平面凝縮相からの強い蒸発*

曾根 良夫**·杉元 宏**

(昭和62年12月24日 受理)

Strong Evaporation from a Plane Condensed Phase

Yoshio SONE and Hiroshi SUGIMOTO

(Department of Aeronautical Engineering, Kyoto University, Kyoto 606)

(Received December 24, 1987)

1. まえおき

著者の一人(曾根)らは,さきに平面凝縮相への凝縮 流について気体論を用いて解析を行った¹⁾.そこでは, 平面凝縮相に境されてその蒸気が存する系について種々 の初期状態から時間の経過に伴う系の状態変化の様子を 追跡し,定常な状態へ移行していく様子を気体論の方程 式を数値解析することによって詳しく調べた.さらにこ れより定常な凝縮が起っている場合に凝縮相における諸 量,凝縮相から遠く離れて平衡状態にある無限遠におけ る諸量の間の関係および凝縮相から上流の一様状態へ遷 移していく場の様子(Knudsen層)を明らかにした. 本研究は蒸発が起る場合について上記に対応することを 調べる.

2. 問 題

単原子分子気体が, $x_1=0$ (x_i :空間直交座標)におい てその気体の凝縮相(温度 T_W , この温度における飽和 蒸気圧 p_W)に境された半無限領域($x_1>0$)に在り,凝 縮相から充分離れた所($x_1 \rightarrow \infty$)においては,この気体 は一様な平衡状態で圧力 p_∞ ,温度 T_∞ ,流速 u_∞ (x_1 成 分のみをもつとする)であるとする.この系において定 常な蒸発が起っている場合に T_W , p_W , p_∞ , T_∞ , u_∞ の間に 成り立っている関係および凝縮相面から無限遠までの遷 移領域(Knudsen 層)における気体の振舞を調べる.

3. 仮 定

- i)気体の振舞は Boltzmann-Krook-Welander 方程式 (B-K-W 方程式)²⁾に従う.
- ii) 凝縮相から離れていく分子の速度分布はその圧力,温度として *p*_W, *T*_W をもつ静止 Maxwell 分布²)の対応する部分である.

4. 解 析

気体が任意の状態(例えば p_{∞} , T_{∞} , u_{∞} の一様な状態) であればその状態は保たれず,時間と共に変化する.そ の時間発展の様子を種々の初期値・境界値に対して文献 1と同じ差分法によって数値解析した.一様状態を初期 値として時間発展を追跡すると,まず凝縮相から衝撃波 または膨張波および接触面に対応するものが発生し,そ れが無限遠へ伝播していく.その背後の凝縮相近くにほ とんど定常な領域が現れ,その領域が段々と拡がり定常 な状態が形成されていく.これを基に定常状態としてど のようなものが実現されるかを詳しく調べた.

5. 結果

本報告では紙数の都合で時間発展の途中経過は主目的 でないので省略し,定常状態に対する結果のみを示す. 問題は3個のパラメータ p_{∞}/p_{W} , T_{∞}/T_{W} , M_{∞} [$=u_{\infty}$ (5/3 $R T_{\infty}$)^{-1/2}, Rは単位質量あたりの気体定数. 従って M_{∞} は無限遠の Mach 数]で整理できるが,定常な蒸発が起 っているときこれら3個は独立ではなく,このうちの1 個(例えば M_{∞})から他の2個(p_{∞}/p_{W} , T_{∞}/T_{W})が一 意的に定まる. この結果を Table 1 および Fig. 1, 2 に

真

空

^{*} 昭和62年11月12日 第28回真空に関する連合講演会で講演(12Ap-7) ** 京都大学工学部航空工学教室(京都市左京区吉田本町)

Table 1 p_{∞}/p_{W} and T_{∞}/T_{W} versus M_{∞} .

M_{∞}	$p_{\infty}/p_{ m W}$	$T_{\infty}/T_{\rm W}$
0	1	1
0.05000	0.9083	0.9798
0.1000	0.8267	0.9599
0.2000	0.6891	0.9212
0.2999	0.5790	0.8836
0.4500	0.4520	0.8290
0.5498	0.3868	0.7939
0.6497	0.3332	0.7595
0.7995	0.2697	0.7090
0.9397	0.2240	0.6629
0.9892	0.2103	0.6468

示す. これらには M_∞>1 の場合がないが, これは種々 の初期値に対して調べた結果、気体中に音速以上の点が 現れてもそれは時間と共に無限遠に移動し、定常解とし ては M_∞>1となることがないからである. Fig. 3は $p_{\infty}/p_{W} \geq \rho_{\infty} u_{\infty} (2\pi R T_{W})^{1/2} p_{W}^{-1} \ [\sub \sub \rho_{\infty} (=p_{\infty} R^{-1} T_{\infty}^{-1})]$ は無限遠の密度]の関係を示す.これは上記の結果より 導けるものであるが、

質量流量は

興味ある量であるので 特に示した. $\rho_{\infty}u_{\infty}(2\pi RT_{W})^{1/2}p_{W}^{-1}=1$ は凝縮相に入射す る分子が無いとした場合にあたる、従って、このグラフ から凝縮相から出ていく分子の少なくとも16%は返って 来ることがわかる. Fig. 1~3には, 文献 3,4の方法に よる弱い蒸発の場合の解析結果を一点鎖線で,また, Ytrehus による Maxwell 分子に対するモーメント法の結 果⁵⁾を点線で示す. Fig. 1 では Ytrehus の結果は M_∞の 全範囲で、Fig. 2 では上の解析結果は M∞<0.25 でそれ ぞれ数値結果と区別がつかない. Fig. 4, 5, 6, 7 はそれ ぞれ M_{∞} =0.05000, 0.4500, 0.7995, 0.9892に対する Knudsen 層における $u_1(2RT_W)^{-1/2}$, p/p_W , T/T_W を示す. ここにpは気体の圧力,Tは温度, u_1 は流速(x_1 成分の みをもつ), Lu は凝縮相の温度 Tu における飽和平衡状 態の平均自由行程である²⁾. 図中の×印は $x_1=0$ におけ る値を示す. Knudsen 層の厚さは M_∞が大きくなるに つれて厚くなり, M∞が1近くではその厚さは100 Lw 程 度にもなる. 定常状態では質量流量 $\rho u_1 (\rho = \rho R^{-1} T^{-1})$: 密度)はx1には依らない定数である.これのずれから 見た本数値計算結果の誤差は上に示した全ての場合につ いて0.04%以下である.

Fig. 1 p_{∞}/p_{W} versus M_{∞} .

第31巻 第5号(1988)

〔文献〕

- 1) Y. Sone, K. Aoki, and I. Yamashita: Rarefied Gas Dynamics, ed. V. Boffi and C. Cercignani (Teubner, Stuttgart, 1986) Vol. II, p. 323.
- 2) 曾根良夫:希薄気体力学(分子気体力学)流体力学 ハンドブック,日本流体力学会編(丸善,1987)第14

Fig. 5 The Knudsen layer for $M_{\infty} = 0.4500$.

章.

- 3) Y. Sone: J. Phys. Soc. Japan 45 (1978) 315.
- Y. Onishi and Y. Sone: J. Phys. Soc. Japan 47 (1979) 1676.
- 5) T. Ytrehus: Rarefied Gas Dynamics, ed. J. L. Potter (AIAA, New York, 1977) Part II, p. 1197.

——(112)——

空

真

