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JUMP-DIFFUSION STOCHASTIC DIFFERENTIAL SYSTEMS∗
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Abstract. We study a two-time-scale system of jump-diffusion stochastic differential equations.
The main goal is to study the convergence rate of the slow components to the effective dynamics.
The convergence established here is in the strong sense, i.e., uniformly in time. For the ergodicity as-
sumptions, we use the existence of a Lyapunov function to control the return times. This assumption
is weaker than the one-sided Lipschitz condition, frequently used for deriving rates.
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1. Introduction. Many problems in the natural sciences give rise to singu-
larly perturbed systems of stochastic differential equations (SDEs). In the past four
decades, singularly perturbed systems have been the focus of extensive research within
the framework of averaging methods. The separation of scales is then taken to advan-
tage to derive a reduced equation, which approximates the slow components. Condi-
tions under which the averaging principle can be applied to this kind of system are
well known in the classical literature. However, for numerical purposes the existence
of the effective dynamics is not enough, and bounds on the deviation between the slow
variables and between the effective dynamics have to be derived. Similar questions,
like the existence of the effective dynamics and the rate of convergence to the effec-
tive dynamics, for jump-diffusion processes are not yet fully addressed. We consider
two-time-scale systems of jump-diffusion SDEs, of the form

dxε
t = a(xε

t, y
ε
t ) dt + b(xε

t) dBt + c(xε
t) dPt, xε

0 = x0,(1.1a)

dyεt =
1

ε
f(xε

t, y
ε
t ) dt +

1√
ε
g(xε

t, y
ε
t ) dWt + h(xε

t, y
ε
t ) dN

ε
t , yε0 = y0,(1.1b)

where xε
t is an n-dimensional jump-diffusion process and yεt is an m-dimensional jump-

diffusion process. The functions a(x, y) ∈ R
n and f(x, y) ∈ R

m are the drifts, the
functions b(x) ∈ R

n×d1 and g(x, y) ∈ R
m×d2 are the diffusion coefficients, and the

functions c(x) ∈ R
n and h(x, y) ∈ R

m are the jump coefficients; Bt and Wt are
d1, d2-dimensional independent Wiener processes, Pt is a scalar simple Poisson process
with intensity λ1, and N ε

t is a scalar simple Poisson process with intensity λ2

ε . The
parameter ε represents the ratio between the natural time scales of the xε

t and yεt
variables. We are concerned with situations where ε � 1, i.e., with a separation of
scales; in such a case the vector xε

t is called the “slow component” of the system, and
the vector yεt is called the “fast component” of the system.
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In many cases, one is interested only in predicting the time evolution of the slow
component xε

t, yet this cannot be done, in a direct approach, without solving the full
system of equations. No computer can deal with such a disparity of scales. Within
the framework of averaging methods, the separation of scales is taken to advantage to
derive, in the limit ε → 0, a reduced equation for an n-dimensional process x̄t, which
approximates the slow component xε

t [1, 2, 3, 4, 5, 6].

A natural generalization of the averaging principle, which will be proved in this
paper, is the following. Assume that for every fixed x the rapid variables, governed
by (1.1b), induce a unique invariant, ergodic measure μx(dy). Then, as ε → 0, xε

t

converges on every finite interval [0, T ] to the solution x̄t of a closed equation of the
form

(1.2) dx̄t = ā(x̄t) dt + b(x̄t) dBt + c(x̄t) dPt,

where

(1.3) ā(x) =

∫
Rm

a(x, y)μx(dy).

We start by describing some background for multiscale processes that exhibit
discontinuous sample paths. Our framework is a generalization of a homogeneous
right-continuous Markov process (x(t), y(t)), with y(t) being a step function. In the
context of deriving a limit process for Markov processes which exhibit discontinuous
sample paths, these processes were the first to be studied. The transition probability
for such a process is determined by a collection of operators {Ay}, where for every
y, Ay is the generating operator for the process x(t) on the interval [0, τ ], where τ
is the first exit time of the component y(t) from the initial state. These processes,
called transport processes, were studied in [2], and the limiting dynamics, where the
frequency of the jumps grows to infinity, were described. Similar Markov processes,
called processes with rapidly varying discrete component, that have the same fast
variables and where the slow variable evolves according to a diffusion were studied
in [7].

An extensive study of singularly perturbed switching processes has been made by
Yin and Zhang and coworkers [8, 9, 10] (and the references therein). The processes
consist of diffusion components and continuous time finite state Markov chains. Their
models involve a rapidly varying jump part, a slowly varying jump part, and a slowly
varying diffusion part. Another model which they studied was a model in which the
diffusions change rapidly in comparison with the jump processes.

In [11] Liu and Yin study a class of hybrid jump diffusions modulated by a finite
state Markov process. Their motivation stems from insurance risk models, which
include a finite set of regimes and a switching process that dictates which regime to
take at any given instance. Once the configuration is determined, the dynamics of
the system follow a jump-diffusion process. The fast parameter is the frequency of
the change of regimes.

Another research area of jump processes with multiple time scales is the stochastic
simulation of kinetic chemical reactions, also known as the Gillespie algorithm [12].
The time evolution is described as follows. A state space of the system is a vector
consisting of the number of molecules of each species. The time gap between events
is distributed with a Poisson distribution that depends on the state space. The event
that takes place is chosen according to a rate function which depends on the state
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space. This model consists of no drift, only jumps. In the past five years exten-
sive progress has been made in describing the effective dynamics for chemical kinetic
systems that take place on vastly different time scales [13, 14, 15, 16].

It is often the case that one is interested not only in the existence of the effective
dynamics but rather in the convergence rate of the slow variables to the effective
dynamics. This convergence rate has been studied for many models. In the case
where the slow variable is described by an ordinary differential equation and the fast
variable satisfies an Itô diffusion process, Kifer [17] proved convergence in the sup-
norm, and E, Liu, and Vanden-Eijnden [18] derive estimates for the rate of strong
(L1) convergence to the solution of an effective ordinary differential system. In [19]
an estimate is given for the rate of mean square (L2) convergence for the case where
both the slow and the fast components are described by an Itô diffusion process.

This paper deals with (1.1). The motivation for such a problem stems from the
financial market. In a financial market there are two kinds of securities. One kind is
without risk, a bond, and is modeled by a linear ODE. The other kind is a security
with risk, a stock. The total change in the stock price is assumed to be the composition
of two types of changes [20]:

• The normal variations in price due to a temporary imbalance between supply
and demand and other information that causes marginal changes in the stock’s
value. This component is modeled by a standard Wiener process with a
constant variance per unit time and continuous sample paths.

• The “abnormal” variations in price due to the arrival of important new in-
formation about the stock that has more than a marginal effect on the price.
These perturbations usually occur as finite discontinuities.

Hence the prices per share can be modeled by a diffusion process with jumps, or a
stochastic differential equation with jumps (JSDE). The drift coefficient is the instan-
taneous conditional expected relative change in price per unit time, and the diffusion
coefficient is the instantaneous conditional variance per unit time. The jumps, which
represent the arrival of new information, occur with a given mean number of arrivals
per unit time.

It is often the case that the securities change over more than one time scale. A
price of a stock can change in hours or days, while other stocks will change only over
a time period of months or years. In [21] the authors study the pricing of defaultable
derivatives. In particular, they assume an Ornstein–Uhlenbeck process for the interest
rate and a two-factor diffusion model for the intensity of default. They find from
empirical evaluation that the time scale of the slow factor is on the order of three
months. Empirical evidence of a fast volatility factor (with a characteristic mean-
reversion time of a few days) was found in the analysis of high frequency S&P 500
data in [22].

In this paper we analyze systems of the form of (1.1). This paper makes three
main contributions. In the case of continuous SDEs, Freidlin and Wentzell [5] prove
the existence of the effective dynamics. The convergence proved there is in a very
strong form of convergence uniformly in time, i.e.,

P

{
sup

0≤t≤T
|xε

t − x̄t| > δ

}
→ 0.

In [18, 19] rates were computed under a much weaker convergence form (L1, L2). We
prove strong convergence of xε

t to x̄t under specified conditions. In particular, we
obtain an explicit estimate on the rate of the convergence of the form
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E

(
sup

0≤t≤T
|xε

t − x̄t|2
)

≤ C (− ln ε)−1/2.

The second contribution is as follows. Let Y (t, y) denote the solution of the SDE

dY (t) = f(Y (t)) dt + g(Y (t)) dWt, Y (0) = y.

The assumption on the fast dynamics which was used in [23, 24, 25, 26, 18, 19] is the
one-sided Lipschitz condition,

[f(y1) − f(y2)] · (y1 − y2) ≤ −r |y1 − y2|2 ,

with r > 0. This assumption is a strong one, and it implies that for any y1, y2,

lim
t→∞

E |Y (t, y1) − Y (t, y2)|2 = 0.

In [27] conditions are given to establish geometric convergence and other rates of
convergence of a Markov process to its invariant measure, mainly the existence of a
Lyapunov function to control the return times. For systems of SDEs these conditions
are translated into conditions on the coefficients functions [28], and in [3] similar con-
ditions are used to establish the averaging principle for diffusion processes. These
conditions are much weaker than the conditions used in [18, 19]. In this paper the
dissipative assumption we use is in the spirit of [27, 28, 3], and it is a sufficient con-
dition to imply the geometric ergodicity of the fast variables. The third contribution
is the generalization of the averaging problem, in the strong sense and with a weaker
ergodicity assumption, to diffusion processes with jumps. The common technique for
deriving mean square bounds for SDEs is the use of the Itô isometry. The isometry
identifies stochastic integrals as time integrals, which simplifies the calculations. The
jumps are chosen to be driven by a simple Poisson process, because integration over
simple Poisson processes admits an Itô isometry.

Note that b(x) and c(x), the noise coefficient functions of the slow component, do
not depend on the fast variable. In the case where there is a full coupling in the noise
terms, there is no mean square convergence, as will be demonstrated by an example
in section 4. In this case one can expect only weak convergence.

The rest of the paper is organized as follows. In section 2 we present our as-
sumptions and theorems. In section 3 we present the proofs. Discussion is given in
section 4.

2. A strong limit theorem for the averaging principle. In this section we
establish the convergence, under specified conditions, of xε

t, the slow component in
(1.1), to x̄t, the solution of the effective dynamics (1.2). We prove strong convergence,
i.e., pathwise uniform in time. We achieve this goal by estimating the strong deviation
E
(
sup0≤t≤T |xε

t − x̄t|2
)

between the two processes; our main result is Theorem 2.8.
For the sake of readability we state in this section our assumptions, lemmas, and
theorems, deferring all proofs to the next section.

Throughout this work, the following assumptions are made.
Assumption A1. The functions a = a(x, y), b = b(x), and c = c(x) in (1.1a) are

measurable and Lipschitz continuous and hence have linear growth bounds: specifi-
cally, there exist constants L,K such that

|a(x1, y1) − a(x2, y2)|2 + ‖b(x1) − b(x2)‖2 + |c(x1) − c(x2)|2

≤ L2
(
|x1 − x2|2 + |y1 − y2|2

)
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and

|a(x, y)|2 + ‖b(x)‖2 + |c(x)|2 ≤ K2
(
1 + |x|2 + |y|2

)
.

Here and below we use |·| to denote Euclidean vector norms and ‖·‖ for Frobenius
matrix norms.

Assumption A2. The functions f(x, y), g(x, y), and h(x, y) in (1.1b) are of class
C∞ and have bounded derivatives of any order; in particular, we can choose the
Lipschitz constant L sufficiently large such that it bounds the first derivatives of f ,
g, and h. Moreover, f(x, y) is assumed to be a bounded function of x for all y,

sup
x

|f(x, y)| = cf (y) < ∞,

and g(x, y), h(x, y) are bounded:

sup
x,y

‖g(x, y)‖ = cg < ∞, sup
x,y

|h(x, y)| = ch < ∞.

Assumption A3. There exists a constant α > 0, independent of x, such that

yT g(x, y)gT (x, y)y ≥ α |y|2

for all y ∈ R
m.

Assumption A4. There exists a constant β > 0, independent of x, such that

y · f(x, y) ≤ −β |y|2

for all y ∈ R
m.

Existence and uniqueness of the solutions of (1.1) are guaranteed by Assumptions
A1–A2.

The rest of the comments address the fast dynamics described by (1.1b) when x
is viewed as a fixed parameter. Assumptions A2 and A4 ensure that the dynamics
described by (1.1b) are recurrent, and A4 is called the recurrence condition. Assump-
tion A3 ensures the nondegeneracy of the fast dynamics. Assumption A3, together
with the other assumptions, imply the Doob ergodicity of the fast dynamics and hence
the existence of a unique invariant probability measure μx(dy) (see [29]). Assump-
tion A3 implies that the ergodic measure of

(2.1) dyεt =
1

ε
f(xε

t, y
ε
t ) dt +

1√
ε
g(xε

t, y
ε
t ) dWt, yε0 = y0,

has a smooth density [30, 31]. The relation between the invariant density of (1.1b)
and the invariant density of (2.1) is given in [7], and hence the ergodic measure of
(1.1b) has smooth density. Since the function a satisfies a Lipschitz condition, so does
ā, and the effective dynamics (1.2) has a unique solution.

Our first three lemmas provide mean square estimates for the process (xε
t, y

ε
t )

with bounds independent of ε. The proofs are straightforward and are provided for
completeness.

Lemma 2.1. The fast component yεt satisfies

sup
0≤t≤T

E|yεt |2 ≤ C1,

where C1 = C1(y0) = |y0|2 + 1
β

[
c2g +

λ2
2c

2
h

β + λ2c
2
h

]
.
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Lemma 2.2. The slow component xε
t satisfies

sup
0≤t≤T

E|xε
t|2 ≤ C2,

where

C2 = C2(T, x0, y0) = |x0|2 e[1+λ1+(2λ1∨1)K2]T

+
(2λ1 ∨ 1)K2(1 + C1)

[1 + λ1 + (2λ1 ∨ 1)K2]
e[1+λ1+(2λ1∨1)K2]T .

Lemma 2.3. For all 0 ≤ t0 ≤ t ≤ T , the mean square displacement of the slow
component satisfies

E|xε
t − xε

t0 |
2 ≤ C3 (t− t0),

where C3 = C3(T, x0, y0) = c1K
2(1 + C1 + C2).

Our goal is to estimate the difference between xε
t, the slow component of (1.1),

and x̄t, the solution of the effective dynamics (1.2). To this end we construct an
auxiliary process, (x̃ε

t, ỹ
ε
t ) ∈ R

n × R
m: we divide the time interval [0, T ] into sub-

intervals of length Δ ∈ (0, 1), setting tk = kΔ, k = 0, . . . , � T
Δ�; for s ∈ [0, T ] we also

define ts = �s/Δ�Δ, the nearest breakpoint preceding s.
With initial conditions (x̃ε

0, ỹ
ε
0) = (x0, y0), the process (x̃ε

t, ỹ
ε
t ) is governed for

t ∈ [tk, tk+1) by the JSDE

(2.2)

dx̃ε
t = a(xε

tk
, ỹεt ) dt + b(xε

tk
) dBt + c(xε

tk
) dPt, x̃ε

tk
= xε

tk
,

dỹεt =
1

ε
f(xε

tk
, ỹεt ) dt +

1√
ε
g(xε

tk
, ỹεt ) dWt + h(xε

tk
, ỹεt ) dN

ε
t , ỹεtk = yεtk .

The pair (x̃ε
t, ỹ

ε
t ) satisfies dynamics similar to (1.1), notably with the same random

noise, except that the argument x in the functions a, b, c, f, g, h is replaced by xε
t at

the beginning of the subinterval, t = tk, whereas the fast component ỹεt is reset to

equal yεt at each breakpoint tk. The time interval Δ = ε
[− ln ε

c2

] 1
2 is selected small

enough (with c2 independent of ε), Δ � 1, so that x̃ε
t does not deviate much from

xε
t; on the other hand, Δ  ε, so that the empirical distribution of ỹεt in the kth

interval is close to the invariant distribution μx, with x = xε
tk

. The introduction of
the auxiliary process (x̃ε

t, ỹ
ε
t ) provides an intermediate step between the processes xε

t

and x̄t whose difference we need to estimate. As will be shown, (x̃ε
t, ỹ

ε
t ) remains close

to (xε
t, y

ε
t ) because Δ is small enough (on the x-time scale) and ỹεt is repeatedly reset

to equal yεt . On the other hand, x̃ε
t remains close to x̄t because Δ is large enough (on

the y-time scale) so that the time average of a(xε
tk
, ỹεt ) is close enough to ā(xε

tk
).

The next two lemmas estimate the differences between the fast and slow compo-
nents of the processes (xε

t, y
ε
t ) and (x̃ε

t, ỹ
ε
t ). The first lemma estimates mean square

difference, while the second lemma estimates strong difference.
Lemma 2.4. Let (xε

t, y
ε
t ) and (x̃ε

t, ỹ
ε
t ) be the respective solutions of (1.1) and

(2.2). Then

sup
0≤t≤T

E |yεt − ỹεt |
2 ≤ C4ε [− ln ε] ,

where C4 = C3/c2, c2(T, x0, y0) = 8L2
[
(1 + λ2

2) ∧ (1 + λ2)
]
.
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Lemma 2.5. Let (xε
t, y

ε
t ) and (x̃ε

t, ỹ
ε
t ) be the respective solutions of (1.1) and

(2.2). Then

(2.3) E

(
sup

0≤t≤T
|xε

t − x̃ε
t|

2

)
≤ C5 ε (− ln ε) ,

where C5 = C5(T, x0, y0) = c1 L
2 T (C3 + C4).

Having estimated the strong difference between xε
t and x̃ε

t, it remains to estimate
the strong difference between x̃ε

t and x̄t. The smallness of the latter is due to the
mixing properties of the fast dynamics.

For k = 1, 2, . . . , �T/Δ�, we set xk = xε
tk

and define the stochastic process zkt
which satisfies the JSDE

(2.4) dzkt = f(xk, z
k
t ) dt + g(xk, z

k
t ) dW k

t + h(xk, z
k
t ) dNk

t , zk0 = yεtk ,

where the W k
t are independent Wiener processes, and Nk

t are independent simple
Poisson processes with intensity λ2.

Lemma 2.6. Let x(t) be the solution of the equation

dx(t) =
1

ε
a(x(t)) dt +

1√
ε
b(x(t)) dW (t) + c(x(t)) dN ε(t),

where W (t) is a Wiener process and N ε(t) is a simple Poisson process with intensity
λ/ε. Then x̆(t) = x(tε) is a solution of the stochastic equation

dx̆(t) = a(x̆(t)) dt + b(x̆(t)) dW̆ (t) + c(x̆(t)) dN̆(t),

where W̆ (t) = W (t/ε)√
ε

, and N̆(t) is a simple Poisson process with intensity λ.

Lemma 2.6 implies that the process zkt is statistically equivalent to a shifted and
rescaled version of ỹεt , that is, zkt ∼ ỹε(t−tk)/ε. Menaldi and Robin [29] proved that

the dynamics (2.4) is ergodic with invariant measure μxk (Assumptions A2–A4) (see
also [25]). Moreover, they prove that the process zkt satisfies the Doeblin condition,
and hence it is exponentially mixing in the following sense. Let P xk(t, z, E) denote
the transition probability of (2.4). Then there are positive constants γ, α < 1 such
that

|P xk(t, z, E) − μxk(E)| ≤ γαt

for every E ∈ B(Rm).
Equipped with the above, we are in measure to estimate the difference between

x̃ε
t and x̄t.

Lemma 2.7. For small enough ε,

E

(
sup

0≤t≤T
|x̃ε

t − x̄t|2
)

≤ C6
ε

Δ
,

where C6 = C6(T, x0, y0) = T 2c4
c1L2 exp(18c1L

2T ), and c4 = 2L
√

1 + C1 + C2γ.
Combining Lemma 2.7 with Lemma 2.5 and the fact that for small enough ε,

ε (− ln ε) < ε
Δ , we obtain our main result.

Theorem 2.8. Let xε
t be the slow component of (1.1) and x̄t be the solution of

the effective dynamics (1.2). Then, for small enough ε,

E

(
sup

0≤t≤T
|xε

t − x̄t|2
)

≤ 2(C5 + C6)
ε

Δ
.
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3. Proofs for section 2. We start by establishing a number of relations, which
will be used repeatedly below (for more details see [32, p. 136] for diffusion processes
and [33] for jump-diffusion processes). First, recall Gronwall’s inequality: if the real-
valued function v(t) satisfies a linear differential inequality of the form

dv

dt
≤ ρv + c, v(t0) = v0,

then

(3.1) v(t) ≤ v0e
ρ(t−t0) +

c

ρ

(
eρ(t−t0) − 1

)
.

Let P (t) be a simple Poisson process with intensity λ and let h(P (t), t) satisfy
the mean square integrability condition on 0 ≤ t0 ≤ t; then the following hold:

• E
[∫ t

t0
h(P (s), s) dP (s)

]
= λ

∫ t

t0
E [h(P (s), s)] ds.

• Letting P̂ (t) = P (t) − λt be the simple mean-zero Poisson process,

E

[∫ t

t0

h(P (s), s) dP̂ (s)

]
= 0.

• The Itô isometry for jump stochastic integrals is

E

∣∣∣∣
∫ t

t0

h(P (s), s) dP̂ (s)

∣∣∣∣
2

= λ

∫ t

t0

E |h(P (s), s)|2 ds.

Let zt ∈ R
n, t ∈ [0, T ], be the solution of the JSDE

dzt = a(zt) dt + b(zt) dWt + c(zt) dPt

such that a, b, and c are measurable and global Lipschitz continuous (note that this

implies the linear growth bound). The assumption on the initial value is that E |zt0 |
2

is finite and z(0) is independent of W (t), P (t) for all t ≥ 0.

The Itô stochastic chain rule formula for the process Zt = F (zt, t) is

dZt = dF (zt, t)

=

(
∂tF + a∂xF +

1

2
b2∂xxF

)
(zt, t) dt + (b∂x)F (zt, t) dWt

+ [F (zt + c(zt, t), t) − F (zt, t)] dPt.

(3.2)

Applying the chain rule to F (z) = |z|2, followed by Young’s inequality,

d

dt
E|zt|2 = 2E zt · a(zt) + E ‖b(zt)‖2

+ 2λE zt · c(zt) + λE |c(zt)|2

≤ (1 + λ)E|zt|2 + E|a(zt)|2 + E ‖b(zt)‖2
+ 2λE|c(zt)|2.

(3.3)

Alternatively, using the definition of the simple mean-zero Poisson process P̂ (t),
followed by the inequality (a1 + · · · + an)2 ≤ n(a2

1 + · · · + a2
n),
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E|zt − zt0 |2 = E

∣∣∣∣
∫ t

t0

a(zs) ds +

∫ t

t0

b(zs) dWs +

∫ t

t0

c(zs) dPs

∣∣∣∣
2

= E

∣∣∣∣
∫ t

t0

a(zs) ds +

∫ t

t0

b(zs) dWs +

∫ t

t0

c(zs) dP̂s + λ

∫ t

t0

c(zs) ds

∣∣∣∣
2

≤ 4 E

∣∣∣∣
∫ t

t0

a(zs) ds

∣∣∣∣
2

+ 4 E

∣∣∣∣
∫ t

t0

b(zs) dWs

∣∣∣∣
2

+ 4 E

∣∣∣∣
∫ t

t0

c(zs) dP̂s

∣∣∣∣
2

+ 4 E

∣∣∣∣λ
∫ t

t0

c(zs) ds

∣∣∣∣
2

.

Using the Itô isometry,

E|zt − zt0 |2 ≤ 4 E

∣∣∣∣
∫ t

t0

a(zs) ds

∣∣∣∣
2

+ 4 E

∫ t

t0

‖b(zs)‖2
ds

+ 4λE

∫ t

t0

|c(zs)|2 ds + 4λ2
E

∣∣∣∣
∫ t

t0

c(zs) ds

∣∣∣∣
2

.

Using now the Cauchy–Schwarz inequality,

E|zt − zt0 |2 ≤ 4(t− t0)

∫ t

t0

E|a(zs)|2 ds + 4 E

∫ t

t0

‖b(zs)‖2
ds

+ 4λE

∫ t

t0

|c(zs)|2 ds + 4λ2(t− t0) E

∫ t

t0

|c(zs)|2 ds

≤ c1

∫ t

t0

E
[
|a(zs)|2 + ‖b(zs)‖2 + |c(zs)|2

]
ds,

(3.4)

where c1 = c1(λ, T ) = 4 max(T, 1, λ, λ2T ).
Finally, recall the Doob inequality for martingales M(t) = W (t), P̂ (t),

E

(
sup

0≤t≤T

∣∣∣∣
∫ t

0

zs dMs

∣∣∣∣
2
)

≤ 4

∣∣∣∣∣
∫ T

0

zs dMs

∣∣∣∣∣
2

.

Proof of Lemma 2.1. Applying the first line of (3.3) to yεt , we obtain

(3.5)
ε
d

dt
E|yεt |2 = 2E yεt · f(xε

t, y
ε
t ) + E |g(xε

t, y
ε
t )|

2

+ 2λ2E yεt · h(xε
t, y

ε
t ) + λ2E |h(xε

t, y
ε
t )|

2
.

Assumption A4 with y = yεt gives

(3.6) yεt · f(xε
t, y

ε
t ) ≤ −β|yεt |2,

which gives us a bound for the left term on the right-hand side of (3.5). For the third
term on the right-hand side of (3.5) we use Young’s inequality 2p · q ≤ β|p|2 + 1

β |q|2,
with p = yεt and q = λ2 h(xε

t, y
ε
t ):

(3.7) 2λ2 y
ε
t · h(xε

t, y
ε
t ) ≤ β |yεt |

2
+

λ2
2

β
|h(xε

t, y
ε
t )|

2
.
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Substituting into (3.5), the bound on g, h (Assumption A2) with (3.6), (3.7) yields
the differential inequality

ε
d

dt
E|yεt |2 ≤ −2β E|yεt |2 + c2g + βE|yεt |2 +

λ2
2c

2
h

β
+ λ2c

2
h

= −βE|yεt |2 +

[
c2g +

λ2
2c

2
h

β
+ λ2c

2
h

]
.

The desired result follows from Gronwall’s inequality (3.1).

Proof of Lemma 2.2. Applying (3.3) to xε
t,

d

dt
E|xε

t|2 ≤ (1 + λ1)E|xε
t|2 + E|a(xε

t, y
ε
t )|2 + E ‖b(xε

t)‖
2

+ 2λ1E|c(xε
t)|2.

Substituting the linear growth bound for a, b, c (Assumption A1), it follows that

d

dt
E|xε

t|2 ≤ (1 + λ1)E|xε
t|2 + (2λ1 ∨ 1)K2(1 + E|xε

t|2 + E|yεt |2)

≤
[
1 + λ1 + (2λ1 ∨ 1)K2

]
E|xε

t|2 + (2λ1 ∨ 1)K2(1 + C1),

where the last inequality follows from Lemma 2.1. The desired result follows from
Gronwall’s inequality (3.1).

Proof of Lemma 2.3. Inequality (3.4) for xε
t reads

E|xε
t − xε

t0 |
2 ≤ c1(λ1)

∫ t

t0

E
[
|a(xε

s, y
ε
s)|2 + ‖b(xε

s)‖2 + |c(xε
s)|2

]
ds.

Using the linear growth bound for a, b, c (Assumption A1),

E|xε
t − xε

t0 |
2 ≤ c1

∫ t

t0

K2(1 + E|xε
s|2 + E|yεs|2) ds ≤ c1K

2(1 + C2 + C1)(t− t0),

where the last inequality follows from Lemmas 2.1 and 2.2.

Proof of Lemma 2.4. Define zt = yεt − ỹεt , fix t ∈ [0, T ], and set k such that
t ∈ [tk, tk+1). The resetting of the auxiliary process at the breakpoints tk implies that
ztk = 0 for all k.

Using the first line of (3.4) for the real-valued process |zt|2,

E|yεt − ỹεt |2 ≤ 4(t− tk)
1

ε2

∫ t

tk

E
∣∣(f(xε

t, y
ε
t ) − f(xε

tk
, ỹεt )

)∣∣2 ds
+

4

ε
E

∫ t

tk

∣∣(g(xε
t, y

ε
t ) − g(xε

tk
, ỹεt )

)∣∣2 ds
+ 4

λ2

ε
E

∫ t

tk

∣∣(h(xε
t, y

ε
t ) − h(xε

tk
, ỹεt )

)∣∣2 ds
+ 4

λ2
2

ε2
(t− tk) E

∫ t

tk

∣∣(h(xε
t, y

ε
t ) − h(xε

tk
, ỹεt )

)∣∣2 ds.
Using Assumption A2,
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E|yεt − ỹεt |2 ≤ 4(t− tk)
L2

ε2
E

∫ t

tk

|xε
t − xε

tk
|2 + |yεt − ỹεt |2 ds

+ 4
L2

ε
E

∫ t

tk

|xε
t − xε

tk
|2 + |yεt − ỹεt |2 ds

+ 4
λ2

ε
L2

E

∫ t

tk

|xε
t − xε

tk
|2 + |yεt − ỹεt |2 ds

+ 4
λ2

2

ε2
L2(t− tk) E

∫ t

tk

|xε
t − xε

tk
|2 + |yεt − ỹεt |2 ds

≤ 4L2

[
t− tk
ε2

(1 + λ2
2) +

1 + λ2

ε

]
E

∫ t

tk

|xε
t − xε

tk
|2 + |yεt − ỹεt |2 ds.

Using Lemma 2.3,

E|yεt − ỹεt |2 ≤ 4L2

[
t− tk
ε2

(1 + λ2
2) +

1 + λ2

ε

] ∫ t

tk

C3(t− tk) + E|yεt − ỹεt |2 ds

≤ 4L2

[
Δ

ε2
(1 + λ2

2) +
1 + λ2

ε

]
C3Δ

2

+ 4L2

[
Δ

ε2
(1 + λ2

2) +
1 + λ2

ε

] ∫ t

tk

E|yεt − ỹεt |2 ds.

Applying Gronwall’s inequality (3.1) upon integrating from tk to t,

E|yεt − ỹεt |2 ≤ C3Δ
2 e4L2[ Δ

ε2
(1+λ2

2)+
1+λ2

ε ]Δ.

Set c2 = 8L2
[
(1 + λ2

2) ∨ (1 + λ2)
]
. Using the definition of Δ = ε

[− ln ε
c2

] 1
2 ,

E|yεt − ỹεt |2 ≤ C3Δ
2 ec2

Δ2

ε2

= C3ε

[
− ln ε

c2

]
.

Proof of Lemma 2.5. By (3.4) with zt = xε
t − x̃ε

t,

E sup
t∈[0,T ]

|xε
t − x̃ε

t|
2 ≤ 3E sup

t∈[0,T ]

∣∣∣∣
∫ t

0

a(xε
s, y

ε
s) − a(xε

ts , ỹ
ε
s) ds

∣∣∣∣
2

+ 3E sup
t∈[0,T ]

∥∥∥∥
∫ t

0

b(xε
s) − b(xε

ts) dBs

∥∥∥∥
2

+ 3E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

c(xε
s) − c(xε

ts) dPs

∣∣∣∣
2

≤ 3E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

a(xε
s, y

ε
s) − a(xε

ts , ỹ
ε
s) ds

∣∣∣∣
2

+ 3E sup
t∈[0,T ]

∥∥∥∥
∫ t

0

b(xε
s) − b(xε

ts) dBs

∥∥∥∥
2

+ 6E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

c(xε
s) − c(xε

ts) dP̂s

∣∣∣∣
2

+ 6E sup
t∈[0,T ]

∣∣∣∣λ1

∫ t

0

c(xε
s) − c(xε

ts) ds

∣∣∣∣
2

.

Using the Doob inequality for the two martingale integrals and the Cauchy–Schwarz
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inequality for the time integrals,

E sup
t∈[0,T ]

|xε
t − x̃ε

t|
2

≤ 3TE

∫ T

0

∣∣a(xε
s, y

ε
s) − a(xε

ts , ỹ
ε
s)
∣∣2 ds + 12E

∥∥∥∥∥
∫ T

0

b(xε
s) − b(xε

ts) dBs

∥∥∥∥∥
2

+ 24E

∣∣∣∣∣
∫ T

0

c(xε
s) − c(xε

ts) dP̂s

∣∣∣∣∣
2

+ 6Tλ2
1E

∫ T

0

∣∣c(xε
s) − c(xε

ts)
∣∣2 ds.

Using the Itô isometry,

E sup
t∈[0,T ]

|xε
t − x̃ε

t|
2

≤ 3TE

∫ T

0

∣∣a(xε
s, y

ε
s) − a(xε

ts , ỹ
ε
s)
∣∣2 ds + 12E

∫ T

0

∥∥b(xε
s) − b(xε

ts)
∥∥2

ds

+ 24E

∫ T

0

∣∣c(xε
s) − c(xε

ts)
∣∣2 ds + 6Tλ2

1E

∫ T

0

∣∣c(xε
s) − c(xε

ts)
∣∣2 ds.

Using the Lipschitz continuity of a, b, c (Assumption A1),

E sup
t∈[0,T ]

|xε
t − x̃ε

t|
2 ≤ (3T + 36 + 6Tλ2

1)L
2
E

∫ T

0

(
|xε

s − xε
ts |

2 + |yεs − ỹεs|2
)
ds

≤ (3T + 36 + 6Tλ2
1)L

2

[∫ T

0

C3 (s− ts) ds + TC4ε (− ln ε)

]

≤ (3T + 36 + 6Tλ2
1)L

2 T [C3Δ + C4ε (− ln ε)]

≤ (3T + 36 + 6Tλ2
1)L

2 T (C3 + C4)ε [− ln ε] ,

where the bound on E|xε
s−xε

ts |2 follows from Lemma 2.3, and the bound on E|yεs−ỹεs|2
follows from Lemma 2.4.

Proof of Lemma 2.6.

x̆(t) − x̆(s) = x(tε) − x(sε) =
1

ε

∫ tε

sε

a(x(u)) du +
1√
ε

∫ tε

sε

b(x(u)) dW (u)

+

∫ tε

sε

c(x(u)) dN(u)

=
1

ε

∫ t

s

a(x(uε)) d(uε) +
1√
ε

∫ t

s

b(x(uε)) dW (uε)

+

∫ t

s

c(x(uε)) dN(uε)

=

∫ t

s

a(x̆(u)) du +

∫ t

s

b(x̆(u)) dW̆ (u)

+

∫ t

s

c(x̆(u)) dN̆(u),

where we used the facts that W̆ (t) = W (εt)√
ε

is a Wiener process and N̆(t) = N(εt) is

a simple Poisson process with intensity λ = ελε .
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Proof of Lemma 2.7. For any 0 ≤ T1 ≤ T ,

E sup
t∈[0,T1]

|x̃ε
t − x̄t|2 = E sup

t∈[0,T1]

∣∣∣∣
∫ t

0

(a(xε
ts , ỹ

ε
s) − ā(x̄s)) ds +

∫ t

0

(b(xε
ts) − b(x̄s)) dBs

+

∫ t

0

(c(xε
ts) − c(x̄s)) dPs

∣∣∣∣
2

≤ 9E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(a(xε
ts , ỹ

ε
s) − ā(xε

ts)) ds

∣∣∣∣
2

+ 9E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(ā(xε
ts) − ā(x̃ε

s)) ds

∣∣∣∣
2

+ 9E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(ā(x̃ε
s) − ā(x̄s)) ds

∣∣∣∣
2

+ 9E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(b(xε
ts) − b(x̃ε

s)) dBs

∣∣∣∣
2

+ 9E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(b(x̃ε
s) − b(x̄s)) dBs

∣∣∣∣
2

+ 9E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(c(xε
ts) − c(x̃ε

s)) dP̂s

∣∣∣∣
2

+ 9E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(c(x̃ε
s) − c(x̄s)) dP̂s

∣∣∣∣
2

+ 9λ2
1E sup

t∈[0,T1]

∣∣∣∣
∫ t

0

(c(xε
ts) − c(x̃ε

s)) ds

∣∣∣∣
2

+ 9λ2
1E sup

t∈[0,T1]

∣∣∣∣
∫ t

0

(c(x̃ε
s) − c(x̄s)) ds

∣∣∣∣
2

,

where we have added and subtracted equal terms. Using the Doob inequality for the
martingale integrals and then the Itô isometry,

E sup
t∈[0,T1]

|x̃ε
t − x̄t|2 ≤ 9 E sup

t∈[0,T1]

∣∣∣∣
∫ t

0

(a(xε
ts , ỹ

ε
s) − ā(xε

ts)) ds

∣∣∣∣
2

+ 9 E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(ā(xε
ts) − ā(x̃ε

s)) ds

∣∣∣∣
2

+ 9 E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(ā(x̃ε
s) − ā(x̄s)) ds

∣∣∣∣
2

+ 36

∫ T1

0

E
∥∥b(xε

ts) − b(x̃ε
s)
∥∥2

ds + 36

∫ T1

0

E ‖b(x̃ε
s) − b(x̄s)‖2

ds

+ 36λ1

∫ T1

0

E
∣∣c(xε

ts) − c(x̃ε
s)
∣∣2 ds + 36λ1

∫ T1

0

E |c(x̃ε
s) − c(x̄s)|2 ds

+ 9λ2
1 E sup

t∈[0,T1]

∣∣∣∣
∫ t

0

(c(xε
ts) − c(x̃ε

s)) ds

∣∣∣∣
2

+ 9λ2
1 E sup

t∈[0,T1]

∣∣∣∣
∫ t

0

(c(x̃ε
s) − c(x̄s)) ds

∣∣∣∣
2

.

Using now the Cauchy–Schwarz inequality, we get

(3.8) E sup
t∈[0,T1]

|x̃ε
t − x̄t|2 ≤ 9I1 + 9c1(T1)(I2 + I3),

where

I1 = E sup
t∈[0,T1]

∣∣∣∣∣
∫ T1

0

(a(xε
ts , ỹ

ε
s) − ā(xε

ts)) ds

∣∣∣∣∣
2

,(3.9)

I2 =

∫ T1

0

E|ā(xε
ts) − ā(x̃ε

s)|2 ds +

∫ T1

0

E‖b(xε
ts) − b(x̃ε

s)‖2 ds

+ 2

∫ T1

0

E|c(xε
ts) − c(x̃ε

s)|2 ds,
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I3 =

∫ T1

0

E|ā(x̃ε
s) − ā(x̄s)|2 ds +

∫ T1

0

E‖b(x̃ε
s) − b(x̄s)‖2 ds

+ 2

∫ T1

0

E|c(x̃ε
s) − c(x̄s)|2 ds.

I3 is readily estimated using the Lipschitz continuity of ā, b, c:

I3 ≤ 2L2

∫ T1

0

E |x̃ε
s − x̄s|2 ds

≤ 2L2

∫ T1

0

E sup
r∈[0,s]

|x̃ε
r − x̄r|2 ds.

(3.10)

Similarly, we have for I2,

I2 ≤ 2L2

∫ T1

0

E|xε
ts − x̃ε

s|2 ds

≤ 4L2

(∫ T1

0

E|xε
ts − xε

s|2 ds +

∫ T1

0

E|xε
s − x̃ε

s|2 ds
)

≤ 4L2

(∫ T1

0

C3(s− ts) ds +

∫ T1

0

C5ε (− ln ε) ds

)

≤ 4L2T (C3 + C5) ε (− ln ε) ,

(3.11)

where we have used Lemmas 2.3 and 2.5.
It remains to estimate I1, which we decompose as follows:

I1 = E sup
t∈[0,T1]

∣∣∣∣
∫ t

0

(
a(xε

ts , ỹ
ε
s) − ā(xε

ts)
)
ds

∣∣∣∣
2

= E max
0≤l≤
T1/Δ�

∣∣∣∣
l∑

k=0

∫ tk+1

tk

(
a(xε

ts , ỹ
ε
s) − ā(xε

ts)
)
ds

∣∣∣∣
2

≤ E max
0≤l≤
T1/Δ�

(l + 1)

l∑
k=0

∣∣∣∣
∫ tk+1

tk

(
a(xε

ts , ỹ
ε
s) − ā(xε

ts)
)
ds

∣∣∣∣
2

≤ (�T1/Δ� + 1)


T1/Δ�∑
k=0

E

∣∣∣∣
∫ tk+1

tk

(
a(xε

tk
, ỹεs) − ā(xε

tk
)
)
ds

∣∣∣∣
2

≤ T1
2

Δ2
max

k≤T1/Δ
E

∣∣∣∣
∫ tk+1

tk

(
a(xε

tk
, ỹεs) − ā(xε

tk
)
)
ds

∣∣∣∣
2

,

(3.12)

where the time integral has been split into a sum of integrals over time intervals Δ
(except for the last one, which has upper limit t).

Setting as before xk = xε
tk

, we stretch the time variables by a factor of ε, and

using the fact that zkt is statistically equivalent to ỹε(t−tk)/ε,

I1 ≤ T1
2

Δ2
ε2 max

k≤T1/Δ
Ik1 ,

where
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(3.13) Ik1 = E

∣∣∣∣
∫ Δ/ε

0

(
a(xk, z

k
s ) − ā(xk)

)
ds

∣∣∣∣
2

.

To bound Ik1 ,

Ik1 =

∫ Δ/ε

0

∫ Δ/ε

0

E
{[
a(xk, z

k
s ) − ā(xk)

]
·
[
a(xk, z

k
s′) − ā(xk)

]}
ds ds′

= 2

∫ Δ/ε

0

∫ Δ/ε

s′
E
{[
a(xk, z

k
s ) − ā(xk)

]
·
[
a(xk, z

k
s′) − ā(xk)

]}
ds ds′.

(3.14)

We estimate the integrand using the Cauchy–Schwarz inequality:

E
{[
a(xk, z

k
s ) − ā(xk)

]
·
[
a(xk, z

k
s′) − ā(xk)

]}
= E

{[
a(xk, z

k
s′) − ā(xk)

]
· E

[
a(xk, z

k
s ) − ā(xk)|zks′

]}
= E

{[
a(xk, z

k
s′) − ā(xk)

]
· Ezk

s′

[
a(xk, z

k
s−s′) − ā(xk)

]}

≤ sup
s′

{
E
[
a(xk, z

k
s′) − ā(xk)

]2} 1
2

{
E

[
Ezk

s′

[
a(xk, z

k
s−s′) − ā(xk)

]]2
} 1

2

.

For the left-hand term we use the linear growth bound of the functions a, ā and
Lemmas 2.1 and 2.2:

E
[
a(xk, z

k
s′) − ā(xk)

]2 ≤ 2E
∣∣a(xk, z

k
s′)

∣∣2 + 2E |ā(xk)|2

≤ 4L2(1 + C1 + C2).

Combining this with the bound on the mixing rate, γαt, we get

E
{[
a(xk, z

k
s ) − ā(xk)

]
·
[
a(xk, z

k
s′) − ā(xk)

]}
≤ 2L

√
1 + C1 + C2γα

s−s′ .

Inserting back into (3.14),

Ik1 ≤ 4L
√

1 + C1 + C2γ

∫ Δ/ε

0

∫ Δ/ε

s′
αs−s′ ds ds′.

Thus, there exists a constant c4 = 2L
√

1 + C1 + C2γ such that

Ik1 ≤ c4
Δ

ε
.

Hence,

(3.15) I1 ≤ T 2

Δ2
ε2c4

Δ

ε
= T 2c4

ε

Δ
.

Combining (3.8), (3.15), (3.11), and (3.10),

E sup
t∈[0,T1]

|x̃ε
t − x̄t|2 ≤ 9T 2c4

ε

Δ
+ 9c14L

2T (C3 + C5)ε (− ln ε)

+ 18c1L
2

∫ T1

0

E sup
r∈[0,s]

|x̃ε
r − x̄r|2 ds,

which by the integral version of Gronwall’s inequality yields the desired result.
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4. Discussion. In this paper we proved a strong averaging principle for a system
of JSDEs in which slow and fast dynamics are driven both by Brownian noise and by
Poisson noise; as a result, the limiting dynamics are stochastic as well. Our results
thus generalize the analysis of [18, 19] in which only mean square convergence is
shown, and the noise in the original (and in the effective) dynamics is driven only by
Brownian noise and hence have continuous sample paths. We were also able to prove
that the strong averaging principle holds under dissipative assumptions which are
given in [27, 28, 3]. These assumptions are much weaker than those used in [18, 19].

Note that the rate of convergence scales like (− ln ε)−1/2. As noted in the intro-
duction the slow/fast time-scale ratio in the financial markets is months/days, which
suggests that if the logarithmic rate is optimal, then the averaging might not be so
applicable. However, when we used the strong assumption of ergodicity, i.e., the
one-sided Lipschitz condition, we were able to obtain an algebraic convergence rate
of ε1/4.

We have limited ourselves to the case where the noise coefficients of the slow dy-
namics do not depend on the fast component, that is, b(x, y) = b(x) and c(x, y) = c(x).
In [19] a simple example was constructed to show that for systems of SDEs (i.e., c = 0,
h = 0), strong convergence does not hold when b = b(x, y). We use a similar example
here to show that strong convergence does not hold when c = c(x, y). Indeed, take,
for example, the case of xε

t, y
ε
t ∈ R,

dxε
t = sin(yεt ) dP̂t, xε

0 = x0,

dyεt = −1

ε
yεt dt +

√
2√
ε
dWt, yε0 = y0,

where yεt is an Ornstein–Uhlenbeck process, independent of xε
t. If a strong averaging

principle was to hold, the effective dynamics could be determined analytically, as the
invariant distribution of yεt is a standard normal distribution,

dx̄t = γ dP̂t,

where γ is independent of y. However, by the Itô isometry,

E |xε
t − x̄t|2 = E

∣∣∣∣
∫ t

0

(sin yεs − γ) dP̂s

∣∣∣∣
2

= λ

∫ t

0

E |sin yεs − γ|2 ds

=
λT

2π

∫
(sin y − γ)2e−y2/2 dy,

which is independent of ε, i.e.,

lim
ε→0

E |xε
t − x̄t|2 �= 0.

While the averaging principle and its resulting effective dynamics (1.2) provide
a substantial simplification of the original system (1.1), it is often impossible, or
impractical, to obtain the reduced equations in closed form (for example, because
the invariant measure μx is unknown or because integrations cannot be performed
analytically). This has motivated the development of algorithms such as projective
and coarse projective integration [34, 35] within the so-called equation-free framework.
In an ongoing work the coarse projective integration is applied to the system described
by (1.1) [36].
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