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STRONG DIFFERENTIABILITY PROPERTIES

OF BESSEL POTENTIALS

BY

DANIEL J. DEIGNAN AND WILLIAM P. ZIEMEr(')

Abstract. This paper is concerned with the "strong" Lp differentiability

properties of Bessel potentials of order a > 0 of Lp functions. Thus, for such

a function/, we investigate the size (in the sense of an appropriate capacity)

of the set of points x for which there is a polynomial Pxiy) of degree k < a

such that

lim sup (diam ST^Sf1 f \f(y) - Px{y)V>P = 0
diam(S)-»0 ' ' '

where, for example, S is allowed to run through the family of all oriented
rectangles containing the origin.

1. Introduction. Let ?Fbe a family of measurable sets in R" which satisfy the

following properties:

(i)w(S)>0for5 E %

(1) (ii) for every e > 0, there is a set S E fsuch that S C B{0,e),

(iii) n{S:S E S} = {0).

Here «j denotes Lebesgue measure and B(x,r) denotes the open «-ball

centered at x with radius r. In this paper we shall investigate the "strong" Lp

differentiability properties of a certain class of functions with respect to such

a family SF. Specifically, given a function/we are concerned with the existence

of a polynomial Px(y) of degree k such that

(2) hm sup «(S)"*/«(S)"1 /      \f(y) - Px(y)\"dyX " - 0
5(S)-»0 v. Js+X J

where it is understood that S E 'S. The diameter of a set is denoted by 8(S)

and S + x = {y + x: y E S). Whenever (2) is satisfied we shall say that

/ E tk(x) with respect to the family S. This concept was introduced in [CZ]

for the special case when iFis the family of balls centered at the origin.
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114 D. J. DEIGNAN AND W. P. ZIEMER

We were led to the problem of strong Lp differentiability by certain

questions that arose in the study of boundary regularity of solutions of

parabolic differential equations [D]. In that study the family <5 under consid-

eration was the class of parabolic rectangles of the form B(0, r) X (0,r2). This

family is "irregular" in the sense that for every e > 0, there is a set 5 G 5"with

m(s) • m[B(0,8(S))]" < e. As in [D], we shall be primarily concerned with the

size of the set where (2) fails to hold.

We will consider the question of strong 7 differentiability of functions in

the space of Bessel potentials tp = {Ga* g: g E Lp(R")}. Here Ga denotes

the Bessel kernel of order a > 0 and * denotes the usual convolution opera-

tion. tp is a Banach space under the norm \\Ga */||e« = ||g||L . When/» > 1

and a is a positive integer, tp is isometric to the Sobolev space Wpa. For details

see [ST].

If Sr= ®, the family of balls centered at the origin, then the classical

theorem of Lebesgue can be rephrased to say that/ G tx(x) for almost every

x, whenever/is locally integrable on R". For this same family % higher order

differentiability was first considered by Calderón and Zygmund in [CZ], where

they prove that if / G £* for integer k, then / G tk(x) for almost every

x E R". This result has recently been improved by considering/ G tp for

arbitrary a and by using an appropriate capacity (or Hausdorff measure) to

measure the size of the exceptional sets (cf. [FZ], [BZ], [M2]). All of these

results continue to hold if <& is replaced by any family if that is "regular".

One of the first results to deal with an "irregular" family of sets is due to

Zygmund [Zl]. In that paper he considers 'S = % the family of all oriented

rectangles which contain the origin. He proves that/ G tx(x) with respect to

<& for almost every x provided that / G Lp(R") for some p > 1. This

assumption can be weakened slightly by requiring only that

¿j/icog+i/ir1

be finite. See [JMZ] or [Z2] for a complete discussion. However, some

integrability requirement is necessary, for Saks [S] has provided an example of

a function/ G Lx such that/ G tx(x) for each x£R".

A final result worth mentioning is due to Riviere [R]. He considers a Vitali

family T = {Ua}a>0 of bounded open sets with the following properties:

1. a < ß => Ua C Uß (nestedness),

2- na>0ua = {o}, '
3. m(Ua — Ua) < A m(Ua) for some constant A, independent of a,

4. m(Ua) is left continuous as a function of a.

Here Ua - Ua = {x - y: x,y E Ua). He then proves that for any locally

integrable function/,/ G tx°(x) with respect to Tfor almost every x E R".

In this paper we shall first generalize the results of Zygmund and Riviere to
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DIFFERENTIABILITY PROPERTIES OF BESSEL POTENTIALS H5

the function classes £", and prove that the exceptional set is null with respect

to an appropriate capacity. We then consider the question of higher order

differentiability. Theorem 2 will show, for example, that the results of [BZ] and

[M2] will hold for the family & as well as % provided we assume fhat/> > 1.

2. First order differentiability. The Bessel potential space £" was defined

above. The Bessel capacity associated with this function space is defined as

follows. For any set E C R", define

BaiP(E) = Inf {\\g\\pLp: g E L+p,Ga * g > 1 on E).

This set function is an outer measure on R" and moreover Ba (E)

= Inf {Bap(G): G D E and G is open}. If a = 0 we set £° = Lp and BQp

= m. If p > 1 and ap < n, then Ba is related to Hausdorff measure of

dimension n — ap by the following relations:

l.H"-ap(E) = 0=*Bap(E) = 0,

2. Bap(E) = 0 => H"-ap+e{E) = 0 for any e > 0.

See Meyers [Ml] for further details.

For any family S defined as in §1, we introduce the maximal operator

^/W = Sup{^)/s+^^5eS}

defined for every / E Lx (Rn). Often f may be chosen to contain only bounded

sets, in which case / need be only locally integrable. To prove that functions

from a Lebesgue class Lp{R") are in tp{x) almost everywhere with respect to

% it suffices to prove a weak type (1, 1) estimate on the maximal operator, i.e.

(3) m{Mçf(x) >t}< C\\f\\Li/t

for some constant C independent of / E LX(R"). Given (3), we choose

functions/, E C°°(R") such that ||/-/„||L -» 0 and observe that

¡¿jJL l/lv) -/Ml> < ¿)/s+JC l/Cv) -m\>dy

m(S)Lx lf"iy) -fnWày + Wz) "/Ml'-+ ■

The first term on the right is dominated by CpM9(\f- fn\p), and since/, is

continuous we have

}¥   nT^Lx l/(>,) -'MI'* <  CpMSf-fn\") + Cp\fn(x) -f(x)\P.

In view of (3) and the fact that/, -»/in measure, we can choose n sufficiently
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116 D. J. DEIGNAN AND W. P. ZIEMER

large so that the right side is less than e except on a set of measure less then e,

hence the left side is zero almost everywhere.

For functions in £" we will prove that in fact the same conclusion holds Ba

almost everywhere, by replacing estimate (3) by a capacitary weak type

inequality. This can be done provided the maximal operator is a bounded

operator on L (see Adams [A]). The following result was first proved in [D]

for the case S = <3l.

Theorem 1. Let S be a family of measurable sets satisfying conditions (1), and

suppose Mq is of strong type (p, p). That is,

(4) mñLp < cn/iiL,

for some constant C independent of f E Lp(R"), 1 < p < oo. /// G £", a

> 0, thenf E tx(x) with respect to S for B     almost every x G R".

Proof. The result for £° = L is precisely that detailed above, so let a > 0

and let/ = Ga* g E tp. We first make use of the strong type estimate (4) to

prove the following capacitary weak type estimate

(5) Ba<p{M?f{x)>t)<{C/tp)\\Mr

This follows by observing that M<gf < Ga * M$g and, hence,

K,p{M*¡f >t}< BajGa * Mçg >t} = Ba>p{Ga * (Mçg/t) > 1}

< r>||A%g||£ < ct-'hW^ - cr'Mi,

using the definition of capacity and estimate (4). Secondly, we will show that

any function / G £" can be approximated by continuous functions fe G £"

such that

(6) IU-/Hej->0   ase^O

and also that

(7)       Ba,Pix: Ij£ - /I W > *î -» o as e -» °for every8 > °-

To this end we use a standard mollifier argument. Let <i> G C*(R") be

positive with J"R„ <t> = 1. Set <f>e(x) = t~n^(x/t) and define

Then

H "/Ile, = llG« * (°e - G)h = "*e - ««I,.
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DIFFERENTIABILITY PROPERTIES OF BESSEL POTENTIALS H7

and since ge -* g in Lp, (6) is proved. Also notice that

Ba,p{x: UW -/Wl > S} < *«.,{*= <5, * I*. " sito > «}

<*"'llf.-Älli->0   ase-»0

so that (7) holds as well. Now fix tj > 0 and choose e so small that

lU -/lie« < yp+1/C, where C is the constant of (4), such that

Ba>p{x:\fE-f\(x)>r¡}<r,.

Then

+¿)/s« lj!0r) -J!WI* + |JÍW "/W|-

Note that the last term is <tj except on a set of Ba capacity <r/. The first

term is bounded by M9(\f-fe\), which, according to (5) is less than tj except

on a set of Bap capacity less than (C/t)p)\\f - fe\\l* < tj. The middle term

becomes negligible as 8(S) -* 0 since/ is continuous. Altogether, we conclude

Lim ïk\L \f(.y)-fM\dy<2r,
ic\_in m\b )JS+x6XS)->0m(s)Js+x

except on a set of Ba p capacity less than 2tj. Since tj is arbitrary, this proves

the theorem. Notice that we have specified the constant polynomial Px to be

f(x), which is defined, of course, Ba   almost everywhere.   Q.E.D.

Corollary 1. If f E tp with a > 0 and 1 < p < oo, thenf E tx(x) with

respect to 'S for Ba   almost every x if

l.S = % the family of all balls centered at the origin,

2. S = <3l, the family of all rectangles containing the origin,

3.<S=% the family defined m §1.

Proof. In view of Theorem 1, we need only verify hypothesis (4) for each

family. For % this result is well known and appears, for example, in Stein

[ST]. For % estimate (4) is proved in [JMZ].

The proof of (4) for the family Tfollows from the weak type (1, 1) estimate

(8) m{*:JlV(*)>'}<(CA)ll/ll¿1

for/ E Lj(R"). This extimate is proved in [R]. To prove (4) from this, we use

the familiar argument which appears, for example, on p. 7 of [ST]. Set

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



118 D. J. DEIGNAN AND W. P. ZIEMER

,,<*>-{f, Kx)      if \f(x)\ > s/2,

otherwise .

Then M^f(x) < M^fs(x) + s/2 and so

m{x: Mcyf(x) > s) < m{x: M^fs(x) > s/2) < (2C/s)iUs]i

by (8) since fs E LX(R"). If we set X(s) = m{x: Mc^f(x) > s), then

/Rn \M^f\pdx =pf" sP-xX(s)ds < pf™ 2CsP~2U\\Lids

21/WI
^JrJ/WIJo

2Q>   r   i^n^mH^.  4Çp

2^/oM^2W/W|i/^Ä = 2Q,il/WI/o    * S'~2^

which verifies (4) and completes the proof of the corollary.

3. Higher order differentiability. In this section we shall discuss the concept

of higher order differentiability with respect to irregular families. Theorem 2

will imply, for example, that £" functions are in tx(x) with respect to 91 for

Ba_k almost every x G R". Unfortunately, the additional assumption we

shall make in Theorem 2 does not apply to arbitrary families % and the

question of higher order differentiability with respect to such a family remains

open.

Theorem 2. 7er S be a family of measurable sets satisfying conditions (1) and

suppose in addition that S is closed under dilations. That is, ifO < t < 1, t • S

= {ty: y E S ) is in 'S whenever S is. Suppose Mq satisfies condition (4).

Iff E £", a > 1, and ifk < a is an integer, thenf G r, (x) with respect to S

for Ba_k   almost every x E R".

In order to prove the theorem, we shall make use of the following result,

which is an improvement of a similar result proved in [GZ].

Lemma l.LetfE tp with 1 < a < oo. Then, for Bap almost every x G R",

fis absolutely continuous on H"~x almost every ray emanating from x. Moreover,

on such a ray,

f(x + z) -f(x) = JT1 Vf(x + tz) • zdt.

Proof of Lemma 1. Let / = ga * g G ££ and let f¡ = Ga * g¡ be C00

mollifiers of/. Then \\f¡ - /||£a -» 0 as / -» oo, and there is a subsequence {fj)

that converges for Bap almost every x. That is, for some set E with

K,p(z) - o.
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DIFFERENTIABILITY PROPERTIES OF BESSEL POTENTIALS 119

(9) fjix)-*f(x)   for every x E R"\E.

For this subsequence, VÇ. -> Vfin£p~x (see [ST, Lemma 3, p. 136]), and

therefore

Vfj-V=Ga_x*hj

where A- -* 0 in L^R"). But then

G, * IY0 - V/|(x) = G, * |Ga_, ♦ hj\(x) < Ga * \hj\(x).

Since Ay- -* 0 in LP(R"), Ga * \hj\(x) -* 0 for 5a almost every x, hence so

does Gx * \Vfj- Vf\(x) by the above inequality. For any such point x we have

C?, * Wj - V/lto = /R. G,(z)|V/-.(x - z) - V/(x - z)\dz

> fmR) Gx(zWj(x -£)- Vf{x - z)\dz

• f (* ̂ 4|V/(x - iy) - V/(* - ryJIí/rí/T/"-'^)
^35(0,1)^0    |ry|"-1     J

where the last step is integration in polar coordinates. Using the estimate

Gx(z) > C|z|"~ for \z\ < R (see [ST, p. 132])we conclude from the above

that

L(o,i)/o* |V4(JC - ry) - Vf{x - ^drdH"l(y) - 0

for Ba almost every x. For such a point x, we may choose a further

subsequence/, such that

(10) J* |V/A0 - ry) - Vf(x - ry)\ dr -» 0

for Hn~x almost every y 3 35(0,1). Moreover we may assume that x - ry

£ E for any such point y, 0 < r < 7? (see [GZ]). If z = x - ry is any such

point, since fk E C°°(R") we have

fk(x + z) -fk(x) = JT  V/fc(* + te) • zdt.

Letting k -» co, in view of (9) and (10) we may replace/^ by/in the above.

Finally, choose a sequence 7? -* oo to prove the lemma.   Q.E.D.

Proof of Theorem 2. Let/ E ñp, a > 1, and let A: < a be an integer. Let

Px{y) be the Taylor polynomial of degree k, i.e.
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120 D. J. DEIGNAN AND W. P. ZIEMER

0<\ß\<k     p-

Here ß = (ßx,... ,ßn) is a multi-index,

1/31=2/5,,   Z>'- d ß\=ßx\ß2\.-.ßn\,
y=l   y dxf1 ••• dx™

and ** - zpzfi ■••z%". Note that if \ß\ < k, then Z)^/ G £°~*, and since

such functions are defined up to sets of Ba_k   capacity zero, Px(y) is defined

for Ba_kp almost all x G R".

Let Rx(y) = /(.y) - Px(y) and notice that if |y| = k then

7>^(>>) - DV(y) - DV(x).

Since 7)7 G ££"*, we know from Theorem 1 that

(11) Dm"     -Lf     \DyRx(y)\dy = 0
6(S)->0;SeÇm(S)Js+x

at Ba_k . almost every x, whenever |y| = A:. Now let v be a multi-index such

that H — k - 1. Since 7>7 G ££"*, we know from Lemma 1 that for £„_* ,

almost every point x, D'fis absolutely continuous on 77"_l almost every ray

emanating from x. Hence on such a ray, D"Rx(y) is also absolutely contin-

uous and

\D"Rx(x + z)- D'Rx(x)\ < ¡I \V(D"Rx)(x + tz) ■ z\dt.

Since this estimate holds for almost every z G R", we may integrate both sides

with respect to z over a set S G S, yielding

f$ \D'Rx(x + z)- DvRx(x)\dz < JT £ \V(D"Rx)(x + tz) • z\dtdz

< £ /s 8(S)\V(D'Rx)(x + tz)\dzdt

= í¿8-7¿ls\*(DVRx)(x + z)\dz*-

The second inequality above is obtained by interchanging the order of

integration and using the Schwartz inequality, and the final step is just the

change of variables z h* tz. We now divide both sides by m(s)8(s) and use the

transformation x + z h» z, noting that fm(S) = m(t • S).
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<fôi^rs-)isJv^R^J""-

Since all derivatives of 7?^ of order k satisfy (11) and since for 0 < t < 1, t • S

E iFwith 8{t • S) < 5(5), we conclude the existence of a number 5 such that

the right side of the above is less than e whenever 8{S) < 5. Since DvRx(0)

= 0, this implies

(12) LÍm     -Às-Lïf     \DV Rx(y)\dy = 0
1   '                  a(sh>oise9^S)miS)Js+xi

for Ba_kp almost every x, whenever \p\ = k - 1. This estimate replaces (11)

for derivatives of order k. Now let ij be a multi-index with |t/| = k — 2.

Arguing just as above we conclude that

(13) Lmi      —U-trf      \D*Rx{y)\dy = 0
V   J                8(s)^0;Se$8(S)2>n(S)Js+xi

and inductively that

On     -^-E-Àrvf     \D°Rx(y)\dy = 0
6XS)^0;Se€S(S)kf"(S)Js+xi W*

which proves the theorem.   Q.E.D.

Corollary 2. Iff E tp with a > 1, 1 < p < oo, and if k < a is an integer,

thenf E if (x) vv/YA rejpec/ to 'Si for Ba_k   almost every x 6 R".

The exponent 1 in Theorems 1 and 2 can be improved if one is willing to

accept a larger exceptional set. For example, if 1 < q < p and k < a — 1,

then one can show that/ E /£(x) for BXs almost every x, where s <ip satisfies

the equation sp/(p — s) = np/(n — p)(q — 1). This follows from the observa-

tion that if |y| = k, |Z>7|? E Wl-S(R") = t]. Applying Theorem 1 to |/>y/|?

we obtain estimate (11) with exponent q for Bx s almost every x. Making the

appropriate changes in the rest of the argument now proves the claim.

The question as to whether the exponent 1 can be improved in the general

case without altering the capacity seems to be open. Saks' example [S], seems

to indicate that one cannot expect/to lie in tk(x) even almost everywhere.

Finally, in the definition of strong Lp differentiability (see (2)), one may be

tempted to replace 8(S) by m(S) . We conclude by exhibiting an example

which shows that 8{S)  cannot be replaced by m(S) raised to any power.

Let f(x,y) = x2 and consider the family <S — {Rt\>o °t rectangles of the

form Rt = {(x,y): -e < x < e,-e3 < y < e3}. After mollification outside a
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122 D. J. DEIGNAN AND W. P. ZIEMER

larger set, we may assume that/ G £"(R2) for all a > 0,p > 1. The Taylor

polynomial of degree one at the origin is simply P0(y) = 0, and it is easily

verified that

Similar behavior is exhibited at points other than the origin. Moreover, by

modifying the rectangles Rc, one can show it is impossible to replace

8(S)  by m(S) to any power.
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