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Abstract—We study the problem of strong coordination in a
three-terminal relay network, in which agents communicate to
ensure that their actions follow a joint behavior specified by a
prescribed joint distribution of actions. The model unifies several
coordination schemes, including line and broadcast coordination.
We derive several inner bounds to the strong capacity region; in
particular, we prove the achievability of a subset of coordination
rate-tuples, which provides insight into the relative performance
of line, broadcast, and relay coordination.

I. INTRODUCTION

An important aspect in networked communication is the
problem of coordinating the actions of nodes in a decentralized
manner, while minimizing amount of communication. For
the point-to-point case, such fundamental limits have been
established for empirical coordination in [1], by which the
histogram of induced actions at the agents is required to follow
a prescribed target distribution, and strong coordination, by
which the induced sequence of joint actions is required to
be statistically indistinguishable from the target distribution.
Both strong and empirical coordination have the potential
to significantly lower the communication rate compared to
a naive direct communication of the action sequence, which
could be useful in applications such as distributed control or
multi-agent based exploration and surveillance.

The limits of empirical coordination for small and large net-
works have been the subject of several works. For example, [2]
considers a distributed multi-agent control problem, in which
each agent generates actions based on its own observations of
a source of randomness. The generation of dependent random
variables in networks under a strong coordination constraint is
considered in [3], [4] by investigating bidirectional transmis-
sions in several rounds; however, these works only address
the coordination of two nodes. An extension of the ideas
to a two-way relay channel and strong coordination can be
found in [5]. In [6], the synthesis of a discrete memoryless
broadcast channel is considered, where a stochastic channel
output is generated based on a compressed description of the
channel input. The relation to coordination is given by the
fact that the sequences generated at the channel output can be
viewed as induced action sequences. Finally, [7], [8] address
the characterization of the coordination capacity region for

a line network consisting of three agents,1 with and without
secrecy constraints.

In this work, we address a general three-terminal setup and
provide a unifying framework to derive inner and outer bounds
to the strong capacity region for line, broadcast, and relay
coordination. Outer bound are nevertheless omitted for brevity
and will be reported in the full version of the paper.

II. PROBLEM STATEMENT AND MAIN RESULTS

We consider the setting illustrated in Fig. 1, in which three
agents attempt to coordinate their actions. The actions taken
by each agent i ∈ {1, 2, 3} are described by a sequence
of discrete actions xni ∈ Xni , and the behavior is captured
by a memoryless joint probability distribution of the actions
qX1X2X3 . The network comprises four distinct links:
• a noiseless link between agent 1 and agent 2, over which

agent 1 transmits messages M12 ∈M12 , J1, 2nR12K;
• a noiseless link between agent 1 and agent 3, over which

agent 1 transmits messages M13 ∈M13 , J1, 2nR13K;
• a noiseless link between agent 2 and agent 3, over which

agent 2 transmits messages M23 ∈M23 , J1, 2nR23K;
• a noiseless link between agent 3 and agent 2, over which

agent 3 transmits messages M32 ∈M32 , J1, 2nR32K.
All agents have access to a common source of randomness,
which produces uniform random numbers in M0 ∈ M0 ,
J1, 2nR0K. Agent 1 is considered as the leader, in that its

1The present paper corrects an unfortunate error in the achievability proof
of [7], which, however, did not affect the main conclusions.
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Fig. 1. Coordination over a three-terminal relay network.
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actions xn1 are drawn i.i.d. according to qX1
ahead of time.

A coordination scheme, which we define precisely next, is a
means to exchange messages over the network so that agent
2 and agent 3 take actions xn2 and xn3 that appear as if drawn
from the distribution qXn

2 X
n
3 |Xn

1 =xn
1

.
Definition 1: A (2nR0 , 2nR12 , 2nR13 , 2nR23 , 2nR32) coordi-

nation scheme consists of:
• a stochastic encoder f12 :M0 ×Xn1 →M12;
• a stochastic encoder f13 :M0 ×Xn1 →M13;
• a stochastic encoder f23 :M0 ×M12 →M23;
• a stochastic encoder f32 :M0 ×M13 →M32;
• a stochastic actuator g2 :M0 ×M12 ×M32 → Xn2 ;
• a stochastic actuator g3 :M0 ×M13 ×M23 → Xn3 ;

The distribution of actions induced by a coordination scheme
is denoted by p̃Xn

1 X
n
2 X

n
3

. We say that a coordination rate-
tuple (R0, R12, R13, R23, R32) is achievable if there exists a
sequence of (2nR0 , 2nR12 , 2nR13 , 2nR23 , 2nR32) coordination
schemes such that

lim
n→∞

V
(
p̃Xn

1 X
n
2 X

n
3
, qXn

1 X
n
2 X

n
3

)
= 0,

where V is the variational distance. The coordination capacity
region is the set of all achievable coordination rate-tuples. We
also distinguish three coordination schemes that are special
cases of the general scheme in Definition 1.

Definition 2: A line coordination scheme corresponds to the
situation in which R13 = R32 = 0 or R12 = R23 = 0; in other
words, agent 2 or agent 3 is a bottleneck for communication.
This coordination scheme is the one considered in [7], [8].

Definition 3: A broadcast coordination scheme corresponds
to the situation in which R23 = R32 = 0; in other words, agent
1 has to broadcast messages to all the other agents.
Note that broadcast coordination allows different messages to
be sent to different agents, which differs from the setting in [6]
in which the same message is broadcasted to all agents.

Definition 4: A relay coordination scheme corresponds to
the situation in which R23 = 0 or R32 = 0; in other words,
either agent 2 or agent 3 can serve as a relay to the other.
Our definition of relay coordination differs from the relay
model introduced in [5], in which the relay only allows
bidirectional communication.

The exact characterization of the entire set of coordination
rate-tuples achieving a fixed behavior qX1X2X3

is beyond the
scope of the present paper. Instead, we prove the achievability
of a subset of coordination rate-tuples, which provides insight
into the relative performance of the three special coordination
schemes above. These regions are discussed in Section III,
and include many constraints with auxiliary random variables.
For now, we only highlight simple regions that are achievable
when R0 is so large that all constraints involving it become
ineffective. In other words, we establish bounds on the rate of
communication between agents, ignoring the potentially high
amount of common randomness required.

Proposition 1: The rate-tuples in the region
{R12 > I(X2X3;X1), R13 = 0, R23 > I(X3;X1), R32 = 0}
are achievable with a line coordination scheme and
enough common randomness. In addition, these rates

are optimal among all line coordination schemes for which
R13 = R32 = 0. Similarly, the rate-tuples in the region
{R12 = 0, R13 > I(X2X3;X1), R23 = 0, R32 > I(X2;X1)}
are achievable with a line coordination scheme and
enough common randomness. In addition, these rates
are optimal among all line coordination schemes for which
R12 = R23 = 0.

Proof: See Section III-A and Section III-B. The converse
showing the optimality was already established in [7].

Proposition 2: The rate-tuples in the
convex hull of the region {R12 >
I(X2X3;X1), R13 > I(X3;X1), R23 = R32 = 0} ∪
{R12 > I(X2;X1), R13 > I(X2X3;X1), R23 = R32 = 0}
are achievable with a broadcast coordination scheme and
enough common randomness. Conversely, achievable rates
with a broadcast coordination scheme must lie in the region
defined by {R12 > I(X2;X1), R13 > I(X3;X1), R12+R23 >
I(X2X3;X1), R23 = R32 = 0}.

Proof: See Section III-A and Section III-C. The converse
is omitted for brevity, but is similar to [7].

The case of relay coordination does not lend itself to such
a simple analysis, and is only discussed in Section III-D.

III. ACHIEVABILITY PROOF

A. Preliminaries

Following the approach first proposed in [9], we develop
a generic achievable rate for the three-terminal coordination
network by tying coordination to the notion of common
information [10], [9]. We start by introducing discrete random
variables U, V,W,X1, X2, X3 with joint distribution

p(x1, x2, x3, u, v, w) ,W (x1|uvw)W (x2|uw)
W (x3|vw)p(u|w)p(v|w)p(w),

and with marginal distribution pX1X2X3
= qX1X2X3

. The
existence of such variables can be proved by selecting trivial
values of U, V,W , e.g. U , X2 and V , W , X3. The
Bayesian network that captures the dependencies between all
random variables is illustrated in Fig. 2. Intuitively, the role of
W is to describe the common information of X1, X2, X3 [10],
[11]; the role of U is to describe the common information of
X1, X2, which is not already described by W ; the role of V
is to describe the common information of X1, X3, which is
not already described by W . For clarity and simplicity, we do

X1

W

VU

X2 X3

Fig. 2. Bayesian network formed by random variables U, V,W,X1, X2, X3.
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ĩj̃ ˜̀
,Wn
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not try to exploit the common information of X2 and X3 in
this conference paper.

We now consider the channel resolvability problem with
secrecy constraints illustrated in Fig. 3. Four uniformly dis-
tributed random messages M0 ∈ J1, 2nR0K, Mw ∈ J1, 2nRwK,
Mu ∈ J1, 2nRuK, and Mv ∈ J1, 2nRvK, are encoded into
codewords Un ∈ Un, Wn ∈ Wn, and V n ∈ Vn using the
following deterministic encoding functions:
• fnw : J1, 2nR0K× J1, 2nRwK→Wn;
• fnu : J1, 2nR0K× J1, 2nRwK× J1, 2nRuK→ Un;
• fnv : J1, 2nR0K× J1, 2nRwK× J1, 2nRvK→ Vn.

The codewords Un, V n, and Wn, are then transmitted
through the discrete memoryless channels (DMCs) with
transition probabilities WX2|UW , WX1|UVW , WX3|VW , re-
spectively. This procedure defines a joint distribution be-
tween input messages and channel outputs, which we de-
note by p̂Xn

1 X
n
2 X

n
3 M0MwMuMv . The objective is to find rates

(R0, Rw, Ru, Rv) for which there exists a sequence of en-
coders fnu , f

n
v , f

n
w such that

lim
n→∞

D
(
p̂Xn

1 X
n
2 X

n
3
‖qXn

1 X
n
2 X

n
3

)
= 0 (resolvability)

lim
n→∞

D
(
p̂Xn

1 M0‖p̂Xn
1
p̂M0

)
= 0 (secrecy).

We now randomly generate a code as follows:
• we generate 2n(R0+Rw) sequences independently, which

we label wnij , (wij,1, · · · , wij,n) for i ∈ J1, 2nR0K and
j ∈ J1, 2nRwK, according to

∏n
m=1 pW (wij,m);
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Fig. 3. Intermediate problem: channel resolvability with secrecy constraints.

• for each wnij , we generate 2nRu sequences independently,
which we label unijk , (uijk,1, · · · , uijk,n) for k ∈
J1, 2nRuK, according to

∏n
m=1 pU |W (uijk,m|wij,m);

• for each wnij , we generate 2nRv sequences indepen-
dently, which we label vnij` , (vij`,1, · · · , vij`,n) for
` ∈ J1, 2nRvK, according to

∏n
m=1 pV |W (vij`,m|wij,m).

The indices of the codewords implicitly define the mapping
from messages to codewords.

We introduce the shorthand notation Zn = Xn
1X

n
2X

n
3 and

M , 2n(R0+Rw+Ru+Rw) to simplify expressions, and we
proceed to bound E(D(p̂Zn‖qZn)), where the expectation is
over the random code generation. Recalling that

p̂Zn(zn) ,
1

M

∑
ijk`

WZn|UnV nWn(zn|unijk, vnij`, wnij),

we use the law of iterated expectation and Jensen’s inequality
to upper bound E(D(p̂Zn‖qZn)) as shown in Eq. (1) to (3) at
the top of this page. We break down the sum in the term

1
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ĩj̃
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ijU

n
ijkV

n
ij`

)

in four distinct cases. If (̃i, j̃, k̃, ˜̀) = (i, j, k, `), we obtain

1

M

W (zn|unijk, vnij`, wnij)
qZn(zn)

.

If (̃i, j̃) = (i, j), k̃ 6= k and ˜̀= `, we obtain
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6
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,

where the equality follows by Bayes’ rule and the law of total
probability. By symmetry, if (̃i, j̃) = (i, j), ˜̀ 6= ` and k̃ = k,
we obtain

1
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.

649



E(D(p̂Zn‖qZn)) 6
∑
zn

∑
un

∑
vn

∑
wn

p(zn, un, wn, vn)

log

(
1

M

W (zn|un, vn, wn)
qZn(zn)

+
2nRu

M

p(zn|vnwn)
qZn(zn)

+
2nRv

M

p(zn|unwn)
qZn(zn)

+
2n(Ru+Rv)

M

p(zn|wn)
qZn(zn)

+ 1

)
(4)

If (̃i, j̃) = (i, j), ˜̀ 6= ` and k̃ 6= k, we obtain

1

M

∑
˜̀6=`

∑
˜k 6=k

EUijk̃Vij ˜̀

(
W (zn|Un

ijk̃
, V n
ij ˜̀
, wnij)

qZn(zn)

∣∣∣∣∣Wn
ij

)

=
1

M

∑
˜̀6=`

∑
k̃ 6=k

p(zn|wnij)
qZn(zn)

6
2n(Ru+Rv)

M

p(zn|wnij)
qZn(zn)

.
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Combining all these inequalities above, and since all code-
words are generated according to the same distribution, we
obtain the bound on E(D(p̂Zn‖qZn)) shown in Eq. (4).
We then split the sum between the δ-typical sequences
(zn, un, vn, wn) ∈ Tnδ (pZUVW ) and (zn, un, vn, wn) /∈
Tnδ (pZUVW ). One can show that the sum over the sequences
(zn, un, vn, wn) /∈ Tnδ (pZUVW ) is upper bounded by

P((Zn, Un, V n,Wn) /∈ Tnδ (pZUVW )) log

(
4

(
1

µZ

)n
+ 1

)
,

with µz = minz∈supp(qZ) qZ(z). This term converges to 0
exponentially fast with n [12]. When summing over the
sequences (zn, un, vn, wn) ∈ Tnδ (pZUVW ), one can upper
bound the various terms using [12]. For instance, we have
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which converges to 0 exponentially if

R0 +Rw +Ru +Rv > I(UVW ;Z) + 2δH(Z) .

By analyzing all remaining terms, we find that
E(D(p̂Zn‖qZn)) converges exponentially to 0 with n
if 

R0 +Rw +Ru +Rv > I(UVW ;Z) + 2δH(Z) ,
R0 +Rw +Ru > I(UW ;Z) + 2δH(Z) ,
R0 +Rw +Rv > I(VW ;Z) + 2δH(Z) ,
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manner.2 Replacing Zn by Xn
1 and dropping the summation

over i ∈ J1, 2nR0K in the previous analysis, we obtain the fol-
lowing sufficient condition to ensure that D
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)
converges to 0 exponentially fast with n:


Rw +Ru +Rv > I(UVW ;X1) + 2δH(X1) ,
Rw +Ru > I(UW ;X1) + 2δH(X1) ,
Rw +Rv > I(VW ;X1) + 2δH(X1) ,
Rw > I(W ;X1) + 2δH(X1) .

(6)

By Markov’s inequality, we conclude that if the rate-
tuple (R0, Rw, Ru, Rv) satisfies the constraints in Eq. (5)
and Eq. (6), there exists a sequence of codes satisfying the
resolvability and secrecy constraints. By Pinsker’s inequality,
this also implies that
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= 0 (resolvability) (7)
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)
= 0 (secrecy). (8)

B. Achievable line coordination rates

We construct a line coordination scheme from the code for
the intermediate problem in Section III-A as follows.
• Upon observing m0 and xn1 , agent 1 generates mw,
mv , mu according to p̂(mw,mv,mu|xn1 ,m0); agent 1
transmits mw, mv , mu to agent 2, which defines fn12;

• Upon receiving m0, mw, mv , mu, agent 2 generates
xn2 according to W (xn2 |unm0mwmu

wnm0mw
), which defines

gn2 ; agent 2 forwards mw, mv to agent 3, which defines
fn23.

• Upon receiving m0, mw, mv , agent 3 generates xn3
according to W (xn3 |vnm0mwmv

wnm0mw
), which defines gn3 .

This scheme induces a joint probability distribution
p̃Xn

1 X
n
2 X

n
3 M0MwMuMv . Using the triangle inequality,
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. (9)

2This is where the unfortunate error in the analysis of [7] appears, as the
absence of randomization over Mw in the encoding of Wn prevents one
obtain the desired independence of M0 and Xn

1 .
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The distribution p̂ only differs from p̃ because M0 may not
be independent of Xn

1 ; fortunately, Eq. (8) guarantees near
independence so that the first term in the right-hand side of
Eq. (9) vanishes. The second term vanishes because of Eq. (7).
Hence, we have constructed a line coordination schemes that
operates with rate R0, R12 = Rw+Ru+Rv , and R23 = Rw+
Rv . Since Rv only appears through the sum-rate Rw + Rv ,
we set V = W and Rv = 0 in Eq. (5) and Eq. (6), and we
conclude that the rate-tuples (R0, R12, R13 = 0, R23, R32 =
0) are achievable with a line coordination scheme if

R0 +R12 > I(UW ;X1X2X3)
R0 +R23 > I(W ;X1X2X3)
R12 > I(UW ;X1)
R23 > I(W ;X1).

In particular, if we assume that R0 is large enough so that the
first two constraints are always satisfied, and if we substitute
U , X2 and W , X3, which trivially satisfy the constraints
in Section III, we obtain

R12 > I(X2X3;X1) R23 > I(X3;X1).

By swapping the roles of agent 2 and agent 3, U and V ,
and messages mu and mv , we conclude that the rate-tuples
(R0, R12 = 0, R13, R23 = 0, R32) are achievable with a line
coordination scheme if

R0 +R13 > I(VW ;X1X2X3)
R0 +R32 > I(W ;X1X2X3)
R13 > I(VW ;X1)
R32 > I(W ;X1).

Assuming R0 is always large enough, and if we substitute
V , X3 and W , X2, we obtain

R13 > I(X2X3;X1) R32 > I(X2;X1).

C. Achievable broadcast coordination rates
We now construct a broadcast coordination scheme from the

code for the intermediate problem in Section III-A as follows.
• Upon observing m0 and xn1 , agent 1 generates mw,
mv , mu according to p̂(mw,mv,mu|xn1 ,m0); agent 1
transmits mw, mu to agent 2, which defines fn12; agent
1 transmits mw, mv to agent 3, which defines fn13;

• Upon receiving m0, mw, mu, agent 2 generates xn2
according to W (xn2 |unm0mwmu

wnm0mw
), which defines

gn2 ;
• Upon receiving m0, mw, mv , agent 3 generates xn3

according to W (xn3 |vnm0mwmv
wnm0mw

), which defines gn3 .
As in Section III-B, this defines a coordination scheme that
operates with rate R0, R12 = Rw+Ru, R13 = Rw+Ru. We
conclude that the rate-tuples (R0, R12, R13, R23 = 0, R32 =
0) are achievable with a broadcast coordination scheme if
R0, RW , Ru, Rv satisfy the constraints in Eq. (5) and Eq. (6);
unfortunately, in general, these constraints do not simplify to
a simple region in terms of R0, R12, R23 only.

If we assume that R0 is always large enough, and if we
substitute V , X3 and U , W , X2 in the constraints, we
obtain the following set of achievable (R12, R13):

R12 > I(X2;X1) R13 > I(X2X3;X1).

Similarly, by setting V , W , X3 and U , X2 in the
constraints, we obtain

R12 > I(X2X3;X1) R13 > I(X3;X1).

D. Achievable relay coordination rates
Finally, we highlight an example of relay coordination

scheme constructed from the code for the intermediate prob-
lem in Section III-A as follows.
• Upon observing m0 and xn1 , agent 1 generates mw,
mv , mu according to p̂(mw,mv,mu|xn1 ,m0); agent 1
transmits mw, mu to agent 2, which defines fn12; agent
1 transmits mv to agent 3, which defines fn13;

• Upon receiving m0, mw, mu, agent 2 generates xn2
according to W (xn2 |unm0mwmu

wnm0mw
), which defines

gn2 ; agent 2 transmits mw to agent 3, which defines fn23;
• Upon receiving m0, mw, mv , agent 3 generates xn3

according to W (xn3 |vnm0mwmv
wnm0mw

), which defines gn3 .
This defines a coordination scheme that operates with rate R0,
R12 = Rw +Ru, R13 = Rv , R23 = Rw. As in Section III-C,
the rate constraints in Eq. (5) and Eq. (6) are not amenable
to simplifications that would express the achievable region in
terms of R0, R12, R13, R23 only.
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