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STRONG CONVERGENCE OF RESOLVENTS
OF MONOTONE OPERATORS IN BANACH SPACES

KAZUO KIDO

(Communicated by John B. Conway)

ABSTRACT. Let E* be a real strictly convex dual Banach space with a Fréchet

differentiable norm, and A a maximal monotone operator from E into E* such

that A_10 # 0. Fix x € E. Then J\x converges strongly to Px as A —► oo,

where J\ is the resolvent of A, and P is the nearest point mapping from E

onto A_10.

1. Introduction. Let E be a real Banach space, / the identity, and J the

(normalized) duality mapping from E into E*. Let B be an m-accretive operator

in E such that B-10 ^ 0. Then Reich [10] proved that, for every x E E, J\x =

(/ + \B)~lx converges strongly to Qx as A —► oo when E is uniformly smooth,

where Q is the unique sunny and nonexpansive retraction from E onto B_10.

This theorem is useful to obtain strong convergence results for several explicit and

implicit iteration methods for accretive operators, see [10].

The purpose of this paper is to obtain the analogous result for a maximal mono-

tone operator A from E into E*, which will be crucial to study iterations for

monotone operators in Banach spaces. Suppose that A_10 ^ 0. We know that,

for every z E E*, (J + \A)~lz converges strongly to Rz as A —► oo when E*

is strictly convex and has a Fréchet differentiable norm, where Rz is the unique

element of A_10 satisfying

(z - J(Rz), Rz-y)>0   for every y E A_10,

see Reich [9] and also [3, 4]. In this paper we study another convergence theorem

to an element of A_10. Under some conditions, resolvents J\ : E —► E, A > 0, are

defined for A, see §2. Then we prove that, for every x E E, J\x converges strongly

to Px as A —» oo when E* has a Fréchet differentiable norm, where P is the unique

nearest point retraction from E onto A_10. The contrast of these results becomes

more striking when we characterize retractions, P and Q, analytically. That is,

Qx satisfies (x - Qx, J(Qx — y)) > 0   for all y E ¿?_10,

and

Px satisfies that for every y E A_10, there is z E J(x — Px) such

that (z, Px-y)> 0,

see [5, 7], and also [8] for extensive study concerning such retractions.

Finally, let us consider briefly finding a sequence converging to a zero of the

maximal monotone operator A. Fix an initial value x in E. Then, using the above
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result, J\x approximates Px E A_10 well for a sufficiently large A (and for varying

initial values, we obtain several elements of A_10). On the other hand, under

some conditions, we obtain a sequence converging to J\x by a gradient method, see

Theorem 2 and Remark 5. Then, this sequence will be a good approximation to Px

if A is sufficiently large. It is an open problem to approximate zeros of monotone

operators in Banach spaces by doubly iterations.

2. Main results. Let E* be a real strictly convex dual Banach space with a

Fréchet differentiable norm, and J be the (normalized) duality mapping from E into

E*, i.e., Jx = {y E E* : (x,y) = ||x||2 = ||y||2} for x E E. Let A be a (multivalued)

maximal monotone operator from E into E*, i.e., (y\ — y2,x\ — x2) > 0 for all

î/i E Ax\, 2/2 G Ax2: X\,x2 E D(A), and A has no monotone extension. Fix x E E.

Then for every A > 0 there exists a unique x\ E D(A) such that 0 E J(x\-x)+\Ax\

(see [1, p. 104]). Putting J\x = x\, we define the resolvent Jx : E —* E of A for

every A > 0. Next, since A is a maximal monotone, A_10 is closed convex. If

A-10 t¿ 0 then the strict convexity of E ensures the unique existence of the nearest

point retraction P of E onto A_10. Then we prove

THEOREM 1. Let E* be a real strictly convex dual Banach space with a Fréchet

differentiable norm, and A a maximal monotone operator from E into E* such that

A_10 ^ 0.  Then, for every x E E, J\x converges strongly to Px as A —» oo.

PROOF. Fix A > O arbitrarily. Then from the definition of x\ (= J\x) there

exists y\ E E* such that yx belongs to both J(x — x\) and XAx\. For every

v E A_10, since A is monotone, we have

0 < (yx, xx - v) = (yx, (xx - x) + (x - v)) < -||xA - x||2 + \\xx - x\[ ■ ||x - v\\.

Therefore we obtain

(1) \\xx -x|| < ||x-u||    for allue A_10 and A > 0.

Next, we show the weak convergence of xx to Px. By the inequality (1), we have

||?/a||/A — ||x - xa||/A < ||x - v\[/X —» 0 as A —► oo. Since E is reflexive we can take

a subnet {xa„} of {xx} such that x.\a converges weakly to some x E E. Then since

(xxa,yxa/Xa) E A and A is maximal monotone, x E A_10. Therefore by using (1)

and the weak convergence of x — xxa to x — x, we have

(2) ||x - x|| < liminf ||x - xaq|| < ||x - d||    for all v E A~10.
a

Thus x = Px. Since every convergent subnet has a unique convergent element Px,

xx itself converges weakly to Px as A —► oo.

Then we obtain, as (2),

||x — Fx|| < lim inf ||x — xa|| < limsup||x — xa|| < ||x — Px||.
A A

That is ||x - xa|| converges to ||x - Px|| as A —» oo. Since E* has a Fréchet differen-

tiable norm, this implies the strong convergence of x — xx to x — Px. Equivalently

we obtain xx —» Px as A —» oo.

REMARK 1. Instead of the normalized duality mapping J, the analogous result

holds for the duality mapping J^ with a gauge function <f>.

REMARK 2. Fix x E E. Instead of the exact form of Jxx, let xx E E, A > 0,

be a unique element satisfying Ex E J(xx — x) + XAxx in E*. If Ex converges to 0
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as A —► oo in E*, then the same result as in Theorem 1 follows, i.e., xa —► Px as

A —► oo.

REMARK 3. From Theorem 1 and the proof of it, we have A_10 = 0 if and

only if limA—oo \\J\x\\ = oo.

REMARK 4. In the definition of Jxx, the strict convexity of E* is needed only

to assert the existence of Jxx by using Corollary 4.1 of [1]. Therefore it is dropped

when R(J(- — x) + AA()) = E* is claimed by another reason. We say a mono-

tone operator A from E into E* satisfying such a condition is an m-monotone

operator (with respect to J). When E* is a strictly convex Banach space with a

Fréchet differentiable norm, a maximal monotone operator from E into E* is m-

monotone. Another example of an m-monotone operator is the subdifferential of

a lower-semicontinuous, proper and convex function on a reflexive Banach space.

Then Theorem 1 holds if E* has a Fréchet differentiable norm, and if A is a (mul-

tivalued) m-monotone operator from E into E* such that A_10 ^ 0.

Finally, we show a theorem to obtain the resolvent.

THEOREM 2. Let E* be a real dual Banach space with a Fréchet differentiable

norm, J the (normalized) duality mapping from E into E*, and A an m-monotone

operator from E into E*. Fix x E E and A > 0. Define a monotone operator B

from E into E* by B(y) = J(y - x) + XA(y), y E D(A). Then if {(xn,yn)} is a

sequence in the graph of B such that {xn} is bounded and yn —» 0 as n —* oo, then

xn converges strongly to Jxx as n —► oo.

PROOF. Let yn = pn + qn,pn E J(xn — x), qn E XAxn, and r E J(Jxx — x) fl

—AA(Jax). Then we obtain

(yn,Xn - J\X) = (pn + qn,Xn - Jxx)

= (pn -r,xn- Jxx) + (qn + r,xn- Jxx)

> (pn -r,xn- Jxx).

Since {xn} is bounded and yn converges strongly to 0, the left-hand side of the above

inequality tends to 0 as n —► oo. Therefore lim„(pn — r, (xn — x) — (Jax — x)) =

0. Remark that pn E J(xn — x) and r € J(Jxx — x). Since E* has a Fréchet

differentiable norm, this implies that xn — x converges strongly to Jxx — x as

n —♦ oo, equivalently xn converges strongly to Jxx as n —> oo.

REMARK 5. When A is the subdifferential of a lower-semicontinuous, proper

and convex function / on E, then B is the subdifferential of g(y) = [[y — x||2/2 +

^f(y)i y € D(f). Then, under some additional assumptions, a sequence {xn}

satisfying the whole condition of Theorem 2 is obtained by a gradient method for

g, see [2].
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