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Here we investigate theoretically and numerically the coupling between surface plasmon polaritons

(SPPs) in monolayer graphene sheet arrays that have a period much smaller than the wavelength. We show

that when the collective SPP is excited with an out-of-phase illumination, the beam tends to propagate

toward the opposite direction of the Bloch momentum, reflecting a negative coupling between the

constituent SPPs. In contrast, for in-phase illumination, the incident beam is split into two collective

SPPs that are highly collimated and display low propagation loss. Moreover, the coupling between the

individual SPPs results in a reduction of the modal wavelength of the SPP in comparison with that of a

single graphene sheet.
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Graphene, an allotrope of carbon consisting of sp2

bonded carbon atoms arranged in one atom thick honey-
comb lattice, has attracted extensive attention since the
practical production of stable graphene in 2004 [1]. A great
diversity of electronic and optical effects have been found
in graphene such as integer and fractional quantum Hall
effect at room temperature, tunable band gap, ballistic
electronic propagation, optical saturable absorption and
luminescence [2–4]. The optical response of graphene is
characterized by its surface conductivity which greatly
relates to its chemical potential (Fermi energy). Graphene
manifests strong absorption of light in the near-infrared and
visible range [5]. At lower frequencies such as THz and
far-infrared range, the intraband transition of electrons
dominates and graphene behaves like a metal. The trans-
verse magnetic (TM) polarized surface plasmon polaritons
(SPPs) could therefore be supported by graphene. SPPs in
graphene possess unique features as compared with metals,
such as huge modal index, relatively low loss, and flexible
tunability by electric field, magnetic field, and gate voltage
[6]. These features make graphene a promising material for
SPP-based optical nanodevice applications.

So far, the study on graphene plasmonics mostly focused
on SPPs in monolayer graphene, graphene ribbons, and
double-layer graphene sheets [6–10]. The excitation of
SPPs in graphene is theoretically proposed by using nano-
emitters in graphene sheets [11,12]. Experimental observa-
tion of SPPs in graphene has also been reported by using
electron spectroscopy [9] and near-field microscopy
[13,14]. As a fundamental issue, the weak coupling of
SPPs in between double-layer graphene sheets was recently
investigated [15]. The coupling of SPPs in a periodic multi-
layer graphene system, which is physically different from

that in double-layer graphene sheets, is also an important
topic but has not been explored yet.
In this Letter, we propose a monolayer graphene sheet

array (MGSA) composed of periodically stacked mono-
layer graphene sheets with identical interlayer space. The
configuration follows the conventional dielectric and me-
tallic waveguide arrays [16–18] that have shown interest-
ing properties such as diffraction-free beam propagation
and negative refraction. Wewill use such a configuration to
study the coupling of graphene sheet arrays as a discrete
optical system and explore new effects from the tunable
properties and ultrathin thickness of graphene.
A diagram of the MGSA is shown in Fig. 1(a). The

graphene sheets with a period of d are embedded in the
dielectric medium with a relative permittivity denoted by
"d. The surface conductivity of graphene, �g, is governed

by the Kubo formula [19] including the interband and
intraband transition contributions. It is related to tempera-
ture T, chemical potential �c, momentum relaxation time
�, and photon frequency !. In the THz and far-infrared
range, the intraband transition contribution dominates [8]

and the surface conductivity simplifies to �g ¼ ie2�c

�@2ð!þi��1Þ
on condition that�c � kBT, where e is the electron charge
and kB Boltzmann’s constant. In this study, the excitation
wavelength of � ¼ 10 �m (@! ¼ 0:124 eV) in air is ini-
tially considered and the chemical potential of graphene is
assumed to be �c ¼ 0:15 eV. The momentum relaxation
time is chosen as � ¼ 0:5 ps, corresponding to a mean free
path up to 500 nm at room temperature (T ¼ 300 K) that
coincides with the experiment [20,21].
We start from investigating the dispersion relation of

SPPs in the MGSA. Considering any two neighboring peri-
ods of the array, for example, the region in �d < x < d as
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shown in Fig. 1(a), the magnetic field in between adjacent
graphene sheets for TM polarized SPPs can be written as

Hy ¼
(
Aþ exp½��ðxþ dÞ� þ A� expð�xÞ �d < x < 0

Bþ expð��xÞ þ B� exp½�ðx� dÞ� 0< x< d
;

(1)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z � "dk

2
0

q
with kz the wave vector of SPPs in

the z direction and k0 ¼ 2�=� being the wave vector in
air, A� and B� represent the amplitudes of SPPs modes
damping toward �x directions in between adjacent gra-
phene sheets. According to the Bloch theorem, we have
B� ¼ A� expðikxdÞ, where kx is the Bloch wave vector
along the x direction. According to Maxwell’s equations,

the tangential electric field Ez ¼ i�0

k0"d

@Hy

@x / i�0�
k0"d

, where �0

is the impedance of air. Considering the boundary condi-
tions [8] Eþ

z ¼ E�
z and Hþ

y �H�
y ¼ �gEz at x ¼ 0 with

E�
z andH�

y being the fields at the two sides of graphene, we

can get the dispersion relation

cosð’Þ ¼ coshð�dÞ � ��

2
sinhð�dÞ; (2)

where � ¼ �0�g=ði"dk0Þ and ’ ¼ kxd being the Bloch

momentum [22,23]. Considering that ! � ��1, � is nearly
a real number and we find � � 46 nm at � ¼ 10 �m
and �c ¼ 0:15 eV. In case d is large enough, kz ap-
proaches the wave vector of SPPs in monolayer graphene

kSPP ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"d þ ð 2

k0�
Þ2

q
. Thus the modal wavelength of

SPPs in monolayer graphene is given by �SPP ¼ 2�=
ReðkSPPÞ � ��. At a given frequency, Eq. (2) develops
into the diffraction relation kzð’Þ. The kzð’Þ curves in the

first Brillouin zone for � ¼ 10 �m with respect to different
d values are plotted in Fig. 1(b). Here the graphene sheets are
initially assumed to be freestanding in air with "d ¼ 1 for
simplicity. Obviously, there is a critical period below which
kz drops dramatically at the Brillouin zone center (’ ¼ 0).
At ’ ¼ 0, Eq. (2) reduces to tanhð�d=2Þ ¼ ��=2, which
has only a trivial solution of � ¼ 0 as d < �. Therefore, the
critical period equals �. As shown in Fig. 1(b), when d��,
the wave vector of SPPs in the MGSA varies slowly around
the wave vector of SPPs in an individual graphene sheet
(kz � kSPP), displaying the weak coupling of adjacent
graphene sheets in the array. Therefore, the dramatic varia-
tion of the diffraction curve in d < � reflects the strong
coupling of SPPs.
The loss of SPPs in the MGSA is characterized by the

imaginary part of kz, which is plotted in Fig. 1(c) as a
function of ’ and d. The longitudinal propagation distance
of SPPs can be simply written as Lz ¼ ½2ImðkzÞ��1. At the
Brillouin zone center, the loss is evidently lower within the
strong coupling regime than in other regimes because of
� � 0 and hence the small Ez field. Considering the sur-
face power loss density Ploss ¼ Reð�gÞjEzj2=2 [24], the

loss due to the conduction current in graphene remains at a
low level for small Ez. However, it would increase at the
Brillouin zone edges where � � k0 and the electric field is
significantly enhanced. It is found that Lz ¼ 0:78 �m
(Lz=�p ¼ 8:8) at d ¼ 20 nm and ’ ¼ �, while in com-

parison, Lz ¼ 1:5 �m at ’ ¼ 0:2� in the vicinity of the
Brillouin zone center, doubling the propagation distance of
0:74 �m in monolayer graphene. When d � �, the even
superposition of SPPs makes the fields between adjacent
graphene destructive and most of the energy is carried in
graphene, resulting in a larger propagation loss at the
Brillouin zone center [15]. The singularity around d ¼ �
is because of the abrupt change from a high loss SPP mode
to a lossless one (� ¼ 0) for which the energy is carried in
the dielectric. In this Letter, we only focus on the strong
coupling regime (d < �).
We consider a situation that SPPs are individually

excited in each graphene sheet of the MGSA. The
amplitude of SPPs in the nth graphene is given by

An ¼ A0 expð� x2n
W2

0

Þ expðin’0Þ, where xn ¼ nd denotes

the location of graphene, W0 is the Gaussian width of the
amplitude envelope, and ’0 is the initial phase difference
between adjacent graphene. This initial condition could
yield SPP modes in the MGSA with the Bloch mo-
menta centered at ’0. In practice, the SPPs in individual
graphene sheets can be excited by nanoemitters such as
quantum dots, molecules, dielectric or metallic protuber-
ances lying on graphene [12]. The amplitude and initial
phase of SPPs could be controlled by adjusting the size and
z direction locations of the nanoemitters, respectively.
Figures 2(a)–2(d) show the simulation results of SPP in-
tensity (jEj2) distributions in the MGSA for different ’0

by using the finite-difference frequency-domain (FDFD)

FIG. 1 (color online). Schematic of MGSAs and diffraction
relation of SPPs. (a) Schematic of MGSAs. (b) Diffraction
relation of SPPs in the MGSA as the period d is varying.
(c) ImðkzÞ as a function of ’ and d, where ’ ¼ kxd. The
corresponding plots of ReðkzÞ and ImðkzÞ for d ¼ 46 nm are
also shown (gray curves or green curves online).

PRL 109, 073901 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 AUGUST 2012

073901-2



method [25]. Here we choose d ¼ 20 nm and W0 ¼ 3d.
The graphene is treated as an ultrathin metallic film with a
thickness of � ¼ 1 nm and a relative equivalent permit-
tivity of "g;eq ¼ 1þ i�g�0=ðk0�Þ [6,7]. The minimum

mesh size equals �=5 in the FDFD computations. The
numerical convergence has been checked by using a
smaller � of 0.5 nm in calculating the effective index of
SPPs in a single graphene sheet. The deviation is less than
2%. At ’0 ¼ 0, when SPPs are incident in phase, interest-
ingly, the field splits into two separated beams propagating
with a splitting angle of 79.6�, as shown in Fig. 2(a).
Moreover, the two beams are well collimated and
suffer low propagation loss. Each beam has a width of
Wx ¼ 143 nm (� �=70) in the x direction at z ¼ 1 �m.
In contrast, SPPs experience stronger diffraction at’0 ¼ �
and transmit in a shorter distance, as shown in Fig. 2(b).
The beam width becomesWx ¼ 209 nm at z ¼ 1 �m. For
’0 ¼ ��=2, the beams tilt to the directions of 	 ¼ �27:1�
with equivalent widths of Wx ¼ 235 nm at z ¼ 1 �m,
as shown in Figs. 2(c) and 2(d).

Figure 2(e) shows the Ex-field distribution of SPPs in the
MGSA as ’0 ¼ �=2. The width of the incident field has
been changed to W0 ¼ 8d to avoid diffraction. The
Poynting flux S indicates the direction of energy transfer.
The phase variation is determined by the wave vector k,
which is normal to the equiphase surfaces. It is found that
Sx < 0 and kx > 0 in the lateral direction, which evinces

the negative coupling in MGSAs under out-of-phase
illumination. Negative coupling is discovered in the situ-
ation that the energy and phase of the mode propagate in
opposite directions (Sxkx < 0) when it couples from one
waveguide to another [26]. Such behavior stems largely
from the concave diffraction curve of MGSAs that is
contrary to conventional periodic dielectric waveguide
arrays where positive coupling is found [22].
Figure 2(f) shows the Ex-field distribution at ’0 ¼ �.

Themodal wavelength of the collective SPPs can bewritten
as �p ¼ 2�=ReðkzÞ [27]. At d ¼ 20 nm, the modal wave-

length reaches �p ¼ 88:4 nm. In contrast, the wavelength

of SPPs in monolayer graphene is �SPP ¼ 144:6 nm.
According to Eq. (2), the dispersion relation reduces to
cothð�d=2Þ ¼ ��=2 at the Brillouin zone edges. In case

d 	 �, we approximately have �p � 2�=� ¼ �ðd�Þ1=2,
and hence �p / ð�cd="dÞ1=2!�1. In order to decrease the

modal wavelength, accordingly, one may either decrease
the array period or fix the chemical potential at a low level.

Considering that �p=�SPP ¼ ðd=�Þ1=2, the modal wave-

length of SPPs in the MGSA could be �3 times smaller
than that in monolayer graphene at d ¼ 5 nm.
The output SPP intensity profile as a function of ’ and

position in the x direction is illustrated in Fig. 3(a) at z ¼
1 �m. The positions opposite to ’0 evidently demonstrate
the negative coupling of SPPs in the MGSA. The direction
of the Poynting flux is determined by the group velocity and
is given by 	ð’0Þ ¼ � arctanðd@kz=@’Þj’¼’0

. At a dis-

tance of L in the z direction, the intensity maximum of
output SPPs locates at x ¼ L tanð	Þ ¼ �Ld@kz=@’j’¼’0

.

FIG. 2 (color online). (a)–(d) Intensity (jEj2) distributions of
SPPs in the MGSA for different excitation conditions:
(a) ’0 ¼ 0, (b) ’0 ¼ �, (c) ’0 ¼ �=2, and (d) ’0 ¼ ��=2,
where ’0 denotes the initial phase difference of SPPs between
neighboring graphene. The array period is d ¼ 20 nm
and incident field width W0 ¼ 3d. (e) Ex-field distribution for
’0 ¼ �=2. (f) Ex-field distribution for ’0 ¼ �. In (e) and (f),
the incident field has a width of W0 ¼ 8d.

FIG. 3 (color online). (a) Numerical results of SPP intensity
distribution along the x direction at z ¼ 1 �m as ’0 is varying.
The solid curve indicates the theoretical prediction of the SPP
beam positions. (b) Diffraction relation of SPPs for d ¼ 20 nm.
The dotted lines represent the asymptotes of the diffraction curve
in the vicinity of the Brillouin zone center. (c) Beam splitting
angle 2j	j as a function of the chemical potential of graphene.
(d) Intensity (jEj2) distribution of SPPs at z ¼ 0:5 �m for
�c ¼ 0:5 eV. The envelope of the intensity is represented by
Gaussian fitting with each beam having a width of Wx.
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The analytical result is plottedwith a solid curve in Fig. 3(a),
which coincides fairly well with the numerical data. In the
vicinity of the Brillouin zone center (j’j � 0), according to
Eq. (2), the diffraction relation kzð’Þ can be rewritten as

k2z � ’2

dð�� dÞ ¼ "dk
2
0: (3)

When j’j � ’c (still around the Brillouin zone center)

with ’c ¼ k0½"ddð�� dÞ�1=2, the diffraction curve could

be approximately represented by kz ¼ ½dð�� dÞ��1=2j’j
as depicted in Fig. 3(b). The linear dependence of kz on j’j
indicates a diffraction-free propagation of SPPs around the
Brillouin zone center except for a tiny nonlinear region
j’j<’c since ’c=� ¼ 0:0046, as shown in the inset of
Fig. 3(b). Thus the uncertainty of Bloch momenta because
of the limited width of input waves (W0 ¼ 3d) could result
in two main directions for SPP propagation. The diffraction

angle of SPPs is given by 	 ¼ � arctan
� ffiffiffiffiffiffiffi

d
��d

q �
. The theo-

retically predicted angle of j	j ¼ 41:2� agreeswell with the
numerical value of 39.8�. As the optical properties of
graphene can be modulated by external static electric or
magnetic fields, the beam splitting angle of SPPs inMGSAs
is able to be artificially controlled. We plot in Fig. 3(c)
the relationship of the splitting angle 2j	j versus the chemi-
cal potential. It can be seen that the splitting angle decreases
as the chemical potential increases. The prediction agrees
well with the FDFD computations. At�c ¼ 0:1 eV, a large
splitting angle of 120� can be reached. For very small d,

we have j	j / ðd=�Þ1=2. The splitting angle can also be
enlarged by utilizing dielectric materials of higher permit-
tivity since � is inversely proportional to "d. Figure 3(d)
shows the intensity distribution across the MGSA at z ¼
0:5 �m for �c ¼ 0:5 eV by using FDFD computations.

The splitting angle is obtained by Gaussian fitting of
the output intensity at a distance of L ¼ 0:5 �m in the
z direction and j	j ¼ arctan½D=ð2LÞ�, where D is the
distance between the split beams. The fitted beam width
Wx ¼ 144 nm.
In Fig. 4, we render the function �ð�; "dÞ on different

planes with respect to�c ¼ 0:15 eV, 0.3 eV, and 0.5 eV. On
each �c plane (vertical to the �c axis), � increases as �
increases and "d decreases. As the chemical potential in-
creases, the values of � undergo a blue shift. That means
higher photon energy is able to yield strong coupling in
MGSA composed of higher chemical potential graphene
sheets. In practice, graphene is usually supported by dielec-
tric materials such as silicon dioxide or boron nitride. For
example, as "d ¼ 4 for silicon dioxide, in order to obtain
strong coupling, the wavelength should be � > 12:7 �m at
d ¼ 20 nm and �c ¼ 0:15 eV. Alternatively, we should
increase the chemical potential to �c > 0:23 eV when the
wavelength is fixed at � ¼ 10 �m.
It is worth comparing SPPs in metal thin layers with that

in graphene. For a single layer of metal, there should be a
symmetric mode (long range SPPs) and an antisymmetric
mode (short range SPPs) as themetal thickness is very small
[28,29]. The symmetric mode has a much longer propaga-
tion length than SPPs in graphene [30]. Nevertheless, the
antisymmetric mode is more like SPPs in graphene due to
the tight confinement of field but with large propagation
loss. Most of previous works [16–18] on arrays of metal
layers concerned the weak coupling of SPPs. As the metal
thickness decreases, according to the diffraction relation
[18], similar phenomena such as beam splitting discovered
in graphene may occur in arrays of metal layers in the near-
infrared range but only for the metals with a thickness of
several nanometers that are nearly two-dimensional mate-
rials. Such thin metal films tend to be granularlike with
discontinuities and significant roughness in the practical
case [31,32]. Moreover, the loss of near-infrared SPPs in
arrays ofmetal layers such as silver thin films ismuch larger
than that of far-infrared SPPs in MGSAs when both have
the modal wavelength at the same level. The low loss and
tunability render graphene arrays big advantages over the
arrays of thin metal layers.
In conclusion, we have analyzed the coupling between

SPPs in a discrete optical system made of MGSAs. New
phenomena have been revealed analytically and demon-
strated with full-vectorial numerical computations. Strong
coupling between SPPs emerges when the graphene sheets
are arranged tightly with a period smaller than a critical
value. Within this regime and for out-of-phase illumination,
these structures display negative coupling between the
individual SPPs of each monolayer; i.e., the diffraction
angle of the resulting beam is always opposite to its Bloch
momentum. However, for in-phase illumination, the inci-
dent beam splits into two separate beams that display nearly
diffraction-free propagation and low loss. The fascinating

FIG. 4 (color online). Influence of the wavelength, dielectric
permittivity, and chemical potential on �. The solid curves
labeled with numbers depict the contour lines of � on the �c

planes of �c ¼ 0:15 eV, 0.3 eV, and 0.5 eV.
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properties of graphene make it a good platform to inves-
tigate the wave coupling behaviors in discrete optical
systems. We believe that our fundamental study could find
promising applications for graphene in optoelectronic
devices and circuits.
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[20] P. Y. Chen and A. Alù, ACS Nano 5, 5855 (2011).
[21] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg,

J. Hone, P. Kim, and H. Stormer, Solid State Commun.
146, 351 (2008).

[22] T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F.
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