
Tohoku Math. J.
67 (2015), 573–584

STRONG CONVERGENCE THEOREM OF CESÀRO MEANS
WITH RESPECT TO THE WALSH SYSTEM

ISTVÁN BLAHOTA, GIORGI TEPHNADZE AND RODOLFO TOLEDO

(Received April 11, 2014, revised July 18, 2014)

Abstract. We prove that Cesàro means of one-dimensional Walsh-Fourier series are
uniformly bounded operators in the martingale Hardy space Hp for 0 < p < 1/ (1 + α) .

1. Introduction. The definitions and notations used in this introduction can be found
in the next section. It is well-known (see, e.g., [11, p.125]) that Walsh-Paley system is not a
Schauder basis in the space L1 (G). Moreover, there is a function F in the dyadic Hardy space
H1 (G), such that the partial sums of the Walsh-Fourier series of F are not bounded in the L1-
norm. However, in Simon [19] the following estimation was obtained: for all F ∈ H1 (G)

1

log n

n∑

k=1

‖SkF‖1

k
≤ c ‖F‖H1

, (n = 2, 3, . . . ) ,

where SkF denotes the k-th partial sum of the Walsh-Fourier series of F (For the trigonometric
analogue see in Smith [21], for the Vilenkin system in Gát [6], for a more general, so-called
Vilenkin-like system in Blahota [1].). Simon [16] (see also [27] and [34]) proved that there
exists an absolute constant cp, depending only on p, such that

(1)
1

log[p] n

n∑

k=1

‖SkF‖
p
p

k2−p
≤ cp ‖F‖

p
Hp

, (0 < p ≤ 1, n = 2, 3, . . . ) ,

for all F ∈ Hp, where
[
p
]

denotes integer part of p.

In [25] it was proven that sequence
{
1/k2−p

}∞

k=1 (0 < p < 1) in (1) is given exactly.
Weisz [35] considered the norm convergence of Fejér means of Walsh-Fourier series and

proved that

(2) ‖σnF‖Hp
≤ cp ‖F‖Hp

, F ∈ Hp, (1/2 < p < ∞, n = 1, 2, 3, . . . ) ,

where the constant cp > 0 depends only on p.
Inequality (2) immediately implies that

1

n2p−1

n∑

k=1

‖σkF‖
p

Hp

k2−2p
≤ cp ‖F‖

p
Hp

, (1/2 < p < ∞) .

2010 Mathematics Subject Classification. Primary 42C10.
Key words and phrases. Walsh system, Cesàro mean, martingale Hardy space.
The research was supported by project TÁMOP-4.2.2.A-11/1/KONV-2012-0051 and by Shota Rustaveli Na-

tional Science Foundation grant no.52/54 (Bounded operators on the martingale Hardy spaces).



574 I. BLAHOTA, G. TEPHNADZE AND R. TOLEDO

If (2) also hold, for 0 < p ≤ 1/2, then we would have

(3)
1

log[1/2+p] n

n∑

k=1

‖σkF‖
p

Hp

k2−2p
≤ cp ‖F‖

p
Hp

, (0 < p ≤ 1/2, n = 2, 3, . . . ) ,

but in [22] it was proven that the assumption p > 1/2 is essential. In particular, there was
proven that there exists a martingale F ∈ Hp (0 < p ≤ 1/2) , such that supn ‖σnF‖p = +∞.

However, in [26] (see also [3]) it was proven that (3) holds, though (2) is not true for
0 < p ≤ 1/2.

The weak-type (1,1) inequality for the maximal operator of Fejér means σ ∗ can be found
in Schipp [14] (see also [13]). Fujji [5] and Simon [18] verified that σ ∗ is bounded from H1

to L1. Weisz [30] generalized this result and proved the boundedness of σ ∗ from the space
Hp to the space Lp for p > 1/2. Simon [17] gave a counterexample, which shows that
boundedness does not hold for 0 < p < 1/2. The counterexample for p = 1/2 is due to
Goginava [8] (see also [4]). Weisz [31] proved that σ ∗ is bounded from the Hardy space H1/2

to the space L1/2,∞. In [23, 24] it was proven that the maximal operators σ̃ ∗
p defined by

(4) σ̃ ∗
pF := sup

n∈N

|σnF |

n1/p−2 log2[1/2+p] n
, (0 < p ≤ 1/2, n = 2, 3, . . . )

is bounded from the Hardy space Hp to the space Lp, where F ∈ Hp and
[
1/2 + p

]
denotes

integer part of 1/2+p. Moreover, there was also shown that sequence {n1/p−2 log2[1/2+p] n :

n = 2, 3, . . . } in (4) can not be improved.
Weisz [33] proved that the maximal operator σα,∗ (0 < α < 1) of the Cesàro means of

Walsh system is bounded from the martingale space Hp to the space Lp for p > 1/ (1 + α) .

Goginava [9] gave a counterexample, which shows that the boundedness does not hold for
0 < p ≤ 1/ (1 + α) . Recently, Weisz and Simon [20] show that the maximal operator σα,∗

is bounded from the Hardy space H1/(1+α) to the space L1/(1+α),∞. An analogical result for
Walsh-Kaczmarz system was proven in [7].

In [10] Goginava investigated the behaviour of Cesàro means of Walsh-Fourier series
in detail. For some approximation properties of the two dimensional case see paper of Nagy
[12].

The main aim of this paper is to generalize estimate (3) for Cesàro means, when 0 < p <

1/ (1 + α) . We also consider the weighted maximal operator of (C, α) means and proved
some new

(
Hp, Lp

)
-type inequalities for it.

We note that the case p = 1/ (1 + α) was considered in [2].

2. Definitions and Notations. Let N+ denote the set of the positive integers, N :=

N+ ∪ {0}. Denote by Z2 the discrete cyclic group of order 2, that is Z2 := {0, 1}, where the
group operation is the modulo 2 addition and every subset is open. The Haar measure on Z2

is given so that the measure of a singleton is 1/2.
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Define the group G as the complete direct product of the group Z2 with the product of
the discrete topologies of Z2’s. The elements of G are represented by sequences

x := (x0, x1, . . . , xk, . . . ) (xk = 0, 1) .

It is easy to give a base for the neighborhood of G

I0 (x) := G,

In(x) := {y ∈ G | y0 = x0, . . . , yn−1 = xn−1} (x ∈ G, n ∈ N) .

Denote In := In (0) and In := G \ In. Let

en := (0, . . . , 0, xn = 1, 0, . . . ) ∈ G (n ∈ N) .

Denote

I
k,l
M :=

{
IM (0, . . . , 0, xk = 1, 0, . . . , 0, xl = 1, xl+1, . . . , xM−1), k < l < M,

IM (0, . . . , 0, xk = 1, 0, . . . , 0), l = M .

It is evident

(5) IM =

⎛
⎝

M−2⋃

k=0

M−1⋃

l=k+1

I
k,l
M

⎞
⎠⋃(

M−1⋃

k=0

I
k,M
M

)
.

If n ∈ N, then every n can be uniquely expressed as n =
∑∞

j=0 nj 2j , where nj ∈ Z2

(j ∈ N) and only finite number of nj ’s differ from zero, that is, n is expressed in the number
system of base 2. Let |n| := max {j ∈ N, nj �= 0}, that is 2|n| ≤ n ≤ 2|n|+1.

The norm (or quasi-norm) of the space Lp(G) is defined by

‖f ‖p :=

(∫

G

|f |p dµ

)1/p

, (0 < p < ∞) .

The space Lp,∞ (G) consists of all measurable functions f , for which

‖f ‖Lp,∞(G) := sup
λ>0

λµ (f > λ)1/p < ∞ .

Next, we introduce on G an orthonormal system which is called the Walsh system. At
first, define the functions rk (x) : G → C, the so-called Rademacher functions as

rk (x) := (−1)xk (x ∈ G, k ∈ N) .

Now, define the Walsh system w := (wn : n ∈ N) on G as:

wn(x) :=

∞∏

k=0

r
nk

k (x) = r|n| (x) (−1)

|n|−1∑
k=0

nkxk

(n ∈ N) .

The Walsh system is orthonormal and complete in L2 (G) (see, e.g., [28]).
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If f ∈ L1 (G) , then we can establish Fourier coefficients, partial sums of the Fourier
series, Fejér means, Dirichlet and Fejér kernels in the usual manner:

f̂ (n) : =

∫

G

f wndµ , (n ∈ N) ,

Snf : =

n−1∑

k=0

f̂ (k) wk, (n ∈ N+) ,

σnf : =
1

n

n∑

k=1

Skf, (n ∈ N+) ,

Dn : =

n−1∑

k=0

wk, (n ∈ N+) ,

Kn : =
1

n

n∑

k=1

Dk, (n ∈ N+) ,

respectively. Recall that (see e.g., [15])

(6) D2n (x) =

{
2n, if x ∈ In,

0, if x /∈ In .

The Cesàro means ((C, α)-means) are defined as

σα
n f :=

1

Aα
n

n∑

k=1

Aα−1
n−kSkf ,

where

(7) Aα
0 := 1, Aα

n :=
(α + 1) · · · (α + n)

n!
α �= −1,−2, . . . .

It is well known that

Aα
n =

n∑

k=0

Aα−1
n−k , Aα

n − Aα
n−1 = Aα−1

n , Aα
n ∽ nα

and

(8) sup
n

∫

G

∣∣Kα
n

∣∣ dµ ≤ c < ∞,

where Kα
n is n-th Cesàro kernel.

The σ -algebra generated by the intervals {In(x) : x ∈ G} will be denoted by Fn (n ∈ N).
Denote by F = (Fn, n ∈ N) the martingale with respect to Fn (n ∈ N) (for details see, e.g.,
[29]).

The maximal function of a martingale F is defined by

F ∗ := sup
n∈N

|Fn| .

In the case f ∈ L1 (G) , the maximal functions are also be given by
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f ∗ (x) = sup
n∈N

1

µ (In (x))

∣∣∣∣∣∣∣

∫

In(x)

f (u) dµ (u)

∣∣∣∣∣∣∣
.

For 0 < p < ∞, the Hardy martingale spaces Hp (G) consist of all martingales such that

‖F‖Hp
:=

∥∥F ∗
∥∥

p
< ∞ .

A bounded measurable function a is a p-atom, if there exist a dyadic interval I such that
∫

I

adµ = 0, ‖a‖∞ ≤ µ (I)−1/p , supp (a) ⊂ I .

It is easy to check that for every martingale F = (Fn, n ∈ N) and for every k ∈ N the
limit

(9) F̂ (k) := lim
n→∞

∫

G

Fnwkdµ

exists and it is called the k-th Walsh-Fourier coefficients of F.

Denote by An the σ -algebra generated by the sets In(x) (x ∈ G, n ∈ N). If F :=

(S2nf : n ∈ N) is the regular martingale generated by f ∈ L1 (G), then

F̂ (k) =

∫

G

f wkdµ =: f̂ (k) , k ∈ N .

For 0 < α ≤ 1, let consider maximal operators

σα,∗F := sup
n∈N

∣∣σα
n F

∣∣ , ∼
σ

α,∗

p F := sup
n∈N

∣∣σα
n F

∣∣
(n + 1)1/p−1−α

, 0 < p < 1/ (1 + α) .

For the martingale

F =

∞∑

n=0

(Fn − Fn−1)

the conjugate transforms are defined as

F̃ (t) :=

∞∑

n=0

rn (t) (Fn − Fn−1) ,

where t ∈ G is fixed. Note that F̃ (0) = F.

As it is well-known (see, e.g., [29])

(10)
∥∥∥F̃ (t)

∥∥∥
Hp

= ‖F‖Hp
, ‖F‖

p

Hp
∼

∫

G

∥∥∥F̃ (t)

∥∥∥
p

p
dt, σ̃α

mF (t) = σα
mF̃ (t) .
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3. Formulation of main results.

THEOREM 1. a) Let 0 < α < 1 and 0 < p < 1/(1 + α). Then there exists absolute

constant cα,p, depending on α and p, such that for all F ∈ Hp(G)

∥∥∥∼
σ

α,∗

p F

∥∥∥
p

≤ cα,p ‖F‖Hp
.

b) Let 0 < α < 1, 0 < p < 1/ (1 + α) and ϕ : N+ → [1, ∞) be a nondecreasing

function satisfying the condition

(11) lim
n→∞

n1/p−1−α

ϕ (n)
= ∞ .

Then the maximal operator

sup
n∈N

|σα
n f |

ϕ(n)

is not bounded from the Hardy space Hp(G) to the space Lp(G).

THEOREM 2. Let 0 < α < 1 and 0 < p < 1/(1 + α). Then there exists absolute

constant cα,p, depending on α and p, such that for all F ∈ Hp

∞∑

m=1

∥∥σα
mF

∥∥p

Hp

m2−(1+α)p
≤ cα,p ‖F‖

p
Hp

.

4. Auxiliary Propositions. The dyadic Hardy martingale spaces Hp (G) have an
atomic characterization, when 0 < p ≤ 1:

LEMMA 1 (Weisz [32]). A martingale F = (Fn, n ∈ N) is in Hp (0 < p ≤ 1) if and

only if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence (µk, k ∈ N) of a real

numbers, such that for every n ∈ N

(12)
∞∑

k=0

µkS2nak = Fn,

∞∑

k=0

|µk|
p < ∞ .

Moreover,

‖F‖Hp
∽ inf

(
∞∑

k=0

|µk|
p

)1/p

,

where the infimum is taken over all decompositions of F of the form (12).

By using Lemma 1 we can easily proved the following:
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LEMMA 2 (Weisz [29]). Suppose that an operator T is σ -linear and for some 0 <

p ≤ 1 ∫

−

I

|T a|p dµ ≤ cp < ∞,

for every p-atom a, where I denote the support of the atom. If T is bounded from L∞ to L∞,

then

‖Tf ‖p ≤ cp ‖f ‖Hp
.

To prove our main results we also need the following estimations:

LEMMA 3 ([2]). Let 0 < α < 1 and n > 2M . Then

∫

IM

∣∣Kα
n (x + t)

∣∣ dµ (t) ≤
cα2αl+k

nα2M
,

for x ∈ Il+1 (ek + el) , (k = 0, . . . ,M − 2, l = k + 1, . . . ,M − 1) and

∫

IM

∣∣Kα
n (x + t)

∣∣ dµ (t) ≤
cα2k

2M
,

for x ∈ IM (ek) , (k = 0, . . . ,M − 1).

5. Proof of Theorems.
PROOF OF THEOREM 1. Since σn is bounded from L∞ to L∞ (the boundedness follows

from (8)) according to Lemma 2 the proof of Theorem 1 will be complete if we show

sup
∫

IM

∣∣∣∼σ
α,∗

p a

∣∣∣
p

dµ < ∞,

where the supremum is taken over all p-atoms a. We may assume that a is an arbitrary p-
atom, with support I, µ (I) = 2−M and I = IM . It is easy to see that σα

n (a) = 0, when
n ≤ 2M . Therefore, we can suppose that n > 2M .

Let x ∈ IM . Since ‖a‖∞ ≤ c2M/p we obtain

∣∣σα
n a (x)

∣∣ ≤

∫

IM

|a (t)|
∣∣Kα

n (x + t)
∣∣ dµ (t)

≤ ‖a (x)‖∞

∫

IM

∣∣Kα
n (x + t)

∣∣ dµ (t)

≤ cα2M/p

∫

IM

∣∣Kα
n (x + t)

∣∣ dµ (t) .

Let x ∈ I
k,l
M , 0 ≤ k < l < M. Then from Lemma 3 we get

(13)
∣∣σα

n a (x)
∣∣ ≤

cα,p2M(1/p−1)2αl+k

nα
.
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Let x ∈ I
k,M
M , 0 ≤ k < M. Then from Lemma 3 we have

(14)
∣∣σα

n a (x)
∣∣ ≤ cα,p2M(1/p−1)+k .

By combining (5), (13) and (14) we obtain

∫

IM

sup
n∈N

∣∣∣∣
σα

n a (x)

n1/p−1−α

∣∣∣∣
p

dµ (x)

=

M−2∑

k=0

M−1∑

l=k+1

1∑

xj =0,j∈{l+1,...,M−1}

∫

I
k,l
M

sup
n>2M

∣∣∣∣
σα

n a (x)

n1/p−1−α

∣∣∣∣
p

dµ (x)

+

M−1∑

k=0

∫

I
k,M
M

sup
n>2M

∣∣∣∣
σα

n a (x)

n1/p−1−α

∣∣∣∣
p

dµ (x)

≤
1

2M(1−(1+α)p)

M−2∑

k=0

M−1∑

l=k+1

1∑

xj=0,j∈{l+1,...,N−1}

∫

I
k,l
M

sup
n>2M

∣∣σα
n a (x)

∣∣p dµ (x)

+
1

2M(1−(1+α)p)

M−1∑

k=0

∫

I
k,M
M

sup
n>2M

∣∣σα
n a (x)

∣∣p dµ (x)

≤
cα,p

2M(1−(1+α)p)

M−2∑

k=0

M−1∑

l=k+1

1

2l

2M(1−p)2(αl+k)p

2Mαp

+
cα,p

2M(1−(1+α)p)

1

2M

M−1∑

k=0

2M(1−p)+pk

≤ cα,p

M−2∑
k=0

2kp
M−1∑
l=k+1

1
2l(1−αp)

+
cα,p

2M(1−(1+α)p)

M−1∑

k=0

2pk

2pM
≤ cα,p < ∞ .

It is easy to show that under condition (11), there exists a sequence of
positive integers {nk, k ∈ N+} , such that

lim
k→∞

(
22nk + 2

)1/p−1−α

ϕ
(
22nk + 2

) = ∞.

Let
fnk = D22nk+1 − D22nk .

It is evident

f̂nk (i) =

{
1, if i = 22nk , . . . , 22nk+1 − 1,

0, otherwise.
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Then we can write

(15) Sifnk =

⎧
⎨
⎩

Di − D22nk , if i = 22nk + 1, . . . , 22nk+1 − 1,

fnk , if i ≥ 22nk+1,

0, otherwise.

From (6) we get

(16)
∥∥fnk

∥∥
Hp

=
∥∥f ∗

nk

∥∥
p

=
∥∥D22nk+1 − D22nk

∥∥
p

≤ c22nk(1−1/p).

Since Aα−1
0 = 1, by (15) we can write

∣∣∣σα

22nk +1
fnk

∣∣∣
ϕ
(
22nk + 1

) =
1

ϕ
(
22nk + 1

)
Aα

22nk +1

∣∣∣∣∣∣

22nk +1∑

j=1

Aα−1
22nk +1−j

Sjfnk

∣∣∣∣∣∣

=
1

ϕ
(
22nk + 1

)
Aα

22nk +1

∣∣∣∣∣∣

22nk +1∑

j=22nk +1

Aα−1
22nk+1−j

Sjfnk

∣∣∣∣∣∣

1

ϕ
(
22nk + 1

)
Aα

22nk+1

∣∣∣Aα−1
0

(
D22nk +1 − D22nk

)∣∣∣

=
1

ϕ
(
22nk + 1

)
Aα

22nk +1

∣∣∣Aα−1
0 w22nk

∣∣∣

≥
c

ϕ
(
22nk + 1

) (
22nk + 1

)α .

From (16) we have

c/
(
ϕ
(
22nk + 1

) (
22nk + 1

)α)
µ
{
x :

∣∣∣∼σ
α,∗

f

∣∣∣ ≥ c/
(
ϕ
(
22nk + 1

) (
22nk + 1

)α)}1/p

∥∥fnk

∥∥
Hp

≥
c

ϕ
(
22nk + 1

) (
22nk + 1

)α
1

22nk(1−1/p)
≥

c
(
22nk + 1

)1/p−1−α

ϕ
(
22nk + 1

) → ∞, as k → ∞ .

Theorem 1 is proven. ✷

PROOF OF THEOREM 2. Suppose that

∞∑

m=1

∥∥σα
mF

∥∥p

p

m2−(1+α)p
≤ ‖F‖

p

Hp
.
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Then by using (10) we have

∞∑

m=1

∥∥σα
mF

∥∥p

Hp

m2−(1+α)p
=

∞∑

m=1

∫
G

∥∥∥σ̃α
mF (t)

∥∥∥
p

p
dt

m2−(1+α)p
≤

∫

G

n∑

m=1

∥∥∥σα
mF̃ (t)

∥∥∥
p

p

m2−(1+α)p
dt(17)

≤

∫

G

∥∥∥F̃ (t)

∥∥∥
p

Hp

dt ∼

∫

G

‖F‖
p
Hp

dt = ‖F‖
p
Hp

.

According to Theorem 1 and (17) the proof of Theorem 2 will be complete, if we show

∞∑

m=1

∥∥σα
ma

∥∥p

p

m2−(1+α)p
≤ cα < ∞,

for every p-atom a. Analogously to first part of Theorem 1 we can assume that n > 2M and
a be an arbitrary p-atom, with support I, µ (I) = 2−M and I = IM .

Let x ∈ IM . Since σn is bounded from L∞ to L∞ (the boundedness follows from (8))
and ‖a‖∞ ≤ c2M/p we obtain

∫

IM

∣∣σα
ma

∣∣p dµ ≤

∫

IM

∥∥Kα
m

∥∥p

1 ‖a‖
p
∞ dµ

≤ cα,p

∫

IM

‖a‖
p
∞ dµ ≤ cα,p < ∞ .

Hence
∞∑

m=2M+1

∫
IM

∣∣σα
ma

∣∣p dµ

m2−(1+α)p
≤ cα,p

∞∑

m=2M+1

1

m2−(1+α)p

≤
cα,p

2M(1−(1+α)p)
≤ cα,p < ∞.

By combining (5), (13) and (14) analogously to first part of Theorem 1 we can write

∞∑

m=2M+1

∫
IM

∣∣σα
ma

∣∣p dµ

m2−(1+α)p

=

∞∑

m=2M+1

⎛
⎝

M−2∑

k=0

M−1∑

l=k+1

1∑

xj =0,j∈{l+1,...,M−1}

∫
I

k,l
M

∣∣σα
ma

∣∣p dµ

m2−(1+α)p
+

M−1∑

k=0

∫
I

k,M
M

∣∣σα
ma

∣∣p dµ

m2−(1+α)p

⎞
⎠

≤

∞∑

m=2M+1

⎛
⎝cα,p2M(1−p)

m2−p

M−2∑

k=0

M−1∑

l=k+1

2p(αl+k)

2l
+

cα,p2M(1−p)

m2−(1+α)p

M−1∑

k=0

2pk

2M

⎞
⎠

< cα,p2M(1−p)
∞∑

m=2M+1

1

m2−p
+ cα,p

∞∑

m=2M+1

1

m2−(1+α)p
≤ cα,p < ∞,

which completes the proof of Theorem 2. ✷



STRONG CONVERGENCE THEOREM OF CESÀRO MEANS 583

REFERENCES

[ 1 ] I. BLAHOTA, On a norm inequality with respect to Vilenkin-like systems, Acta Math. Hungar. 89 (2000), no.
1-2, 15–27.

[ 2 ] I. BLAHOTA AND G. TEPHNADZE, On the (C, α)-means with respect to the Walsh system, to appear in

Analysis Mathematica.
[ 3 ] I. BLAHOTA AND G. TEPHNADZE, Strong convergence theorem for Vilenkin-Fejér means, to appear in Pub-

licationes Mathematicae Debrecen.

[ 4 ] I. BLAHOTA, G. GÁT AND U. GOGINAVA, Maximal operators of Fejér means of Vilenkin-Fourier series, J.
Inequal. Pure Appl. Math. 7 (2006), no. 4, Article 149, 7 pp. (electronic).

[ 5 ] N. J. FUJII, A maximal inequality for H 1-functions on a generalized Walsh-Paley group, Proc. Amer. Math.

Soc. 77 (1979), no. 1, 111–116.
[ 6 ] G. GÁT, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hungar. 61 (1993),

no. 1-2, 131–149.
[ 7 ] G. GÁT AND U. GOGINAVA, A weak type inequality for the maximal operator of (C, α)-means of Fourier

series with respect to the Walsh-Kaczmarz system, Acta Math. Hungar. 125 (2009), no. 1-2, 65–83.
[ 8 ] U. GOGINAVA, Maximal operators of Fejér means of double Walsh-Fourier series, Acta Math. Hungar. 115

(2007), no. 4, 333–340.

[ 9 ] U. GOGINAVA, The maximal operator of the (C, α) means of the Walsh-Fourier series, Ann. Univ. Sci. Bu-
dapest. Sect. Comput. 26 (2006), 127–135.

[10] U. GOGINAVA, On the approximation properties of Cesàro means of negative order of Walsh-Fourier series, J.

Approx. Theory 115 (2002), no. 1, 9–20.
[11] B. GOLUBOV, A. EFIMOV AND V. SKVORTSOV, Walsh series and transformations, Dordrecht, Boston, Lon-

don, 1991. Kluwer Acad. publ, 1991.

[12] K. NAGY, Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series, East J. Ap-
prox. 16 (2010), no. 3, 297–311.

[13] J. PÁL AND P. SIMON, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar. 29

(1977), no. 1-2, 155–164.
[14] F. SCHIPP, Certain rearrangements of series in the Walsh system, (Russian) Mat. Zametki 18 (1975), no. 2,

193–201.

[15] F. SCHIPP, W.R. WADE, P. SIMON AND J. PÁL,Walsh series, An Introduction to Dyadic Harmonic Analysis,
Akadémiai Kiadó, (Budapest-Adam Hilger (Bristol-New-York)), 1990.

[16] P. SIMON, Strong convergence theorem for Vilenkin-Fourier series, J. Math. Anal. Appl. 245 (2000), no. 1,

52–68.
[17] P. SIMON, Cesaro summability with respect to two-parameter Walsh systems, Monatsh. Math. 131 (2000), no.

4, 321–334.

[18] P. SIMON, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.
27 (1984), 87–101 (1985).

[19] P. SIMON, Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hungar.

49 (1987), no. 3-4, 425–431.
[20] P. SIMON AND F. WEISZ, Weak inequalities for Cesàro and Riesz summability of Walsh-Fourier series, J.

Approx. Theory 151 (2008), no. 1, 1–19.

[21] B. SMITH, A strong convergence theorem for H 1 (T ) . Banach spaces, harmonic analysis, and probability
theory, 169–173, Lecture Notes in Math., 995, Springer, Berlin-New York, 1983.

[22] G. TEPHNADZE, Fejér means of Vilenkin-Fourier series, Studia Sci. Math. Hungar. 49 (2012), no. 1, 79–90.

[23] G. TEPHNADZE, On the maximal operators of Vilenkin-Fejér means, Turkish J. Math. 37 (2013), no. 2, 308–
318.

[24] G. TEPHNADZE, On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal. Appl.



584 I. BLAHOTA, G. TEPHNADZE AND R. TOLEDO

16 (2013), no. 1, 301–312.

[25] G. TEPHNADZE, A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series, Acta Math.
Acad. Paedagog. Nyházi. (N.S.) 28 (2012), no. 2, 167–176.

[26] G. TEPHNADZE, Strong convergence theorems for Walsh-Fejér means, Acta Math. Hungar. 142 (2014), no. 1,

244–259.
[27] G. TEPHNADZE, On the partial sums of Vilenkin-Fourier series, J. Contemp. Math. Anal. 49 (2014), no. 1,

23–32.

[28] N. YA. VILENKIN, On a class of complete orthonormal systems, Amer. Math. Soc. Transl. (2) 28 (1963),
1–35.

[29] F. WEISZ, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math. 1568,
Springer, Berlin, 1568, Springer-Verlag, Berlin, 1994.

[30] F. WEISZ, Cesàro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math. 22 (1996), no.
3, 229–242.

[31] F. WEISZ, Weak type inequalities for the Walsh and bounded Ciesielski systems, Anal. Math. 30 (2004), no.

2, 147–160.
[32] F. WEISZ, Hardy spaces and Cesàro means of two-dimensional Fourier series, Approximation theory and

function series (Budapest, 1995), 353–367, Bolyai Soc. Math. Stud., 5, János Bolyai Math. Soc., Budapest,

1996.
[33] F. WEISZ, (C, α) summability of Walsh-Fourier series, Anal. Math. 27 (2001), no. 2, 141–155.
[34] F. WEISZ, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series,

Studia Math. 117 (1996), no. 2, 173–194.
[35] F. WEISZ, Summability of multi-dimensional Fourier series and Hardy spaces, Mathematics and its Applica-

tions, 541. Kluwer Academic Publishers, Dordrecht, 2002.

INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCES

COLLEGE OF NYÍREGYHÁZA

P.O. BOX 166
NYÍREGYHÁZA, H-4400
HUNGARY

E-mail address: blahota@nyf.hu

DEPARTMENT OF MATHEMATICS

FACULTY OF EXACT AND NATURAL SCIENCES

TBILISI STATE UNIVERSITY

CHAVCHAVADZE STR. 1, TBILISI 0128
GEORGIA

E-mail address: giorgitephnadze@gmail.com

INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCES

COLLEGE OF NYÍREGYHÁZA

P.O. BOX 166
NYÍREGYHÁZA, H-4400
HUNGARY

E-mail address: toledo@nyf.hu


