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Abstract: The strong cosmic censorship hypothesis has recently regained a lot of attention

in charged and rotating black holes immersed in de Sitter space. Although the picture seems

to be clearly leaning towards the validity of the hypothesis in Kerr-de Sitter geometries,

Reissner-Nordström-de Sitter black holes appear to be serious counter-examples. Here, we

perform another test to the hypothesis by using a scalar field perturbation non-minimally

coupled to the Einstein tensor propagating on Reissner-Nordström-de Sitter spacetimes.

Such non-minimal derivative coupling is characteristic of Horndeski scalar-tensor theories.

Although the introduction of higher-order derivative couplings in the energy-momentum

tensor increases the regularity requirements for the existence of weak solutions beyond the

Cauchy horizon, we are still able to find a small finite region in the black hole’s parameter

space where strong cosmic censorship is violated.
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1 Introduction

The theory of General Relativity (GR) is the most successful theory of gravitation. It

predicts and properly describes black-hole (BH) spacetimes, gravitational-wave emission,

cosmic expansion and many more phenomena. It is undoubtedly a cornerstone of modern

theoretical physics and astronomy. One of the most fascinating attributes of GR is its abil-

ity to predict the future evolution of the spacetime and its matter constituents. Although

this holds true for many solutions of the field equations, some BHs possess inner horizons

beyond which the future evolution of the spacetime is highly non-unique.

The strong cosmic censorship (SCC) hypothesis [1] conjectured by Penrose, states that

appropriate initial data should be future inextendible beyond the Cauchy horizon (CH).

Such a horizon designates the boundary of the maximal (globally hyperbolic) develop-

ment of initial data beyond which the Einstein field equations lose their predictive power.

Therefore, for GR to maintain its deterministic nature, SCC should be respected in BH

spacetimes and, in the more modern and precise formulation of Christodoulou [2], this

requires that the spacetime metric should be inextendible beyond the CH, even as a weak

solution of the field equations.

Recent studies indicate that Reissner-Nordström-de Sitter (RNdS) geometries might

violate SCC. The work of [3] has provided strong numerical evidence which indicate that

perturbed RNdS BHs are serious counter-examples to the SCC conjecture. Such pre-

diction generalizes to RNdS BHs with a back-reacting scalar field [4]. Therefore, such
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spherically-symmetric electrically-charged solutions with a positive cosmological constant

do not respect SCC.

Most linearized studies of RNdS are based on two fundamental phenomena: (i) the

exponential blueshift effect at the CH, which might lead to the blow-up of the energy

density [5, 6] and to a mass-inflation singularity [7, 8] and (ii) the exponential decay of

perturbations on the exterior of asymptotically de Sitter (dS) spacetimes [9, 10]. These two

phenomena can compete and, in some cases, counter-balance each other leading to a CH

with enough regularity to allow the spacetime metric and the matter field to be extended

past it into a region where the field equations cannot predict, unambiguously, the evolution

of initial data. As a matter of fact, the spacetime and matter can be extended as weak

solutions to the Einstein equations, thus violating Christodoulou’s formulation of SCC.1

Another key ingredient is the blueshift and redshift factors that govern the growth

and decay of perturbations in the interior and exterior of RNdS BHs, respectively. The

blueshift amplification is governed by the surface gravity [11] of the CH, κ−, while the

redshift decay is governed by the spectral gap, α, which corresponds to the imaginary

part of the dominant, non-zero, quasinormal mode (QNM) [9, 10] (for a review on QNMs

see [12–14]). The combination of these ingredients in Einstein-Maxwell-scalar field theories

leads to the definition of a control parameter, β ≡ α/κ−, which decides the fate of SCC [15],

in the sense that if β > 1/2, then SCC is violated.

In [3], it was shown that near-extremally charged Reissner-Nordström-de Sitter BHs,

lead to possible violations of SCC under neutral massless scalar perturbations. This effect

can become even more severe in the case of the coupled electromagnetic and gravitational

perturbations [16]. Although it has been argued that a charged scalar field is enough to

preserve the validity of SCC [17, 18], there is still a finite volume of the parameter space of

near-extremal RNdS BHs where SCC may be violated [19–21]. This region is small, but still

existent, due to a superradiant instability occurring in RNdS when spherically-symmetric

charged scalar fields are scattered off the BH [22–24]. Charged Dirac field perturbations in

RNdS were also inadequate to prevent the violation of SCC [25, 26]. Although spherically-

symmetric spacetimes look problematic in the context of SCC, the same does not occur

for rotating geometries. In [27], scalar and gravitational perturbations of Kerr-de Sitter

(KdS) seem to respect the linearized analogue of SCC, although the opposite seems to

happen for Dirac perturbations [28]. An interesting study of the dimensional influence on

the validity of SCC in higher-dimensional RNdS and KdS was carried out in [29, 30]. In

particular, it was shown that higher-dimensional RNdS BHs may still violate SCC under

scalar perturbations, however higher-dimensional KdS BHs do not.

On the mathematical analysis side, an interesting suggestion to restore SCC in RNdS

BHs, was proposed in [31], where it was shown that the pathologies identified in [3] be-

come non-generic if one considerably enlarges the allowed set of initial data by weakening

their regularity. The considered data are also compatible with Christodoulou’s formulation

of SCC.

1In the case of asymptotically flat spacetimes, perturbations decay polynomially in the exterior and

therefore cannot compete with the exponential blueshift at the CH and, thus, SCC is respected.
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Further linearized studies of SCC were carried out in theories in which the scalar

field was not minimally coupled to the curvature. In [32], SCC was studied under a non-

minimally coupled massive scalar field on lukewarm RNdS and MTZ BHs. There, it was

argued that the validity of the SCC conjecture depends on the scalar field properties.

More recently, in [33], SCC was investigated in RNdS by examining the evolution of a

scalar field non-minimally coupled to the Ricci curvature. It was found that the stability

of the BH background and the fate of SCC depend on the coupling of the scalar field to

curvature. Furthermore, Born-Infeld-dS spacetimes seem to possess similar problems as

the ones depicted in near-extremal RNdS [34].

Considering this debate, and the importance of the validity of SCC, it would be in-

teresting to further analyze whether the violations that occur in GR are still present in

modified theories of gravity and if they tend to vanish, in some sense, after the inclusion

of corrections to GR.

Gravitational theories that modify the standard Einstein theory of gravity have a

long history. One recent class of these theories is the Horndeski scalar-tensor theory [35]

which involves second order field equations in four dimensions [36–38]. One important

term appearing in the Horndeski Lagrangian is the kinetic coupling of a scalar field to

the Einstein tensor. This term provides important modifications to the standard gravity

theory with a minimally coupled scalar field in both small and large distances (for a review

of this effect see [39]).

The main effect of the kinetic coupling of a scalar field to the Einstein tensor is that it

influences strongly the kinetic properties of the scalar field, acting as a friction term. This

was observed in cosmology [40, 41] and in local BH solutions, where it was found that when

the coupling becomes stronger, it takes more time for a BH to form [42]. The stability of

BHs in scalar-tensor theories in the presence of this coupling was discussed in [43, 44].

The QNMs of a BH with a scalar field coupled to the Einstein tensor were calculated

in [45]. Furthermore, the QNMs for a class of static and spherically symmetric BH contain-

ing the derivative coupling were studied in [46]. In turn, calculations of QNMs for a massive

scalar field, with the derivative coupling on a RN background, were performed in [47], while

vectorial and spinorial perturbations in Galileon BHs were performed in [48]. The effects

of the coupling of a scalar field to the Einstein tensor on the stability of RNdS [49] and

RNAdS BHs [50] were investigated very recently. These studies indicate that the decay of

perturbations is strongly influenced by an increasing non-minimal coupling and, in some

cases, lead to the destabilization of the BH exterior.

The motivation of our work is threefold: (i) do perturbations still decay exponentially

in Horndeski theory for asymptotically dS BHs and, if so, are they still dominated by

the dominant QNMs at late times? (ii) Is β, still, supposed to be bounded by 1/2 after

the introduction of higher-order derivative coupling terms to the energy-momentum tensor

and, if not, what is the bound beyond which SCC is violated? (iii) Is SCC still violated by

scalar fields non-minimally coupled to the Einstein tensor in RNdS spacetimes?

In the following sections, we aim to answer all these questions in the context of a

particular Horndeski theory. We will show that scalar fields non-minimally coupled to

the Einstein tensor, decay exponentially in the exterior of RNdS BHs and the late-time
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behavior is still dominated by the longest-lived QNM. We will prove that, in the particular

Horndeski theory, β > 1/2 is not adequate to decide the fate of SCC. In fact, we will show

that the existence of weak solutions beyond the CH of RNdS spacetime and the violation of

SCC occurs when β > 3/2. Finally, we will demonstrate that, even though the regularity

requirement for violation is considerably higher in the specific theory, “small” RNdS BHs

still violate SCC for sufficiently large non-minimal Horndeski couplings η, which satisfy

|η| < 1. By considering such coupling range, we will not deviate significantly from GR and

we will avoid potential discontinuities and instabilities

2 Weak solutions to the Einstein equations in Horndeski theory

To study the extendibility of solutions to the field equations beyond the CH of a BH

spacetime, we will consider a neutral massless scalar field φ non-minimally coupled to the

Einstein tensor, with coupling strength η ∈ R, and the following action:

S =

∫

M
d4x

√−g
(R− 2Λ

16π
− 1

4
FµνF

µν − 1

2
(gµν + ηGµν) ∂µφ∂νφ

)

, (2.1)

where we use units such that c = G = 1, R is the Ricci scalar, Fµν ≡ ∂µAν − ∂νAµ and

Gµν ≡ Rµν − 1
2g

µνR are the electromagnetic and Einstein tensors, respectively, Aµ is the

electromagnetic potential, Rµν the Ricci tensor and Λ > 0 the cosmological constant. The

spacetime solution that interests us is a spherically symmetric, electrically charged BH

immersed in a Universe with a positive cosmological constant, namely the RNdS solution

of the Einstein-Maxwell theory. Such a BH possess a CH in its interior and is described by

the line element

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

2, f(r) = 1− 2M

r
+
Q2

r2
− Λr2

3
, (2.2)

with M , Q the mass and charge of the BH and dΩ2
2 the metric on the 2-sphere. In the

next section, we will discuss this spacetime in more detail. In this section, though, we keep

the notation as general as possible although, in some steps, we use properties specific to

the spherically symmetric static spacetimes (2.2), such as a metric dependent on the radial

coordinate only.

We recall that varying (2.1) with respect to φ leads to the equation of motion

1√−g∂µ
(√−g (gµν + ηGµν) ∂νφ

)

= 0, (2.3)

while varying with respect to F leads to Maxwell’s equations

dF = d ⋆ F = 0, (2.4)

where ⋆ is the Hodge star operator. Finally, varying (2.1) with respect to gµν leads to the

field equations

Gµν + Λgµν = 8πTµν , (2.5)
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where

Tµν = T (s)
µν + T (em)

µν + ηΘµν , (2.6)

is the energy-momentum tensor associated with the scalar field φ coupled to the Einstein

tensor and the electromagnetic tensor Fµν . Tµν is divided in three parts: T
(s)
µν for the scalar

field, T
(em)
µν for the electromagnetic field and Θµν for the higher-order derivative terms, as:

T (s)
µν = ∂µφ∂νφ− 1

2
gµν∂αφ∂

αφ, (2.7)

T (em)
µν = Fα

µFµα − 1

4
gµνFαβF

αβ , (2.8)

Θµν = −1

2
∂µφ∂νφR+ 2∂αφ∂(µφR

α
ν) −

1

2
Gµν (∂φ)

2 +∇αφ∇βφRµανβ +∇µ∇αφ∇ν∇αφ

−∇µ∇νφ�φ+
1

2
gµν

[

−∇α∇βφ∇α∇βφ+ (�φ)2 − 2∂αφ∂βφR
αβ

]

. (2.9)

If we assume that φ and gµν are not necessarily C2, i.e. twice continuously differentiable,

we can still make sense of (2.5) by multiplying with a smooth, compactly supported, test

function ψ and integrating on both sides of the equation, in a small neighborhood V ⊂ M. If

the outcome of the integral is bounded, then we can get a weak solution to (2.5). Therefore,

to have a weak solution at the CH, we require finiteness of

∫

V
d4x

√−g(Gµν + Λgµν − 8πTµν)ψ = 0. (2.10)

The first two terms of (2.10) are the usual ones which lead to the requirement of square

integrability of the Christoffel symbols as follows:

∫

V
d4x

√−g(Gµν + Λgµν)ψ ∼
∫

V
d4x

√−g(∂Γ + Γ2 + Λgµν)ψ

∼ −
∫

V
d4x

√−g(∂ψ)Γ +

∫

V
d4x

√−gΓ2ψ + Λ

∫

V
d4x

√−ggµνψ,

(2.11)

where we schematically expanded Gµν ∼ Γ2+∂Γ, with Γ denoting the Christoffel symbols,

and we omit most of the indices. Therefore, for (2.11) to be bounded, we require Γ ∈ L2
loc,

where L2
loc denotes the space of locally square integrable functions in V. The third term

of (2.10) is the one that will define the higher regularity requirement, since higher-order

derivative couplings are present in Tµν .

Let us consider first the standard energy-momentum tensor of a minimally coupled

scalar field (2.7) (i.e. for η = 0) schematically as:

∫

V
d4x

√−gT (s)
µν ψ ∼

∫

V
d4x

√−g(∂φ)2 ψ . (2.12)

This terms leads to the requirement of integrability of (∂φ)2 or equivalently φ ∈ H1
loc,

where Hp
loc denotes the Sobolev space of functions in L2

loc such that their derivatives up to

order p, in a weak sense, are also in L2
loc.
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The electrostatic potential Aµ = −δ0µQ/r associated with Fµν , sourced by the BH’s

charge Q, is regular at the CH and, therefore, (2.8) does not further contribute to the

regularity requirements.

By considering the terms of Θµν with higher-order derivative couplings, we realize that

the first, second, fourth and ninth term of (2.9) yield integrability requirements through

the following term

∫

V
d4x

√−g(∂φ)2Rψ . sup(ψ)

∫

V
d4x

√−g
[

(∂φ)4 +R2
]

. (2.13)

The first term of (2.13) requires integrability of the gradient of φ to the fourth power, while

the second one has the form

∫

V
d4x

√−gR2 ∼
∫

V
d4x

√−g(∂Γ + Γ2)2 ∼
∫

V
d4x

√−g
[

(∂Γ)2 + 2Γ2∂Γ + Γ4
]

. 2

∫

V
d4x

√−g
[

(∂2gµν)
2 + (∂gµν)

4
]

, (2.14)

where, again, we schematically expanded R ∼ Γ2 + ∂Γ. For (2.14) to be bounded, we

require integrability of the gradient of gµν to the fourth power, or equivalently Γ ∈ L4
loc,

plus integrability of (∂2gµν)
2 or equivalently gµν ∈ H2

loc. Following similar procedures, we

realize that the third term of (2.9) requires integrability of the gradient of φ to the fourth

power and the remaining terms of (2.9) require finiteness of2

∫

V
d4x

√−g(�φ)2ψ ∼
∫

V
d4x

√−g(∂2φ)2ψ. (2.15)

This occurs if (∂2φ)2 is integrable at the CH, or equivalently φ ∈ H2
loc (recall that for

the case of η = 0 the extra terms of Θµν would vanish and one only requires φ ∈ H1
loc in

accordance with (2.12) and [3]). By realizing that the scalar field and spacetime metric

share similar regularity requirements [9, 10, 51, 52], it seems adequate to examine the

behavior of φ at the CH.

We note that, in our framework, the mass is at the level of a spacetime integral of Tµν
regarding regularity [53–55], so we do not expect further restrictions on β coming from

requiring finiteness of the mass.

It is worth mentioning that if a Horndeski theory does not admit a well-posed initial

value problem (IVP), then this would constitute a more severe problem than SCC itself.

In [56, 57], it is stated that the IVP expressed in the generalized harmonic gauge, for

some Horndeski theories, is not strongly hyperbolic, although there could be a different

choice of gauge in which the theories are strongly hyperbolic. Different methods, such

as the ADM decomposition utilized in [58], where the well-posedness of f(R) theories is

rigorously proven, could be considered to investigate such problem.

2For simplicity, we only demonstrate one of the terms involving second derivatives squared, but the rest

lead to equivalent regularity requirements.
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3 Quasinormal modes of scalar fields coupled to the Einstein tensor in

Reissner-Nordström-de Sitter spacetimes

The causal structure of RNdS spacetime possesses three horizons, the CH at r = r−, the

event horizon at r = r+ and the cosmological horizon at r = rc. The horizons radii satisfy

r− < r+ < rc and the surface gravity of each horizon is given by:

κi =

∣

∣

∣

∣

f ′(r)

2

∣

∣

∣

∣

r=ri

, i ∈ {−,+, c}. (3.1)

The scalar field will be treated as a small perturbation which does not back-react to the

fixed RNdS geometry for small η (see e.g. [47, 49]). To recast eq. (2.3) into a Schrödinger-

like form, we take advantage of the symmetries of the spacetime and expand φ as

φ ∼
∑

l

∑

m

R(r, t)

b(r)
Ylm(θ, φ), (3.2)

with l, m the usual spherical harmonic indices, b(r) = r
√
k and k = 1 − η

(

Λ +Q2/r4
)

.

Therefore, the scalar field obeys the usual linear non-homogeneous wave equation

∂2R(r, t)

∂r2∗
− ∂2R(r, t)

∂t2
− V (r)R(r, t) = 0, (3.3)

with dr∗ = dr/f(r) defining the tortoise radial coordinate r∗ and V (r) the effective potential

V (r) = f(r)

(

f(r)
2rkk′′ + 4kk′ − r(k′)2

4rk2
+ f ′(r)

2k + rk′

2rk
+

(

1 +
2Q2η

r4k

)

l(l + 1)

r2

)

.

(3.4)

The field expansion introduced in (3.2), transforms the equation of motion of φ to the

usual Schrödinger-like form (3.3) with a drawback: it introduces a discontinuity regime on

r, whenever b(r) = 0. To avoid such discontinuity we treat cases in which η is small enough,

considering the Horndeski action as a perturbative effect to GR. Such a choice is essential

in order to consider the RNdS spacetime as a solution of GR. Therefore, by restricting to

couplings satisfying |η| < 1 we evade discontinuities in (3.4) and subsequently scalar field

instabilities, as analyzed in [49].

If we assume a harmonic time dependence of the form R(r, t) = Φ(r)e−iωt, then (3.3)

acquires the standard form
d2Φ

dr2∗
+ (ω2 − V (r))Φ = 0. (3.5)

To calculate the QNMs ω of (3.5) we impose the following, physically motivated,

boundary conditions:

Φ ∼
{

e−iωr∗ , r → r+,

eiωr∗ , r → rc.
(3.6)

To extract the regularity requirement of φ at the CH of RNdS, we look at the asymp-

totic behavior of scalar waves there. As r → r−, then V (r) → 0, so the first independent

mode solution of (2.3) can be expressed as

φ1 ∼ e−iω(t+r∗), (3.7)

– 7 –
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and the second as

φ2 ∼ e−iω(t−r∗). (3.8)

It is more convenient to use outgoing Eddington-Finkelstein coordinates, with u = t− r∗,

which are regular at the CH. In that case

φ1 ∼ e−iω(t+r∗) = e−iωue−2iωr∗ , (3.9)

φ2 ∼ e−iω(t−r∗) = e−iωu. (3.10)

Near the CH, the tortoise coordinate becomes

r∗ =

∫

f−1dr ∼ log |r − r−|
f ′(r−)

, (3.11)

where f(r → r−) ∼ |r− r−| modulo irrelevant terms. Obviously, (3.10) is regular, since for

r = r− (u = const.), φ2 is approximately constant. The solution which might introduce

non-smoothness and, thus, defines the regularity requirement at the CH will be

φ1 ∼ e−iωue−2iω log |r−r−|/f ′(r−) = e−iωu|r − r−|−2iω/f ′(r−) = e−iωu|r − r−|iω/κ− . (3.12)

If we assume modes of the form ω = ωR + iωI , then

φ1 ∼ |r − r−|iωR/κ− |r − r−|−ωI/κ− ∼ |r − r−|iωR/κ− |r − r−|β , (3.13)

where we ignored the e−iωu factor, since it is smooth at the CH. The first factor of (3.13)

is purely oscillatory, thus only the second factor plays a role in the asymptotic behavior of

the scalar field. We recall that we have set β ≡ α/κ−, where α ≡ −Im(ω) is the spectral

gap or the imaginary part of the dominant, non-zero, QNM.

The highest requirement for the existence of extensions as weak solutions in the par-

ticular theory in study is φ ∈ H2
loc. Since the only relevant coordinate is the radial one,

this translates to

∫

V
(∂2rφ)

2dr ∼
∫

V
|r − r−|2(β−2)dr ∼ |r − r−|2β−3

2β − 3
. (3.14)

So, for (3.14) to be finite at r = r−, we require

β >
3

2
. (3.15)

Hence, in our theory, the requirement (3.15) has to be satisfied for the field equations (2.10)

to make sense in a weak manner at the CH. Recall that if η = 0 then φ ∈ H1
loc is enough to

guarantee the violation of SCC, which leads to β > 1/2, in accordance with (2.12) and [3].

If (3.15) holds, then the SCC hypothesis is violated. If, on the other hand, β < 3/2 then

at least the term (3.14) will blow up and, thus, (2.10) will be infinite. In that case, the

field equations will not have weak solutions at V and SCC will be respected.

This novel threshold value for β is clearly higher than the one found in previous studies.

This is due to the existence of higher-order derivative terms that the non-minimal coupling

– 8 –
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to the Einstein tensor introduces to the energy momentum tensor. As a result, in the

particular Horndeski theory, we require φ ∈ H2
loc in order to have weak solutions of the

field equations, whereas in previous studies the requirement was only φ ∈ H1
loc.

To calculate β we need to extract the dominant QNMs of the non-minimally coupled

scalar field propagating on a fixed RNdS background. We use two different numerical

methods to do so. The first one relies on the Mathematica package QNMSpectral devel-

oped in [59] (which, in turn, is based on methods proposed in [60]). The second one is

based on the numerical integration of (3.2) in the time domain, developed in [61], where the

wave equation is integrated in double-null coordinates, using two Gaussian wave-packets

as Cauchy data. By applying the Prony method on the numerical evolution of the per-

turbation, we can then extract the QNMs. The Prony method was first introduced to

the extraction of QNMs in [62]. In appendix A, we demonstrate that both methods lead

to QNMs which agree with very good precision in the parameter space region of interest

(see table 1). Furthermore, the trustworthy method of Wentzel-Kramers-Brillouin (WKB)

approximation [63] is used in various cases to justify the validity of our numerics at the

eikonal limit.

4 Dominant quasinormal-mode families of Reissner-Nordström-de Sitter

black holes in Horndeski theory

According to [3], the region of interest in RNdS, where the violation of SCC may occur, lies

close to charge extremality. With the aforementioned numerics, in the region of interest,

we find, again, three distinct families of modes:

The photon sphere family: the photon sphere (PS) QNMs, are represented by damped

oscillations whose decay rate, ωI , is directly connected to the instability timescale

of null geodesics at the photon sphere. For this family of modes, higher angular

momentum represents smaller decay rates such that, in the limit of interest, the most

representative modes are those for which l → ∞. By inspection [3, 26, 29], we find

that l = 10 provides a good approximation for the imaginary part of the dominant

mode (relative to β).

The de Sitter family: The de Sitter (dS) family of modes are related to the accelerated

expansion of the Universe which, in turn, is related to the surface gravity of the

cosmological horizon of pure dS space [64, 65]. They correspond to purely imaginary

modes which can be very well approximated by the pure dS QNMs [66–68]

ωn=0,pure dS/κ
dS
c = −il, (4.1)

ωn 6=0,pure dS/κ
dS
c = −i(l + n+ 1), (4.2)

where κdSc =
√

Λ/3 is the surface gravity of the cosmological horizon of pure dS space

and n is the overtone number. The dS family of modes has a surprisingly negligible

dependence on the BH charge and seems to be well described only by κdSc . Such

expressions are exactly the same for the Horndeski action studied here, and are only
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modified in the massive scalar field case (see e.g. eq. (22) in [49]). The dominant

mode is obtained for n = 0, l = 1 and is almost identical to (4.1), while higher

overtones have increasingly larger deformations to (4.2)

The near-extremal family: the near-extremal (NE) family of modes arises and domi-

nates the dynamics of the ringdown waveform at late times, for very high values of

the BH charge (r− ∼ r+). For the RNdS spacetime in GR, the modes of this family

approach

ωNE = −i(l + n+ 1)κ− = −i(l + n+ 1)κ+, (4.3)

where κ− and κ+ are the surface gravity of the Cauchy and event horizon, respec-

tively, in the RNdS spacetime. The dominant mode is obtained for n = l = 0. Higher

angular numbers l admit larger (in absolute value) imaginary parts, thus being irrel-

evant to our discussion.

In the particular Horndeski theory, our numerics indicate that (4.3) is highly affected

by the introduction of η. A negative η makes the NE modes decay slower, while a positive η

makes the NE modes decay faster. An analytic expression for this family is, unfortunately,

lacking.

In appendix A, we show, numerically, that the late-time behavior of scalar perturba-

tions propagating on RNdS BHs in the particular Horndeski theory, is governed by the

dominant QNMs. Furthermore, perturbations always decay exponentially and no instabil-

ities are found for the couplings considered (|η| < 1). As previously discussed, η captures

the deviation from classical GR and large enough couplings η lead to instabilities of the

BH exterior [49]. The onset of these linear instabilities designates the point beyond which

the BH itself senses the modification of gravity, and this either heads to the scalarization

of the BH and the formation of a new stable object or to the dispersion of all matter. We

will not be interested in |η| > 1, since the discussion of SCC would be irrelevant in regions

of instabilities of the RNdS BH in study.

In figure 1 and figure 2, we display the interplay between the three families of modes for

several values of Λ and η. The PS family, depicted with blue color, seems to decay faster

(resp. slower) for negative (resp. positive) η. This can be explained with the following

argument: the coupling η introduces a new scale in the theory. If η is negative, then it acts

as a friction term absorbing energy from the kinetic energy of the scalar field [39]. This

means that the scattered wave has less kinetic energy to maintain its evolution, so it decays

faster. On the contrary, if η is positive this effect does not occur and the scattered wave

maintains its energy.3 The PS family seems to dominate the dynamics of the ringdown at

late times for large enough Λ (see right panels of figure 1). In these regions of the parameter

space, we expect β to be defined by the PS modes (until the NE family takes over).

3This can also be understood as an effect of the geometry. For example, in a cosmological model the

curvature effects are strong during inflation absorbing energy, and it was found in [40] that a negative η

leads to a fast collapse of the inflaton field to the initial singularity, while, after inflation, curvature is small

and a positive η leads the universe to exit the quasi-de Sitter phase.
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Figure 1. Imaginary parts (divided by the surface gravity κ
−
of the CH) of the dominant families

of modes of a non-minimally coupled scalar field propagating on a fixed near-extremal RNdS back-

ground. The top panels show the behavior of the modes for η = −0.5, while the bottom ones show

the behavior of the modes for η = 0.5. The dominant (approximated with l = 10) PS modes are

depicted with blue lines, the dominant (l = 1) dS modes with dashed red lines and the dominant

(l = 0) NE modes with dotted green lines.

As expected, the dS family remains unaffected under the introduction of η. Moreover,

it is dominant for small Λ as expected from [3, 26] (see left panels of figure 1). Hence, for

small Λ, we expect β to be defined by the dS modes (until the NE family takes over).

Finally, the NE family, indeed, dominates close to extremality and decays faster (resp.

slower) for η > 0 (resp. η < 0). In figures 1, 2, we can always find a region in the parameter

space where the NE family is the one with the smallest imaginary part contribution and,

therefore, β will be defined by the NE modes in these regions. We can, therefore, realize

that a possible violation of SCC might occur for large enough η > 0, since −Im(ω)/κ− → 1

from above (see figure 2).

5 The fate of strong cosmic censorship

The interplay between the families of modes with respect to the non-minimal coupling η

will decide the fate of SCC. Recall that, if β > 3/2, weak solution of the field equation can

exist at the CH and can be extended beyond it, thus violating the SCC conjecture.

To calculate β we always choose the smallest, non-zero, contribution of imaginary

parts from all the families of modes. In figure 3, we plot β for various choices of η and
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Figure 2. Imaginary parts (divided by the surface gravity κ
−
of the CH) of the dominant families

of modes of a non-minimally coupled scalar field with η = 0.8 (top panel) and η = 0.975 (bottom

panel), propagating on a fixed near-extremal RNdS background. The dominant (approximated with

l = 10) PS modes are depicted with blue lines, the dominant (l = 1) dS modes with dashed red

lines and the dominant (l = 0) NE modes with dotted green lines.

Λ for near-extremally charged RNdS BHs. The sharp transitions on the figures designate

the points, in the parameter space, where the NE family begins dominating the dynamics

against either the PS or dS family, as previously discussed. Different colors in the plots

designate different choices of η.

We observe that, as η increases from negative to positive, the interplay of the different

families of QNMs gives rise to regions with larger or smaller β, depending on the cosmolog-

ical constant, until the point where the NE modes dominate and terminate β at unity, for

extremal BH charge. In the region where the NE family dominates, we clearly see a pattern

which indicates that the increment of η leads to the increment of β. More precisely, when

η < 0 we observe that β < 1 always, indicating that in such regions SCC is respected in

the particular Horndeski theory. When η > 0, β is not bounded by an absolute threshold

but depends on the choice of Λ.

On the contrary, the increment of Λ has the ability to decrease β near extremality. The

effects of increasing Λ and η seem to counterbalance each other, for most of the volume

of the subextremal parameter space, which leads to β < 3/2. For all these regions, SCC

should be respected.

For small Λ and large enough η, β can exceed 3/2, according to our numerics, thus

putting the validity of SCC into question. On the top left panel of figure 3 (see also bottom
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Figure 3. The parameter β calculated from the dominant QNMs of a non-minimally coupled scalar

field propagating on a fixed near-extremal RNdS background. The black horizontal line denotes

β = 3/2. The values of η shown are −0.975 (blue), −0.5 (red), 0.5 (green) and 0.975 (orange).

left plot in figure 2), for ΛM2 = 0.01 and η = 0.975, we do find a very small region where

β > 3/2. In figure 4, we zoom into this region and increase η smoothly. We demonstrate

that as η → 1, the violation gap increases. We expect a similar behavior for even smaller

cosmological constants. Hence, in this region of the parameter space, where β > 3/2, the

SCC conjecture is violated in the particular Horndeski theory.

We can safely assume that as η increases even more, the violation gap will be enlarged.

Such deviation from GR, though, leads to discontinuities and instabilities, at the linear

level, as previously discussed (see [49]). Therefore, more increment of η beyond unity is

futile, since for RNdS BHs with an unstable exterior, the discussion of the validity of SCC

is redundant.

6 Conclusions

The modern formulation of strong cosmic censorship, proposed by Christodoulou, states

that appropriately chosen initial data should be future inextendible beyond the Cauchy

horizon, as a suitable metric with square-integrable Christoffel symbols. The conjecture

includes spacetimes which possess a Cauchy horizon, like the ones describing charged and

rotating black holes.

As recently shown in [3, 4], an electrically charged black hole in de Sitter spacetime

with a scalar field poses a serious threat to the validity of strong cosmic censorship. If a
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Figure 4. The parameter β calculated from the dominant QNMs of a non-minimally coupled

scalar field propagating on a fixed near-extremal RNdS background with ΛM2 = 0.01. The black

horizontal line denotes β = 3/2. The values of η shown are 0.96 (blue), 0.97 (red), 0.98 (green) and

0.99 (orange).

near-extremally charged black hole could exist in our Universe, then macroscopic observers

would, in principle, reach a region deep inside the black hole interior where the deterministic

nature of physical laws breaks down and the observers would live a highly unpredictable

future. The passage beyond the Cauchy horizon would be smooth enough for the observers

to not be destroyed [8], while the field equations would still make sense [69].

Luckily for all of us, there are no near-extremal electrically charged black holes, as far

as we know. In fact, most black holes seem to be almost neutral due to various dissipation

processes. From the present physical point of view, it would be interesting, then, to study

the fate of strong cosmic censorship in rapidly rotating black holes, which seem to exist in

nature [70, 71]. An answer, given recently in [27], appears to be positive; rapidly rotating

black holes in de Sitter spacetime seem to respect strong cosmic censorship. Although

this might be seen as the end of scenarios of realistic astrophysical black holes violating

determinism, if we consider strong cosmic censorship as a mathematical way of testing

classical General Relativity and its limits, then the violation of strong cosmic censorship

in Einstein-Maxwell theory is not to be taken lightly.

One, then, would wonder if slight modifications to General Relativity could heal such

a fragility and restore predictability even for spherically symmetric spacetimes. In this

study, we have considered a non-minimal coupling between the Einstein tensor and a probe

scalar field, which propagates on a fixed Reissner-Nordström-de Sitter background. Such a

higher-order derivative coupling theory belongs to the Horndeski scalar-tensor class. The
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theory modifies the kinematic properties of the scalar field and, more importantly, makes

the regularity requirements, for the existence of weak solutions of the field equations at

the Cauchy horizon, even stronger. As a matter of fact, we have shown that the parameter

β that decides the fate of strong cosmic censorship, in this theory, requires β > 3/2 for

violation to occur, in contrast to previously reported studies where the corresponding

condition was β > 1/2. This novel requirement makes the formation of a singularity at

the Cauchy horizon more likely, in a sense, and therefore, a stable enough Cauchy horizon

seems harder to obtain under scalar perturbations.

The setup seems very promising since, for most of the volume of the parameter space,

strong cosmic censorship appears to be respected. However, our study indicates that

we can still find regions in the sub-extremal parameter space of “small” near-extremal

Reissner-Nordström-de Sitter black holes, with positive non-minimal couplings, where the

conjecture is not respected. Why spherical symmetry is unfavored, even in this theory,

remains unknown
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A The late-time behavior of scalar perturbations propagating on Reiss-

ner-Nordström-de Sitter black holes in Horndeski theory

The late-time behavior of perturbations is a crucial ingredient for the study of the CH

instability and the fate of SCC. It is already proven [9, 10] that perturbations of Kerr-

de Sitter and Kerr-Newman-de Sitter BHs decay at late times, following an exponential

Price law. These results account for the linear and non-linear stability of this class of

solutions. Moreover, the decay of perturbations is governed by the dominant QNMs of the

spacetime. In particular, it has rigorously been shown that, for some φ0 ∈ C,

|φ− φ0| ≤ Ce−αt, (A.1)

with φ0 a constant shift to the scalar field configuration representing the “zero-mode” of

the dS family, and α = −Im(ω), the spectral gap, i.e. the imaginary part of the lowest-

lying/dominant, non-zero QNM, ω.

In this section, we shall provide strong numerical evidence which indicates that (A.1)

still holds when the scalar field, which propagates on a fixed RNdS background, is coupled
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Figure 5. Time evolution of the scalar perturbation φ non-minimally coupled to the Einstein

tensor with coupling η propagating on a fixed RNdS background. The BH mass is M = 1 for all

cases. Case 1 (upper left): for Λ = 0.01, Q/Qmax = 0.995 and η = −0.5 the extracted dominant

QNM belongs to the dS family with l = 1, where ω = −0.0577i. Case 2 (upper right): for Λ = 0.01,

Q/Qmax = 0.999 and η = 0.5 the extracted dominant QNM belongs to the NE family with l = 0,

where ω = −0.0454i. Case 3 (lower left): for Λ = 0.06, Q/Qmax = 0.995 and η = −0.5 the extracted

dominant QNM belongs to the PS family with l = 10, where ω = 2.1197− 0.0767i. Case 4 (lower

right): for Λ = 0.06, Q/Qmax = 0.999 and η = 0.5 the extracted dominant QNM belongs to the NE

family with l = 0, where ω = −0.0422i.

to the Einstein tensor. To do so, we depict four different cases, where various families

dominate the late-time behavior of the perturbation.

In figure 5, we show the evolution of a non-minimally coupled scalar perturbation on

a RNdS background for different parameters. For Case 1, our frequency-domain calcula-

tions indicate that the dominant QNM will belong to the dS family, therefore it will be

purely imaginary. By numerically integrating (3.3) with appropriate initial data and the

designated parameters of Case 1, we can evolve the perturbation with respect to time. We

see that, indeed, an exponential tail appears after the quasinormal ringing phase which

dominates the late-time behavior of the ringdown signal.4 By utilizing the Prony method,

we have extracted the dominant mode at late times which matches very well the QNM

calculated with the frequency-domain analysis.

For Cases 2 and 4, our frequency-domain calculations indicate that the dominant

QNMs will belong to the NE family, therefore they are going to be purely imaginary, as

4In Log-Linear scale, exponential functions are depicted by straight lines.
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Case 1

l time-domain frequency-domain

0 −0.0928i −0.0925i

1 −0.0577i −0.0577i

10 2.4787 −0.0925i 2.4771 −0.0927i

Case 2

l time-domain frequency-domain

0 −0.0454i −0.0487i

1 −0.0577i −0.0577i

10 2.6524 −0.0762i 2.6505 −0.0763i

Case 3

l time-domain frequency-domain

0 −0.0826i −0.0826i

1 −0.1414i −0.1414i

10 2.1197 −0.0767i 2.1187 −0.0768i

Case 4

l time-domain frequency-domain

0 −0.0422i −0.0422i

1 −0.1414i −0.1414i

10 2.2874 −0.0644i 2.2862 −0.0645i

Table 1. QNMs of non-minimally coupled scalar perturbations propagating on a RNdS background.

The modes have been extracted with a time-domain and a frequency-domain scheme. The cases

depicted are: Case 1, with M = 1, Λ = 0.01, Q/Qmax = 0.995 and η = −0.5; Case 2, with M = 1,

Λ = 0.01, Q/Qmax = 0.999 and η = 0.5; Case 3, with M = 1, Λ = 0.06, Q/Qmax = 0.995 and

η = −0.5 and, finally; Case 4, with M = 1, Λ = 0.06, Q/Qmax = 0.999 and η = 0.5.

well. By evolving the perturbation with respect to time, using the designated parameters of

Cases 2 and 4, respectively, we see that, an exponential tail appears after the quasinormal

ringing phase which dominates the late-time behavior of the ringdown signal. The extracted

dominant QNMs at late times, again, match very well the QNMs calculated with the

frequency-domain analysis. Although, in the corresponding panels of figure 5, the decay of

the perturbation is not evident, due to the large decay timescale, by zooming we can still

see that the perturbations indeed decay with respect to time.

Finally, for Case 3, the frequency-domain analysis indicates that the dominant QNM

will belong to the PS family, therefore it is going to be complex. By evolving the pertur-

bation with respect to time, using the designated parameters of Case 3, we see that the

quasinormal ringing phase dominates the ringdown signal even at late times, due to the

complex nature of the dominant QNM. The extracted dominant QNM at late times, again,

match very well the QNM calculated with the frequency-domain analysis.

We complement our analysis with table 1, where we demonstrate all dominant and

a few subdominant QNMs for all cases discussed above. The table also reveals that the

results of the time-domain and frequency-domain analysis, used here, match with very

good precision.
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