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Abstract. A cohesive model for simulating dynamic fracture problems is proposed. The use of an 

embedded strong discontinuity finite element recently introduced by Sancho et al. [9] in the context of 

quasi-static fracture problems is followed.  

Two new ingredients of that model are added to extend the applicability of that formulation to 

dynamic fracture: a) the integration of the constitutive law by using the “implex” scheme determining 

a very robust procedure; b) the addition of a like-distributed damage law in a parallel direction to the 

principal crack allowing for the crack branching capture.  

The formulation is particularly apt to capture the most important features of the dynamic crack 

propagation problem, such as the crack tip velocity and the crack branching phenomena. In the final 

sections of the paper, it is shown some numerical applications of this phenomenon.   
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1 INTRODUCTION 

Dynamic fracture simulation, as a sub-area of computational failure mechanics, is 

becoming an increasingly area of research in last years. From the theoretical point of view, 

there are some aspects of dynamic fracture that are not well understood. Therefore, numerical 

simulation could help to determine, in some cases, how different variables take part in the 

evolution of the fundamental mechanisms involved in the phenomenon. 

Perhaps, one of the most important aspects that should be explained in the near future is 

the correlation between the crack tip velocity and the crack branching process. Obviously, the 

crack branching arises due to an instability phenomenon inherent to the high velocity crack 

propagation process [1], but, at the present time, there is not a crack branching criterion 

capable of predicting its onset.  

Cohesive models have been successfully applied to reach this objective. Some of the more 

important aspects of this phenomenon, which have been observed in experimental tests, could 

be acceptably captured by this approach. Several models using cohesive forces at the crack tip 

have been presented in the literature, not all of them based on finite elements, see for example 

Klein et al.[2].   

Among the authors that firstly introduced cohesive forces in conjunction with interface 

finite elements, we can cite those of Needlemann et al. [3-4], Ortiz et al. [5], etc. More 

recently, Belytschko et al. have introduced the XFEM technology which, in conjunction with 

a cohesive model, could be satisfactorily applied to dynamic fracture [6]. 

In this work, we introduce a new model for the simulation of dynamic crack problems. It is 

based on an embedded strong discontinuity finite element approach, being that cohesive 

forces are introduced in the strong discontinuity interfaces. Therefore, the model can be 

understood to belong to the wider class of the cohesive models. 

Section 2 describes the model and Section 3 presents the numerical applications. This 

section has been divided in two parts solving two kinds of problems. The first one is 

addressed to validate the model by means of the simulation of quasi-static crack propagation 

problems. On the other hand, the second set of numerical applications is addressed to the 

more specific problem of dynamic fracture simulation. 

2 THE NUMERICAL MODEL: STRONG DISCONTINUITY APPROACH 

2.1 Strong discontinuity kinematics 

Let be given a body Ω . An admissible displacement field in this body, )(xu , exhibiting a 

strong discontinuity mode across a surface S  can be described by the following expression 

(see Figure 1):  
 

⎩
⎨
⎧

Ω∈∀
Ω∈∀

=+=
−

+

x

x
xxxuxu

0

1
)()(

SS
;)()( HH β  (1) 

where )(xu denotes a smooth field, )(x
S

H is the Heaviside’s step function shifted to S  which 

is multiplied by the displacement jump vector )(xβ  at the discontinuity interface S  whose 

normal is n . This surface divides the body Ω  in two disjoints parts, +Ω  and −Ω . 

Following the papers of Simo et al. [7-8], it is more appropriate to impose the displace-

ment and velocity boundary conditions when a slightly different format of (1) is introduced. 

Let the Heaviside’s step function be replaced by the unit jump function ϕ−=
SS

HM , where 
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ϕ  is a continuous function  being 0 in kS\−Ω , 1 in kS\+Ω  and with a smooth transition 

across the region kS  enclosing S ( SSk ⊃ ) (see [12] for more details). Then, the support of 

the function 
S

M  is kS . When this function is introduced for the kinematics enrichment, the 

admissible displacement, velocity and acceleration fields are described by: 
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and the strain field, being kinematically compatible with the discontinuous displacement field 

(2)-a, is: 
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The regular term in (3) determines the strain in the S\Ω  part of the body.  

2.2 Problem governing equations 

The classical strong format of the equations governing the strong discontinuity problem for a 

body like that shown in Figure 1, are the following:  
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Figure 1: Strong discontinuity kinematics. 
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where the first equation represents the momentum balance equation in the domain S\Ω , be-

ing { }bρ,,σ  the stress tensor, the material density and the mass force respectively. The fol-

lowing equations are the standard initial and boundary conditions. Tractions are prescribed on 

the contour σΓ , with normal vector ν  and displacement and velocities on uΓ . Across the 

surface S  is prescribed the equilibrium of traction vectors. We assume that a cohesive force 

exist in S  given by the traction vector ct (Eq. (4-f)), i.e. a discrete constitutive law (see sec-

tion 2.5). Also we assume that an elastic model governs the response in S\Ω . Without loss 

of generality, it will be considered those problems where the mass forces are zero ( 0b = ). 

2.3 Weak formulation 

Let us consider an admissible velocity space 
0

V  in 2
R  endowed with a jump: 
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where u&δ  is a smooth field in 1

0
H  and 

2
R∈βδ .  The governing equations (4) can be put in 

the variational format using the standard Virtual Power Principle: 
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that provides two sets of equations, that corresponds to the velocity variation given by the 

smooth part of (10) and the second comes from the jump variation β&δ : 
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The second equation represents the weak balance of momentum in the region kS  and is 

subjected to a particular treatment in the following discrete formulation. 

 

2.4 Discrete weak approach: finite element with an embedded strong discontinuity 

 

Let a linear triangular finite element (CST) be given. The linear kinematics of this element is 

enriched by adding a strong discontinuity mode following the ideas proposed in the approach 

given by equations (2). The interpolations for displacement, velocity and acceleration fields 

are given by : 
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where iN  are the standard shape functions of the CST element and { iii uuu
&&&

,, } correspond to 

the interpolation parameters representing the displacements, the velocities and the accelera-
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tions of node i . The kinematics enrichment, given by the discrete unit jump function )(xe

S
M  

times the jump 2
R∈eβ , have a support of one element and is built by subtracting to the 

Heavise’s function one of the shape functions +N , which, and following to Sancho et al. [9], 

is selected such that it verifies the condition, see Figure 2:  
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being n  the normal vector to the discontinuity surface S . The enrichment terms in (8) are 

added only in those elements that have previously reached the bifurcation condition, or the 

criterion to activate the discontinuity β . There are a variable number actn  of finite elements in 

that condition, as the time evolves along the numerical simulation. 

 

The strain being compatible with (8) is then given by: 

S
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where ++ ∇= Nb  . 

The virtual power expression (6) is approached by using the discrete space (8), and the fol-

lowing admissible velocity space: 
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Then, the equation corresponding to the variation of the parameter iuδ , the discrete coun-

terpart of equation (7)-a, yields:  
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On the other hand, the discrete counterpart of the second equation (7)-b is subjected to a dif-

ferent treatment. We assume that the width of the region kS , which agrees with the size of the 

finite elements, goes to zero as the mesh is refined. Therefore, the term corresponding to the 

inertial forces in (7)-b will be neglected. The remaining part of that equation represents the 

weak equilibrium condition of the traction vector across the discontinuity S .  

Instead of using a weak condition to impose the equilibrium condition, we will be evaluating 

it by means of a point-wise strong format:  

 

{ }act
eee ne ,...,2,1; ∈∀=⋅− 0ntc σ .  (13) 

 

Figure 2 :  Strong discontinuity kinematics. 
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There is one vectorial equation (13) for every element e  having an active discontinuous 

mode. The term e

ct  is the cohesive force in the discontinuity S and eσ  is the stress tensor in 

the regular part of the finite element e  (in Se \Ω ). We recall that, being a CST finite ele-

ment, there is a constant stress tensor eσ  in Se \Ω . 

The criterion that defines the inception of the discontinuous mode into the finite element is 

based on the maximum principal stress component Iσ . The crack begins to open whenever 

uI σσ > , with uσ  being the material tensile strength, and propagates orthogonally to the 

principal stress direction. 

2.5 Cohesive model and traction vector continuity in S 

Following the work of Sancho et al. [9], we define a cohesive central force model as 

representative of the cohesive forces acting in the discontinuity S . In that case, the traction 

vector ct , at time t , is defined to be collinear with the displacement jump β and given by the 

law:  
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where fG  is the material parameter representing the fracture energy. Forcing an elastic 

unloading process in the outside part of S (in S\Ω ), and establishing the point-wise strong 

equilibrium condition (13) between the elastic stress S\Ωσ  and ct , it results the equilibrium 

equation: 
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being C
e
 the Hooke elastic tensor, and therefore:  
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which determines the jump β  as a function of  ε . 

 

 

Figure 3: Cohesive model 
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The assumption that the material should be constrained to follow an elastic unloading 

process outside the discontinuity S , independently of the strain values in all of their 

components, could introduce a severe stress locking phenomenon. This effect that was widely 

studied in the past, have been observed to be provoked by a deficient finite element approach, 

i.e. an inadequate kinematics, and therefore, an incorrect numerical approach. The correct 

selection of a finite element kinematics, therefore, is a topic in this field.  

But things are harder in dynamic crack propagation problems. There, a crack branching 

process is to be expected in most of the problems when a high crack front velocity is reached. 

In those cases, three cracks will intersect one finite element in the position where the 

branching condition is verified. So, if the same type of discrete approach for the strong 

discontinuity finite element is held, what means only one embedded crack mode by FE, the 

kinematics will not be able to capture the strain mode required by the phenomenon, and a 

severe stress locking problem will happen. The stresses will be unrealistically high, mainly in 

that component orthogonal to n , perturbing the crack propagation phenomena inducing the 

crack arrest of one of the branches.  

To remove this deficient behavior, we introduce a material response, in S\Ω , that  limits 

the value of the stress component mmσ , where m  is the orthogonal direction to n . The 

response of this component, as a function of the strain in S\Ω ,  can be understood  as given 

by a  non-isotropic continuum damage model which is described as follows: 
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and is motivated by the origin of a new distributed cracking pattern, orthogonal to the main  

crack direction opening in mode I, and whose cohesive law, a central force model, is gov-

erned by a similar form to (14), with a regularized fracture energy defined by: e

ffm hGG /= , 

where eh is a representative size of the finite element. 

The stress tensor σ  is computed by knowing the traction vector in the direction n , that 

based on Equation (14) is the vector ct , and the component mmt  as follows, see Figure 4: 

 

( )( ) ( ) ( ) ( )[ ] ( )mmnmmnmtnnnt cc ⊗+⊗+⊗⋅+⊗⋅= mmtσ . (18) 
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Figure 4:  Stress tensor ( )ε σ   

2.6 Time integration scheme 

After using equation (13) to compute the parametersβ , the remaining discrete equation (12) 

can be written in a standard matrix format as:  

 

extFuKuM =+ ][][
&&

; (19) 

 

where M  and K represent the global mass and stiffness matrices; ][u  and extF  are the vector 

of displacements and external loads. It should be observed that, in the present procedure, the 

vector ][u  does not include the β parameters, and therefore, the system of equations (19) is 

identical to that provided by the CST element in dynamical problems without including strong 

discontinuity modes, that is, the mass and stiffness matrices are exactly the same. Therefore, 

from the computational point of view, the present implementation is very advantageous re-

spect to alternative strong discontinuity formulations. 

 

2.6.1 Implicit-explicit integration scheme for the constitutive model 

 

The time integration of (19) is also a standard issue. Proposing a classical implicit Newmark 

procedure for the time step 1+r ,  displacement and velocities are approached by  

 

;])1[(

;])5.0[(

11

121

++

++

+−Δ+=

+−Δ+Δ+=
rrrr

rrrrr

t

tt

uuuu

uuuuu

&&&&&&

&&&&&

γγ

ββ
 (20) 

 

where the time increment tΔ  is the interval time between 1+rt  and rt , β  and γ  are two real 

parameters that we have set to 0.25 and 0.5 respectively for all numerical applications in the 

next section, recovering a non-dissipative 2nd. order accurate scheme. 

Inserting (20) into (19) and working out the equations, the final problem result a set of 

nonlinear equations in 1+r
u , where the stresses 1+rσ should be determined  as a function of 

that displacement.  

It should be considered that different alternatives or schemes can be used to define the 

stresses 1+rσ  as a function of 1+r
u . And therefore, depending on it, some algorithmic 

properties, such as numerical stability and robustness, will change. 

Following the stress integration procedure presented in Oliver et. al. [10] that was called 
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“implex” (implicit/explicit) scheme, we compute 1+rσ  by using the following algorithm. Let 

be given 1+r
u , and therefore 11 ++ ∇= rsymr

uε , then stress computing is performed as follows:  

 

 

Box 1: Explicit stage in the “implex” stress update algorithm. 
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d) evaluate the stress 1+rσ  by means of:  
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where the terms representing the internal variables of the model, β~  and γ~ , are fixed to be 

that values obtained at previous step r  by means of an implicit integration of equations (16) 

and (17). In this way, we are performing two stress integrations per time step.  

The stress 1+rσ , from (21), is used to compute the momentum balance equation at step 

1+r . Therefore, the effective algorithmic tangent tensor tgA  to be used in the Newton-

Raphson procedure corresponds to the derivative of Equation (21) of Box 1: 1
1

+
+∂= r

def

r σ
ε

tgA . 

Oliver et al. [10] have studied the necessary conditions by which an implicit/explicit  pro-

cedure yields a well behaved algorithmic procedure. Following a similar analysis, it is possi-

ble to conclude that the condition 0)det( >⋅⋅ +
bCn

e , in the present approach, is necessary to 

reach good numerical properties. It is straightforward to shown that, if this condition is veri-

fied, the matrix on the left hand side part in Equation (16) would be non-singular, taking into 

account that ββ ~
/)

~
(f  is a positive monotonous decreasing function in time, and therefore the 

jump β  would exist and be uniquely determined for all ε . Furthermore, it was shown in ref-

erence [10] that selecting a symmetric finite element, the above mentioned condition would 

change to: 0)det( >⋅⋅ ++
bCb

e , which is trivially verified. The proposed technique of select-

ing the vector +
b by means of procedure (9), in the paper of Sancho et al. [9], partially miti-

gates the restriction imposed by the condition of non-singular matrix ][ +⋅⋅ bCn
e . But it is 

not enough. In fact, it is possible to observe negative values of )det( +⋅⋅ bCn
e  for distorted 
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meshes, what induces the failure of the numerical scheme. We propose to substitute the vector 

n , in equation (15), by a unit vector n̂  resulting from the convex combination of n  and +
b : 

+

+
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=
bn

bn
n

)1(

)1(ˆ
θθ
θθ

. (22) 

The parameter θ  is obtained by the condition that cθθ < , where: 
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It must be observed that, in those cases where 0)det( <⋅⋅ +
bCn

e , there exist, and it is 

unique, a parameter )1,0(∈cθ  verifying (23). In fact, and assuming plane stress or plane 

strain condition, the function g  is a second degree equation in cθ ,  with 0)0( <g  and 

0)1( >g . The vector n̂  should be determined only one time per activated finite element in the 

complete simulation. Therefore, the computational cost of evaluating (23) is negligible. 

With the mentioned modification, the present scheme restores two interesting property 

presented in the original proposal of Oliver et al. [10]: 

• it provides an algorithmic tangent tensor tgA  which is non-singular, yielding a 

well-posed set of equations; 

• the algorithmic tangent tensor tgA  does not depend on ε . So, the implict/explicit 

stress σ  is linear with ε , what means that only one iteration per step is necessary to 

get convergence, whatever be the required tolerance.  

 

3 NUMERICAL APPLICATIONS 

In the first part of this section, we validate the finite element model by using a set of typi-

cal benchmark tests corresponding to quasi-static fracture propagation problems. All of them 

are well known tests in fracture mechanics. After being validated the model, we show, in a 

second part, a series of numerical simulations corresponding to dynamical crack propagation 

problems. 

There is a point related to the numerical implementation which should be remarked. 

Following to Sancho et al. [9], we allow the normal vector n  to change slightly its direction 

after the beginning of the strong discontinuity regime. This rotation is allowed while the crack 

opening is less than a fraction of the value uf

crit G σβ /= , see details in [9], and it becomes a 

very important aspect to get good numerical results.  Nevertheless, the introduction of the 

distributed damage (17) in the parallel direction of the crack, alleviates this ad-hoc 

requirement, in the sense that a much lower fraction of critβ  (in the following quasi-static 

problems it was less than 1%) is needed to reach an acceptable result.  

 

3.1 Quasi-static crack propagation problems 

 

In the three following examples, we present the numerical results obtained with several 

meshes, in order to show the convergence behavior of the numerical solution with the mesh. 

The finite element sizes used in the analysis have been )1(Meshhe , )2(5.0 Meshhe  and 

)3(25.0 Meshhe  respectively. 
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3.1.1 DCB test with diagonal compressive loads 

 

This test has been reported originally by Rots [11] and later by [12]. It corresponds to the 

classical DCB test in plane stress state, see Figure 5-a. Initially the specimen is subjected to 

an incrementally compressive diagonal loads 2F  jointly with a opening ones 1F  applied on 

the inner faces of the notch. In a second stage, the level of the compressive loads is held con-

stant while the opening ones grow linearly (see Figure 5-b).  

The experimental test shows a crack, propagating from the notch root toward the specimen 

top and displaying an angle of  o71=α  with the horizontal. 

The material parameters are: Young’s modulus ][ 30500 MPaE = , Poisson’s ratio: 2.0=ν , 

fracture energy: ]/[ 1.0 mNG f = , tensile strength: ][ 0.3 MPau =σ  and specimen thickness: 

mm 8.50 . 
 

 

        

 
             mesh 1 

Figure 5: DCB test. (a) geometrical and loading model, (b) FE mesh. 

We use three meshes with the pattern shown in Figure 5-b. It must be observed that it has 

been intentionally designed to provide a very challenging test for the proper capturing of the 

crack path across the mesh. All three meshes have identical geometry in the notch root. 

We have controlled the numerical process by using a displacement control method. It has 

been fixed the incremental displacement δx  per step in the inner faces of the notch (called 

Crack Mouth Opening Displacement CMOD) in those nodes where the horizontal forces 1F  

are applied. Numerical and experimental results of the structural response load 1F  vs. CMOD 

are displayed in Figure 6. The discontinuity path is shown in Figure 7. 

 

Figure 6: DCB test. Load vs. CMOD curves obtained with three meshes. Comparison with experimental 

results.  
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Rotations of the crack direction at each finite element have been allowed until it was reached 

a crack opening value. This value has been, respectively, 0.01, 0.005 and 0.003 times critβ  for 

the meshes 1, 2 and 3. 

 

 

Figure 7: DCB test. Crack paths for different meshes and procedures 

 

3.1.2 A notched beam bending test  

 

The second test corresponds to a bending test of a notched beam with a thickness equal to 

100mm, as is displayed in Figure 8-a. The analysis was carried out in plane stress conditions 

and it was imposed a vertical displacement yuΔ  control in the node where the vertical down-

ward load P  was applied. The two meshes of  Figure 8-b were used. 

Figure 9 displays the loads vs. vertical displacement curves while Figure 10 shows the 

crack path solutions obtained in the two cases. These results agree with the experimental 

ones.  

The two solutions have been obtained by allowing the rotation of the discontinuity normal 

vector n  until the crack opening reach the value 0.01 and 0.005 times critβ  for meshes 1 and 

2 respectively. 

 

 

Figure 8: Beam bending test. (a) Geometrical and material properties. (b) Finite element discretizations. 
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Figure 9: Beam bending test. Load vs Displacement curves 

 

 
Figure 10: Beam bending test. Crack paths 

 

3.1.3 Four point beam bending test 

 

The last quasi-static test is a notched four point bending problem reported in [12], see 

Figure 11-a for the geometry and the material parameters. The analysis was held with plane 

stress conditions by controlling the Crack Mouth Sliding Displacement (CMSD). It was im-

posed CMSD values proportional to Δu = 8E-04[mm]. 

 
  

                                                                                                       Mesh 1 

 

 

                                                                                                         

 

 

                                                                                                       Mesh 2 

Figure 11: Four point beam bending test. (a) Geometrical and material description. (b) Finite element discretiza-

tions. 
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CMSD[mm] CSMD[mm] 

Figure 12 shows the results that have been obtained with both meshes and the different time 

step lengths. 

 
 

 

 

 

(A) 

 

 

 

 

(B) 

 

 

 

(C) 

 

 

(D) 

Figure 12: Four point beam bending test.  

Load vs. CSMD curves for three different values of the control parameters: (a) mesh1,  (b) mesh2.  

Crack paths: (c) mesh1, (d) mesh2.  

 

3.2  Numerical simulation of dynamic fracture problems 

Two simulations are presented in this section. The first one, previously presented by Falk 

et al. in [4], is a square PMMA specimen displaying a high velocity crack propagation front. 

Differences with the numerical approach reported in [4] are presented. It is also pointed out 

the capability of the presented cohesive model to capture correctly the most important phe-

nomenological aspects of dynamic fracture, that is, the crack tip velocity, the typical unstable 

crack branching phenomena and the morphology of the dynamic fracture of brittle materials. 

We adopt the work of Sharon et al. [13] in order to compare their experimental measures in 

PMMA specimens with our numerical results.    

The second example is the well known Kalthoff’s experimental test that has been numeri-

cally simulated and reported by Belytschko et al. in [6]. 

 

3.2.1 Prediction of dynamic fracture in PMMA 

 

We study the crack propagation problem in a square specimen with sides of 3.0 mm and a 

notch of 0.25 mm long (see Figure 13). The analysis is held in plane strain mode by imposing 

a vertical constant velocity of 3000 m/seg on the top and bottom edges.   

The material corresponds to Polymethil-metacrilate (PMMA) which is characterized by an 
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ultimate stress MPaEu 12925/ ==σ , a Young modulus GPaE 24.3= , a Poisson’s ratio  

35.0=ν , a fracture energy mNG f /352.0=  and a density 3/19.1 cmg=ρ . These data have 

been taken from Falks et al. [4] and are slightly different from that presented in Sharon et al. 

[13]. With the presented values we can define the dilatational wave speed  

segmcd /2090
2

=
+

=
ρ

μλ
, the shear wave speed segmcs /1004==

ρ
μ

 and the Rayleigh 

wave  speed : segmcR /938= . Considering the characteristic dimension of the specimen and 

the former wave speeds, the loading condition imposed can be classified as a slow action. 
 

 

Figure 13: PMMA square block 

 

Following to Falk et al. [4], we have modeled the problem using three uniform meshes (to 

avoid dispersion effects) of 80x80, 120x120 and 240x240 FE, here denoted Mesh 1, Mesh 2 

and Mesh 3. The element sizes of these meshes are mμ50 , mμ25  and mμ5.12  respectively. 

Mesh 1 and 2 have a structured distribution of elements along the symmetry x-axis which is 

favorable to the propagation of a horizontal crack. On the other hand, Mesh 3 shows an arbi-

trary distribution of elements.  

The cohesive zone size for this material is mEGl ufcoh μσ 68/ 2 ≈= . Therefore, we are mod-

eling the cohesive zone by means of 4 or 5 finite elements in the finest Mesh 3. Furthermore, 

considering a crack tip propagation velocity of 800 m/seg, the maximum we have obtained in 

the simulation, the crack tip is crossing a segment equivalent to the cohesive zone in time 

intervals of the order of segsegmmt 86 105.8)/(10800/68 −⋅=⋅≈Δ μμ . In the present simula-

tions we have used a Newmark integrator scheme with time steps ranging from seg91025.1 −⋅  

to seg9105.0 −⋅ . We have observed that the correct capturing of the branching phenomena 

was only possible to be reached by using this very small time step increment. It is not clear 

for us the reasons of this strong restriction. Probably it is due to the characteristic physical 

instability of the phenomenon that we are simulating. It should be noted that before the onset 

of crack branching, even after damage and crack propagation processes have started, the time 

steps could be chosen until two orders greater ( seg7101 −⋅ ),  maintaining the numerical stabil-

ity of the scheme and without introducing an excessive integration error.  

 

 

 

 

Mecánica Computacional Vol XXV, pp. 1997-2018 (2006) 2011

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

Analysis of the results 

 

1) Crack tip velocity 

 

In Figure 14-a, it is depicted the crack tip position as a function of time. Figure 14-b plots 

the crack tip velocity, which have been evaluated as the numerical derivative of the curves in 

Figure 14-a. In this figure we also present the results reported by Falk et al. where two differ-

ent implementation of a discrete cohesive model were used.  

 

 

Figure 14. PMMA square block. crack propagation velocity 

 

Even though the crack tip position of Mesh 3 is slightly different to that shown by meshes 

1 and 2, which can be due to the above mentioned different mesh design along the x-axis, it 

can be observed that the maximum velocity are similar in all cases. Our results agree with that 

reported by Falk et al. [4] saving that we have obtained a higher initial acceleration with a 

final crack tip velocity slightly lower.  

 

2) Crack pattern morphology  

 

The presented numerical approach is able to capture the crack branching effect, typical of 

dynamic fracture problems, as is shown in Figure 15. It is displayed in Figure 15-a, b and c 

the distribution of cracks at the end of the simulation process for the three meshes. There, the 

black zone corresponds to active elements, or cracks in opening mode, while the gray zone 

represents elements that previously have been activated but that at the end of the simulation 

process are arrested. Figure 15-d, e and f show the iso-displacement curves representing the 

effect produced by the strain localization phenomenon. 

   

A.E. HUESPE, J. OLIVER, P.J. SANCHEZ, S. BLANCO, V. SONZOGNI2012

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 
Figure 15. PMMA square block.  

(a), (b), (c) Crack paths for Mesh 1, for Mesh2 and for Mesh3  

(d), (e), (f) Curves of iso-displacement for Mesh 1, for Mesh2 and for Mesh3 

(Results of Mesh1 and Mesh2 are at time segt μ7.8=  meanwhile results of Mesh3 are at time segt μ1.8= ) 

 

The crack distribution morphology of the numerical simulation follows rather closely the 

experimental observation reported by Sharon et al. in [13]. This experiment was done using 

the same material PMMA, but with different boundary conditions and specimen dimensions. 

However these differences, it would be expected a similar crack distribution pattern produced 

by the unstable fracture propagation phenomena there reported.  

In fact, analyzing the results presented in Figure 15c and f, we can observe an initial al-

though not well defined branching in Mesh 3, between the times segμ8.56.5 −  (see also the 

zoom in Figure 16). This instant corresponds with a crack tip velocity of the order of 

Rc csegm 43.0/400~v ≅ . In the experimental test of Sharon et al. it is reported a velocity 

level, Rc c34.0v ≅ , as the critical one producing branching. In the finest mesh, a perceptible 

branch does not appear until to reach the time segμ4.6 . In the coarse mesh, the widening of 

the activated element zone is observed in a later time.  

Therefore, we can conclude that the simulation captures the observed behavior described 

by Sharon et al. For velocities cvv < , a single straight crack is obtained. When the velocity 

increases and cvv ≅ , small lateral branches appear, corresponding with our  widening of the 

element active band. Finally, when  cvv > , finite length branches are observed in the nu-

merical simulation agreeing with the experimental observations.   

Figure 16 is a close-up of the crack process carried out with the finest mesh. Another ex-
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perimental issue is observed to be correctly captured by the model. The angle which the crack 

branches form with the principal one is between oo 3224 − . The experimental observations 

show that this angle is between oo 313.27 −  reported in Sharon et al. [13] and additional ref-

erences cited therein. 

 

 

Figure 16. PMMA square block. crack propagation pattern, Mesh3, times: 6.0, 6.2 and 6.4, 7.4 and 8.1, 

showing the angles of the crack branches. 

 

Another morphologic characteristic of this phenomenon is the length of the crack 

branches. In the mentioned experimental work, the authors conclude that the length of 

branched cracks, in the plane x-y when the main crack propagates along the x-axis and being 

y the distance from the main crack, follows a potential law: 7.02.0 xy =  (dimensions in mm). 

This law is plotted in Figure 17. Again, it can be observed that the simulation agrees reasona-

bly well with this experimental fact. 
 

 
Figure 17. PMMA square block. crack propagation pattern, mesh3. 

Comparison of the mean branch profile with the power law of Sharon et al. [13] 
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Figure 18 show a sequence, along time, of the principal stress field determined with the 

finest mesh. It can be observed a dispersed stress wave starting at approximately the onset 

time of crack branching and centered in that point. 

 

 
Figure 18. PMMA square block. maximum principal stress Iσ  obtained with the mesh 3 at different times.  

 

 

3) Energy dissipation 
 

Figure 19 show, for the three meshes, the dissipated energy D  along the process. This 

energy, is given by the external loads energy extP  minus the deformation energy W  and the 

kinetic energy K : 

 

KWPD ex −−= . (24) 

These terms are evaluated as follows: 
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From Figure 19 it can be observed a slight difference of the finest mesh response aris-

ing after the crack branch phenomenon starts.  

 

 
Figure 19. Square block of PMMA. Dissipated energy along the process. 
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3.2.2 Numerical simulation of the Kalthoff’s experiment 
  

The experimental test reported by Kalthoff consists of an edged-cracked plate that is im-

pacted by a projectile, as is shown in Figure 20. He observed that modifying the projectile 

impact velocity, either a ductile or a fragile mode of fracture is developed in the specimen. At 

lower impact velocities, a mode I crack opening is observed. The cracks propagate from the 

notch root towards to the specimen top and bottom forming an angle of o70≈  with the hori-

zontal line.  Following the work of Belytschko et. al [6], we simulate this mode of fracture by 

adopting the model described in that work. The plate is supposed to deform under plane strain 

conditions. The projectile impact is modeled imposing a velocity on the contour Γ  of value 

segmo /5.16=v  and the material parameters are: ,.190 GPaE = 3.0=ν , ,844MPau =σ  

mNG f /.22170=  and 3/8000 mkg=ρ . The Rayleigh wave speed results: 

segmcR /.2799= . We solve the problem using a mesh of 14316 FE, with elements of sizes 

1.25mm (the characteristic length of the material is mmEGl ufch .6/ 2 ≈= σ ). The time integra-

tion step is segt 8101 −⋅=Δ . 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Kalthoff’s experiment.  Crack tip velocity; a)  experimental model, b) experimental results taken 

from Belytschko et al.; c) present numerical results 

 

Figure 20-b shows the experimental crack tip velocity and Figure 20-c the same value that 

has been numerically obtained with the present simulation. Superposed on the same figure, 

the gray zone corresponds to the experimental results of Figure 20-b. The fitting between both 

results is reasonable good. 
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Figure 21: Crack tip evolution in the Kalthoff’s experiment; snapshots at different times. 

 

Figure 21 displays the crack advance along the time. In this case, the simulated crack pat-

tern agrees with the experimental observation.  

4 CONCLUDING REMARKS 

Some aspects of the phenomenology related with crack dynamics problems, such as crack 

tip velocity, morphology of the crack distribution in the specimen, etc., can be acceptably 

captured by the model here presented. Although it was known from previous works that cohe-

sive models have this property, the present approach has the following additional benefits: 

• If compared with the interface models, the present embedded strong discontinuity 

approach is more flexible to represent the discontinuity path across the mesh. 

• It does not require an algorithm to predict the discontinuity path across the mesh. 

• It does not require a specific treatment in those elements that are intersected by the 

crack branching. 
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