
KYUNGPOOK Math. J. 48(2008), 133-142

Strong Convergence Theorems for Asymptotically Nonexpan-
sive Mappings by Hybrid Methods

Xiaolong Qin
Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160,
China
e-mail : qxlxajh@163.com

Yongfu Su
Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160,
China
e-mail : suyongfu@tjpu.edu.cn

Meijuan Shang
Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160,
China
Department of Mathematics, Shijiazhuang University, Shijiazhuang 050035, China
e-mail : meijuanshang@sina.com

Abstract. In this paper, we prove two strong convergence theorems for asymptotically

nonexpansive mappings in Hibert spaces by hybrid methods. Our results extend and im-

prove the recent ones announced by Nakajo, Takahashi [K. Nakajo, W. Takahashi, Strong

convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math.

Anal. Appl. 279 (2003) 372-379], Kim, Xu [T. H. Kim, H. K. Xu, Strong convergence

of modified mann iterations for asymptotically nonexpansive mappings and semigroups,

Nonlinear Anal. 64 (2006) 1140-1152], Martinez-Yanes, Xu [C. Martinez-Yanes, H. K. Xu,

Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal.

64 (2006) 2400-2411] and some others.

1. Introduction and preliminaries

Let H be a real Hilbert space, C a nonempty closed convex subset of E, and
T : C → C a mapping. Recall that T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C,

and T is asymptotically nonexpansive [2] if there exists a sequence {kn} of positive
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real numbers with lim
n→∞

kn = 1 and such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ for all n ≥ 1 and x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T ) the set
of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}.

Some iteration processes are often used to approximate a fixed point of a non-
expansive mapping T . The first iteration process is now known as Mann’s iteration
process [8] which is defined as

(1.1) xn+1 = αnxn + (1− αn)Txn, n ≥ 0,

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=0 is in
the interval [0, 1].

The second iteration process is referred to as Ishikawa’s [5] iteration process
which is defined recursively by

(1.2)

{
yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn,

where the initial guess x0 is taken in C arbitrarily and {αn} and {βn} are sequences
in the interval [0, 1].

The third one is introduced by Halpern [4] and is defined as follows: Take an
initial guess x0 ∈ C arbitrarily and define {xn} recursively by

(1.3) xn+1 = tnu + (1− tn)Txn, n ≥ 0,

where u ∈ C is an arbitrary (but fixed) element, {tn}∞n=1 is a sequence in the interval
[0, 1].

In general not much has been known regarding the convergence of the iteration
processes (1.1)-(1.3) unless the underlying space E has elegant properties which we
briefly mention here.

Reich [11] proved that if E is a uniformly convex Banach space with a Fréchet

differentiable norm and if {αn} is chosen such that
∞∑

n=1

αn(1 − αn) = ∞, then the

sequence {xn} defined by (1.1) converges weakly to a fixed point of T . However we
note that Mann’s iterations have only weak convergence even in a Hilbert space [3].

Attempts to modify the Mann iteration method (1.1) so that strong convergence
is guaranteed have recently been made. Nakajo and Takahashi [10] proposed the
following modification of the Mann iteration (1.1) for a single nonexpansive mapping
T in a Hilbert space:

(1.4)



x0 ∈ C, arbitrarily chosen
yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qnx0,
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where PK denotes the metric projection from H onto a closed convex subset K of
H.

However, on the other hand, process (1.2) is indeed more general than process
(1.1). But research has been concentrated on the former due probably to the rea-
sons that the formulation of process (1.1) is simpler than that of (1.2) and that a
convergence theorem for process (1.1) may lead to a convergence theorem for pro-
cess (1.2) provided that {βn} satisfies certain appropriate conditions. However, the
introduction of the process (1.2) has its own right. Actually, process (1.1) may fail
to converge while process (1.2) can still converge for a Lipschitz pseudo-contractive
mapping in a Hilbert space [1].

Recently, Martinez-Yanes and Xu [9] has adapted the iteration (1.2) in Hilbert
space. More precisely, they introduced the following iteration process for a nonex-
pansive mapping T , with C a closed convex bounded subset of a Hilbert space

(1.5)



x0 ∈ C, chosen arbitrarily
zn = βnxn + (1− βn)Txn,

yn = αnxn + (1− αn)Tzn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2

+(1− αn)(‖zn‖2 − ‖x‖2 + 2〈xn − zn, v)},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qn

x0,

and also they adapted (1.3) in a Hilbert space. More precisely, they defined a
sequence {xn} recursively by

(1.6)



x0 ∈ C, chosen arbitrarily
yn = αnx0 + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + αn(‖x0‖2 + 2〈xn − x0, z)},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qn

x0.

In [6] Kim and Xu also adapt the iteration (1.1) to asymptotically nonexpan-
sive mappings. More precisely, they introduced the following iteration process for
asymptotically nonexpansive mappings T , with C a closed convex bounded subset
of a Hilbert space:

(1.7)



x0 ∈ C, arbitrarily chosen
yn = αnxn + (1− αn)Tnxn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qnx0,
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where
θn = (1− αn)(k2

n − 1)(diam C)2 → 0 as n →∞.

The purpose of this paper is to employ Nakajo and Takahashi’s [10] idea to
modify process (1.2) and (1.3) to have strong convergence theorems for asymptoti-
cally nonexpansive mappings. Our results improve and extend the ones announced
by Martinez-Yanes and Xu [9] from nonexpansive mappings to asymptotically non-
expansive mappings.

In order to prove our main results, we shall make use of the following Lemmas.

Lemma 1.1(Lin et al. [7]). Let T be an asymptotically nonexpansive mapping
defined on a bounded closed convex subset C of a Hilbert space H. Assume that
{xn} is a sequence in C with the properties (i) xn ⇀ x0 and (ii) Txn − xn → 0,
then x0 ∈ F (T ).

Lemma 1.2 Let K be a closed convex subset of real Hilbert space H and let PK be
the metric projection from H onto K(i.e., for x ∈ H, Pk is the only point in K such
that ‖x− Pkx‖ = inf{‖x− z‖ : z ∈ K}). Given x ∈ H and z ∈ K. Then z = PKx
if and only if there holds the relations:

(1.8) 〈x− z, y − z〉 ≤ 0 for all y ∈ K.

2. Main Results

Theorem 2.1 Let C be a bounded closed convex subset of a Hilbert space H and
let T : C → C be an asymptotically nonexpansive mapping with a sequence {kn}
such that kn → 1 as n → ∞. Assume that {αn} is a sequence in (0, 1) such that
αn ≤ 1 − δ for all n and for some δ ∈ (0, 1] and βn → 1. Define a sequence {xn}
in C by the following algorithm:

(2.1)



x0 ∈ C, arbitrarily chosen

zn = βnxn + (1− βn)Tnxn,

yn = αnxn + (1− αn)Tnzn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2

+(1− αn)[k2
n‖zn‖2 − ‖xn‖2 + (k2

n − 1)M + 2〈xn − k2
nzn, v〉]},

Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},
xn+1 = PCn∩Qn

x0,

where M is a appropriate constant such that M > ‖v‖2 for each v ∈ Cn, then {xn}
converges to PF (T )x0.

Proof. First note that T has a fixed point in C [2]; that is, F (T ) is nonempty. It



Asymptotically nonexpansive mapping 137

follows from the Lemma 1.3 of [9] that C is convex. Next, we show that F (T ) ⊂ Cn

for all n. Indeed, we have, for all p ∈ F (T ),

‖yn − p‖2 = ‖αn(xn − p) + (1− αn)(Tnzn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)k2
n‖zn − p‖2

= ‖xn − p‖2 + (1− αn)(k2
n‖zn − p‖2 − ‖xn − p‖2)

≤ (1− αn)[k2
n‖zn‖2 − ‖xn‖2 + (k2

n − 1)M + 2〈xn − k2
nzn, p〉]

+ ‖xn − p‖2.

So p ∈ Cn for all n. Next we show that

(2.2) F (T ) ⊂ Qn for all n ≥ 0.

We prove this by induction. For n = 0, we have F (T ) ⊂ C = Q0. Assume that
F (T ) ⊂ Qn. Since xn+1 is the projection of x0 onto Cn ∩ Qn, by Lemma 1.2 we
have

〈x0 − xn+1, xn+1 − z〉 ≥ 0 ∀ z ∈ Cn ∩Qn.

As F (T ) ⊂ Cn ∩ Qn by the induction assumptions, the last inequality holds, in
particular, for all z ∈ F (T ). this together with the definition of Qn+1 implies that
F (T ) ⊂ Qn+1. Hence (2.2) holds for all n ≥ 0. In order to prove lim

n→∞
‖xn+1−xn‖ =

0, from the definition of Qn we have xn = PQn
x0 which together with the fact that

xn+1 ∈ Cn ∩Qn ⊂ Qn implies that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

This shows that the sequence {xn − x0} is nondecreasing. Since C is bounded, we
obtain that lim

n→∞
‖xn − x0‖ exists. Notice again that xn = PQn

x0 and xn+1 ∈ Qn

which give that 〈xn+1 − xn, xn − x0〉 ≥ 0. Therefore, we have

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.

It follows that

(2.3) ‖xn − xn+1‖ → 0, as n → 0.

On the other hand, It follows from xn+1 ∈ Cn that

‖yn − xn+1‖2 ≤ (1− αn)[k2
n‖zn‖2 − ‖xn‖2 + (k2

n − 1)M + 2〈xn − k2
nzn, xn+1〉]

+ ‖xn − xn+1‖2.

However, since lim
n→∞

βn = 1 and {xn} is bounded, we obtain

(2.4) ‖zn − xn‖ = (1− βn)‖xn − Tnxn‖ → 0, as n →∞.
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Notice that

k2
n‖zn‖2 − ‖xn‖2 + (k2

n − 1)M + 2〈xn − k2
nzn, xn+1〉

=k2
n‖zn‖2 − k2

n‖xn‖2 + 2〈xn − k2
nzn, xn+1〉+ (k2

n − 1)‖xn‖2 + (k2
n − 1)M

=k2
n‖zn − xn‖2 + 2〈xn − k2

nzn, xn+1 − xn〉 − (k2
n − 1)‖xn‖2 + (k2

n − 1)M → 0.

Therefore, it follows from (2.3) and (2.4) that

(2.5) ‖yn − xn+1‖ → 0.

It follows from (2.3), (2.5) that

(2.6) ‖yn − xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ → 0.

Again, Noticing that Tnzn = yn − αn‖xn − Tnzn‖, we have

‖xn − Tnzn‖ ≤ ‖yn − xn‖+ αn‖xn − Tnzn‖.

It follows that
‖xn − Tnzn‖ ≤

1
1− αn

‖xn − yn‖.

Since αn ≤ 1− δ, we have

‖xn − Tnxn‖ ≤ ‖xn − Tnzn‖+ ‖Tnzn − Tnxn‖ ≤
1
δ
‖yn − xn‖+ kn‖zn − xn‖.

Therefore, It follows from (2.4) and (2.6) that

(2.7) ‖xn − Tnxn‖ → 0.

Putting k̄ = sup{kn : n ≥ 1} < ∞, we obtain

‖Txn − xn‖ ≤ ‖Txn − Tn+1xn‖+ ‖Tn+1xn − Tn+1xn+1‖
+ ‖Tn+1xn+1 − xn+1‖+ ‖xn+1 − xn‖

≤ k̄‖xn − Tnxn‖+ (1 + k̄)‖xn − xn+1‖
+ ‖Tn+1xn+1 − xn+1‖,

which implies that
‖Txn − xn‖ → 0.

Assume that {xni
} is a subsequence of {xn} such that xni

⇀ x̃. by Lemma 1.1 we
have x̃ ∈ F (T ). Next we show that x̃ = PF (T )x0 and convergence is strong. Put
x̄ = PF (T )x0 and consider the sequence {x0−xni

}. Then we have x0−xni
⇀ x0− x̃

and by the weak lower semicontinuity of the norm and by the fact that ‖x0−xn+1‖ ≤
‖x0 − x̄‖ for all n ≥ 0 which is implied by the fact that xn+1 = PCn∩Qnx0, we have

‖x0 − x̄‖ ≤ ‖x0 − x̃‖ ≤ lim inf
i→∞

‖x0 − xni‖ ≤ lim sup
i→∞

‖x0 − xni‖ ≤ ‖x0 − x̄‖.
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This gives that

‖x0 − x̄‖ = ‖x0 − c̃‖ and ‖x0 − xni
‖ → ‖x0 − x̄‖

It follows that x0 − xni
→ x0 − x̄; hence, xni

→ x̄. since {xni
} is an arbitrary

subsequence of {xn}, we conclude that xn → x̄. The proof is completed. �

Theorem 2.2 Let C be a bounded closed convex subset of a Hilbert space H and let
T : C → C be an asymptotically nonexpansive mapping with a sequence {kn} such
that kn → 1 as n →∞. Assume that {αn} is a sequence in (0, 1) such that αn → 0
as n →∞. Define a sequence {xn} in C by the following algorithm :

x0 ∈ C, arbitrarily chosen

yn = αnx0 + (1− αn)Tnxn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + (k2
n − 1− αnk2

n)‖xn‖2

+αn‖x0‖2 − 2〈αnx0 + (k2
n − 1− αnk2

n)xn, v〉+ (1− αn)(k2
n − 1)M},

Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},
xn+1 = PCn∩Qn

x0,

where M is a appropriate constant such that M > ‖v‖2 for each v ∈ Cn, then {xn}
converges to PF (T )x0.

Proof. First note that T has a fixed point in C [2]; that is, F (T ) is nonempty. It
follows from the Lemma 1.3 of [9] that C is convex. Next, we show that F (T ) ⊂ Cn

for all n. Indeed, we have, for all p ∈ F (T ),

‖yn − p‖2 = ‖αn(x0 − p) + (1− αn)(Tnxn − p)‖2

≤ αn‖x0 − p‖2 + (1− αn)k2
n‖xn − p‖2

= ‖xn − p‖2 + (k2
n − 1− αnk2

n)‖xn − p‖2 + αn‖x0 − p‖2

= ‖xn − p‖2 + (k2
n − 1− αnk2

n)‖xn‖2 + αn‖x0‖2

− 2〈αnx0 + (k2
n − 1− αnk2

n)xn, p〉+ (1− αn)(k2
n − 1)‖p‖2

≤ ‖xn − p‖2 + (k2
n − 1− αnk2

n)‖xn‖2 + αn‖x0‖2

− 2〈αnx0 + (k2
n − 1− αnk2

n)xn, p〉+ (1− αn)(k2
n − 1)M.

So p ∈ Cn for all n. Next we show that

(2.8) F (T ) ⊂ Qn for all n ≥ 0.

We prove this by induction. For n = 0, we have F (T ) ⊂ C = Q0. Assume that
F (T ) ⊂ Qn. Since xn+1 is the projection of x0 onto Cn ∩ Qn, by Lemma 1.2 we
have

〈x0 − xn+1, xn+1 − z〉 ≥ 0 ∀ z ∈ Cn ∩Qn.

As F (T ) ⊂ Cn ∩ Qn by the induction assumptions, the last inequality holds, in
particular, for all z ∈ F (T ). this together with the definition of Qn+1 implies that
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F (T ) ⊂ Qn+1. Hence (2.8) holds for all n ≥ 0. In order to prove lim
n→∞

‖xn+1−xn‖ =
0, from the definition of Qn we have xn = PQnx0 which together with the fact that
xn+1 ∈ Cn ∩Qn ⊂ Qn implies that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

This shows that the sequence {xn − x0} is nondecreasing. Since C is bounded, we
obtain that lim

n→∞
‖xn − x0‖ exists. Notice again that xn = PQn

x0 and xn+1 ∈ Qn

which give that 〈xn+1 − xn, xn − x0〉 ≥ 0. Therefore, we have

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.

It follows that

(2.9) ‖xn − xn+1‖ → 0, as n → 0.

On the other hand, It follows from xn+1 ∈ Cn that

‖yn − xn+1‖2 ≤‖xn − xn+1‖2 + (k2
n − 1− αnk2

n)‖xn‖2 + αn‖x0‖2

− 2〈αnx0 + (k2
n − 1− αnk2

n)xn, xn+1〉+ (1− αn)(k2
n − 1)M.

However, since (2.9), lim
n→∞

αn = 0 and lim
n→∞

kn = 1, we obtain

(2.10) ‖yn − xn+1‖ → 0.

It follows from (2.9), (2.10) that

(2.11) ‖yn − xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ → 0.

Again, Noticing that yn = αnx0 − (1− αn)Tnxn, we have

‖xn − Tnxn‖ ≤
1

1− αn
‖(yn − xn) + αn(xn − x0)‖

≤ 1
1− αn

(‖yn − xn‖+ αn‖xn − x0‖).

Since lim
n→∞

αn = 0 and (2.11), we have

(2.12) ‖xn − Tnxn‖ → 0.

Putting k̄ = sup{kn : n ≥ 1} < ∞, we obtain

‖Txn − xn‖ ≤ ‖Txn − Tn+1xn‖+ ‖Tn+1xn − Tn+1xn+1‖
+ ‖Tn+1xn+1 − xn+1‖+ ‖xn+1 − xn‖

≤ k̄‖xn − Tnxn‖+ (1 + k̄)‖xn − xn+1‖
+ ‖Tn+1xn+1 − xn+1‖,
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which implies that
‖Txn − xn‖ → 0.

Using the methods of Theorem 2.1, we can get the desired conclusions easily. The
proof is completed. �

3. Applications

Theorem 3.1(Martinez-Yanes and Xu [11]). Let C be a nonempty closed convex
subset of a Hilbert space H and let T : C → C be a nonexpansive mapping such
that F (T ) 6= ∅. Assume that {αn}∞n=0 and {βn}∞n=0 are sequences in (0, 1) such that
lim

n→∞
αn ≤ 1− δ for some δ ∈ (0, 1] and lim sup

n→∞
βn = 1. Define a sequence {xn} in

C by the following algorithm

x0 ∈ C, arbitrarily chosen

zn = βnxn + (1− βn)Txn,

yn = αnxn + (1− αn)Tzn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + (1− αn)(‖zn‖2

−‖xn‖2 + 2〈xn − zn, v〉)},
Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},
xn+1 = PCn∩Qn

x0,

Then {xn} converges to q = PF (T )x0.

Proof. Since T is asymptotically nonexpansive which is also nonexpansive when
{kn} = 1. By using Theorem 2.1, we can obtain the desired conclusion easily. This
completes the proof. �

Theorem 3.2(Martinez-Yanes and Xu [11]). Let H be a real Hilbert space, C
a closed convex subset of H and T : C → C a nonexpansive mapping such that
F (T ) 6= ∅. Assume that αn ⊂ (0, 1) is chosen such that lim

n→∞
αn = 0. Then the

sequence {xn}∞n=0 generated by

x0 ∈ C, arbitrarily chosen

yn = αnx0 + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + αn(‖x0‖2 + 2〈xn − x0, z〉)},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qn

x0

converges strongly to PF (T )x0.
Proof. Since T is asymptotically nonexpansive which is also nonexpansive when
{kn} = 1. By using Theorem 2.2, we can obtain the desired conclusion easily. This
completes the proof. �
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