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Abstract

We study market efficiency in an infinite-horizon model with a monopolistic insider. The

insider can trade with a competitive market maker and noise traders, and observes privately the

expected growth rate of asset dividends. In the absence of the insider, this information would

be reflected in prices only after a long series of dividend observations. The insider chooses,

however, to reveal the information very quickly, within a time converging to zero as the market

approaches continuous trading. Although the market converges to strong-form efficiency, the

insider’s profits do not converge to zero.
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Anna Pavlova, Jean-Pierre Zigrand, and participants at the EFA meetings for helpful comments. A previous version
of this paper was circulated under the title “Positive Profits when Prices are Strongly Efficient.”



1 Introduction

How efficient are financial markets in incorporating information? This question has generated a

large body of research, both theoretical and empirical. Some studies focus on information known

to all market participants, such as earnings and macroeconomic announcements. Others consider

private information held, for example, by corporate insiders. Fama (1970) uses the concept of

strong-form efficiency to characterize a market where private information is fully reflected in prices.

Understanding how closely markets approximate the strong-form-efficiency ideal requires an

analysis of the trading strategies of privately informed agents. If, for example, these agents trade

aggressively, then their information should be reflected in prices quickly. In a seminal paper, Kyle

(1985) provides the first analysis of strategic informed trading. He considers a monopolistic insider

who can trade with competitive market makers in the presence of noise traders. When trading

is continuous, the insider reveals her information slowly at a rate which is constant over time.

Information is fully reflected in prices only at the end of the trading session, just before the time

when it is to be announced publicly.

Kyle and much of the subsequent literature, assume that the insider receives information only

once, at the beginning of the trading session. This can be a good description of a corporate insider

who knows the content of an earnings announcement. In other cases, however, the assumption

that the insider receives information repeatedly might be more appropriate. For example, the

insider could be a hedge fund or proprietary-trading desk generating a continuous flow of private

information on a stock through their superior research.

In this paper we consider an infinite-horizon, steady-state model where a monopolistic insider

receives information in each period. The information concerns the expected growth rate of asset

dividends, and in the absence of the insider would be reflected in prices only after a long series of

dividend observations. Quite surprisingly, however, in the presence of the insider the information

is reflected very quickly, within a time converging to zero as the market approaches continuous

trading (i.e., as the time between consecutive transactions goes to zero). Thus, a market with a

monopolistic insider can be arbitrarily close to strong-form efficiency, in contrast to Kyle. We also

show that the insider’s profits do not converge to zero despite the market converging to efficiency.

Thus, markets can be almost efficient and yet offer sizeable returns to information acquisition.

While our results are in sharp contrast to previous literature, they are not driven by any

peculiar modelling assumptions. We consider an economy with a dividend-paying risky asset and
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an exogenous riskless rate. As in Kyle, the agents are a risk-neutral insider who can submit a

market order in each period, noise traders who submit i.i.d. market orders, and a risk-neutral

competitive market maker who sets a price to absorb the aggregate order. We depart from Kyle in

assuming an infinite horizon and new private information arriving in each period. To model private

information we follow Wang (1993), setting the dividend growth rate to the sum of a time-varying

drift, observed only by the insider, and i.i.d. noise. The drift represents the expected growth rate

and follows a random walk.1

Our model has a unique linear equilibrium that we compute in closed form when the market

approaches continuous trading. To characterize the speed of information revelation, we examine

how quickly the price adjusts to an innovation in the drift process. In the absence of the insider,

the adjustment occurs slowly (i.e., at a finite rate) even in the continuous-time limit. Intuitively,

the market maker can learn about the drift only by observing the dividend. In the continuous-time

limit the dividend process becomes a Brownian motion with drift, and it is well known that the

drift cannot be fully inferred within any finite time. In the presence of the insider, however, the

price adjustment occurs at a rate that converges to infinity, meaning that prices reflect private

information almost instantly.

Why does the insider choose to reveal her information quickly? In general, the insider can

minimize the price impact of a large order by breaking it into small pieces and “going down” the

market maker’s demand curve. When the market approaches continuous trading, the small orders

can be placed within a short time interval without increasing the price impact. This allows the

insider to exploit her information quickly and avoid the costs linked to impatience that are (i)

the time-discounting of her profits and (ii) the revelation of her information through the dividend.

Impatience cannot, however, provide a full explanation because the insider does not trade quickly

in Kyle.2 The additional element has to do with the time-pattern of information arrival. In Kyle,

the insider receives information only once, at the beginning of the trading session. If she trades

quickly, then the price impact of her trades will be large early on when her information is being

revealed, and small afterwards when information has become symmetric. But this cannot be an

equilibrium because the insider would then prefer to wait until the price impact gets small. In our

model, by contrast, the price impact is constant over time, whether the insider trades quickly or

not, because we are in a steady state where new private information always arrives. Given the

constant price impact, impatience induces the insider to trade quickly.
1The random-walk assumption is for simplicity; introducing mean-reversion would only burden the notation with-

out changing the results.
2Kyle assumes no impatience, but it is easy to introduce impatience in his model and show that the insider still

trades slowly. We return to this point in Footnote 11.
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Although the market converges to strong-form efficiency, the insider’s profits do not converge to

zero. Intuitively, the insider’s profit margin per share decreases as the market approaches efficiency.

This is, however, compensated by the fact that the insider can trade more as trading opportunities

become more frequent.

To assess the practical significance of our results, we calibrate the model. We select the noise in

the dividend process so that the price-adjustment to new information in the absence of the insider

has a half-life of four months. We find that the half-life drops to only four days in the presence of an

insider who can trade every ten minutes. Thus, our model implies that markets can be much closer

to strong-form efficiency than suggested by previous literature. For example, if the information of

Kyle’s insider is to be announced publicly in four months, then the insider will take two months to

incorporate half of it into the price.

Holden and Subrahmanyam (1992), Foster and Vishwanathan (1996) and Back, Cao and

Willard (2000) introduce multiple insiders into Kyle’s model (where information is received only

once and there is a finite horizon). In Holden and Subrahmanyam all insiders receive the same

information, and reveal it almost immediately as the market approaches continuous trading. Thus,

the market becomes strong-form efficient but for a different reason than in our model - each insider

tries to exploit her information before others do. An additional difference with our model is that the

insiders’ profits converge to zero as the market approaches efficiency. In Foster and Vishwanathan

the insiders receive imperfectly correlated signals, and information revelation slows down because

of a “waiting-game” effect, whereby each insider attempts to learn the others’ signals. Back, Cao

and Willard formulate the problem directly in continuous time. They show, in particular, that

when signals are imperfectly correlated, information is not fully reflected in prices until the end of

the trading session because of the waiting-game effect.3

Back and Pedersen (1998) consider a continuous-time, finite-horizon model where a monopo-

listic insider receives a flow of private information during the trading session. They show that the

insider reveals her information slowly, and thus the market is not strong-form efficient. To ensure

existence of equilibrium, they endow the insider with a stock of initial information in addition to

the subsequent flow. It is because of this stock that information revelation is slow as in Kyle.

Taub, Bernhardt and Seiler (2005) consider a discrete-time, infinite-horizon model with multiple

insiders receiving information in each period. They propose a general method to compute the

equilibrium, using functional-analysis techniques. Their main focus is to solve the complicated
3See also Back (1992) for a general continuous-time formulation of the single-insider problem.
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problem of infinite regress, and they do not characterize the equilibrium close to the continuous-

time limit. Also, their model is different than ours in many respects. For example, the insiders’

private information concerns a liquidating dividend paid at a stochastic time when the economy

ends, and no information about the dividend is revealed publicly beforehand.

The rest of this paper is organized as follows. Section 2 presents the model. Section 3 de-

termines the equilibrium in the general discrete-time case. Section 4 considers the behavior of

the equilibrium when the market approaches continuous trading, and establishes our main results.

Section 5 calibrates the model and Section 6 concludes. All proofs are in the Appendix.

2 Model

Time is continuous and goes from −∞ to ∞. Trading takes place at a set of discrete times {`h}`∈Z,

where h is a positive constant. We refer to time `h as period `. There is a consumption good and

two financial assets. The first asset is a riskless bond with an exogenous, continuously compounded

rate of return r. The return on the bond between two consecutive periods is erh. The second asset

is a risky stock that pays a dividend d`h in period `. The dynamics of the dividend rate d` are

given by:

d` = d`−1 + g`−1h + εd,` (1)

g` = g`−1 + εg,`, (2)

where the shocks εd,` and εg,` are independent of each other and across periods, and normally

distributed with mean zero and variance σ2
dh and σ2

gh respectively. The variable g` is the drift of

the dividend rate. Our specification for d` and g` ensures that when the time h between consecutive

periods goes to zero, g` converges to an arithmetic Brownian motion and d` to an arithmetic

Brownian motion with stochastic drift.

There are three types of traders: a market maker, an insider, and noise traders. The market

maker behaves competitively, while the insider is strategic.4 Both are risk-neutral, discount the

future at rate r, and have the utility function

E`

[ ∞∑

`′=`

cj
`′e
−r(`′−`)h

∣∣∣∣∣F
j
`

]
, (3)

4As in Kyle (1985), the assumption of a competitive market maker can be viewed as a reduced form for multiple
market makers competing in a Bertrand fashion.
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where cj
` denotes consumption in period `, F j

` denotes the information set, and the superscript

j is m for the market maker and i for the insider. Under the utility function (3), agents are

indifferent as to the timing of consumption, and value a cash-flow stream according to the present

value (PV) of expected cash flows discounted at rate r. The insider’s private information consists

of the dividend drift g`. In period `, the insider can trade with the market maker via a market

(i.e., price-inelastic) order that we denote by x`. Noise traders also submit a market order that we

denote by u`. The noise traders’ order is independent of the dividend process, independent across

periods, and normally distributed with mean 0 and variance σ2
uh. We adopt the convention that x`

and u` are positive if the insider and the noise traders buy. As in Kyle, we assume that the market

maker observes only the aggregate order x` + u`, and sets a price p` at which he is willing to take

the other side of the trade.

The timing of events in period ` is as follows. First, the insider and the noise traders submit

their orders. Next, the dividend rate d` is publicly revealed, and the insider observes the drift g`.

The market maker then sets a price p` at which he is willing to take the other side of the trade.

Finally, the asset pays the dividend d`h and agents consume.5
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Insider observes g� 

Figure 1: Timing of events in period `.

Competitive behavior ensures that the market maker sets the price equal to his marginal

valuation. The latter is equal to the PV of expected dividends conditional on the market maker’s

information. Therefore,

p` = E`

[ ∞∑

`′=`

d`′he−r(`′−`)h

∣∣∣∣∣F
m
`

]
.

5Alternatively, we could assume that d` and g` are observed first, and then orders are submitted. This would
complicate the notation without changing the results.
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From Equations (1) and (2), the price is equal to

p` =
∞∑

`′=`

E`(d`′ |Fm
` )he−r(`′−`)h

=
∞∑

`′=`

[
d` + E`(g`|Fm

` )(`′ − `)h
]
he−r(`′−`)h

=
[
d` + E`(g`|Fm

` )
he−rh

1− e−rh

]
h

1− e−rh
. (4)

From now on, we set ĝ` ≡ E`(g`|Fm
` ) to denote the market maker’s expectation of g` in period `.

Note that the expectation is evaluated after the market maker observes the dividend rate d` and

order flow x` + u`.

The insider’s valuation for the asset is equal to the PV of expected dividends conditional on her

information. Denoting the valuation in period ` by v`, an analogous calculation as for the market

maker implies that

v` =
(

d` + g`
he−rh

1− e−rh

)
h

1− e−rh
, (5)

since the insider observes g` perfectly. The insider’s optimization problem in period ` is to choose

a sequence of market orders {x`′}`′≥` to maximize the PV of expected profits. Expected profits for

the insider in period ` are equal to her order x` times the difference between valuation and price.

Therefore, the insider’s objective is

E

[ ∞∑

`′=`

x`′ (v`′ − p`′) e−r(`′−`)h

∣∣∣∣∣F i
`

]
. (6)

3 Equilibrium

3.1 Candidate Strategies

An equilibrium consists of a trading strategy {x`}`∈Z for the insider and a pricing strategy {p`}`∈Z

for the market maker such that

• The insider maximizes the PV of expected profits, given the price process generated by the

market maker’s strategy.
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• The market maker sets prices equal to the PV of expected dividends, where the expectation

is conditional on information revealed by the insider’s strategy.

We look for an equilibrium in which strategies are linear functions of the state variables.

Additionally, we assume that we are in a steady state where these functions are time-independent.6

The state variables in period ` are the dividend rate d`, the drift g`, and the market maker’s

expectation of the drift ĝ`. The price quoted by the market maker is given by Equation (4), i.e.,

p` =
(

d` + ĝ`
he−rh

1− e−rh

)
h

1− e−rh
. (7)

We conjecture that the expectation ĝ` evolves according to

ĝ` = ĝ`−1 + λd (d` − (d`−1 + ĝ`−1h)) + λx(x` + u`), (8)

for two constants λd and λx. Intuitively, the market maker updates the expectation held in period

`− 1 because of two pieces of information learned in period `: the dividend rate d` and the order

flow x` + u`. The latter is informative provided that the insider’s order depends on the drift. We

conjecture that the insider’s order is proportional to the market maker’s error in forecasting the

drift, i.e.,

x` = β(g`−1 − ĝ`−1), (9)

for a constant β. The forecast error is evaluated as of period `−1 because when the insider submits

her order she only knows g`−1 and not g`.

To solve for the equilibrium, we derive a set of equations linking the coefficients λd, λx, and β.

These equations follow from the market maker’s inference problem and the insider’s optimization

problem.

3.2 Market Maker’s Inference

The market maker’s inference problem consists in forming a belief about the drift g`, given the

history of dividend rates and order flows up to period `. To solve this problem, we use recursive
6In assuming that time goes from −∞ to ∞, we are implicitly assuming convergence to the steady state. To show

convergence, we can start the economy at a finite time and endow the market maker with a normal prior on the
drift. We can then examine the limit of the coefficients that characterize the linear equilibrium when time goes to ∞.
While a comprehensive analysis of convergence is beyond the scope of this paper, we have established numerically
local convergence, i.e., when the initial condition (the variance of the market maker’s prior) is close to its steady-state
value.
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(Kalman) filtering. That is, we derive the belief about g` given (i) the belief about g`−1 held in

period `−1, and (ii) the new information learned in period ` consisting of the dividend rate d` and

order flow x` + u`.

Suppose that in period ` − 1 the market maker takes g`−1 to be normal with mean ĝ`−1 and

variance Σ2
g. Then, we show in Appendix A that the belief about g` is also normal. The mean of

the normal distribution is given by

ĝ` = ĝ`−1 + λd (d` − (d`−1 + ĝ`−1h)) + λx(x` + u`),

i.e., Equation (8), with

λd =
Σ2

gσ
2
uh

Σ2
g

(
β2σ2

d + σ2
uh2

)
+ σ2

dσ
2
uh

(10)

λx =
βΣ2

gσ
2
d

Σ2
g

(
β2σ2

d + σ2
uh2

)
+ σ2

dσ
2
uh

. (11)

Intuitively, the market maker starts with a prior mean for g`, which is ĝ`−1 since g` = g`−1 + εg,`.

The prior mean is then adjusted to reflect the information learned from d` and x` + u`. The

adjustment is proportional to the surprises in these signals, i.e., the differences between the signals

and their prior means. The prior mean of

d` = d`−1 + g`−1h + εd,`

is d`−1 + ĝ`−1h, while that of

x` + u` = β(g`−1 − ĝ`−1) + u`

is zero. In Appendix A we show that the variance of the market maker’s belief about g` is

Var(g`|Fm
` ) =

Σ2
gσ

2
dσ

2
uh

Σ2
g

(
β2σ2

d + σ2
uh2

)
+ σ2

dσ
2
uh

+ σ2
gh. (12)

In steady state the variance must be constant over time, implying that Var(g`|Fm
` ) = Σ2

g. This

yields the equation

Σ2
g

(
Σ2

g − σ2
gh

) (
β2σ2

d + σ2
uh2

)− σ2
gσ

2
dσ

2
uh2 = 0. (13)
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3.3 Insider’s Optimization

The insider maximizes the objective in Equation (6). Using Equation (7), we can simplify this

objective to

E

[ ∞∑

`′=`

x`′ (g`′ − ĝ`′) e−r(`′−`)h

∣∣∣∣∣F
i
`

]
. (14)

Thus, a buy order in period ` (x` > 0) is profitable to the insider if the market maker underestimates

the drift (g` − ĝ` > 0). When the insider submits her order in period `, she only knows the market

maker’s forecast error up to period `− 1. We conjecture that the insider’s value function in period

` is a quadratic function of the forecast error in period `− 1, i.e.,

V (g`−1, ĝ`−1) = B(g`−1 − ĝ`−1)2 + C,

for two constants B and C. The Bellman equation is

V (g`−1, ĝ`−1) = max
x`

E
[
x` (g` − ĝ`) + e−rhV (g`, ĝ`)

∣∣∣F i
`

]
.

To evaluate the right-hand side, we need to compute the market maker’s forecast error as of period

`. This is

g` − ĝ` = (g`−1 + εg,`)− [ĝ`−1 + λd (d` − (d`−1 + ĝ`−1h)) + λx(x` + u`)]

= (1− λdh)(g`−1 − ĝ`−1)− λdεd,` − λx(x` + u`) + εg,`, (15)

where the first step follows from Equations (2) and (8), and the second from Equation (1). Substi-

tuting into the Bellman equation, we find

B(g`−1 − ĝ`−1)2 + C = max
x`

{
x` [(1− λdh)(g`−1 − ĝ`−1)− λxx`]

+e−rh
[
B

[
[(1− λdh)(g`−1 − ĝ`−1)− λxx`]

2 + λ2
dσ

2
dh + λ2

xσ2
uh + σ2

gh
]

+ C
]}

. (16)

The first-order condition yields

x` = β(g`−1 − ĝ`−1),

i.e., Equation (9), with

β =
(1− λdh)

(
1− 2e−rhBλx

)

2λx (1− e−rhBλx)
. (17)
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Substituting for x` in equation (16), we can determine B and C:

B =
(1− λdh)2

4λx (1− e−rhBλx)
(18)

C =
e−rhB

(
λ2

dσ
2
d + λ2

xσ2
u + σ2

g

)
h

1− e−rh
. (19)

3.4 Existence and Uniqueness

Our conjectured equilibrium is characterized by the six parameters λd, λx, Σ2
g, β, B and C. These

are the solution to the system of six equations (10), (11), (13) and (17)-(19). In Appendix B we

show that the system has a unique solution, which in addition satisfies the insider’s second-order

condition. This implies that there exists a unique equilibrium of the conjectured form.

Proposition 1 There exists a unique equilibrium of the form conjectured in Equations (7)-(9).

4 Near-Continuous Trading

Our main results concern the behavior of the equilibrium when the market approaches continuous

trading, i.e., the time h between consecutive periods goes to zero.7 To better illustrate the results,

we start with the benchmark case where the insider is prevented from trading due to exogenous

reasons. The market maker then quotes infinite depth (i.e., price not sensitive to order flow), but

still learns about the drift by observing the dividend. Inference is characterized by the parameters

λd and Σ2
g, and these are given by Equations (10) and (13) with the insider’s trading intensity β

set to zero. To distinguish with the case where the insider is trading, we denote λd and Σ2
g by λd

and Σ2
g, respectively.

Proposition 2 When the insider is not trading, the asymptotic behavior of the equilibrium is
7Although our main results concern the continuous-time limit, we avoid formulating the model directly in continu-

ous time. Starting with discrete time and then taking the limit has the advantage of illustrating how the equilibrium
changes with the trading frequency. Discrete time is also important when we calibrate the model. Finally, in
continuous-time formulations (e.g., Kyle (1985) and Back (1992)) insider trading is a flow, i.e., proportional to dt.
In our model, by contrast, insider trading is of order larger than dt, and this is central to our strong-form efficiency
result.
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characterized by

lim
h→0

λd =
σg

σd

lim
h→0

Σ2
g = σgσd.

Proposition 2 implies that in the absence of the insider, the equilibrium close to the continuous-

trading limit is qualitatively similar to that away from the limit. In particular, the market maker’s

uncertainty about the drift, characterized by Σ2
g, remains bounded away from zero. The intuition is

that when h goes to zero the dividend process converges to a Brownian motion with drift. Because

the drift is changing over time, it cannot become known to the market maker.

We next consider the case where the insider is trading, and establish our main results.

Proposition 3 When the insider is trading, the asymptotic behavior of the equilibrium is charac-

terized by

lim
h→0

λd√
h

=
σ2

g

σ2
d

√
r

(20)

lim
h→0

λx =
σg

σu
(21)

lim
h→0

Σ2
g√
h

=
σ2

g√
r

(22)

lim
h→0

β√
h

=
σu
√

r

σg
(23)

lim
h→0

B =
σu

2σg
(24)

lim
h→0

C =
σgσu

r
. (25)

Proposition 3 shows that in the presence of the insider, the equilibrium close to the continuous-

trading limit and that away from the limit have very different properties. In particular, the param-

eter Σ2
g characterizing the market maker’s uncertainty about the drift is approximately (σ2

g/
√

r)
√

h

for small h. Therefore, it converges to zero when h goes to zero, implying that the information

asymmetry between the insider and the market maker vanishes. Put differently, a market with

a monopolistic insider can become strong-form efficient when the trading frequency is sufficiently

large.

11



An alternative way to characterize strong-form efficiency is through the speed at which pri-

vate information is incorporated into prices. Suppose that at time zero the insider learns that the

drift g0 is different from the market maker’s expectation ĝ0. To measure how quickly the insider’s

information is incorporated into prices, we can examine the dynamics of the market maker’s expec-

tation. Conditional on all information available in the economy at time zero, the drift is expected

to remain equal to g0 because it follows a random walk. The market maker’s expectation ĝ` is

then expected to converge to g0 over time. This convergence is in expectation only, conditional on

all available time-zero information (which in our model is the insider’s information F i
0), because

the drift keeps changing over time. Thus, the convergence concerns the variable E
(
ĝ`| F i

0

)
. To

evaluate this variable when trading is almost continuous, we fix a calendar time t, corresponding to

period ` = t/h, and consider the limit Ĝt ≡ limh→0 E
(

ĝ t
h

∣∣∣F i
0

)
. Proposition 4 characterizes how

Ĝt varies over time.

Proposition 4 When the insider is not trading,

Ĝt = g0 + e
−σg

σd
t(ĝ0 − g0).

When the insider is trading, Ĝt = g0 for t > 0.

Proposition 4 shows that in the absence of the insider, information about the drift is incor-

porated into prices slowly (on average). For small h, the market maker’s expectation converges

to g0 at the finite rate σg/σd. By contrast, in the insider’s presence, information about the drift

is incorporated very quickly. For small h, the market maker’s expectation reaches g0 within any

positive time t, and not only when t goes to infinity. Thus, the rate of convergence to g0 becomes

infinite. This is, of course, consistent with Proposition 3: insider trading can result in strong-form

efficiency when the trading frequency is large.

To understand the intuition for strong-form efficiency, we consider the insider’s trading strategy.

Recall that the insider submits an order proportional to the market maker’s forecast error, with

the proportionality parameter β interpreted as the trading intensity. The parameter β is a key

determinant of the speed at which prices incorporate information. In Kyle (1985), β is of order h,

and prices incorporate information within a calendar time not converging to zero. When, however, β

is larger than order h, the insider’s trades reveal more information, and the calendar time converges

12



to zero. Proposition 3 implies that β in our model is of order
√

h and thus larger than h.8

Why does the insider trade quickly in our model? To answer this question, we examine the

determinants of the insider’s order size. In general, a large order is costly to the insider because it

generates an adverse price impact. To minimize the impact, the insider can trade slowly, breaking

her order into small pieces and “going down” the market maker’s demand curve. Slow trading,

however, generates costs linked to impatience: by realizing her profits quickly, the insider can avoid

(i) time-discounting and (ii) the public revelation of her information through the dividend.

When the trading frequency is large, the trade-off between price impact and impatience disap-

pears. Indeed, the insider can squeeze all small pieces of a large order into a short time interval.

Therefore, she can can execute the order quickly without increasing the price impact and without

incurring costs linked to impatience.9

That impatience is necessary for the insider to trade quickly can be seen formally as follows.

Impatience is eliminated when (i) there is no time-discounting, i.e., the interest rate r is zero, and

(ii) no information is revealed publicly through the dividend, i.e., the noise σ2
d in the dividend

process is infinite. Proposition 3 shows that when r > 0, β is of order
√

h, regardless of whether

σ2
d is infinite or not. Therefore, a positive interest rate induces the insider to trade quickly. In

Appendix C we consider the opposite case where r = 0.10 When σ2
d is finite, we show that β is of

order h
2
3 which is larger than h. Therefore, the public revelation of information induces the insider

to trade quickly, even in the absence of time-discounting. When, however, σ2
d is infinite, we show

that the insider prefers β to be as close to zero as possible. Therefore, a patient insider prefers to

trade slowly.

While impatience is necessary for the insider to trade quickly, it is not sufficient. This can

be seen by contrasting our model with Kyle. Kyle assumes no impatience because there is no

time-discounting and no public revelation of information until a final period. It is easy, however,
8Other properties of β are as in Kyle. For example, the insider trades more aggressively when there is more noise

trading (σu large), or when the market maker expects her to have less private information (σg small).
9See, however, Vayanos (2001) where a strategic hedger goes down the demand curve slowly, even in the continuous-

time limit. Suppose, for example, that the market expects the hedger to sell 100 shares over ten hours, at a rate of
ten shares per hour. If the hedger sells all 100 shares over the first hour, this will exceed the market’s expectation of
ten shares. Therefore, the market will increase its estimate of the hedger’s inventory, expect more future sales from
the hedger, and set a lower price for the 100 shares. By contrast, an insider can sell 100 shares over one hour at the
same price as over ten hours. The difference with the hedger is that the market expects a zero average order from the
insider, both over one and over ten hours. Therefore, the updating generated by the 100-share order is independent
of the time it takes to complete the order. See also Spiegel and Subrahmanyam (1995) where the market expects
non-zero orders from rational liquidity traders.

10For r = 0, we define the insider’s objective as the long-run average of per-period payoffs. This type of objective
is standard in the literature on repeated games with no discounting. See, for example, Fudenberg and Tirole (1991).
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to introduce impatience in his model and show that the insider still trades slowly.11

The crucial difference with Kyle has to do with the time-pattern of information arrival. Kyle’s

model is non-stationary in that the insider receives information only once, at the beginning of

the trading session. If the insider trades quickly, market depth will be small early on when her

information is being revealed, and large afterwards when information has become symmetric. But

this cannot be an equilibrium because the insider would prefer to wait until depth increases. Our

model, by contrast, is stationary because the insider always receives new private information.

Stationarity ensures that market depth is constant over time, whether the insider trades quickly

or not. Given the constant depth, the insider trades quickly because of impatience (generated by

either time-discounting, or public revelation of information, or both).

Summarizing, our strong-form efficiency result is due to the combination of impatience and

stationarity. When the insider is patient, she trades slowly. Likewise, in a non-stationary setting

(e.g., Kyle or Back and Pedersen (1998)) trading occurs slowly even with an impatient insider.

We next consider the insider’s trading profits. These are

[
B(g`−1 − ĝ`−1)2 + C

] h2e−rh

(1− e−rh)2
≡ B′(g`−1 − ĝ`−1)2 + C ′, (26)

i.e., the value function times a scaling factor that was dropped for simplicity when writing the

insider’s objective as (14) instead of (6). When h goes to zero, (g`−1 − ĝ`−1)2 converges to zero

because the market becomes strong-form efficient. From Proposition 3, however, C converges to the

positive limit σgσu/r, implying that C ′ converges to σgσu/r3. Thus, the insider’s profits remain

positive despite the market converging to strong-form efficiency. In some sense, this is natural:

since the insider chooses to incorporate her information quickly into prices, this must guarantee

her a larger payoff than trading slowly. At the same time, the result can appear paradoxical: how

can the insider realize positive profits when prices reflect almost all of her information?

To address the paradox, we recall that the insider’s profits in period ` are

x`(g`−1 − ĝ`−1)
h2e−rh

(1− e−rh)2
.

The term (g`−1− ĝ`−1) corresponds to the profit margin, and converges to zero when h goes to zero.

Asymptotically it is of order Σg, which is of order h
1
4 from Proposition 3. The term x` corresponds

11More specifically, we can allow for a positive interest rate and a noisy signal about the asset value revealed in
each period. The noise in the signal must be such that information is revealed slowly in the benchmark case where
the insider is not trading, even in the continuous-time limit. The analysis is available upon request.
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to the trading volume. Since β is of order
√

h, x` = β(g`−1− ĝ`−1) is of order h
3
4 . Thus, the volume

generated by the insider within a fixed time interval is of order h
3
4 /h, and converges to infinity

when h goes to zero. This explains the paradox of positive profits: the insider’s profit margin per

share goes to zero but the number of shares traded goes to infinity.12

Finally, note that the price impact of order flow, given by λx, remains finite even in the

continuous-time limit. This might appear surprising because the insider’s trading volume converges

to infinity, and hence order flow is much more informative in our model than in Kyle. Because the

market is close to efficient, however, the market maker faces little uncertainty, so a given amount

of information has a smaller effect on the price.

5 Calibration

The results of the previous section are asymptotic, i.e., hold to any given degree of approximation

by choosing a time h between consecutive periods close enough to zero. In this section we calibrate

the model and examine how well the results hold for plausible values of h. We are interested, in

particular, in how close the market is to strong-form efficiency.

The exogenous parameters in our model are the interest rate r, the time h between consecutive

periods, and the variance parameters σd of the dividend process, σg of the drift process, and σu of

the noise trading. We set r to 5%, but values in the interval [0%, 10%] would change the times in

Table 1 by less than 6%. We allow h to take two possible values: the insider can trade every ten

minutes, or every three hours. Assuming 250 trading days per year and ten trading hours per day,

the values for h are 10/(60× 10× 250) = 0.000067 and 180/(60× 10× 250) = 0.0012.

Before turning to the parameters σd, σg, and σu, we define and compute our measure of market

efficiency. We measure efficiency through the speed at which private information is incorporated into

prices. As in Proposition 4, we assume that at time zero the insider observes a drift g0 different from

the market maker’s expectation ĝ0. We then examine how quickly the market maker’s expectation

converges to g0. From the proof of Proposition 4, the convergence dynamics for a given h are

E
(

ĝ t
h

∣∣∣F i
0

)
= g0 + (1− λdh− λxβ)

t
h (ĝ0 − g0). (27)

12That trading volume converges to infinity in the continuous-time limit is not pathological. For example, volume
is infinite in the basic Merton (1971) model, where a CRRA investor keeps a constant fraction of wealth in a risky
asset and needs to rebalance continuously. Mathematically, the investor’s volume is infinite because the Brownian
motion has infinite variation.
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Our measure of market efficiency is the time tχ by which a given percentage χ of the insider’s

information is incorporated into prices. This time is defined by

E
(

ĝ tχ
h

∣∣∣F i
0

)
= χg0 + (1− χ)ĝ0. (28)

Comparing Equations (27) and (28), we find

tχ =
h log(1− χ)

log(1− λdh− λxβ)
. (29)

We next observe that tχ is independent of two of the three parameters σd, σg and σu. Indeed,

consider the solution (λd, λx,Σg, β, B, C) to Equations (10), (11), (13) and (17)-(19). If σu in these

equations is multiplied by z > 0, the new solution is (λd, λx/z, Σg, zβ, zB, zC). Equation (29) then

implies that tχ stays constant, meaning that tχ is independent of σu. Intuitively, when noise trading

increases, prices tend to become less informative, but the insider trades more aggressively restoring

the same informativeness. Similarly, if σd and σg are multiplied by the same z > 0, the new solution

to Equations (10), (11), (13) and (17)-(19) becomes (λd, zλx, zΣg, β/z, zB, zC). Equation (29) then

implies that tχ stays constant, meaning that tχ depends on σd and σg only through their ratio.

Therefore, our results are robust to any choice of σu, and to choices of σd and σg that generate the

same ratio.

To calibrate σg/σd, we consider the speed of information revelation in the absence of the insider,

when the only source of information about the drift is the dividend. The parameter σg/σd is the

signal-to-noise ratio, and measures the extent to which the dividend process is informative. The

time tχ by which χ percent of an innovation in the drift process is incorporated into prices is

tχ =
h log(1− χ)
log(1− λdh)

. (30)

We calibrate σg/σd through the time t0.5 by which prices reflect half of the information (i.e., the

half-life of the convergence dynamics). We allow σg/σd to take two possible values: 12 and 1.5. In

the first case the half-life t0.5 is approximately 15 days, and in the second it is approximately four

months.13

Table 1 compares the half-life t0.5 in the absence of the insider to the half-life t0.5 in her

presence. The table shows that the insider speeds information revelation by an order of magnitude.
13The half-life depends on h, but the dependence appears after the second decimal digit.
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t0.5 (days)
t0.5 (days)

h = 0.0012 h = 0.000067
σg/σd = 12 14.44 2.81 1.06
σg/σd = 1.5 115.52 10.59 3.70

Table 1: Speed of information revelation.

Consider, for example, the case where the price adjustment to new information has a half-life of

115.52 days in the insider’s absence. The insider reduces this to 10.59 days (i.e., less than a tenth)

if she can trade every three hours, and 3.70 days (i.e., less than a thirtieth) if she can trade every

ten minutes. We should emphasize that the insider can choose to reveal her information slowly,

stretching the half-life closer to 115.52 days. Our main result, however, is that she prefers to reveal

it quickly. When she can trade every ten minutes, for example, a half-life of 3.70 days ensures a

minimal price impact, while allowing her to reap the benefits associated to impatience.

Using our calibration, we can also examine how the insider’s trading profits depend on h. Recall

from Equation (26) that profits are

[
B(g`−1 − ĝ`−1)2 + C

] h2e−rh

(1− e−rh)2
≡ B′(g`−1 − ĝ`−1)2 + C ′.

To evaluate (B′, C ′), we must select values for (σu, σg), and for simplicity set both parameters to

one.14

B′ C ′

h = 0.0012 h = 0.000067 h = 0.0012 h = 0.000067
σg/σd = 12 196.0 199.4 7482 7937
σg/σd = 1.5 198.9 199.8 8084 8060

Table 2: Insider’s trading profits.

Table 2 reports the values of (B′, C ′). When σg/σd = 12, both B′ and C ′ increase when h

decreases, and thus the insider’s profits increase. This reinforces our result that the insider makes

positive profits even in the limit when the market becomes strong-form efficient. When σg/σd = 1.5,

C ′ decreases when h decreases, but it still converges to a positive limit.
14The parameters (σu, σg) can be calibrated through the insider’s trading volume and the bid-ask spread. See Chau

(2002) for an example of such a calibration.
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6 Conclusion

In this paper we consider a discrete-time, infinite-horizon model with a monopolistic insider. The

insider observes the expected growth rate of asset dividends in each period, and can trade with

competitive market makers in the presence of noise traders. Our main result is that when the market

approaches continuous trading, the insider’s information is reflected in prices almost immediately.

This is especially surprising given that in the absence of the insider, the information would be

reflected only after a long series of dividend observations. We also show that although the market

converges to strong-form efficiency, the insider’s profits do not converge to zero.

Our results have two important implications. First, markets can be close to strong-form ef-

ficiency even in the presence of monopolistic insiders. Second, despite being close to efficiency,

markets can offer significant returns to information acquisition. These implications are in sharp

contrast to previous literature, and are not driven by any peculiar assumptions in our model. In-

deed, the main difference with Kyle (1985) is that we assume an infinite horizon, with new private

information generated in each period. To model private information in infinite horizon, we adopt

the information structure in Wang (1993).

The insider in our model can be best interpreted as a hedge fund or proprietary-trading desk,

generating a continuous flow of private information through their superior research. Given that

there are multiple such agents, one might question the assumption of a monopolistic insider. The

work of Holden and Subrahmanyam (1992), Foster and Vishwanathan (1996) and Back, Cao and

Willard (2000) shows, however, that competing insiders generally reveal their information faster

than a monopolistic one. Thus, our strong-form efficiency result is likely to carry through with

multiple insiders. Of course, this conjecture needs to be verified, and this could be an interesting

extension of our research. The main technical difficulty is that combining multiple insiders with

repeated information arrival generates an infinite-regress problem when the insiders’ signals are

imperfectly correlated. Taub, Bernhardt and Seiler (2005) develop a technique for dealing with

this problem, however, and one could possibly use it to study the continuous-time limit.
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A Market-Maker’s Inference

Suppose that conditional on information up to period ` − 1, the market maker believes that g`−1

is normal with mean ĝ`−1 = E(g`−1|Fm
`−1) and variance Σ2

g = Var(g`−1|Fm
`−1). For notational

simplicity, we omit the conditioning set Fm
`−1 in the rest of this appendix because all moments are

conditional. The signals observed by the market maker in period ` are

d` = d`−1 + g`−1h + εd,`

and

x` + u` = β(g`−1 − ĝ`−1) + u`.

Because all variables are jointly normal, the market maker’s posterior about g`−1 is of the form

g`−1 = E(g`−1) + λd (d` − E (d`)) + λx (x` + u` −E (x` + u`)) + η`

= ĝ`−1 + λd (d` − (d`−1 + ĝ`−1h)) + λx (x` + u`) + η`, (A.1)

where λd and λx are two constants, and η` is a normal random variable with mean zero and

independent of d` and x` + u`. The posterior about g` = g`−1 + εg,` is as in Equation (A.1) with η`

replaced by η` + εg,`.

To compute λd and λx, we take the covariance of both sides of Equation (A.1) with d` and

x` + u`:

Cov (d`, g`−1) = Cov (d`, λdd` + λx (x` + u`)) , (A.2)

Cov (x` + u`, g`−1) = Cov (x` + u`, λdd` + λx (x` + u`)) . (A.3)

Since

Cov (d`, g`−1) = Cov (d`−1 + g`−1h + εd,`, g`−1) = Var (g`−1)h = Σ2
gh, (A.4)

Cov (x` + u`, g`−1) = Cov (β(g`−1 − ĝ`−1) + u`, g`−1) = βVar (g`−1) = βΣ2
g, (A.5)

Var (d`) = Var (d`−1 + g`−1h + εd,`) = Var (g`−1)h2 + Var (εd,`) = Σ2
gh

2 + σ2
dh,

Cov (d`, , x` + u`) = Cov (d`−1 + g`−1h + εd,`, β(g`−1 − ĝ`−1) + u`) = βVar (g`−1) h = βΣ2
gh,

Var (x` + u`) = Var (β(g`−1 − ĝ`−1) + u`) = β2Var (g`−1) + Var (u`) = β2Σ2
g + σ2

uh,

we can write Equations (A.2) and (A.3) as

Σ2
gh = λd(Σ2

gh
2 + σ2

dh) + λxβΣ2
gh,

βΣ2
g = λdβΣ2

gh + λx(β2Σ2
g + σ2

uh).
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The solution to this linear system is given by Equations (10) and (11). Therefore, the posterior

expectation of g` is as in Equation (8).

The posterior variance of g` is

Var(g`) = Var(η` + εg,`) = Var(η`) + σ2
gh. (A.6)

To compute the variance of η`, we take the variance of both sides of Equation (A.1). Since η` is

independent of d` and x` + u`, we have

Var(η`) = Var(g`−1)−Var (λdd` + λx (x` + u`))

= Var(g`−1)− λdCov (d`, λdd` + λx (x` + u`))− λxCov (x` + u`, λdd` + λx (x` + u`))

= Var(g`−1)− λdCov (d`, g`−1)− λxCov (x` + u`, g`−1)

= Σ2
g − λdΣ2

gh− λxβΣ2
g,

where the third step follows from (A.2) and (A.3), and the fourth from (A.4) and (A.5). Using (10)

and (11) to substitute for λd and λx, and plugging back into (A.6), we find (12).

B Proof of Propositions 1-4

Proof of Proposition 1: We will show that the system of Equations (10), (11), (13) and (17)-(19)

has a unique solution, which also satisfies the insider’s second-order condition. We will reduce the

system to a single equation in β. Equation (18) can be written as

B2 − erh

λx
B +

erh(1− λdh)2

4λ2
x

= 0.

This quadratic equation in B has the two solutions

B =
erh

2λx

[
1±

√
1− e−rh(1− λdh)2

]
.

The solution with the plus sign cannot be part of a solution to the overall system. Indeed, Equation

(11) implies that λxβ > 0, which from Equation (17) means that

1− 2e−rhBλx

1− e−rhBλx
> 0.
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This is violated by the solution with the plus sign. Therefore, the only possible solution for B is

B =
erh

2λx

[
1−

√
1− e−rh(1− λdh)2

]
. (B.1)

Plugging into Equation (17), we find

λxβ

1− λdh
=

√
1− e−rh(1− λdh)2

1 +
√

1− e−rh(1− λdh)2
. (B.2)

Substituting for λd and λx using Equations (10) and (11), we can write Equation (B.2) as

Σ2
gβ

2

Σ2
gβ

2 + σ2
uh

=

√
1− e−rh

[
Σ2

gβ2σ2
d+σ2

dσ2
uh

Σ2
g(β2σ2

d+σ2
uh2)+σ2

dσ2
uh

]2

1 +

√
1− e−rh

[
Σ2

gβ2σ2
d+σ2

dσ2
uh

Σ2
g(β2σ2

d+σ2
uh2)+σ2

dσ2
uh

]2
. (B.3)

We can reduce Equation (B.3) to one in the single unknown β by substituting for Σ2
g as a function

of β. This can be done using Equation (13), which is quadratic in Σ2
g and has a unique positive

solution. The solution is a decreasing function of β, converges to σ2
gh when β goes to ∞, and to a

value Σ2
g > σ2

gh when β goes to zero.

To show that the system of Equations (10), (11), (13) and (17)-(19) has a solution, we note

that the left-hand side (LHS) of Equation (B.3) (in which Σ2
g is an implicit function of β) converges

to one when β goes to ∞, and to zero when β goes to zero. By contrast, the right-hand side (RHS)

converges to values strictly between zero and one in both cases. Therefore, Equation (B.3) has a

solution β ∈ (0,∞). From this solution, we can deduce Σ2
g, λd, λx, B and C using Equations (13),

(10), (11), (B.1) and (19), respectively. The insider’s second-order condition is the requirement

that the problem (16) is concave, i.e., 1 − e−rhBλx > 0. This inequality is satisfied because of

Equation (B.1).

To show that the solution is unique, we will show that the LHS of Equation (B.3) is increasing

in β, while the RHS is decreasing. The LHS is increasing in β if Σ2
gβ

2σ2
d is increasing. Equation

(13) implies that

Σ2
gβ

2σ2
d =

σ2
gσ

2
dσ

2
uh2

Σ2
g − σ2

gh
− Σ2

gσ
2
uh2. (B.4)

21



Since Σ2
g is decreasing in β, Σ2

gβ
2σ2

d is increasing. The RHS of Equation (B.3) is decreasing in β if

Z ≡ Σ2
gβ

2σ2
d + σ2

dσ
2
uh

Σ2
g

(
β2σ2

d + σ2
uh2

)
+ σ2

dσ
2
uh

is increasing. Using Equation (B.4) to eliminate β, we find

Z =
σ2

d + σ2
gh

2 − Σ2
gh

σ2
d

.

Since Σ2
g is decreasing in β, Z is increasing.

Proof of Proposition 2: When β = 0, Equations (10) and (13) become

λd =
Σ2

g

Σ2
gh + σ2

d

(B.5)

and

Σ2
g

(
Σ2

g − σ2
gh

)
− σ2

gσ
2
d = 0, (B.6)

respectively. These equations have a unique solution. The solution for h = 0 is Σ2
g = σgσd and

λd = σg/σd. By continuity, this is also the limit of the solution when h goes to zero.

Proof of Proposition 3: We first solve the system of Equations (13) and (B.3) in the unknowns

Σ2
g and β. Setting Σ2

g ≡ S2
g

√
h and β ≡ b

√
h, we can write the system as

S2
g

(
S2

g − σ2
g

√
h
)

(b2σ2
d + σ2

uh)− σ2
gσ

2
dσ

2
u = 0

and

S2
gb2

S2
gb2
√

h + σ2
u

=

√√√√ 1
h

[
1− e−rh

[
1 + S2

gσ2
uh

3
2

σ2
dσ2

u+S2
gb2σ2

d

√
h

]−2
]

1 +

√
1− e−rh

[
1 + S2

gσ2
uh

3
2

σ2
dσ2

u+S2
gb2σ2

d

√
h

]−2
.

For h = 0, the system becomes

S4
gb2 − σ2

gσ
2
u = 0
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and

S2
gb2

σ2
u

=
√

r,

and has the solution S2
g = σ2

g/
√

r and b = σu
√

r/σg. By continuity, this is also the limit of the

solution when h goes to zero. This establishes the limits (22) and (23) since

lim
h→0

Σ2
g√
h

= lim
h→0

S2
g =

σ2
g√
r

and

lim
h→0

β√
h

= lim
h→0

b =
σu
√

r

σg
.

To prove the limits (20), (21), (24), and (25), we write Equations (10), (11), (19), and (B.1) in

terms of S2
g and b, and use the limits of S2

g and b.

Proof of Proposition 4: Taking expectations in Equation (8), conditional on the insider’s time-

zero information, we find

E
(
ĝ`| F i

0

)
= E

(
ĝ`−1| F i

0

)
+λd

[
E

(
d`| F i

0

)− (
E

(
d`−1| F i

0

)
+ E

(
ĝ`−1| F i

0

)
h
)]

+λxE
(
x`| F i

0

)
(B.7)

for ` > 0. Since

E
(
d`| F i

0

)
= d0 + g0`h

for ` ≥ 0, and

E
(
x`| F i

0

)
= E

(
β(g`−1 − ĝ`−1)| F i

0

)
= β

(
E

(
g`−1| F i

0

)−E
(
ĝ`−1| F i

0

))
= β

(
g0 − E

(
ĝ`−1| F i

0

))

for ` > 0, we can write Equation (B.7) as

E
(
ĝ`| F i

0

)
= E

(
ĝ`−1| F i

0

)
+ (λdh + λxβ)

[
g0 − E

(
ĝ`−1| F i

0

)]
.

Therefore,

E
(
ĝ`| F i

0

)
= g0 + (1− λdh− λxβ)`(ĝ0 − g0).

To prove the proposition, we need to determine the limit of (1− λdh− λxβ)
t
h when h goes to zero.

When the insider is not trading, the limit is e
−σg

σd
h because λd converges to σg/σd and β = 0. When

the insider is trading, the limit is zero because β is of order
√

h and λx of order 1.
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C No Time-Discounting

For r = 0, we define the insider’s objective as the long-run average of per-period payoffs. The

average payoff over the L periods starting from ` is

ΠL ≡ 1
L

E

[
`+L−1∑

`′=`

x`′ (g`′ − ĝ`′)

∣∣∣∣∣F
i
`

]
,

and the long-run average is

Π ≡ lim
L→∞

ΠL.

To compute the equilibrium, we assume that the insider follows the linear strategy (9) for some

constant β. Then, λd, λx and Σg are given as a function of β by Equations (10), (11) and (13),

respectively. Moreover, the insider chooses β to maximize Π, taking λd and λx as given.

To determine Π, we first compute ΠL. We conjecture that

ΠL = BL(g`−1 − ĝ`−1)2 + CL,

for two constants BL and CL. These constants satisfy the equation

BL(g`−1 − ĝ`−1)2 + CL =
1
L

E
[
x` (g` − ĝ`) + (L− 1)

[
BL−1(g` − ĝ`)2 + CL−1

]∣∣F i
`

]
,

where g` − ĝ` is given by Equation (15), and x` = β(g`−1 − ĝ`−1). Substituting for g` − ĝ` and x`,

we find

BL =
β (1− λdh− λxβ) + (L− 1)BL−1 (1− λdh− λxβ)2

L

CL =
(L− 1)

[
BL−1

(
λ2

dσ
2
d + λ2

xσ2
u + σ2

g

)
+ CL−1

]

L
.

It is easy to check by induction, starting from L = 1, that

BL =
β

∑L−1
k=0 (1− λdh− λxβ)2k+1

L
(C.1)

CL =
β

(
λ2

dσ
2
d + λ2

xσ2
u + σ2

g

) ∑L−2
k=0 (L− 1− k) (1− λdh− λxβ)2k+1

L
. (C.2)
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Suppose that σ2
d < ∞. Equations (10) and (11) imply that

1− λdh− λxβ =
σ2

dσ
2
uh

Σ2
g

(
β2σ2

d + σ2
uh2

)
+ σ2

dσ
2
uh

.

Since σ2
d < ∞, we have 0 < 1 − λdh − λxβ < 1. Equations (C.1) and (C.2) then imply that

limL→∞BL = 0 and

Π = lim
L→∞

CL = β
(
λ2

dσ
2
d + λ2

xσ2
u + σ2

g

) ∞∑

k=0

(1− λdh− λxβ)2k+1

=
β (1− λdh− λxβ)

1− (1− λdh− λxβ)2
(
λ2

dσ
2
d + λ2

xσ2
u + σ2

g

)
.

Therefore, maximizing Π is equivalent to maximizing

β (1− λdh− λxβ)
1− (1− λdh− λxβ)2

.

The first-order condition is

1− λdh− 2λxβ − (1− λdh)(1− λdh− λxβ)2 = 0

⇔ (λxβ)2 = λdh
[
(1− λdh− λxβ)2 + 1− λdh− 2λxβ

]
. (C.3)

In equilibrium, λd, λx, Σg and β are the solution to the system of Equations (10), (11), (13) and

(C.3). To determine the solution for small h, we set λd = ldh
1
3 , Σ2

g ≡ S2
gh

1
3 and β ≡ bh

2
3 . It is then

easy to check that the resulting system in ld, λx, Sg and b has the solution

b =
2

1
3 σu

σ
2
3
d σ

1
3
g

S2
g =

σgσu

b

λx =
bS2

g

σ2
u

ld =
S2

g

σ2
d

for h = 0. Continuity then implies that a solution for small h exists, and

lim
h→0

β

h
2
3

= lim
h→0

b =
2

1
3 σu

σ
2
3
d σ

1
3
g

.
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Therefore, β is of order h
2
3 .

Suppose next that σd = ∞. Equation (10) implies that λd = 0, and Equation (11) implies that

1− λxβ =
σ2

uh

Σ2
gβ

2 + σ2
uh

.

When β > 0, we have 0 < 1−λxβ < 1. Equations (C.1) and (C.2) then imply that limL→∞BL = 0

and

Π = lim
L→∞

CL = β
(
λ2

xσ2
u + σ2

g

) ∞∑

k=0

(1− λxβ)2k+1

=
β (1− λxβ)

1− (1− λxβ)2
(
λ2

xσ2
u + σ2

g

)
.

When β = 0, we have Π = 0 since Equations (C.1) and (C.2) imply that BL = CL = 0. Therefore,

maximizing Π is equivalent to maximizing a function that is equal to (1− λxβ)/(2− λxβ) if β > 0

and zero if β = 0. This function increases as β decreases to zero, and drops discontinuously to

zero for β = 0. Therefore, the insider prefers to set β as close to zero as possible. Intuitively,

since the insider is infinitely patient, she chooses to minimize price impact by spreading her trades

maximally over time.
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