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STRONG EQUALITY OF ROMAN AND PERFECT ROMAN DOMINATION IN
TREES

Zehui Shao1, Saeed Kosari1, Hadi Rahbani2, Mehdi Sharifzadeh3

and Seyed Mahmoud Sheikholeslami2,*

Abstract. A Roman dominating function (RD-function) on a graph 𝐺 = (𝑉, 𝐸) is a function 𝑓 :
𝑉 −→ {0, 1, 2} satisfying the condition that every vertex 𝑢 for which 𝑓(𝑢) = 0 is adjacent to at least
one vertex 𝑣 for which 𝑓(𝑣) = 2. An Roman dominating function 𝑓 in a graph 𝐺 is perfect Roman
dominating function (PRD-function) if every vertex 𝑢 with 𝑓(𝑢) = 0 is adjacent to exactly one vertex
𝑣 for which 𝑓(𝑣) = 2. The (perfect) Roman domination number 𝛾𝑅(𝐺) (𝛾𝑝

𝑅(𝐺)) is the minimum weight
of an (perfect) Roman dominating function on 𝐺. We say that 𝛾𝑝

𝑅(𝐺) strongly equals 𝛾𝑅(𝐺), denoted
by 𝛾𝑝

𝑅(𝐺) ≡ 𝛾𝑅(𝐺), if every RD-function on 𝐺 of minimum weight is a PRD-function. In this paper we
show that for a given graph 𝐺, it is NP-hard to decide whether 𝛾𝑝

𝑅(𝐺) = 𝛾𝑅(𝐺) and also we provide a
constructive characterization of trees 𝑇 with 𝛾𝑝

𝑅(𝑇 ) ≡ 𝛾𝑅(𝑇 ).
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1. Introduction

We consider finite, undirected, and simple graphs 𝐺 with vertex set 𝑉 = 𝑉 (𝐺) and edge set 𝐸 = 𝐸(𝐺). The
number of vertices of a graph 𝐺 is called the order of 𝐺 and is denoted by 𝑛 = 𝑛(𝐺). For any vertex 𝑣 ∈ 𝑉 (𝐺),
the open neighborhood of 𝑣 ∈ 𝑉 is 𝑁(𝑣) = 𝑁𝐺(𝑣) = {𝑢 ∈ 𝑉 | 𝑢𝑣 ∈ 𝐸}, and the degree of 𝑣, denoted by deg𝐺(𝑣),
is the cardinality of its open neighborhood. A leaf of a tree 𝑇 is a vertex of degree one, while a support vertex
of 𝑇 is a vertex adjacent to a leaf. A strong support vertex is a support vertex adjacent to at least two leaves. In
this paper, we denote by 𝐿(𝑥) the set of leaves adjacent to a support vertex 𝑥, and denote ℓ𝑥 = |𝐿(𝑥)|. A star
is a non-trivial tree with at most one vertex which is not a leaf. We denote a star on 𝑛 ≥ 2 vertices by 𝐾1,𝑛−1.
For 𝑟, 𝑠 ≥ 1, a double star, written 𝑆(𝑟, 𝑠), is a tree with exactly two non-leaf vertices, one of which has 𝑟 leaf
neighbors, and the other has 𝑠 leaf neighbors. The length of a shortest (𝑢, 𝑣)-path in a graph 𝐺 is the distance
between 𝑢 and 𝑣, and is written 𝑑𝐺(𝑢, 𝑣) or simply 𝑑(𝑢, 𝑣) if 𝐺 is clear from context. The diameter of 𝐺, written
diam(𝐺), is the maximum distance among all pairs of vertices in 𝐺.
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A rooted tree 𝑇 distinguishes one vertex 𝑟 called the root. For each vertex 𝑣 ̸= 𝑟 of 𝑇 , the parent of 𝑣 is the
neighbor of 𝑣 on the unique (𝑟, 𝑣)-path, while a child of 𝑣 is any other neighbor of 𝑣. If 𝑇 is a rooted tree, then
for any vertex 𝑣 we denote by 𝑇𝑣 the sub-rooted tree rooted at 𝑣.

A function 𝑓 : 𝑉 (𝐺) → {0, 1, 2} is a Roman dominating function (or just RD-function) if every vertex 𝑢
for which 𝑓(𝑢) = 0 is adjacent to at least one vertex 𝑣 for which 𝑓(𝑣) = 2. The weight of an RD-function 𝑓
is 𝑤(𝑓) = 𝑓(𝑉 (𝐺)) =

∑︀
𝑢∈𝑉 (𝐺) 𝑓(𝑢). The Roman domination number of a graph 𝐺, denoted by 𝛾𝑅(𝐺), is the

minimum weight of an RD-function on 𝐺. We refer to a 𝛾𝑅(𝐺)-function as an RD-function of 𝐺 with minimum
weight. For more details on Roman domination and its variations we refer the reader to the recent book chapters
and survey [5–9].

An RD-function 𝑓 = (𝑉0, 𝑉1, 𝑉2) is called a Perfect Roman dominating function (or just PRD-function) if very
vertex 𝑢 with 𝑓(𝑢) = 0 is adjacent to exactly one vertex 𝑣 for which 𝑓(𝑣) = 2. The Perfect Roman domination
number 𝛾𝑃

𝑅 (𝐺) is the minimum weight of an PRD-function. We refer to a 𝛾𝑃
𝑅 (𝐺)-function as an PRD-function

of 𝐺 with minimum weight. The concept of perfect Roman domination was introduced by Henning et al. [15]
and has been studied in [10,18].

Observe that 𝛾𝑅(𝐺) ≤ 𝛾𝑃
𝑅 (𝐺) for every graph 𝐺. Clearly, if 𝐺 is a graph with 𝛾𝑅(𝐺) = 𝛾𝑃

𝑅 (𝐺), then
every 𝛾𝑃

𝑅 (𝐺)-function is a 𝛾𝑅(𝐺)-function. However, not every 𝛾𝑅(𝐺)-function is an 𝛾𝑃
𝑅 (𝐺)-function even when

𝛾𝑅(𝐺) = 𝛾𝑃
𝑅 (𝐺). For example consider the path 𝑃5. We say that 𝛾𝑃

𝑅 (𝐺) and 𝛾𝑅(𝐺) are strongly equal, denoted
by 𝛾𝑅(𝐺) ≡ 𝛾𝑃

𝑅 (𝐺), if every 𝛾𝑅(𝐺)-function is an 𝛾𝑃
𝑅 (𝐺)-function.

In this paper we show that for a given graph 𝐺, it is NP-hard to decide whether 𝛾𝑝
𝑅(𝐺) = 𝛾𝑅(𝐺) and also

in the next we provide a constructive characterization of trees 𝑇 with 𝛾𝑝
𝑅(𝑇 ) ≡ 𝛾𝑅(𝑇 ). Further examples of

characterizations of tress can be found in [1–4,13,16,17,19].

2. Complexity

In this section, we show that for a given graph 𝐺, it is NP-hard to decide whether 𝛾𝑝
𝑅(𝐺) = 𝛾𝑅(𝐺). Consider

the following decision problem.

𝛾𝑝
𝑅(𝐺) = 𝛾𝑅(𝐺) Problem

Instance: Graph 𝐺 = (𝑉,𝐸).
Question: Does for graph 𝐺, 𝛾𝑝

𝑅(𝐺) = 𝛾𝑅(𝐺)?

Our reduction is from the following problem.

EXACT 3-COVER (𝑋3𝐶)
Instance: A finite set 𝑋 with |𝑋| = 3𝑞 and a collection 𝐶 of 3-element subsets of 𝑋.
Question: Is there a subcollection 𝐶 ′ of 𝐶 such that every element of 𝑋 appears in exactly one element of 𝐶 ′?

It is well known that X3C is NP-complete [12]. We show that equality of Roman and perfect Roman domi-
nation problem is NP-complete by reducing from EXACT 3-COVER problem.

Theorem 2.1. For a given graph 𝐺, it is NP-hard to decide whether 𝛾𝑝
𝑅(𝐺) = 𝛾𝑅(𝐺).

Proof. Clearly, the 𝛾𝑝
𝑅(𝐺) = 𝛾𝑅(𝐺) problem is in NP, since it is easy to verify that for a given graph 𝐺,

𝛾𝑝
𝑅(𝐺) = 𝛾𝑅(𝐺) in polynomial time. Now let us show how to transform any instance 𝑋, 𝐶 of 𝑋3𝐶 into an

instance 𝐺 of 𝛾𝑝
𝑅(𝐺) = 𝛾𝑅(𝐺) problems so that one of them has a solution if and only if the other has a

solution. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥3𝑞} and 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑡} be an arbitrary instance of 𝑋3𝐶. We join each
vertex 𝑥𝑖 ∈ 𝑋 with the leaf 𝑦𝑖 of a stare 𝐾1,4 with chenter 𝑤𝑖. For each 𝐶𝑗 ∈ 𝐶, we build a star 𝐾1,3 centered at
𝑧𝑗 for which one leaf is labeled 𝑐𝑗 . Now to obtain a graph 𝐺, we add edges 𝑐𝑗𝑥𝑖 if 𝑥𝑖 ∈ 𝐶𝑗 and for any 𝑖 = 3𝑙 + 2
that 𝑙 ≥ 0 we add edges 𝑥𝑖𝑥𝑖−1, 𝑥𝑖𝑥𝑖+1 and 𝑥𝑖−1𝑥𝑖+1. Figure 1 shows an example of graphs 𝐺. Set 𝑘 = 2𝑡 + 8𝑞.

Claim 2.2. 𝛾𝑅(𝐺) = 𝑘.
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Figure 1. The graph 𝐺 in the proof of Theorem 2.1.

Proof. Let 𝐵 be set of all 𝑥𝑖 such that 𝑖 = 3𝑙 + 2 for 𝑙 ≥ 0 and 𝐷 = 𝐵 ∪
⋃︀𝑖=3𝑞

𝑖=1 {𝑤𝑖} ∪
⋃︀𝑖=𝑡

𝑗=1{𝑧𝑗}. Then,
clearly function 𝑔 = (𝑉 − 𝐷, ∅, 𝐷) is a RD-function and so 𝛾𝑅(𝐺) ≤ 𝑤(𝑔) = 8𝑞 + 2𝑡 = 𝑘. Now assume that
𝑓 = (𝑉0, 𝑉1, 𝑉2) is a 𝛾𝑅(𝐺)-the function. Then, we can see that

⋃︀𝑖=3𝑞
𝑖=1 {𝑤𝑖} ∪

⋃︀𝑖=𝑡
𝑗=1{𝑧𝑗} ⊆ 𝑉2 and for every

𝑗 ∈ {1, 2, . . . , 𝑡}, 𝑓(𝑐𝑗) = 0 or 𝑓(𝑐𝑗) = 2. Let 𝑅 = {𝑗 : 𝑐𝑗 ∈ 𝑉2} and |𝑅| = 𝑟. Also let 𝑀 = {𝑖 : 𝑥𝑖 ∈ 𝑉2},
𝑁 = {𝑖 : 𝑥𝑖 ∈ 𝑉1}, |𝑀 | = 𝑚 and |𝑁 | = 𝑛. Then 𝛾𝑅(𝐺) = 𝑤(𝑓) = 2𝑡 + 6𝑞 + 2𝑟 + 2𝑚 + 𝑛. We first assume
that 𝑟 + 𝑚 < 𝑞. Since each 𝑐𝑗 ∈ 𝑅 and 𝑥𝑖 ∈ 𝑀 has exactly three neighbors in {𝑥1, 𝑥2, . . . , 𝑥3𝑞}, we deduce that
|𝑁 | ≥ 3𝑞 − 3𝑟 − 3𝑚. Hence

𝛾𝑅(𝐺) = 𝑤(𝑓) ≥ 2𝑡 + 6𝑞 + 2𝑟 + 2𝑚 + 𝑛

≥ 2𝑡 + 6𝑞 + 2𝑟 + 2𝑚 + 3𝑞 − 3𝑟 − 3𝑚

= 2𝑡 + 8𝑞 + (𝑞 − 𝑟 −𝑚)
> 2𝑡 + 8𝑞

≥ 𝛾𝑅(𝐺),

a contradiction. Thus we may assume that 𝑟 + 𝑚 ≥ 𝑞. Then

𝛾𝑅(𝐺) = 𝑤(𝑓)
= 2𝑡 + 6𝑞 + 2𝑟 + 2𝑚 + 𝑛

= 2𝑡 + 8𝑞 + 𝑛

≥ 2𝑡 + 8𝑞.

Consequently, 𝛾𝑅(𝐺) = 2𝑡 + 8𝑞.
Now assme that ℎ is a 𝛾𝑝

𝑅(𝐺)-function with weight 𝑘. Clearly, each star needs a weight of at least 2, and so
we may assume that ℎ(𝑧𝑗) = ℎ(𝑤𝑖) = 2 and all its leaves are assigned 0. Since 𝑦𝑖𝑤𝑖 ∈ 𝐸(𝐺), it follows that each
vertex 𝑤𝑖 may be assigned the value 0. If there exist 𝑖 such that ℎ(𝑥𝑖) ̸= 0, then ℎ(𝑥𝑖) = 1, since ℎ is a 𝛾𝑝

𝑅(𝐺)-
function. Let 𝑆 = {𝑖 : 𝑥𝑖 ∈ 𝑉1} and |𝑆| = 𝑠. Then for each 𝑖 ̸∈ 𝑆, there exist a vertex 𝑐𝑗 for some 𝑗 = 1, 2, . . . , 𝑡
such that 𝑥𝑖 ∈ 𝐶𝑗 and 𝑐𝑗 ∈ 𝑉2. Let 𝑝 be the number of 𝑐𝑗 ’s belonging to 𝑉2. Then 𝑠 + 6𝑞 + 2𝑝 + 2𝑡 ≤ 2𝑡 + 8𝑞
and so 𝑠 + 2𝑝 ≤ 2𝑞. On the other hand, since each 𝑐𝑗 has exactly three neighbors in {𝑥1, 𝑥2, . . . , 𝑥3𝑞}, we have
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3𝑝 ≥ 3𝑞 − 𝑠. Combining these two inequalities, we arrive at 𝑝 = 𝑞 and 𝑟 = 0. Consequently, 𝐶 ′ = {𝐶𝑗 : 𝑐𝑗 ∈ 𝑆}
is an exact cover for 𝐶. �

Conversely, suppose that the instance 𝑋, 𝐶 of 𝑋3𝐶 has a solution 𝐶 ′. We construct a perfect Roman dom-
inating function 𝑓 on 𝐺 of weight 𝑘. For every 𝐶𝑗 , assign the value 2 to 𝑐𝑗 if 𝐶𝑗 ∈ 𝐶 ′, 0 if 𝐶𝑗 ̸∈ 𝐶 ′, assign
2 to every 𝑧𝑗 and every 𝑤𝑖 and 0 to the remaining vertices of 𝐺. Thereby since 𝐶 ′ exists, its cardinality is
precisely 𝑞, the number of 𝑐𝑗 ’s with weight 2 is 𝑞, having disjoint neighborhoods in {𝑥1, 𝑥2, . . . , 𝑥3𝑞}. Hence, it
is straightforward to see that 𝑓 is a perfect Roman dominating function with weight 𝑘. Hence we obtain that
𝛾𝑝

𝑅(𝐺) = 𝛾𝑅(𝐺) if and only if there a subcollection 𝐶 ′ of 𝐶 such that every element of 𝑋 appears in exactly one
element of 𝐶 ′. �

3. Constructive characterization of strong equality

We make use of the following.

Proposition 3.1 ([11]). Let 𝑓 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾𝑅(𝐺)-function. Then

(1) The subgraph induced by 𝑉1 has maximum degree one.
(2) No edge of 𝐺 joins 𝑉1 to 𝑉2.

We begin with the following lemmas.

Lemma 3.2. Let 𝐺 be a connected graph of order 𝑛 ≥ 3. If 𝛾𝑝
𝑅(𝑇 ) ≡ 𝛾𝑅(𝑇 ), then for every 𝛾𝑅(𝐺)-function

𝑓 = (𝑉0, 𝑉1, 𝑉2), 𝑉1 is independent.

Proof. Suppose, to the contrary, 𝑉1 is not independent. By Proposition 3.1, 𝐺[𝑉1] has an edge 𝑢𝑣. Since 𝑛 ≥ 3,
we may assume, without loss of generality, that deg(𝑢) > 1. Let 𝑤 be the neighbor of 𝑢 different from 𝑣. Then
𝑓(𝑤) = 0, and so there is a vertex 𝑟 ∈ 𝑉2 such that 𝑟 ∈ 𝑁(𝑤). Then reassigning to 𝑢 the weight 2, to 𝑣 the
weight 0 and leaving all other weights unchanged produces a new 𝛾𝑅(𝑇 )-function that is not a PRD-function,
contradicting the fact that 𝛾𝑝

𝑅(𝑇 ) ≡ 𝛾𝑅(𝑇 ). �

Now we present a constructive characterization of trees 𝑇 with 𝛾𝑝
𝑅(𝑇 ) ≡ 𝛾𝑅(𝑇 ). For this purpose, we define a

family of trees as follows. Let ℱ be the collection of trees 𝑇 that can be obtained from a sequence 𝑇1, 𝑇2, . . . , 𝑇𝑘 =
𝑇 (𝑘 ≥ 1) of trees, where 𝑇1 ∈ {𝑃2, 𝑃3} and 𝑇 = 𝑇𝑘. Further, if 𝑘 ≥ 1, then for each 𝑖 ∈ [𝑘], the tree 𝑇𝑖 can be
obtained from the tree 𝑇 ′ = 𝑇𝑖−1 by one of the following eleven operations 𝜙1, 𝜙2, . . . , 𝜙11 defined below and
illustrated in Figure 2.

– Operation 𝜙1: add a new vertex 𝑢 to 𝑇 ′ and join it to a strong support vertex 𝑣 of 𝑇 ′.
– Operation 𝜙2: add a star 𝐾1,3 and join a leaf 𝑣 of star to a vertex 𝑢 of 𝑇 ′ that cannot be assigned the

value 2 under any 𝛾𝑅-function of 𝑇 ′.
– Operation 𝜙3: add a double star 𝑆(2, 1), and join the support vertex 𝑣 of the double star with degree two

to a vertex 𝑢 of 𝑇 ′ that cannot be assigned the value 2 under any 𝛾𝑅-function of 𝑇 ′.
– Operation 𝜙4: add a star 𝐾1,2 with central vertex 𝑣, and join the vertex 𝑣 to vertex 𝑢 of 𝑇 ′ that is assigned

the value 2 by every 𝛾𝑅-function of 𝑇 ′ and is adjacent to a strong support vertex of degree 3 in 𝑇 ′.
– Operation 𝜙5: add a star 𝐾1,2 with central vertex 𝑣, and join the vertex 𝑣 to vertex 𝑢 of 𝑇 ′ that is assigned

the value 2 by every 𝛾𝑅-function of 𝑇 ′ and is adjacent to a weak support vertex of degree 2 in 𝑇 ′.
– Operation 𝜙6: add a star 𝐾1,2 centred at 𝑣, and join the vertex 𝑣 to stong support vertex 𝑢 of 𝑇 ′ with

degree three, that is assigned the value 2 by every 𝛾𝑅-function of 𝑇 ′.
– Operation 𝜙7: add a path 𝑃2 : 𝑣𝑤 and join the vertex 𝑣 of the path to a strong support vertex 𝑢 of 𝑇 ′.
– Operation 𝜙8: add a new vertex 𝑣 to 𝑇 ′ and join it to leaf neighbors 𝑢 of a strong support vertex 𝑤 of 𝑇 ′

with exactly two neighbors leaves in 𝑇 ′.
– Operation 𝜙9: add a new vertex 𝑣 to 𝑇 ′ and join 𝑣 to a leaf 𝑢 of 𝑇 ′ such that the vertex 𝑤 that {𝑤} = 𝑁(𝑢)

has at least two neighbors which are weak support vertices with degree two.
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Figure 2. The operations 𝜙1, 𝜙2, . . . , 𝜙11.

– Operation 𝜙10: add a new vertex 𝑣 to 𝑇 ′ and join 𝑣 to a leaf 𝑢 of 𝑇 ′ such that the vertex 𝑤 that {𝑤} = 𝑁(𝑢)
has exactly one neighbor weak support vertex with degree two and is assigned the value 2 by every 𝛾𝑅-function
of 𝑇 ′.

– Operation 𝜙11: add a path 𝑃3 : 𝑣𝑥𝑦 and join leaf 𝑣 of the path to vertex 𝑢 of 𝑇 ′ that cannot be assigned
the value 2 under any 𝛾𝑅-function of 𝑇 ′.

We show next that for every tree 𝑇 in the family ℱ , 𝛾𝑝
𝑅(𝑇 ) strongly equals 𝛾𝑅(𝑇 ).
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Lemma 3.3. If 𝑇 is a tree in the family ℱ , then 𝛾𝑝
𝑅(𝑇 ) ≡ 𝛾𝑅(𝑇 ).

Proof. We proceed by induction on the order 𝑛 ≥ 2 of a tree 𝑇 ∈ 𝒯 . If 𝑛 ∈ {2, 3}, then 𝑇 ∈ {𝑃2, 𝑃3} and
clearly 𝛾𝑝

𝑅(𝑇 ) ≡ 𝛾𝑅(𝑇 ). Suppose that 𝑛 ≥ 4 and that for every tree in ℱ of order 𝑛′, where 4 ≤ 𝑛′ < 𝑛,
𝛾𝑝

𝑅(𝑇 ) ≡ 𝛾𝑅(𝑇 ). Let 𝑇 ∈ ℱ have order 𝑛. Thus, 𝑇 can be obtained from a sequence of trees 𝑇1, . . . , 𝑇𝑘, where
𝑘 ≥ 1, 𝑇1 ∈ {𝑃2, 𝑃3}, 𝑇 = 𝑇𝑘, and for each 𝑖 ≤ 𝑘 − 1, the tree 𝑇𝑖+1 can be obtained from the tree 𝑇𝑖 by one
of the eleven operations 𝜙1, 𝜙2, . . . , 𝜙11. Let 𝑇 ′ = 𝑇𝑘−1, and so 𝑇 ′ ∈ 𝒯 has order less than 𝑛. Applying the
inductive hypothesis to 𝑇 ′, 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Let 𝑢 be the attacher of 𝑇 ′ and 𝑣 the link vertex of 𝑇 used to
construct the tree 𝑇 from the tree 𝑇 ′.

Let 𝑓 be such a 𝛾𝑅-function of 𝑇 chosen so that the sum of the values assigned to all leaves under 𝑓 is
minimum. Let 𝑓 ′ be the restriction of the function 𝑓 to the tree 𝑇 ′. Thus, 𝑓 ′(𝑤) = 𝑓(𝑤) for every vertex
𝑧 ∈ 𝑉 (𝑇 ′). We consider eleven cases, depending on which operation is used to construct the tree 𝑇 from 𝑇 ′.

Case 1. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙1.
Let 𝑔′ be a 𝛾𝑃

𝑅 (𝑇 ′)-function. Since 𝑢 is a strong support vertex of 𝑇 ′ and 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′), we can assume

that 𝑔′(𝑢) = 2. Then 𝑔′ can be extended to a PRD-function 𝑔 on 𝑇 by assigning the weight 0 to 𝑣. The
resulting PRD-function 𝑔 has weight 𝑤(𝑔) = 𝑤(𝑔′) = 𝛾𝑃

𝑅 (𝑇 ′) and so by the statement above and inductive
hypothesis, we obtain

𝛾𝑅(𝑇 ) ≤ 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) = 𝛾𝑃

𝑅 (𝑇 ′) = 𝛾𝑅(𝑇 ′). (3.1)

Conversely, the vertex 𝑢 is a strong support vertex of 𝑇 with ℓ𝑢 ≥ 3 and so 𝑓(𝑢) = 2 and 𝑓(𝑣) = 0. Then,
𝑓 ′ is a RD-function on 𝑇 ′ of weight 𝛾𝑅(𝑇 ), from which we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 ). Consequently, we
must have equalities throughout the inequality chain (3.1). In particular, 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
Now we show that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃
𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-

function 𝑔 such that 𝑔 is not a PRD-function. Since 𝑢 is a strong support vertex, 𝑔(𝑢) = 2 and 𝑔(𝑣) = 0.
Thus, 𝑔 restricted to 𝑉 (𝑇 ′) is a 𝛾𝑅-function on 𝑇 ′ that it is not a PRD-function, contradicting the fact that
𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ).

Case 2. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙2.
Let 𝑣1 be the central vertex of the added star 𝐾1,3 when constructing 𝑇 from 𝑇 ′. Let 𝑔′ be a 𝛾𝑃

𝑅 (𝑇 ′)-function.
By assumption, 𝑔′ is a 𝛾𝑃

𝑅 (𝑇 ′)-function and 𝑔′(𝑢) ̸= 2. Then 𝑔′ can be extended to a PRD-function 𝑔 on 𝑇
by assigning to 𝑣1 the value 2 and to its neighbors the weight 0, implying that 𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 2 =
𝛾𝑃

𝑅 (𝑇 ′) + 2. Hence by the statement above and inductive hypothesis, we obtain

𝛾𝑅(𝑇 ) ≤ 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 2 = 𝛾𝑃

𝑅 (𝑇 ′) + 2 = 𝛾𝑅(𝑇 ′) + 2. (3.2)

Conversely, the vertex 𝑣1 is a strong support vertex of 𝑇 and so we can assume that 𝑓(𝑣1) = 2 and 𝑓(𝑣) = 0.
Thus, 𝑓(𝑣) = 0 implies 𝑓 ′ is a RD-function on 𝑇 ′, from which we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 ) − 2.
Consequently, we must have equalities throughout the inequality chain (3.2). In particular, 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
Now we show that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃
𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-function

𝑔 such that 𝑔 is not a PRD-function. Since 𝑣1 is a strong support vertex, we can assume that 𝑔(𝑣1) = 2 and
𝑔(𝑣) = 0. Thus, 𝑔 restricted to 𝑉 (𝑇 ′) is a 𝛾𝑅-function on 𝑇 ′ that it is not a PRD-function, contradicting the
fact that 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ).

Case 3. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙3.
Let 𝑣 and 𝑤 be the two central vertices of the added double star 𝑆(2, 1), where the link vertex 𝑣 is adjacent
to leaf 𝑥. Let 𝑔′ be a 𝛾𝑃

𝑅 (𝑇 ′)-function. By assumption, 𝑔′(𝑢) ̸= 2. Then 𝑔′ can be extended to a PRD-function
𝑔 on 𝑇 by assigning to 𝑥 the value 1, to 𝑤 the value 2 and to its neighbors the weight 0, implying that
𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 3 = 𝛾𝑃
𝑅 (𝑇 ′) + 3. Hence by the inductive hypothesis, we obtain

𝛾𝑅(𝑇 ) ≤ 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 3 = 𝛾𝑃

𝑅 (𝑇 ′) + 3 = 𝛾𝑅(𝑇 ′) + 3. (3.3)

On the other hand, since the vertex 𝑤 is a strong support vertex of 𝑇 , we can assume that 𝑓(𝑤) = 2.
Without loss of generality, we assume that 𝑓(𝑣) = 0 and 𝑓(𝑥) = 1. Thus, 𝑓 ′ is a RD-function on 𝑇 ′, from



STRONG EQUALITY OF ROMAN AND PERFECT ROMAN DOMINATION IN TREES 387

which we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 )−3. Consequently, we must have equalities throughout the inequality
chain (3.3). In particular, 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
Next we show that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃
𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-function

𝑔 such that 𝑔 is not a PRD-function. Since 𝑤 is a strong support vertex, we can assume that 𝑔(𝑤) = 2.
Clearly 𝑔(𝑣) = 2 or 𝑔(𝑣) = 0. We first assume that 𝑔(𝑣) = 2, then without loss of generality we can assume
that 𝑔(𝑢) = 0 and for 𝑦 ∈ 𝑁(𝑢) − {𝑣}, 𝑓(𝑦) ̸= 2, for otherwise we can reassign to 𝑣 the weight 0 and to
𝑥 the weight 1 to produce a RD-function of smaller weight than 𝑤(𝑔) = 𝛾𝑅(𝑇 ), a contradiction. Then the
function ℎ : 𝑉 (𝑇 ′) −→ {0, 1, 2} with ℎ(𝑢) = 1 and for 𝑧 ̸= 𝑢, ℎ(𝑧) = 𝑔(𝑧) is a 𝛾𝑅(𝑇 ′)-function that it is not
a PRD-function, contradicting 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Now assume that 𝑔(𝑣) = 0, then 𝑔|𝑇 ′ is a 𝛾𝑃
𝑅 (𝑇 ′)-function

and so by our earlier assumptions 𝑔|𝑇 ′(𝑢) ̸= 2. Then 𝑔|𝑇 ′ is not a PRD-function, contradicting the fact that,
𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Hence in two cases, 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ).

Case 4. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙4.
Let 𝑤 be the strong support vertex of degree 3 in 𝑇 ′ adjacent to 𝑢. Let 𝑔′ be a 𝛾𝑃

𝑅 (𝑇 ′)-function. By
assumption, 𝑔′(𝑢) = 2. Then 𝑔′ can be extended to a PRD-function 𝑔 on 𝑇 by assigning to 𝑣 the value 2 and
to its leaf neighbors the weight 0. Hence, 𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 2 = 𝛾𝑃
𝑅 (𝑇 ′) + 2 and so by the inductive

hypothesis, we obtain

𝛾𝑅(𝑇 ) ≤ 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 2 = 𝛾𝑃

𝑅 (𝑇 ′) + 2 = 𝛾𝑅(𝑇 ′) + 2. (3.4)

On the other hand, 𝑣 and 𝑤 are two strong support vertices of 𝑇 and so we can assume that 𝑓(𝑣) = 𝑓(𝑤) = 2.
Thus, 𝑓 ′ is a RD-function on 𝑇 ′, from which we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 ) − 2. Consequently, we must
have equalities throughout the inequality chain (3.4). In particular, 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
Next we show that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃
𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-

function 𝑔 such that 𝑔 is not a PRD-function. Since 𝑤 and 𝑣 are two strong support vertex, we can assume
that 𝑔(𝑤) = 𝑔(𝑣) = 2. Then 𝑔′ = 𝑔|𝑇 ′ is 𝛾𝑅(𝑇 ′)-function and so by our earlier assumption 𝑔′(𝑢) = 2.
Therefore, 𝑔′ is not a PRD-function, contradicting 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ).

Case 5. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙5.
Let 𝑤 be the weak support vertex of degree 2 in 𝑇 ′ adjacent to 𝑢. Let 𝑔′ be a 𝛾𝑃

𝑅 (𝑇 ′)-function. By assumption,
𝑔′(𝑢) = 2. Then 𝑔′ can be extended to a PRD-function 𝑔 on 𝑇 by assigning to 𝑣 the value 2 and to its leaf
neighbors the weight 0. Hence 𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 2 = 𝛾𝑃
𝑅 (𝑇 ′) + 2 and so by the inductive hypothesis,

we obtain
𝛾𝑅(𝑇 ) ≤ 𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 2 = 𝛾𝑃
𝑅 (𝑇 ′) + 2 = 𝛾𝑅(𝑇 ′) + 2. (3.5)

On the other hand, 𝑣 is a strong support vertices of 𝑇 and so we can assume that 𝑓(𝑣) = 2. Clearly
𝑓(𝑢) ̸= 0 or we can assume that 𝑓(𝑤) = 2. In two cases, 𝑓 ′ is a RD-function on 𝑇 ′, from which we deduce
that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 ) − 2. Consequently, we must have equalities throughout the inequality chain (3.5). In
particular, 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
Next we show that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃
𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-function

𝑔 such that 𝑔 is not a PRD-function. Since 𝑣 is a strong support vertex, we can assume that 𝑔(𝑣) = 2. Clearly,
𝑔(𝑢) ̸= 0 or we can assume that 𝑔(𝑤) = 2. In two cases 𝑔′ = 𝑔|𝑇 ′ is 𝛾𝑅(𝑇 ′)-function and so by our earlier
assumption 𝑔′(𝑢) = 2. Therefore, 𝑔′ is not a PRD-function, contradicting the fact that 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′).
Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ).
Case 6. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙6.

Let 𝑔′ be a 𝛾𝑃
𝑅 (𝑇 ′)-function. By assumption, 𝑔′(𝑢) = 2. Then 𝑔′ can be extended to a PRD-function 𝑔 on 𝑇 by

assigning to 𝑣 the value 2 and to its leaf neighbors the weight 0. Hence 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′)+2 = 𝛾𝑃

𝑅 (𝑇 ′)+2
and so by the inductive hypothesis, we obtain

𝛾𝑅(𝑇 ) ≤ 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 2 = 𝛾𝑃

𝑅 (𝑇 ′) + 2 = 𝛾𝑅(𝑇 ′) + 2. (3.6)

On the other hand, since 𝑢 and 𝑣 are strong support vertices of 𝑇 , we can assume that 𝑓(𝑣) = 𝑓(𝑢) = 2.
Then 𝑓 ′ is a RD-function on 𝑇 ′, from which we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 ) − 2. Consequently, we must
have equalities throughout the inequality chain (3.6). In particular, 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
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Now we show that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ). Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃

𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-function
𝑔 such that 𝑔 is not a PRD-function. Since 𝑢 and 𝑣 are two strong support vertices of 𝑇 , we can assume
that 𝑔(𝑣) = 𝑔(𝑢) = 2. Hence 𝑔|𝑇 ′ is 𝛾𝑅(𝑇 ′)-function that is not a PRD-function, contradicting the fact that
𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ).

Case 7. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙7.
Let 𝑤 be leaf neighbors of 𝑣 and 𝑔′ be a 𝛾𝑃

𝑅 (𝑇 ′)-function. Since, 𝛾𝑝
𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′), we can assume that

𝑔′(𝑢) = 2. Then 𝑔′ can be extended to a PRD-function 𝑔 on 𝑇 by assigning to 𝑣 the value 0 and to its leaf
neighbor the weight 1. Hence 𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 1 = 𝛾𝑃
𝑅 (𝑇 ′) + 1 and so by the inductive hypothesis,

we obtain
𝛾𝑅(𝑇 ) ≤ 𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 1 = 𝛾𝑃
𝑅 (𝑇 ′) + 1 = 𝛾𝑅(𝑇 ′) + 1. (3.7)

On the other hand, we can assume that 𝑓(𝑢) = 2, 𝑓(𝑣) = 0 and 𝑓(𝑤) = 1. Then 𝑓 ′ is a RD-function on 𝑇 ′,
from which we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 )− 1 and as above we have 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
Next we show that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃
𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-function

𝑔 such that 𝑔 is not a PRD-function. Since 𝑢 is a strong support vertex of 𝑇 , we can assume that 𝑔(𝑢) = 2.
Hence 𝑔|𝑇 ′ is 𝛾𝑅(𝑇 ′)-function that is not a PRD-function, contradicting the fact that 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′).
Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ).
Case 8. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙8.

Let 𝑧 be leaf neighbor of 𝑤 other than 𝑢 and 𝑔′ be a 𝛾𝑃
𝑅 (𝑇 ′)-function. Then 𝑔′ can be extended to a PRD-

function 𝑔 on 𝑇 by assigning to 𝑣 the value 1. Hence 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 1 = 𝛾𝑃

𝑅 (𝑇 ′) + 1 and so by the
inductive hypothesis, we obtain

𝛾𝑅(𝑇 ) ≤ 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 1 = 𝛾𝑃

𝑅 (𝑇 ′) + 1 = 𝛾𝑅(𝑇 ′) + 1. (3.8)

On the other hand, we can assume that 𝑓(𝑤) = 2, 𝑓(𝑢) = 0 and 𝑓(𝑣) = 1. Then 𝑓 ′ is a RD-function on 𝑇 ′,
from which we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 )− 1 and as above we have 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
Now we show that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃
𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-function

𝑔 such that 𝑔 is not a PRD-function. Without loss of generality, we assume that 𝑔(𝑤) = 2, 𝑔(𝑢) = 0 and
𝑔(𝑣) = 1. Hence 𝑔|𝑇 ′ is 𝛾𝑅(𝑇 ′)-function that is not a PRD-function, contradicting the fact that 𝛾𝑝

𝑅(𝑇 ′) ≡
𝛾𝑅(𝑇 ′). Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ).
Case 9. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙9.

Let 𝑟 and 𝑧 are two weak support neighbors with degree two of 𝑤 and 𝑁(𝑟) = {𝑥, 𝑤} and 𝑁(𝑧) = {𝑦, 𝑤}.
Now assume that 𝑔′ is a 𝛾𝑃

𝑅 (𝑇 ′)-function. Since, 𝛾𝑝
𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′), we can assume that 𝑔′(𝑤) = 2, 𝑔′(𝑢) =

𝑔′(𝑟) = 𝑔′(𝑧) = 0 and 𝑔′(𝑥) = 𝑔′(𝑦) = 1. Then 𝑔′ can be extended to a PRD-function 𝑔 on 𝑇 by assigning to
𝑣 the value 1, implying that 𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 1 = 𝛾𝑃
𝑅 (𝑇 ′) + 1. Hence by the inductive hypothesis,

we obtain
𝛾𝑅(𝑇 ) ≤ 𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 1 = 𝛾𝑃
𝑅 (𝑇 ′) + 1 = 𝛾𝑅(𝑇 ′) + 1. (3.9)

On the other hand, we can assume that 𝑓(𝑤) = 2, 𝑓(𝑢) = 0 and 𝑓(𝑣) = 1. Then 𝑓 ′ is a RD-function on 𝑇 ′,
from which we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 )− 1 and as above we have 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃

𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-function 𝑔 such that 𝑔 is not a PRD-function.
Without loss of generality, we assume that 𝑔(𝑤) = 2, 𝑔(𝑢) = 0 and 𝑔(𝑣) = 1. Hence 𝑔|𝑇 ′ is 𝛾𝑅(𝑇 ′)-function
that is not a PRD-function, contradicting the fact that 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ).

Case 10. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙10.
Let 𝑟 be neighbor weak support vertex with degree two of 𝑤 and 𝑁(𝑟) = {𝑥, 𝑤}. Now assume that 𝑔′

is a 𝛾𝑃
𝑅 (𝑇 ′)-function. Since, 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′), we can assume that 𝑔′(𝑤) = 2, 𝑔′(𝑢) = 𝑔′(𝑟) = 0 and
𝑔′(𝑥) = 1. Then 𝑔′ can be extended to a PRD-function 𝑔 on 𝑇 by assigning to 𝑣 the value 1, implying that
𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 1 = 𝛾𝑃
𝑅 (𝑇 ′) + 1. Hence by the inductive hypothesis, we obtain

𝛾𝑅(𝑇 ) ≤ 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 1 = 𝛾𝑃

𝑅 (𝑇 ′) + 1 = 𝛾𝑅(𝑇 ′) + 1. (3.10)
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On the other hand, we can assume that 𝑓(𝑤) = 2, 𝑓(𝑢) = 0 and 𝑓(𝑣) = 1. Then 𝑓 ′ is a RD-function on
𝑇 ′, from which we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 )− 1. Consequently, we must have equalities throughout the
inequality chain (3.10). In particular, 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).
Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃

𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-function 𝑔 such that 𝑔 is not a PRD-
function. Without loss of generality, we assume that 𝑔(𝑤) = 2, 𝑔(𝑢) = 0 and 𝑔(𝑣) = 1. Hence 𝑔|𝑇 ′ is
𝛾𝑅(𝑇 ′)-function that is not a PRD-function, contradicting thr fact 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ).

Case 11. 𝑇 is obtained from 𝑇 ′ by Operation 𝜙11.
Let 𝑔′ be a 𝛾𝑃

𝑅 (𝑇 ′)-function. Then 𝑔′ can be extended to a PRD-function 𝑔 on 𝑇 by assigning to 𝑣 and 𝑦
the value 0 and to 𝑥 the value 2. Hence 𝛾𝑃

𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 2 = 𝛾𝑃
𝑅 (𝑇 ′) + 2. Hence by the inductive

hypothesis, we obtain

𝛾𝑅(𝑇 ) ≤ 𝛾𝑃
𝑅 (𝑇 ) ≤ 𝑤(𝑔) = 𝑤(𝑔′) + 2 = 𝛾𝑃

𝑅 (𝑇 ′) + 2 = 𝛾𝑅(𝑇 ′) + 2. (3.11)

On the other hand, we can assume that 𝑓(𝑥) = 2 and 𝑓(𝑣) = 0. Then 𝑓 ′ is a RD-function on 𝑇 ′, from which
we deduce that 𝛾𝑅(𝑇 ′) ≤ 𝛾𝑅(𝑇 )− 1. Consequently, we must have equalities throughout the inequality chain
(3.11). In particular, 𝛾𝑅(𝑇 ) = 𝛾𝑃

𝑅 (𝑇 ).

Suppose, to the contrary, 𝛾𝑅(𝑇 ) ̸≡ 𝛾𝑃
𝑅 (𝑇 ). Then there is a 𝛾𝑅(𝑇 )-function 𝑔 such that 𝑔 is not a PRD-function.

Without loss of generality, we assume that 𝑔(𝑥) = 2 and 𝑔(𝑣) = 0. Hence 𝑔|𝑇 ′ is 𝛾𝑅(𝑇 ′)-function and so 𝑔(𝑢) ̸= 2.
Therefore 𝑔|𝑇 ′ is not a PRD-function, contradicting the fact that 𝛾𝑝

𝑅(𝑇 ′) ≡ 𝛾𝑅(𝑇 ′). Hence 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ) and

the proof is complete. �

Now we are ready to establish our main result.

Theorem 3.4. Let 𝑇 be a tree. Then 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃
𝑅 (𝑇 ) if and only if 𝑇 is 𝐾1 or 𝑇 ∈ ℱ .

Proof. The sufficiency follows from Lemma 3.3. To prove the necessity, we proceed by induction on the order
𝑛 of a tree 𝑇 that satisfying 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Clearly if 𝑛 = 1, then 𝑇 = 𝐾1. Hence we assume that 𝑇 has
order 𝑛 ≥ 2. If 𝑛 ≤ 3, then 𝑇 ∈ {𝑃2, 𝑃3} and clearly 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ) and 𝑇 ∈ ℱ . Thus, we assume that 𝑛 ≥ 4.
Assume that every tree 𝑇 ′ of order 2 ≤ 𝑛′ < 𝑛 with 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃

𝑅 (𝑇 ′) is in ℱ . Let 𝑇 be a tree of order 𝑛 with
𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ) and let 𝑓 be a 𝛾𝑅(𝑇 )-function. If 𝑇 is a star, then 𝑇 can be obtained from 𝑃3 by repeated
applications of operation 𝜙1 noting that the central vertex of a star on at least three vertices is a strong support
vertex of the star, implying that 𝑇 ∈ ℱ . Hence, we may assume that diam(𝑇 ) ≥ 3. We proceed further with the
following claims.

Claim 3.5. If diam(𝑇 ) = 3, then 𝑇 ∈ ℱ .

Proof of Claim 3.5. Suppose that diam(𝑇 ) = 3. Then 𝑇 is a double star 𝑆(𝑟, 𝑠) for some integers 𝑟 ≥ 𝑠 ≥ 1. Let
𝑢 and 𝑣 be the non-leaf vertices of 𝑇 such that deg(𝑣) = 𝑠 + 1 and deg(𝑢) = 𝑟 + 1. Suppose first that 𝑠 = 1 and
let 𝑤 be the leaf-neighbor of 𝑣. Thus, 𝑇 can be obtained from a path 𝑃3 with central vertex 𝑣 by first applying
operation 𝜙7 with 𝑢 as the attacher, thereby producing a double star 𝑆(2, 1), and then by repeated applications
of operation 𝜙1, implying that 𝑇 ∈ ℱ . Now assume that 𝑠 ≥ 2. Then, 𝑇 can be obtained from a path 𝑃3 with
central vertex 𝑢 by first applying operation 𝜙6 with 𝑢 as the attacher, thereby producing a double star 𝑆(2, 1),
and then by repeated applications of operation 𝜙1, implying that 𝑇 ∈ ℱ . �

By Claim 3.5, we may assume that diam(𝑇 ) ≥ 4.

Claim 3.6. If 𝑇 contains a support vertex with at least three leaf neighbors, then 𝑇 ∈ ℱ .

Proof of Claim 3.6. Suppose that 𝑇 contains a support vertex 𝑢 with at least three leaf neighbors. Let 𝑣 be an
arbitrary leaf neighbor of 𝑢, and let 𝑇 ′ = 𝑇 − 𝑣. Since 𝑢 has at least two leaf neighbors in 𝑇 ′, the vertex 𝑢 is a
strong support vertex in 𝑇 ′. Clearly 𝑓(𝑢) = 2 and 𝑓(𝑣) = 0. Hence 𝑓 |𝑇 ′ is a PRD-function for tree 𝑇 ′ and so

𝛾𝑅(𝑇 ′) ≤ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 ) = 𝛾𝑅(𝑇 ) (3.12)
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Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function, then we can assume that 𝑔′(𝑢) = 2. Then 𝑔′ can be extended to a
RD-function on 𝑇 by assigning the weight 0 to the vertex 𝑣, implying that 𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′). Consequently,
𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′) and so we must have equalities throughout the inequality chain (3.12). In particular, 𝛾𝑅(𝑇 ′) =
𝛾𝑃

𝑅 (𝑇 ′). On the other hand, if 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃
𝑅 (𝑇 ′), then there exists 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′ is not a

PRD-function. Since 𝑢 is a strong support vertex, we can assume that 𝑔′(𝑢) = 2. Then 𝑔′ can be extended to
a 𝛾𝑅(𝑇 )-function 𝑔 by assigning 0 to 𝑣. Then 𝑔 is not a PRD-function, contradiction to our assumption that
𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′) and by induction on 𝑇 ′, we have 𝑇 ′ ∈ ℱ . Since the vertex 𝑢 is a

strong support vertex in 𝑇 ′, the tree 𝑇 can be rebuilt from the tree 𝑇 ′ by applying Operation 𝜙1 with 𝑢 as the
attacher. Thus, 𝑇 ∈ ℱ . �

By Claim 3.6, we may assume that every support vertex in 𝑇 has at most two leaf neighbors. We now root
the tree 𝑇 at a vertex 𝑟 at the end of a longest path in 𝑇 . Let 𝑣 be a vertex at maximum distance from 𝑟, and
so 𝑑𝑇 (𝑣, 𝑟) = diam(𝑇 ). Necessarily, 𝑟 and 𝑣 are leaves. Let 𝑢 be the parent of 𝑣, let 𝑤 be the parent of 𝑢, let 𝑥
be the parent of 𝑤, and let 𝑦 be the parent of 𝑥. Possibly, 𝑦 = 𝑟. Since 𝑣 is a vertex at maximum distance from
the root 𝑟, every child of 𝑢 is a leaf. Thus by our earlier observations, 𝑑𝑇 (𝑢) ≤ 3. Among all 𝛾𝑅(𝑇 )-functions,
let 𝑓 be chosen so that the sum of the values assigned to all leaves under 𝑓 is minimum. Since 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ),
it follow that 𝑓 is a 𝛾𝑃

𝑅 (𝑇 )-functions. Throughout the remaining part of the proof, if 𝑇 ′ is a subtree of 𝑇 , then
we let 𝑓 ′ be the restriction of the function 𝑓 to the tree 𝑇 ′. Thus, 𝑓 ′(𝑧) = 𝑓(𝑧) for every vertex 𝑧 ∈ 𝑉 (𝑇 ′).

Claim 3.7. If deg(𝑢) = 3, then 𝑇 ∈ ℱ .

Proof of Claim 3.7. Then clearly we can see that 𝑓(𝑢) = 2 and so by Proposition 3.1, 𝑓(𝑤) = 2 or 𝑓(𝑤) = 0.
We consider two cases.

Case 3.1. 𝑓(𝑤) = 2.
It follows that deg(𝑤) ≥ 3. Then every child of 𝑤 is a leaf or a support vertex. We first assume that 𝑤 is
not a weak support vertex. Let 𝑇 ′ = 𝑇 − 𝑇𝑢. Since 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ), we deduce that 𝑓 is a 𝛾𝑃
𝑅 (𝑇 )-function.

Then 𝑓 |𝑇 ′ is a PRD-function for tree 𝑇 ′ and so

𝛾𝑅(𝑇 ′) ≤ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 )− 2 = 𝛾𝑅(𝑇 )− 2. (3.13)

Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function. Then 𝑔′ can be extended to a RD-function on 𝑇 by assigning the
weight 2 to 𝑢 and 0 to the remaining vertices in 𝑉 (𝑇𝑢), implying that 𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′) + 2. Consequently,
𝛾𝑅(𝑇 ) = 𝛾𝑅(𝑇 ′) + 2 and so we must have equalities throughout the inequality chain (3.13). In particular,
𝛾𝑅(𝑇 ′) = 𝛾𝑃

𝑅 (𝑇 ′). On the other hand, if 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃
𝑅 (𝑇 ′), then there exists 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′ is

not a PRD-function. Then 𝑔′ can be extended to a 𝛾𝑅(𝑇 )-function by assigning 2 to 𝑢 and 0 to the remaining
vertices in 𝑉 (𝑇𝑢), that is not a PRD-function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore
𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃

𝑅 (𝑇 ′) and by applying the inductive hypothesis to 𝑇 ′, we have 𝑇 ′ ∈ ℱ .
Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function. If 𝑔′(𝑤) = 1, then 𝑔′ can be extended to a RD-function of 𝑇 by
reassigning to 𝑤 the weight 0, assigning to 𝑢 the weight 2 and to the remaining vertices in 𝑉 (𝑇𝑢) the weight
0. Then 𝛾𝑅(𝑇 ) ≤ 𝑤(𝑔′) + 1 = 𝛾𝑅(𝑇 ′) + 1 = 𝛾𝑅(𝑇 ) − 1, a contradiction. Now assume that 𝑔′(𝑤) = 0, then
𝑔′ can be extended to a 𝛾𝑅(𝑇 )-function by assigning 2 to 𝑢 and 0 to the remaining vertices in 𝑉 (𝑇𝑢), that
is not a PRD-function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Hence, every 𝛾𝑅(𝑇 ′)-function
assigns 2 to the vertex 𝑤. Further in this case, if 𝑤 has at least one child different from 𝑢 that is a strong
support vertex, then the tree 𝑇 can be rebuilt from the tree 𝑇 ′ by applying Operation 𝒪4 with 𝑤 as the
attacher. Thus, 𝑇 ∈ ℱ . Hence, we may assume that every child of 𝑤 is a leaf or a weak support vertex. If
𝑤 has at least one child that is a weak support vertex, then the tree 𝑇 can be rebuilt from the tree 𝑇 ′ by
applying Operation 𝒪5 with 𝑤 as the attacher. Thus, 𝑇 ∈ ℱ . Hence, we may assume that 𝑤 is a support
vertex. If 𝑣 is a strong support vertex, then the tree 𝑇 can be rebuilt from the tree 𝑇 ′ by applying Operation
𝒪6 with 𝑤 as the attacher and so 𝑇 ∈ ℱ . Now assume that 𝑤 is a weak support vertex. Let 𝑇 ′ = 𝑇 −𝑇𝑤 and
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𝐿(𝑤) = {𝑧}. In this case, reassigning to 𝑤 the weight 0, to 𝑧, 𝑥 the weight 1 and leaving all other weights
unchanged produces a new 𝛾𝑃

𝑅 (𝑇 )-function ℎ such that ℎ|𝑇 ′ is a PRD-function for tree 𝑇 ′. Hence,

𝛾𝑅(𝑇 ′) ≤ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 )− 3 = 𝛾𝑅(𝑇 )− 3. (3.14)

Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function. Then 𝑔′ can be extended to a RD-function on 𝑇 by assigning
the weight 2 to 𝑢, the weight 1 to 𝑧 and to the remaining vertices in 𝑉 (𝑇𝑤) the weight 0, implying that
𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′) + 3. Consequently, 𝛾𝑅(𝑇 ) = 𝛾𝑅(𝑇 ′) + 3 and so we must have equalities throughout the
inequality chain (3.14). In particular, 𝛾𝑅(𝑇 ′) = 𝛾𝑃

𝑅 (𝑇 ′).
On the other hand, if 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃

𝑅 (𝑇 ′), then there exists 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′ is not a PRD-
function. Then 𝑔′ can be extended to a 𝛾𝑅(𝑇 )-function by assigning to 𝑢 the weight 2, the weight 1 to 𝑧
and to the remaining vertices in 𝑉 (𝑇𝑤) the weight 0, contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore
𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃

𝑅 (𝑇 ′) and so by applying the inductive hypothesis to 𝑇 ′, we have 𝑇 ′ ∈ ℱ .
If there exists a 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′(𝑥) = 2, such a function 𝑔′ can be extended to a RD-function
of 𝑇 by assigning to 𝑢 the weight 2, the weight 1 to 𝑧 and to the remaining vertices in 𝑉 (𝑇𝑤) the weight
0, that is not a PRD-function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Hence, 𝑥 cannot be
assigned the value 2 under any 𝛾𝑅(𝑇 ′)-function. Hence the tree 𝑇 can be rebuilt from the tree 𝑇 ′ by applying
Operation 𝒪3 with 𝑥 as the attacher.

Case 3.2. 𝑓(𝑤) = 0.
We know that 𝑓 is a 𝛾𝑃

𝑅 (𝑇 )-function and so for every neighbors 𝑧 of 𝑤 different from 𝑢, 𝑓(𝑧) ̸= 2. Hence
no child of 𝑤 different from 𝑢 is a support vertex. If 𝑤 is a strong support vertex. Then reassigning to 𝑤
the weight 2 and to leaves neighbors of it the weight 0, and leaving all other weights unchanged produces a
new 𝛾𝑅(𝑇 )-function such that the sum of the values assigned to all leaves is smaller than the sum under 𝑓 ,
a contradiction. Hence in this case, 𝑤 is a weak support vertex or deg(𝑤) = 2. We first assume that 𝑤 is a
weak support vertex. Let 𝐿(𝑤) = {𝑧}. Clearly, 𝑓(𝑧) = 1. Let 𝑇 ′ = 𝑇 − 𝑇𝑤. Then 𝑓 |𝑇 ′ is a PRD-function for
tree 𝑇 ′ and so

𝛾𝑅(𝑇 ′) ≤ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 )− 3 = 𝛾𝑅(𝑇 )− 3. (3.15)

Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function. Then 𝑔′ can be extended to a RD-function on 𝑇 by assigning
the weight 2 to 𝑢, to 𝑧 the weight 1 and to the remaining vertices in 𝑉 (𝑇𝑤) the weight 0, implying that
𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′) + 3. Consequently, 𝛾𝑅(𝑇 ′) = 𝛾𝑃

𝑅 (𝑇 ′).
On the other hand, if 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃

𝑅 (𝑇 ′), then there exists 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′ is not a PRD-
function. Then 𝑔′ can be extended to a 𝛾𝑅(𝑇 )-function by assigning to 𝑢 the weight 2, to 𝑧 the weight 1,
and to the remaining vertices in 𝑉 (𝑇𝑤) the weight 0, that is not a PRD-function on tree 𝑇 , contradicting
the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′) and by the inductive hypothesis to 𝑇 ′, we have

𝑇 ′ ∈ ℱ .
If there exists a 𝛾𝑅(𝑇 ′)-function 𝑓 ′ such that 𝑓 ′(𝑥) = 2, then such a function 𝑓 ′ can be extended to a
𝛾𝑅(𝑇 )-function of 𝑇 by assigning 2 to 𝑢, 1 to 𝑧 and 0 to the remaining vertices in 𝑉 (𝑇𝑤), that is not a
PRD-function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Hence, no 𝛾𝑅(𝑇 ′)-function assigns to
the vertex 𝑥 the weight 2. The tree 𝑇 can be rebuilt from the tree 𝑇 ′ by applying Operation 𝒪3 with 𝑥 as
the attacher. Thus, 𝑇 ∈ ℱ .
Next assume that deg(𝑤) = 2. Let 𝑇 ′ = 𝑇 − 𝑇𝑤. Then 𝑓 |𝑇 ′ is a PRD-function for tree 𝑇 ′ and so

𝛾𝑅(𝑇 ′) ≤ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 )− 2 = 𝛾𝑅(𝑇 )− 2. (3.16)

On the other hand, any 𝛾𝑅(𝑇 ′)-function can be extended to a RD-function on 𝑇 by assigning a 2 to 𝑢 and
0 to the remaining vertices in 𝑉 (𝑇𝑤), implying that 𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′) + 2 implying that 𝛾𝑅(𝑇 ) = 𝛾𝑅(𝑇 ′) + 2
and as above we obtain 𝛾𝑅(𝑇 ′) = 𝛾𝑃

𝑅 (𝑇 ′).
If 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃

𝑅 (𝑇 ′), then any 𝛾𝑅(𝑇 ′)-function which is not a PRD-function, can be extended to a 𝛾𝑅(𝑇 )-
function by assigning the weight 2 to 𝑢 and the weight 0 to the remaining vertices of 𝑇𝑤, that is not a
PRD-function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′) and by
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the inductive hypothesis to 𝑇 ′, we have 𝑇 ′ ∈ ℱ . Now the tree 𝑇 can be rebuilt from the tree 𝑇 ′ by applying
Operation 𝒪2 with 𝑥 as the attacher and so 𝑇 ∈ ℱ .

�

Claim 3.8. If deg(𝑢) = 2, then 𝑇 ∈ ℱ .

Proof of Claim 3.8. Then, every child of 𝑤 is a leaf or a support vertex. We distinguish two situations.

Case 4.1 𝑤 is a support vertex.
We first assume that 𝑤 is a strong support vertex. Let 𝑇 ′ = 𝑇 − {𝑢, 𝑣}. Without loss of generality, we can
assume that 𝑓(𝑤) = 2, 𝑓(𝑢) = 0 and 𝑓(𝑣) = 1. Then 𝑓 |𝑇 ′ is a PRD-function and so

𝛾𝑅(𝑇 ′) ≤ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 )− 1 = 𝛾𝑅(𝑇 )− 1. (3.17)

Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function, then we may assume that 𝑔′(𝑤) = 2, since 𝑤 is a strong support
vertex. Then 𝑔′ can be extended to a RD-function on 𝑇 by assigning the weight 0 to 𝑢 and 1 to 𝑣, implying
that 𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′) + 1. Consequently, 𝛾𝑅(𝑇 ) = 𝛾𝑅(𝑇 ′) + 1 and by (3.17) we have 𝛾𝑅(𝑇 ′) = 𝛾𝑃

𝑅 (𝑇 ′).
On the other hand, if 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃

𝑅 (𝑇 ′), then there exists 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′ is not a PRD-
function. We can assume that 𝑔′(𝑤) = 2, since 𝑤 is a strong support vertex. Then 𝑔′ can be extended to a
𝛾𝑅(𝑇 )-function by assigning the weight 0 to 𝑢 and 1 to 𝑣, that is not a PRD-function on tree 𝑇 , contradicting
the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′) and by the inductive hypothesis on 𝑇 ′, we have

𝑇 ′ ∈ ℱ . The tree 𝑇 can be rebuilt from the tree 𝑇 ′ by applying Operation 𝒪7 with 𝑤 as the attacher. Thus,
𝑇 ∈ ℱ .
Now assume that 𝑤 is a weak support vertex. Let 𝑇 ′ = 𝑇 − 𝑣. It is easy to see that

𝛾𝑅(𝑇 ′) ≤ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 )− 1 = 𝛾𝑅(𝑇 )− 1. (3.18)

Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function, then we may assume that 𝑔′(𝑤) = 2, since 𝑤 is a strong support
vertex. Then 𝑔′ can be extended to a RD-function on 𝑇 by assigning the weight 1 to 𝑣, implying that
𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′) + 1. Consequently, 𝛾𝑅(𝑇 ) = 𝛾𝑅(𝑇 ′) + 1 and so we must have equalities throughout the
inequality chain (3.18). In particular, 𝛾𝑅(𝑇 ′) = 𝛾𝑃

𝑅 (𝑇 ′).
On the other hand, if 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃

𝑅 (𝑇 ′), then there exists 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′ is not a PRD-
function. Then 𝑔′ can be extended to a 𝛾𝑅(𝑇 )-function by assigning the weight 1 to 𝑣, that is not a PRD-
function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′) and so by

applying the inductive hypothesis on 𝑇 ′, we have 𝑇 ′ ∈ ℱ . Now 𝑇 can be rebuilt from the tree 𝑇 ′ by applying
Operation 𝒪8 with 𝑢 as the attacher and so 𝑇 ∈ ℱ .

Case 4.2. 𝑤 is not a support vertex.
Then every child of 𝑤 is a weak support vertex. We first assume that deg(𝑤) ≥ 4. Let 𝑇 ′ = 𝑇 − 𝑣. Without
loss of generality, we can assume that 𝑓(𝑤) = 2, and every support vertex adjacent to 𝑤 has weight 0 and
their leaf neighbors have weight 1. Then 𝑓 |𝑇 ′ is a PRD-function and so

𝛾𝑅(𝑇 ′) ≤ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 )− 1 = 𝛾𝑅(𝑇 )− 1. (3.19)

Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function. Then 𝑔′ can be extended to a RD-function on 𝑇 by assigning the
weight 1 to 𝑣, implying that 𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′) + 1. Consequently, 𝛾𝑅(𝑇 ) = 𝛾𝑅(𝑇 ′) + 1 and using (3.19) we
obtain 𝛾𝑅(𝑇 ′) = 𝛾𝑃

𝑅 (𝑇 ′).
On the other hand, if 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃

𝑅 (𝑇 ′), then there exists 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′ is not a PRD-
function. Then 𝑔′ can be extended to a 𝛾𝑅(𝑇 )-function by assigning the weight 1 to 𝑣, that is not a PRD-
function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′) and so 𝑇 ′ ∈ ℱ

by the inductive hypothesis on 𝑇 ′. The tree 𝑇 can be rebuilt from the tree 𝑇 ′ by applying Operation 𝒪9

with 𝑢 as the attacher. Thus, 𝑇 ∈ ℱ .
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Now assume that deg(𝑤) = 3. Let 𝑇 ′ = 𝑇 − 𝑣. Without loss of generality, we can assume that 𝑓(𝑤) = 2,
and every support vertex adjacent to 𝑤 has weight 0 and their leaf neighbors have weight 1. Then 𝑓 |𝑇 ′ is a
PRD-function and so

𝛾𝑅(𝑇 ′) ≤ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 )− 1 = 𝛾𝑅(𝑇 )− 1. (3.20)

Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function. Then 𝑔′ can be extended to a RD-function on 𝑇 by assigning the
weight 1 to 𝑣, implying that 𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′) + 1. Consequently, 𝛾𝑅(𝑇 ) = 𝛾𝑅(𝑇 ′) + 1 and so we must have
equalities throughout the inequality chain (3.20). In particular, 𝛾𝑅(𝑇 ′) = 𝛾𝑃

𝑅 (𝑇 ′).
On the other hand, if 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃

𝑅 (𝑇 ′), then there exists 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′ is not a PRD-
function. Then 𝑔′ can be extended to a 𝛾𝑅(𝑇 )-function by assigning the weight 1 to 𝑣, that is not a PRD-
function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′) and so by

applying the inductive hypothesis to 𝑇 ′, the tree 𝑇 ′ ∈ ℱ . The tree 𝑇 can be rebuilt from the tree 𝑇 ′ by
applying Operation 𝒪9 with 𝑢 as the attacher. Thus, 𝑇 ∈ ℱ .
If there exists a 𝛾𝑅(𝑇 ′)-function 𝑓 ′ such that 𝑓 ′(𝑤) ̸= 2, then it is clear that 𝑓 ′(𝑤) = 0 and 𝑓 ′(𝑢) = 1. Such
a function 𝑓 ′ can be extended to a RD-function of 𝑇 by assigning to 𝑣 the weight 0 and reassigning to 𝑢 the
weight 2, that is not a PRD-function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Hence, every
𝛾𝑅(𝑇 ′)-function assigns to the vertex 𝑤 the weight 2. The tree 𝑇 can be rebuilt from the tree 𝑇 ′ by applying
Operation 𝒪10 with 𝑢 as the attacher. Thus, 𝑇 ∈ ℱ .
Next assume that deg(𝑤) = 2. Let 𝑇 ′ = 𝑇 − {𝑣, 𝑢, 𝑤}. Without loss of generality, we can assume that
𝑓(𝑤) = 𝑓(𝑣) = 0 and 𝑓(𝑢) = 2. Then 𝑓 |𝑇 ′ is a PRD-function and so

𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′) ≤ 𝛾𝑃

𝑅 (𝑇 )− 2 = 𝛾𝑅(𝑇 )− 2. (3.21)

Now assume that 𝑔′ is a 𝛾𝑅(𝑇 ′)-function. Then 𝑔′ can be extended to a RD-function on 𝑇 by assigning the
weight 2 to 𝑢 and to 𝑣 and 𝑤 the weight 0, implying that 𝛾𝑅(𝑇 ) ≤ 𝛾𝑅(𝑇 ′)+2. Consequently, 𝛾𝑅(𝑇 ) = 𝛾𝑅(𝑇 ′)+
2 and so we must have equalities throughout the inequality chain (3.21). In particular, 𝛾𝑅(𝑇 ′) = 𝛾𝑃

𝑅 (𝑇 ′).

On the other hand, if 𝛾𝑅(𝑇 ′) ̸≡ 𝛾𝑃
𝑅 (𝑇 ′), then there exists 𝛾𝑅(𝑇 ′)-function 𝑔′ such that 𝑔′ is not a PRD-function.

Then 𝑔′ can be extended to a 𝛾𝑅(𝑇 )-function by assigning the weight 2 to 𝑢 and to 𝑣 and 𝑤 the weight 0, that
is not a PRD-function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Therefore 𝛾𝑅(𝑇 ′) ≡ 𝛾𝑃
𝑅 (𝑇 ′) and

so by applying the inductive hypothesis to 𝑇 ′, the tree 𝑇 ′ ∈ ℱ . If there exists a 𝛾𝑅(𝑇 ′)-function 𝑓 ′ such that
𝑓 ′(𝑥) = 2, then function 𝑓 ′ can be extended to a RD-function of 𝑇 by assigning the weight 2 to 𝑢 and to 𝑣
and 𝑤 the weight 0, that is not a PRD-function on tree 𝑇 , contradicting the fact that 𝛾𝑅(𝑇 ) ≡ 𝛾𝑃

𝑅 (𝑇 ). Hence,
𝑥 cannot be assigned the value 2 under any 𝛾𝑅(𝑇 ′)-function. Then tree 𝑇 can be rebuilt from the tree 𝑇 ′ by
applying Operation 𝒪11 with 𝑥 as the attacher. Thus, 𝑇 ∈ ℱ . This completes the proof of theorem. �
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