnv̂+(1−σn)bn, where bn = wn+ ϑ̄(wn−wn−1). Then by arguments
similar to those used in the proof of Lemma 3.4 up to (3.11), we obtain

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn)

[
‖bn − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

]
+σn‖v̂ − ŵ‖2 − (1− σn)‖wn+1 − bn‖2 +

[
δn−1

δn
r̄(1− σn) +

1

2

]
‖wn+1 − wn‖2

−β̄(1− σn)‖wn − wn−1‖2 ∀n ≥ n0.(4.1)

It follows from Lemma 2.1(ii) that

‖bn − ŵ‖2 = ‖(1 + ϑ̄)(wn − ŵ)− ϑ̄(wn−1 − ŵ)‖2

= (1 + ϑ̄)‖wn − ŵ‖2 − ϑ̄‖wn−1 − ŵ‖2 + ϑ̄(1 + ϑ̄)‖wn − wn−1‖2.(4.2)

From Lemma 2.1(i) it follows that

‖wn+1 − bn‖2 = ‖(wn+1 − wn)− ϑ̄(wn − wn−1)‖2

= ‖wn+1 − wn‖2 + ϑ̄2‖wn − wn−1‖2 − 2ϑ̄〈wn+1 − wn, wn − wn−1〉
≥ (1− ϑ̄)‖wn+1 − wn‖2 + (ϑ̄2 − ϑ̄)‖wn − wn−1‖2.(4.3)

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 9

Using (4.2) and (4.3) in (4.1), we find that

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn)

[
(1 + ϑ̄)‖wn − ŵ‖2 − ϑ̄‖wn−1 − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

]
+(1− σn)ϑ̄(1 + ϑ̄)‖wn − wn−1‖2 + σn‖v̂ − ŵ‖2 − (1− σn)(1− ϑ̄)‖wn+1 − wn‖2

−(1− σn)(ϑ̄2 − ϑ̄)‖wn − wn−1‖2 +

[
δn−1

δn
r̄(1− σn) +

1

2

]
‖wn+1 − wn‖2 − β̄(1− σn)‖wn − wn−1‖2.

This implies that

‖wn+1 − ŵ‖2 − ϑ̄‖wn − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn)

[
‖wn − ŵ‖2 − ϑ̄‖wn−1 − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

]
+σn‖v̂ − ŵ‖2 − (1− σn)(β̄ − 2ϑ̄)‖wn − wn−1‖2

−
[
(1− σn)(1− ϑ̄)− δn−1

δn
r̄(1− σn)− 1

2

]
‖wn+1 − wn‖2 ∀n ≥ n0.(4.4)

Set t̂n := ‖wn − ŵ‖2 − ϑ̄‖wn−1 − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+ 1
2‖wn − wn−1‖2.

Then for all n ≥ n0, we have

t̂n ≥ ‖wn − ŵ‖2 − ϑ̄‖wn−1 − ŵ‖2 −
δn−1

δn
r̄
(
‖wn − wn−1‖2 + ‖wn − ŵ‖2

)
+

1

2
‖wn − wn−1‖2

=

(
1− δn−1

δn
r̄

)
‖wn − ŵ‖2 − ϑ̄‖wn−1 − ŵ‖2 +

(
1

2
− δn−1

δn
r̄

)
‖wn − wn−1‖2.(4.5)

It follows from Lemma 2.1(i) that

‖wn−1 − ŵ‖2 = ‖(wn−1 − wn) + (wn − ŵ)‖2

= ‖wn−1 − wn‖2 + ‖wn − ŵ‖2 + 2〈wn−1 − wn, wn − ŵ〉
≤ 2‖wn − wn−1‖2 + 2‖wn − ŵ‖2.(4.6)

Now, using (4.6) in (4.5), we see that

t̂n ≥
(

1− δn−1

δn
r̄

)
‖wn − ŵ‖2 − ϑ̄

[
2‖wn − wn−1‖2 + 2‖wn − ŵ‖2

]
+

(
1

2
− δn−1

δn
r̄

)
‖wn − wn−1‖2

≥
(

1

2
− δn−1

δn
r̄ − 2ϑ̄

)[
‖wn − ŵ‖2 + ‖wn − wn−1‖2

]
.(4.7)

Since ϑ̄ <
1
2−r̄

2 , we have lim
n→∞

(
1
2 −

δn−1

δn
r̄ − 2ϑ̄

)
= 1

2 − r̄− 2ϑ̄ > 0. Thus, there exists n1 ∈ N, n1 ≥ n0 such that

1
2 −

δn−1

δn
r̄ − 2ϑ̄ > 0 ∀n ≥ n1. Hence, we get from (4.7) that t̂n ≥ 0 for all n ≥ n1 ≥ n0.

On the other hand, since lim
n→∞

σn = 0 and ϑ̄ < β̄
2 , we also have lim

n→∞

[
(1− σn)(β̄ − 2ϑ̄)

]
= β̄ − 2ϑ̄ > 0. Thus,

there exists n2 ≥ n1 such that (1− σn)(β̄ − 2ϑ̄) > 0 ∀n ≥ n2.

Similarly, there exists n3 ≥ n2 such that (1− σn)(1− ϑ̄)− δn−1

δn
r̄(1− σn)− 1

2 > 0 for all n ≥ n3.

Using these facts in (4.4), we obtain

t̂n+1 ≤ (1− σn)t̂n + σn‖v̂ − ŵ‖2 ∀n ≥ n3,

which implies that {t̂n} is bounded. It then follows from (4.7) that the sequence {wn} is indeed bounded, as
claimed. �

Theorem 4.3. Let {wn} be generated by Algorithm 4.1 when Assumption 3.1 holds. If 0 ≤ ϑ̄ < min
{
β̄
2 ,

1
2−r̄

2

}
,

lim
n→∞

σn = 0 and
∞∑
n=1

σn =∞, then {wn} converges strongly to P(S+T)−1(0)v̂.

10 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

Proof. Let ŵ = P(S+T)−1(0)v̂. Then, using arguments similar to those used in the proof of Theorem 3.5 up to
(3.16), we obtain

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn)

(
‖bn − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

)
+σn

(
σn‖v̂ − ŵ‖2 + 2(1− σn)〈v̂ − ŵ, bn − ŵ〉+ 2(1− σn)M‖wn+1 − bn‖

)
−(1− σn)2‖wn+1 − bn‖2 +

(
δn−1

δn
r̄(1− σn) +

1

2

)
‖wn+1 − wn‖2 − β̄(1− σn)‖wn − wn−1‖2 ∀n ≥ n3.(4.8)

Next, using (4.2) and (4.3) in (4.8), we see that

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn)

(
(1 + ϑ̄)‖wn − ŵ‖2 − ϑ̄‖wn−1 − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

)
+(1− σn)ϑ̄(1 + ϑ̄)‖wn − wn−1‖2 + σn

(
σn‖v̂ − ŵ‖2 + 2(1− σn)〈v̂ − ŵ, bn − ŵ〉+ 2(1− σn)M‖bn − wn+1‖

)
−(1− σn)2

[
(1− ϑ̄)‖wn+1 − wn‖2 + (ϑ̄2 − ϑ̄)‖wn − wn−1‖2

]
+

(
δn−1

δn
r̄(1− σn) +

1

2

)
‖wn+1 − wn‖2 − β̄(1− σn)‖wn − wn−1‖2 ∀n ≥ n3.

This implies that

‖wn+1 − ŵ‖2 − ϑ̄‖wn − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn)

(
‖wn − ŵ‖2 − ϑ̄‖wn−1 − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

)
+σn

(
σn‖v̂ − ŵ‖2 + 2(1− σn)〈v̂ − ŵ, bn − ŵ〉+ 2(1− σn)M‖bn − wn+1‖

)
−
(

(1− σn)2(1− ϑ̄)− δn−1

δn
r̄(1− σn)− 1

2

)
‖wn+1 − wn‖2

−(1− σn)
(
β̄ − 2ϑ̄− σn(ϑ̄2 − ϑ̄)

)
‖wn − wn−1‖2 ∀n ≥ n3.(4.9)

Therefore, for all n ≥ n3, we find that

t̂n+1 ≤ (1− σn)t̂n + σnĥn,(4.10)

where ĥn = σn‖v̂ − ŵ‖2 + 2(1− σn)〈v̂ − ŵ, bn − ŵ〉+ 2(1− σn)M‖wn+1 − bn‖.

As in the proof of Theorem 3.5, let {t̂ni
} be a subsequence of {t̂n} such that lim inf

i→∞

(
t̂ni+1 − t̂ni

)
≥ 0. Then it

follows from (4.9) that

lim sup
i→∞

[(
(1− σni)

2(1− ϑ̄)− δni−1

δni

r̄(1− σni)−
1

2

)
‖wni+1 − wni‖2

]
≤ lim sup

i→∞

[
(t̂ni
− t̂ni+1) + σni

(ĥni
− t̂ni

)
]

≤ − lim inf
i→∞

(t̂ni+1 − t̂ni) ≤ 0.

Since lim
i→∞

(
(1− σni)

2(1− ϑ̄)− δni−1

δni
r̄(1− σni)− 1

2

)
= 1

2 − ϑ̄− r̄ > 0, we get

lim
i→∞

‖wni+1 − wni
‖ = 0.(4.11)

Thus,

lim
i→∞

‖bni
− wni

‖ = lim
i→∞

ϑ̄‖wni
− wni−1‖ = 0.(4.12)

Using (4.11) and (4.12), we obtain

lim
i→∞

‖wni+1 − bni
‖ = 0.(4.13)

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 11

As in the proof of Theorem 3.5, we can choose a subsequence {wnij
} of {wni

} which converges weakly to some

w∗ ∈ H such that

lim sup
i→∞

〈v̂ − ŵ, wni − ŵ〉 = lim
j→∞
〈v̂ − ŵ, wnij

− ŵ〉 = 〈v̂ − ŵ, w∗ − ŵ〉,

and we can show that w∗ ∈ (S + T)−1(0). Since ŵ = P(S+T)−1(0)v̂, we have

lim sup
i→∞

〈v̂ − ŵ, wni
− ŵ〉 = 〈v̂ − ŵ, w∗ − ŵ〉 ≤ 0,

which implies by (4.12) that

lim sup
i→∞

〈v̂ − ŵ, bni − ŵ〉 ≤ 0.(4.14)

Using (4.13), (4.14) and the condition lim
i→∞

σni
= 0, we get that lim sup

i→∞
ĥni
≤ 0. Thus, applying Lemma 2.2 to

(4.10), we obtain lim
n→∞

t̂n = 0. Hence, using (4.7), we conclude that {wn} converges strongly to ŵ = P(S+T)−1(0)v̂,

as asserted. �

Remark 4.4. Instead of using a constant inertial parameter ϑ̄ in Algorithm 4.1, we can use a variable inertial
parameter ϑn, where 0 ≤ ϑn ≤ ϑn+1 ≤ ϑ̄, without imposing an additional assumption on the anchoring coefficient
σn as done in most related works [1, 7, 26, 27], where additional requirements are imposed on σn.

At this point we note that although the sequence {ϑn} is required to be increasing, unlike in most related papers
[1, 3, 7, 25, 27], it does not depend on the iterates {wn} and {wn−1}.

We now present our algorithm with variable inertial parameter and the corresponding strong convergence theo-
rem.

Algorithm 4.5. Let δ0, δ1 > 0, r̄ ∈
(
β̄, 1−2β̄

2

)
with β̄ ∈ (0, 1

4), and choose the sequences {σn} in (0, 1) and

{cn} in [0,∞) such that
∑∞
n=1 cn <∞. Given arbitrary v̂, w0, w1 ∈ H, let the sequence {wn} be generated by

wn+1 = JSδn (σnv̂ + (1− σn)(wn + ϑn(wn − wn−1))− δnTwn − δn−1(1− σn)(Twn − Twn−1)) , ∀n ≥ 1,

where the step size δn is defined by (3.2).

Theorem 4.6. Let the sequence {wn} be generated by Algorithm 4.5 when Assumption 3.1 holds. If 0 ≤ ϑn ≤
ϑn+1 ≤ ϑ̄ < min

{
β̄
2 ,

1
2−r̄

2

}
, lim
n→∞

σn = 0 and
∞∑
n=1

σn =∞, then {wn} converges strongly to P(S+T)−1(0)v̂.

Proof. Using ϑn instead of ϑ̄ in the proof of Lemma 4.2 up to (4.4), we have

‖wn+1 − ŵ‖2 − ϑn‖wn − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn)

[
‖wn − ŵ‖2 − ϑn‖wn−1 − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

]
+σn‖v̂ − ŵ‖2 − (1− σn)(β̄ − 2ϑn)‖wn − wn−1‖2

−
[
(1− σn)(1− ϑn)− δn−1

δn
r̄(1− σn)− 1

2

]
‖wn+1 − wn‖2 ∀n ≥ n0.

Since ϑn ≤ ϑn+1, we obtain

‖wn+1 − ŵ‖2 − ϑn+1‖wn − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn)

[
‖wn − ŵ‖2 − ϑn‖wn−1 − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

]
+σn‖v̂ − ŵ‖2 − (1− σn)(β̄ − 2ϑn)‖wn − wn−1‖2

−
[
(1− σn)(1− ϑn)− δn−1

δn
r̄(1− σn)− 1

2

]
‖wn+1 − wn‖2 ∀n ≥ n0.

12 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

Thus, by setting t̂n := ‖wn − ŵ‖2 − ϑn‖wn−1 − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉 + 1
2‖wn − wn−1‖2, and

following the arguments used in obtaining (4.7), we obtain

t̂n ≥
(

1

2
− δn−1

δn
r̄ − 2ϑn

)[
‖wn − ŵ‖2 + ‖wn − wn−1‖2

]
.(4.15)

Since ϑn ≤ ϑ̄ <
1
2−r̄

2 , we get that lim
n→∞

(
1
2 −

δn−1

δn
r̄ − 2ϑn

)
≥ lim

n→∞

(
1
2 −

δn−1

δn
r̄ − 2ϑ̄

)
= 1

2 − r̄ − 2ϑ̄ > 0. Thus,

there exists n1 ∈ N, n1 ≥ n0 such that 1
2 −

δn−1

δn
r̄ − 2ϑn > 0 ∀n ≥ n1. Hence, we get from (4.15) that t̂n ≥ 0 for

all n ≥ n1 ≥ n0, and by following the arguments from (4.7) up to the end of the proof of Lemma 4.2, we will
see that {wn} is bounded.
Now, using arguments similar to those used in the proof of Theorem 4.3, and with the condition ϑn ≤ ϑn+1 ≤
ϑ̄ < min

{
β̄
2 ,

1
2−r̄

2

}
in mind, we will get that {wn} converges strongly to P(S+T)−1(0)v̂, as asserted. �

5. Viscosity-type Forward-Reflected-Backward Splitting Method

Let U be a contraction with constant κ̄ ∈ [0, 1
2). We propose the following viscosity variant of Algorithm 3.2.

Algorithm 5.1. Let δ0, δ1 > 0, r̄ ∈
(
β̄, 1−2β̄

2

)
with β̄ ∈ (0, 1

4), and choose the sequences {σn} in (0, 1) and

{cn} in [0,∞) such that
∑∞
n=1 cn <∞. For arbitrary w0, w1 ∈ H, let the sequence {wn} be generated by

wn+1 = JSδn
(
σnUwn + (1− σn)wn − δnTwn − δn−1(1− σn(1− 2κ̄))(Twn − Twn−1)

)
, n ≥ 1,

where the step size δn is defined by (3.2).

Lemma 5.2. Let {wn} be generated by Algorithm 5.1 when Assumption 3.1 holds. If lim
n→∞

σn = 0, then the

sequence {wn} is bounded.

Proof. Let ŵ ∈ (S + T)−1(0) and set an := σnUwn + (1− σn)wn. Then by similar arguments as in the proof of
Lemma 3.4 up to (3.7), we get

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ ‖an − ŵ‖2 − ‖wn+1 − an‖2 + 2δn−1(1− σn(1− 2κ̄))〈Twn − Twn−1, ŵ − wn〉

+(1− σn(1− 2κ̄))
(1

2
− β̄

)
‖wn − wn−1‖2 +

[
δn−1

δn
r̄(1− σn(1− 2κ̄)) +

1

2

]
‖wn+1 − wn‖2 ∀n ≥ n0.(5.1)

Replacing v̂ by Uwn in (3.8) and (3.9), we get

‖an − ŵ‖2 = ‖wn − ŵ‖2 + σ2
n‖wn − Uwn‖2 − σn‖wn − Uwn‖2 − σn‖wn − ŵ‖2 + σn‖Uwn − ŵ‖2(5.2)

and

‖an − wn+1‖2 = ‖wn − wn+1‖2 + σ2
n‖wn − Uwn‖2 − σn‖wn − Uwn‖2 − σn‖wn − wn+1‖2

+σn‖Uwn − wn+1‖2,(5.3)

respectively.

Now, subtracting (5.3) from (5.3), we obtain

‖an − ŵ‖2 − ‖an − wn+1‖2

= (1− σn)‖wn − ŵ‖2 + σn‖Uwn − ŵ‖2 − (1− σn)‖wn+1 − wn‖2 − σn‖wn+1 − Uwn‖2

≤ (1− σn)‖wn − ŵ‖2 + 2σn‖Uwn − Uŵ‖2 + 2σn‖Uŵ − ŵ‖2 − (1− σn)‖wn+1 − wn‖2

≤ (1− σn)‖wn − ŵ‖2 + 2σnκ̄
2‖wn − ŵ‖2 + 2σn‖Uŵ − ŵ‖2 − (1− σn)‖wn+1 − wn‖2

≤ (1− σn(1− 2κ̄))‖wn − ŵ‖2 + σn(1− 2κ̄)
2‖Uŵ − ŵ‖2

1− 2κ̄
− (1− σn)‖wn+1 − wn‖2.(5.4)

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 13

Using (5.4) in (5.1), we get

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn(1− 2κ̄))‖wn − ŵ‖2 + σn(1− 2κ̄)
2‖Uŵ − ŵ‖2

1− 2κ̄
− (1− σn)‖wn+1 − wn‖2

+2δn−1(1− σn(1− 2κ̄))〈Twn − Twn−1, ŵ − wn〉+ (1− σn(1− 2κ̄))
(1

2
− β̄

)
‖wn − wn−1‖2

+

[
δn−1

δn
r̄(1− σn(1− 2κ̄)) +

1

2

]
‖wn+1 − wn‖2

= (1− σn(1− 2κ̄))

[
‖wn − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

]
+σn(1− 2κ̄)

2‖Uŵ − ŵ‖2

1− 2κ̄
− β̄(1− σn(1− 2κ̄))‖wn − wn−1‖2 − (1− σn)‖wn+1 − wn‖2

+

[
δn−1

δn
r̄(1− σn(1− 2κ̄)) +

1

2

]
‖wn+1 − wn‖2

= (1− σn(1− 2κ̄))

[
‖wn − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

]
+σn(1− 2κ̄)

2‖Uŵ − ŵ‖2

1− 2κ̄
−
[

1

2
− σn −

δn−1

δn
r̄(1− σn(1− 2κ̄))

]
‖wn+1 − wn‖2

−β̄(1− σn(1− 2κ̄))‖wn − wn−1‖2 ∀n ≥ n0.(5.5)

Let tn := ‖wn − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+ 1
2‖wn − wn−1‖2. Then by (3.12), tn ≥ 0 for all n ≥ n0.

We also have that

lim
n→∞

[
1

2
− σn −

δn−1

δn
r̄(1− σn(1− 2κ̄))

]
=

1

2
− r̄ > β̄.

Thus, there exists n1 ∈ N, n1 ≥ n0, such that 1
2 − σn −

δn−1

δn
r̄(1− σn(1− 2κ̄)) > β̄ ∀n ≥ n1. Hence,

tn+1 ≤ (1− σn(1− 2κ̄))tn + σn(1− 2κ̄)
2‖Uŵ − ŵ‖2

1− 2κ̄
− β̄‖wn+1 − wn‖2

−β̄(1− σn(1− 2κ̄))‖wn − wn−1‖2 ∀n ≥ n1 ≥ n0.

Therefore, {tn} is bounded which further gives that {wn} is bounded too, as asserted. �

Theorem 5.3. Let {wn} be generated by Algorithm 5.1 when Assumption 3.1 holds. If U is a contraction with

κ̄ ∈ [0, 1
2), lim

n→∞
σn = 0 and

∞∑
n=1

σn =∞, then {wn} converges strongly to P(S+T)−1(0)Uŵ.

Proof. Let ŵ = P(S+T)−1(0)Uŵ. Replacing v̂ by Uwn in (3.14), we obtain

‖an − ŵ‖2 = σ2
n‖Uwn − ŵ‖2 + (1− σn)2‖wn − ŵ‖2 + 2σn(1− σn)〈Uwn − ŵ, wn − ŵ〉

= (1− σn)2‖wn − ŵ‖2 + σ2
n‖Uwn − ŵ‖2 + 2σn(1− σn)〈Uwn − Uŵ,wn − ŵ〉

+2σn(1− σn)〈Uŵ − ŵ, wn − ŵ〉
≤ (1− σn)2‖wn − ŵ‖2 + σ2

n‖Uwn − ŵ‖2 + 2σn(1− σn)κ̄‖wn − ŵ‖2

+2σn(1− σn)〈Uŵ − ŵ, wn − ŵ〉
≤ (1− σn(1− 2κ̄))‖wn − ŵ‖2 + σ2

n‖wn − ŵ‖2 + σ2
n‖Uwn − ŵ‖2

+2σn(1− σn)〈Uŵ − ŵ, wn − ŵ〉.(5.6)

Also, replacing v̂ by Uwn in (3.15), we obtain

‖an − wn+1‖2 ≥ σ2
n‖wn+1 − Uwn‖2 + (1− σn)2‖wn+1 − wn‖2 − 2σn(1− σn)M̂‖wn+1 − wn‖,(5.7)

where M̂ := sup
n≥1
‖wn+1 − Uwn‖.

14 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

Now, using (5.6) and (5.7) in (5.1), we get

‖wn+1 − ŵ‖2 + 2δn〈Twn+1 − Twn, ŵ − wn+1〉+
1

2
‖wn+1 − wn‖2

≤ (1− σn(1− 2κ̄))‖wn − ŵ‖2 + σ2
n‖wn − ŵ‖2 + σ2

n‖Uwn − ŵ‖2 + 2σn(1− σn)〈Uŵ − ŵ, wn − ŵ〉
−σ2

n‖wn+1 − Uwn‖2 − (1− σn)2‖wn+1 − wn‖2 + 2σn(1− σn)M̂‖wn+1 − wn‖2

+2δn−1(1− σn(1− 2κ̄))〈Twn − Twn−1, ŵ − wn〉+ (1− σn(1− 2κ̄))
(1

2
− β̄

)
‖wn − wn−1‖2

+

[
δn−1

δn
r̄(1− σn(1− 2κ̄)) +

1

2

]
‖wn+1 − wn‖2

≤ (1− σn(1− 2κ̄))

(
‖wn − ŵ‖2 + 2δn−1〈Twn − Twn−1, ŵ − wn〉+

1

2
‖wn − wn−1‖2

)
+σn

(
σn‖wn − ŵ‖2 + σn‖Uwn − ŵ‖2 + 2(1− σn)〈Uŵ − ŵ, wn − ŵ〉+ 2(1− σn)M̂‖wn+1 − wn‖2

)
−β̄(1− σn(1− 2κ̄))‖wn − wn−1‖2 −

[
1

2
+ σ2

n − 2σn −
δn−1

δn
r̄(1− σn(1− 2κ̄))

]
‖wn+1 − wn‖2 ∀n ≥ n1.

Therefore, for all n ≥ n1, we have

tn+1 ≤ (1− σn(1− 2κ̄))tn + σn(1− 2κ̄)h̃n,

where

h̃n = (1− 2κ̄)−1
(
σn‖wn − ŵ‖2 + σn‖Uwn − ŵ‖2 + 2(1− σn)〈Uŵ − ŵ, wn − ŵ〉+ 2(1− σn)M̂‖wn+1 − wn‖2

)
.

Thus, by arguments similar to those from (3.17) to the end of the proof of Theorem 3.5, we see that {wn}
converges strongly to ŵ = P(S+T)−1(0)Uŵ, as asserted. �

By incorporating the inertial extrapolation step into Algorithm 5.1, we arrive at the following inertial variant
of Algorithm 5.1 or the viscosity variant of Algorithm 4.1, namely the inertial viscosity-type forward-reflected-
backward splitting method.

Algorithm 5.4. Let δ0, δ1 > 0, ϑ̄ ∈ [0, 1), r̄ ∈
(
β̄, 1−2β̄

2

)
with β̄ ∈ (0, 1

4), and choose sequences {σn} in (0, 1)

and {cn} in [0,∞) such that
∑∞
n=1 cn <∞. For arbitrary w0, w1 ∈ H, let the sequence {wn} be generated by

wn+1 = JSδn
(
σnUwn + (1− σn)(wn + ϑ̄(wn − wn−1))− δnTwn − δn−1(1− σn(1− 2κ̄))(Twn − Twn−1)

)
, ∀n ≥ 1,

where the step size δn is defined by (3.2).

Combining Theorem 4.3 and Theorem 5.3, we arrive at the following theorem for Algorithm 5.4.

Theorem 5.5. Let {wn} be generated by Algorithm 5.4 when Assumption 3.1 holds. If U is a contraction with

constant κ̄ ∈ [0, 1
2), 0 ≤ ϑ̄ < min

{
β̄
2 ,

1
2−r̄

2

}
, lim
n→∞

σn = 0 and
∞∑
n=1

σn = ∞, then {wn} converges strongly to

P(S+T)−1(0)Uŵ.

Remark 5.6. Like in Algorithm 4.5, we can replace the constant inertial parameter ϑ̄ in Algorithm 5.4 with
an increasing sequence of variable inertial parameters {ϑn} without imposing an additional condition on the
coefficient {σn}.

Remark 5.7. In all the algorithms we proposed in this paper, we obtain strong convergence results for the mono-
tone inclusion problem (1.1) without assuming that either the maximal monotone operator S or the Lipschitz
monotone operator T are strongly monotone (a condition that is quite restrictive). Rather, we modify the
forward-reflected-backward splitting method in [21] appropriately in order to obtain our results.

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 15

Original Tire Blurred Tire Alg. 3.2

Alg. 4.1 FRBSM RFBSM

Figure 1. Numerical results for Example 6.1: Top Left: original image; Top Middle: blurred
image; Top Right: restored image by Algorithm 3.2 with SNR = 24.7440; Bottom Left: restored
image by Algorithm 4.1 with SNR = 24.7440; Bottom Middle: restored image by FRBSM with
SNR = 24.4121; Bottom Right: restored image by RFBSM with SNR = 16.6445.

6. Numerical Illustrations

In this section we provide computational experiments and compare Algorithm 3.2 and Algorithm 4.1 with the
forward-reflected-backward splitting method (FRBSM) [21, Algorithm (2.2)] and the reflected-forward-backward
splitting method (RFBSM) [5, Algorithm (1.6)]. We use test examples which originate in image restoration and
optimal control problems, as well as academic examples.

6.1. Image Restoration Problem.

Example 6.1.

min
w∈Rl

{||Pw − e||22 + δ̄||w||1},(6.1)

where δ̄ > 0 (in particular, we take δ̄ = 1), w ∈ Rl is the original image that we intend to recover, e ∈ Rd
is the observed image and P : Rl → Rd is the blurring operator. For the numerical computation, we use the
205× 232 Tire Image found in the MATLAB Image Processing Toolbox. Also, we use the Gaussian blur of size
9×9 and standard deviation σ = 4 to create the blurred and noisy image (observed image). In order to measure
the quality of the restored image, we use the signal-to-noise ratio which is defined by

SNR = 20× log10

(
‖w‖2

‖w − w∗‖2

)
,

where w∗ is the restored image. Note that the larger the SNR, the better the quality of the restored image.
For this example, we choose w0 = 0 ∈ Rl×l and w1 = 1 ∈ Rl×d.
Furthermore, we choose δ0 = 0.01, δ1 = 0.3, r̄ = 0.3, v̂ = 2 ∗ 1, σn = 1

n+250 , cn = 1
(n+100)2 , ϑ̄ = 0.0000005 for

Algorithms 3.2 and 4.1 while we take λn = 2n+1
111n+100 and γ = 0.01 for FRBSM [21, Algorithm (2.2)] and RFBSM

[5, Algorithm (1.6)], respectively. The computational results are shown in Table 1, Figures 1 and 2.

16 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

Table 1. Example 6.1: Numerical comparison of Algorithm 3.2, Algorithm 4.1, FRBSM and
RFBSM using their SNR values.

Images n Alg. 3.2 Alg. 4.1 FRBSM RFBSM
Tire.tif 200 24.4142 24.4142 20.1744 13.8430
(205× 232) 500 24.6659 24.6659 22.8918 16.5377

1000 24.7202 24.7202 23.8513 16.7678
1500 24.7440 24.7440 24.4121 16.6445

0 500 1000 1500
Iteration number (n)

0

5

10

15

20

25

S
N

R

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

Figure 2. Numerical results for Example 6.1: Showing different SNR for each algorithms.

6.2. Optimal Control Problem.

Example 6.2. Let L2([0,T],Rl) be the Hilbert space of all square integrable, measurable vector functions
z : [0,T]→ Rl, where 0 < T ∈ R.

We consider the optimal control problem

(6.2) z∗(t) = argmin{φ(z) : z ∈ Z̃}

on the interval [0,T], where Z̃ is the set of admissible controls and consists of continuous functions, that is,

Z̃ =
{
z(t) ∈ L2([0,T],Rl) : zj(t) ∈ [z−j , z

+
j], j = 1, 2, . . . , l

}
,

and the terminal objective has the form
φ(z) = ϕ(w(T)),

where ϕ is convex and differentiable on the attainability set and w(t) is a trajectory in L2([0,T]).

Assume that this trajectory satisfies the following constraints

ẇ(t) = P(t)w(t) +Q(t)z(t), w(0) = w0, t ∈ [0,T],

where P(t) ∈ Rd×d and Q(t) ∈ Rd×l are continuous matrices for t ∈ [0,T].
It follows from the Pontryagin Maximum Principle that there exists v∗ ∈ L2([0,T]) such that for almost all
t ∈ [0,T], (w∗, v∗, z∗) solves the system

(6.3)

{
ẇ∗(t) = P(t)w∗(t) +Q(t)z∗(t)

w∗(0) = x0,

(6.4)

{
v̇∗(t) = −P(t)′v∗(t)

v∗(T) = ∇ϕ(w(T)),

(6.5) 0 ∈ Q(t)′v∗(t) +NZ̃(z∗(t)),

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 17

where Q(t)′ means the transpose of Q(t) and NZ̃(z) is the normal cone to Z̃ at z, which is maximal monotone.
Let Tz(t) := Q(t)′v(t). Then T is the gradient of φ (see [35] and the references therein). Hence (6.5) reduces to
the monotone inclusion problem (1.1), where S = NZ̃ and T = ∇φ.

For our computational experiments, we discretize the continuous functions and choose a natural number K with
the mesh size h := T/K. We identify any discretized control zK := (z0, z1, . . . , zK−1) with its piecewise constant
extension

zK(t) = zj for t ∈ [tj , tj+1) , j = 0, 1, . . .K.

Also, we identify any discretized state wK := (w0, w1, . . . , wK) with its piecewise linear interpolation

wK(t) = wj +
t− tj
h

(wj+1 − wj) , for t ∈ [tj , tj+1) , j = 0, 1, . . . ,K − 1

and identify any discretized co-state variable vK := (v0, v1, . . . , vK) in a similar manner.
Then we adopt the Euler method for the discretization (see [28, 31, 35] for more details).

Now, consider the following example where the terminal function is nonlinear [4, Example 6.3]:

(6.6)

minimize −w1(2) + (w2(2))
2

subject to ẇ1(t) = w2(t),
ẇ2(t) = z(t), ∀t ∈ [0, 2],
w1(0) = 0, w2(0) = 0,
z(t) ∈ [−1, 1].

The exact optimal control for Problem (6.6) is

z∗ =

{
1 if t ∈ [0, 1.2)

−1 if t ∈ (1.2, 2].

For this example, we take K = 100 and randomly choose the initial controls in [−1, 1]. We also take δ0 =
0.1, δ1 = 0.3, r̄ = 0.3, σn = 0.005

3n+25000 , cn = 1
(n2+1) , ϑ̄ = 0.04 for Algorithms 3.2 and 4.1 while we take λn = n+1

15n+10

and γ = 0.075 for FRBSM [21, Algorithm (2.2)] and RFBSM [5, Algorithm (1.6)], respectively. The stopping
criterion for this experiment is Toln < 10−4, where Toln = 0.5‖wn − JS(wn − Twn)‖2. Note that Toln = 0
implies that wn ∈ (T + S)−1(0). The numerical results for the experiment are shown in Figure 3.

6.3. Academic Examples.

Example 6.3. Consider the following convex minimization problem:

(6.7) min
w∈R3

‖w‖22 + (−7, 1,−3)w + 4w1 + ‖w‖1,

where w = (w1, w2, w3) ∈ R3.

Set Pw = ‖w‖22 + (−7, 1,−3)w+ 4w1 and Dw = ‖w‖1. Then P is convex and continuously differentiable on R3

with ∇Pw = 2w + (−3, 1,−3), and D is subdifferentiable.
Note that ∇P is monotone and 2-Lipschitz continuous, and ∂D is maximal monotone, where ∇P and ∂D are
the gradient and subdifferential of P and D, respectively.
Note also that this problem is equivalent to the following inclusion problem:

0 ∈ (∇P + ∂D)w.

It is known that

JSδ̄ (w) = (IR3 + δ̄∂D)−1(w) = (µ1, µ2, µ3),

where

µi = sign(wi) max{|wi| − δ̄, 0}, i = 1, 2, 3.

Thus, setting ∇P = T and ∂D = S, we can employ our methods to solve the above convex minimization
problem.
For the experiment of this example, we choose the same parameters as in Example 6.2. Furthermore, we choose
v̂ = (2, 1,−6) and the initial values as follows:
Case Ia: w0 = (5, 1,−4), w1 = (20, 4, 7);
Case Ib: w0 = (−7, 10, 3), w1 = (90,−3,−4).

18 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

z(
t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

z
n
(t)

z
0
(t)

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

w
(t

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

w1(t)
w2(t)

Iteration number (n)
0 500 1000 1500 2000 2500

T
ol

n

10-4

10-3

10-2

10-1

100

101

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

Figure 3. Numerical results for Example 6.2: Top Left: random initial control (blue) and
optimal control (red); Top Right: optimal trajectories (Top Left and Top Right computed by
Algorithm 3.2); Bottom: comparison of Algorithm 3.2, Algorithm 4.1, FRBSM and RFBSM
with CPU time (sec), 1.5656, 1.3799, 4.1210 and 3.6200, respectively.

0 10 20 30 40 50 60 70 80 90 100
Iteration number (n)

10-10

10-8

10-6

10-4

10-2

100

102

104

D
n

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

0 10 20 30 40 50 60 70 80 90 100
Iteration number (n)

10-10

10-8

10-6

10-4

10-2

100

102

104

D
n

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

Figure 4. The behavior of Dn for Example 6.3: Top Left: Case Ia; Top Right: Case Ib.

The values of the n-th iterates wn for each choice of initial values is given in Figure 4 and Table 2 up to 100
iterations with Dn = 0.5‖wn − JS(wn − Twn)‖2.
Actually, the minimizer of the convex minimization problem (6.7) is (1, 0, 1) (see Table 2). Thus, we set Toln =
0.5‖wn− (1, 0, 1)‖2 and use the stopping criterion Toln < 10−10. Furthermore, we plot the graph of Toln against
number of iterations in Figure 5 with corresponding numerical reports in Table 3.

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 19

Table 2. Numerical results for Example 6.3: Showing different values of the n-th iterates wn.

n Alg. 3.2 Alg. 4.1 FRBSM RFBSM
Ia 10 (2.2949, 0, 1.3516) (2.2850, 0, 1.3499) (5.1660, 0.1442, 1.9988) (5.1808, 0.1348, 2.0915)

20 (1.1122, 0, 1.0304) (1.1103, 0, 1.0300) (2.1861, 0, 1.1284) (2.0629, 0, 1.2775)
50 (1.0001, 0, 1.0000) (1.0001, 0, 1.0000) (1.0285, 0, 1.0068) (1.0175, 0, 1.0046)
70 (1.0000, 0, 1.0000) (1.0000, 0, 1.0000) (1.0024, 0, 1.0006) (1.0011, 0, 1.0003)
100 (1.0000, 0, 1.0000) (1.0000, 0, 1.0000) (1.0001, 0, 1.0000) (1.0000, 0, 1.0000)

Ib 10 (6.8208, 0, 0.8831) (6.7805, 0, 0.8829) (19.1621, 0, 0.6536) (19.6069, 0, 0.6727)
20 (1.5042, 0, 0.9899) (1.4961, 0, 0.9899) (6.1708, 0, 0.9014) (5.7306, 0, 0.9168)
50 (1.0003, 0, 1.0000) (1.0003, 0, 1.0000) (1.1243, 0, 0.9976) (1.0777, 0, 0.9986)
70 (1.0000, 0, 1.0000) (1.0000, 0, 1.0000) (1.0105, 0, 0.9998) (1.0050, 0, 0.9999)
100 (1.0000, 0, 1.0000) (1.0000, 0, 1.0000) (1.0003, 0, 1.0000) (1.0000, 0, 1.0000)

0 20 40 60 80 100 120
Iteration number (n)

10-10

10-8

10-6

10-4

10-2

100

102

104

T
ol

n

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

0 20 40 60 80 100 120 140
Iteration number (n)

10-10

10-8

10-6

10-4

10-2

100

102

104

T
ol

n

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

Figure 5. The behavior of Toln for Example 6.3: Top Left: Case Ia; Top Right: Case Ib.

Table 3. Numerical results for Example 6.3 with Toln < 10−10.

Alg. 3.2 Alg. 4.1 FRBSM RFBSM
Case Ia CPU time (sec) 0.0024 0.0018 0.0024 0.0036

No of Iter. 57 55 112 104
Case Ib CPU time (sec) 0.0033 0.0024 0.0033 0.0790

No. of Iter. 64 61 124 114

Example 6.4. Let H = (l2(R), ‖.‖l2), where l2(R) := {a = (a1, a2, ..., ai, ...), ai ∈ R :
∞∑
i=1

|ai|2 < ∞} and

||a||l2 :=

(∞∑
i=1

|ai|2
) 1

2

∀a ∈ l2(R).

Let S, T : l2 → l2 be defined by

Sa := (2a1, 2a2, ..., 2ai, ...) , ∀a ∈ l2

and

Ta :=

(
a1 + |a1|

2
,
a2 + |a2|

2
, ...,

ai + |ai|
2

, ...

)
, ∀a ∈ l2.

Then S is maximal monotone and T is Lipschitz continuous and monotone with Lipschitz constant L = 1.

We choose the following initial values:
Case IIa: w0 = (2,−1, 1

2 ,−
1
4 , . . .), w1 = (2

3 ,
1
9 ,

1
54 ,

1
324 , . . .);

Case IIb: w0 = (4, 1, 1
4 ,

1
16 , . . .), w1 = (9, 3

√
3, 3,
√

3, . . .);

Case IIc: w0 = (4
3 ,

4
9 ,

4
27 ,

4
81 , . . .), w1 = (−2, 1,− 1

2 ,
1
4 , . . .);

Case IId: w0 = (−4, 1,− 1
4 ,

1
16 , . . .), w1 = (20,−4, 4

5 ,−
4
25 , . . .).

Also we choose δ0 = 1
101 , δ1 = 2

201 , r̄ = 0.15, v̂ = (3
2 ,−

3
4 ,

3
8 ,−

3
16 , . . .), σn = 0.005

3n+25000 , cn = 1
(10n+77)2 , ϑ̄ = 0.04

for Algorithms 3.2 and 4.1 while we take λn = n+1
100n+101 and γ = 2

201 for FRBSM [21, Algorithm (2.2)] and

20 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

0 50 100 150 200 250 300
Iteration number (n)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

T
ol

n

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

0 50 100 150 200 250 300 350 400
Iteration number (n)

10-10

10-8

10-6

10-4

10-2

100

102

T
ol

n

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

0 50 100 150 200 250 300 350 400 450 500
Iteration number (n)

10-10

10-8

10-6

10-4

10-2

100

102

T
ol

n

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

0 50 100 150 200 250 300 350 400 450 500
Iteration number (n)

10-10

10-8

10-6

10-4

10-2

100

102

104

T
ol

n

Alg. 3.2
Alg. 4.1
FRBSM
RFBSM

Figure 6. The behavior of Toln for Example 6.4: Top Left: Case IIa; Top Right: Case IIb;
Bottom Left: Case IIc; Bottom Right: Case IId.

RFBSM [5, Algorithm (1.6)], respectively. The stopping criterion for this example is Toln < 10−8, where
Toln = 0.5‖wn − JS(wn − Twn)‖2. The numerical results are shown in Figure 6 and Table 4.

Table 4. Numerical results for Example 6.4 with Toln < 10−8.

Alg. 3.2 Alg. 4.1 FRBSM RFBSM
Case IIa CPU time (sec) 0.0029 0.0027 0.0032 0.0035

No of Iter. 149 149 288 289
Case IIb CPU time (sec) 0.0039 0.0034 0.0048 0.0041

No. of Iter. 180 175 381 383
Case IIc CPU time (sec) 0.0062 0.0059 0.0071 0.0076

No of Iter. 203 198 464 466
Case IId CPU time (sec) 0.0021 0.0019 0.0025 0.0586

No of Iter. 212 207 498 500

7. Conclusion and future research

We have proposed several new methods for solving the monotone inclusion problem (1.1) in a real Hilbert space.
The first method, which we called a forward-reflected-anchored-backward splitting method, inherits the attractive
features of the forward-reflected-backward splitting method (1.5), namely, it only involves one forward evaluation
of the single-valued operator and one backward evaluation of the set-valued operator, and does not require the
cocoercivity of the single-valued operator, but still converges strongly rather than weakly. The other methods
of this paper are the inertial, viscosity and inertial viscosity variants of the first one. These variants share the
same attractive features of the first method, and they also converge strongly.
Part of our future research is to study the rate of convergence of the proposed methods of this paper.
It would be of interest to incorporate perturbations and error terms to these methods because computing the
resolvent of the set-valued operator may be difficult in some applications.
Finally, it would also be of interest to develop anchored (Halpern-type) and viscosity-type variants of the Golden

STRONGLY CONVERGENT FORWARD-REFLECTED-BACKWARD SPLITTING METHODS 21

RAtio ALgorithm (GRAAL [18]) for solving the monotone inclusion problem (1.1) and establish their strong
convergence.

Declarations

Funding: The second author was partially supported by the Israel Science Foundation (Grant 820/17), by the
Fund for the Promotion of Research at the Technion and by the Technion General Research Fund.

Availability of data and material: Not applicable.

Code availability: The Matlab codes employed to run the numerical experiments are available upon request
to the authors.

Conflict of interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

[1] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Modified inertial subgradient extragradient method with self adaptive stepsize for

solving monotone variational inequality and fixed point problems, Optimization, 70 (2021), 545-574.
[2] J. Bello Cruz, R. Diaz Millan, A variant of forward-backward splitting method for the sum of two monotone operators with a

new search strategy, Optimization, 64 (2015), 1471-1486.

[3] T. Bing, S.Y. Cho, Strong convergence of inertial forward-backward methods for solving monotone inclusions, Appl. Anal.,
(2021), https://doi.org/10.1080/00036811.2021.1892080

[4] B. Bressan, B. Piccoli, Introduction to the mathematical theory of control, AIMS Series on Applied Mathematics, (2007)
[5] V. Cevher, B.C. Vu, A reflected forward-backward splitting method for monotone inclusions involving Lipschitzian operators,

Set-Valued Var. Anal., 29 (2021), 163-174.

[6] G.H. Chen, R.T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim., 7 (1997), 421-444.
[7] P. Cholamjiak, D.V. Thong, Y.J. Cho, A novel inertial projection and contraction method for solving pseudomonotone

variational inequality problems, Acta Appl. Math., 169 (2020), 217-245.

[8] J. Diakonikolas, Halpern iteration for near-optimal and parameter-free monotone inclusion and strong solutions to variational
inequalities, In Conference on Learning Theory, (2020), 1428-1451.

[9] A. Gibali, D.V. Thong, Tseng type methods for solving inclusion problems and its applications, Calcolo, 55 (2018),

https://doi.org/10.1007/s10092-018-0292-1
[10] D.V. Hieu, P.K. Anh, L.D. Muu, Modified forward–backward splitting method for variational inclusions, 4OR-Q. J. Oper.

Res., 19 (2021), 127-151.

[11] C. Izuchukwu, S. Reich, Y. Shehu, Relaxed inertial methods for solving the split monotone variational inclusion problem
beyond co-coerciveness, Optimization, (2021), https://doi.org/10.1080/02331934.2021.1981895

[12] C. Izuchukwu, S. Reich, Y. Shehu, Convergence of two simple methods for solving monotone inclusion problems in reflexive

Banach spaces, Results Math., 77 (2022), https://doi.org/10.1007/s00025-022-01694-5
[13] B. Lemaire, Which fixed point does the iteration method select?, Recent Advances in optimization, Springer, Berlin, Germany,

452 (1997), 154-157.
[14] J.L. Lions, Optimal control of systems governed by partial differential equations. Springer, Berlin (1971)

[15] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964-979.
[16] H. Liu and J. Yang, Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim.

Appl., 77 (2) (2020), 491-508.
[17] P.E. Maingé, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal.

Appl., 325 (1) (2007), 469-479.
[18] Y. Malitsky, Golden ratio algorithms for variational inequalities, Math. Program, 184 (2020), 383-410.

[19] Y.V. Malitsky; Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim. 25 (2015), 502-520.
[20] Y.V. Malitsky, V.V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems, J.

Glob. Optim., 61 (2015), 193-202.
[21] Y. Malitsky and M.K. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM J.

Optim., 30 (2020), 1451-1472.
[22] G.B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces, J. Math. Anal. Appl., 72

(1979), 383-390.
[23] H. Qi, H.K. Xu, Convergence of Halpern’s iteration method with applications in optimization, Numer. Funct. Anal. Optim.

(2021), https://doi.org/10.1080/01630563.2021.2001826

[24] S. Saejung, P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal.,
75 (2012), 742-750.

22 CHINEDU IZUCHUKWU1, SIMEON REICH2, YEKINI SHEHU3, ADEOLU TAIWO4

[25] D.R. Sahu, Y.J. Cho, Q.L. Dong, M.R. Kashyap, X.H. Li, Inertial relaxed CQ algorithms for solving a split feasibility problem

in Hilbert spaces, Numer Algorithms, 87 (2021), 1075-1095.
[26] Y. Shehu, X.H. Li, Q.L. Dong, An efficient projection-type method for monotone variational inequalities in Hilbert spaces,

Numer. Algorithms, 84 (2020), 365-388.

[27] Y. Shehu, P.T. Vuong, A. Zemkoho, An inertial extrapolation method for convex simple bilevel optimization, Optim. Methods,
Softw., 36 (2021), 1-19.

[28] Y. Shehu, Q.L. Dong, L. Liu, J.C. Yao, Alternated inertial subgradient extragradient method for equilibrium problems, TOP
(2021), https://doi.org/10.1007/s11750-021-00620-2

[29] R. Suparatulatorn, K. Chaichana, A strongly convergent algorithm for solving common variational inclusion with application

to image recovery problems, Appl. Numer. Math. 173 (2022), 239-248.
[30] S. Takahashi, W. Takahashi, M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear map-

pings in Hilbert spaces, J. Optim Theory Appl., 147 (2010), 27-41.

[31] B. Tan, X. Qin, J.C. Yao, Strong convergence of inertial projection and contraction methods for pseudomonotone variational
inequalities with applications to optimal control problems J. Glob. Optim., 82 (2022), 523-557.

[32] D.V. Thong, P. Cholamjiak, Strong convergence of a forward-backward splitting method with a new step size for solving

monotone inclusions, Comput. Appl. Math. 38 (2019), https://doi.org/10.1007/s40314-019-0855-z.
[33] Q. Tran-Dinh, Y. Luo, Halpern-type accelerated and splitting algorithms for monotone inclusions, (2021), arXiv:2110.08150v2

[math.OC].

[34] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38
(2000), 431-446.

[35] P.T. Vuong, Y. Shehu, Convergence of an extragradient-type method for variational inequality with applications to optimal
control problems, Numer. Algorithms, 81 (2019), 269-291.

[36] Y. Wang, F. Wang, Strong convergence of the forward-backward splitting method with multiple parameters in Hilbert spaces,

Optimization, 67 (2018), 493-505.
[37] T.H. Yoon, E.K. Ryu, Accelerated algorithms for smooth convex-concave minimax problems with O(1/k2) rate on squared

gradient norm, (2021), arXiv preprint arXiv:2102.07922,

	1. Introduction
	2. Preliminaries
	3. Modified Forward-Reflected-Backward Splitting Method
	4. Inertial Modified Forward-Reflected-Backward Splitting Method
	5. Viscosity-type Forward-Reflected-Backward Splitting Method
	6. Numerical Illustrations
	6.1. Image Restoration Problem
	6.2. Optimal Control Problem
	6.3. Academic Examples

	7. Conclusion and future research
	References

