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Abstract

In this paper strongy- synchronized automata is introduced and
algorithm is given to find the strong - synchronized word for a fuzzy
automata.
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1 Introduction

The concept of fuzzy automata has been discussed by J. N. Mordeson, D. S.
Malik [1]. He has proposed fuzzy automata as a model of pattern recognition.
Synchronization of automata was discussed by karel culik, Juhani Karhumaki,
Jarkko kari [2]. Reducibility and stability relation in crisp case are defined
and discussed in [2]. R. L. Adler L. W. Goodwyn and B. Weiss [3] shown that
aperiodicity was necessary for existence of synchronized word in an automata.
The synchronization in fuzzy automata was studied by Rm. Somasundaram
and M. Rajaskar [4]. Stability relation in fuzzy deterministic automata is
used to find the - synchronized word in fuzzy automata, if it exist [5]. Here
the stability relation is an equivalence relation on the states set of a fuzzy
automata.

In this paper, we introduced a new concept called strong ~-synchronized
automata, that is we find a word that brings each state of a fuzzy automata
to a single state with minimal weight in fuzzy automata pu, 0 < p < 1.
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In the second section, we give a basic concepts of fuzzy automata,y-
synchronized automata and stability relation.

In the third section, we introduced a new definition strong - synchronized
automata with example. Further, we prove that every - synchronized
automata is strong - synchronized automata.

In the fourth section, we establish an algorithm to find strong ~-
synchronized word for a fuzzy automata. Throughout this paper we consider
aperiodic fuzzy deterministic automata.

2 Basic concepts

2.1 Fuzzy automata

A finite fuzzy automata is a system of 5 tuples, M = (X, @, m, 1, fu) where
Q-set of states {q1, q2, ..., Gn}
Y-alphabets (or) input symbols
=@ — [0, 1] initial state designator
n-Q — [0, 1] final state designator
fu-function from @ x X x Q — [0, 1]
(g, 0,q;) = 10 0 < p <1 means when M is in state ¢; and reads the input o
will move to the state ¢; with weight function ;. For each o € ¥ we can form
a n x n matrix F(o) whose (4, j) the element is fy/(q;, 0, g;)
For x € ¥* and if x = 0y, 09, ..., O
F(x) = F(o1)o F(o3)o0.....0 F(oy,)
In otherwords F(x) is the fuzzy sum of fuzzy products of weights taken over
the paths in the automata.
Note
fa(i, 2z, 7) is the (7, ) the element of F(z)
fau(s,x,t) =Max{Min{ fr(s,01,q1), far(q1,02,G2), ooy far(Gm-1,0m, 1)} }
where Max is taken over all the paths from s to t.
Note
F,,(w) denotes p' row and ¢ column of a matrix F(w).

2.2 Fuzzy deterministic automata

A fuzzy automata M is called deterministic if for each a € ¥ there exists a
unique state g,such that fi(q, a, ¢.,) > 0 for ¢ € @ otherwise it is called
non-deterministic.
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2.3 Aperiodic fuzzy automata

Let m = p1, pa, ...p: be a partition of the states set () such that if fi/ (¢, a, ;) >
0 for some a € X then ¢; € p, and ¢; € p,41. Then 7 will be called periodic
partition of order t > 2.

An automata M is periodic of period t > 2 if and only if t = Maxcard(m)
where this maximum is taken over all periodic partitions 7 of M. If M has no
periodic partition, then M is called aperiodic.

2.4 Stability relation

We say that two states p and ¢ are stable and denoted by p = ¢q. If
for anyword u € X* there exists a word w € ¥* and r € (@ such that
F,.(uw) > 0 & F, (uw) > 0.

Example
1 b(0.5)0 20
>t 2
3 = @”3\% = I::I%
S V e o Xy, A=
=T SIS
BQ.I)I]
40 30
b(0.7)0
Fig-2.10

In the above automata, for any word u, there exist a word w = abb such that
Fip(uw) > 0 and Fy,(uw) > 0,p € Q. Hence 1 and 4 are stability related. Also
Fy,(uw) > Oand Fs,(uw) > 0,¢ € (). Hence 2 and 3 are stability related.

2.5 r-synchronized automata

Let M = (X, @, fu) be a finite fuzzy automata without final and initial state
designator. We say that the automata is y-synchronized at the state s,s € )
if there exist a real number v with 0 < v < 1 and a word w € ¥* that takes
each state ¢ of @ into s such that fy(q,w,s) > 7.

Example
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1 ag)O.ES)[I OZD
= N =
N = ) & L
S = Y S|, RS

BQJ)I]

40 30
a(0.5)0
Fig-2.21
In the above automata,

0 0 0 05
. . 1o 00 06
there exist a word ab € ¥* such that F(ab) = 00 0 07
0 0 0 05

Hence the automata is a - synchronized automata.

3 strong - synchronized automata

Let M = (3, @, fu) be a fuzzy deterministic automata. We say that the
automata is strong vy-synchronized at the state s,s € @) if there exist a minimal
real number « in fuzzy automata with 0 < v < land a word v € ¥* that takes
each state ¢ € @ into s such that fy(q,v,s) = 7.

Example
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a(0.6)0

bﬁ%@ﬂ

=8
S
3

b(0.3)0

Fig-3.10

In the above automata,

02 0 0 0
: . 102 0 0 0
there exist a word aaa € ¥* such that F(aaa) = 02 0 0 0
02 0 00

Hence the automata is a strong - synchronized automata.

Theorem 3.1. Every ~y-synchronized automata is a strong y-synchronized
automata.

Proof. Let M = (3, @, fu) be a y-synchronized automata. Since it is a
~v-synchronized there exist a word w € X* that takes each state ¢ € @) into
s, s €  and a real number v with 0 < v < 1 such that fy (¢, w,s) > ~. In
M, there exist two states ¢;, ¢; with a minimal real number p where p € (0, 1]
such that fa(q;,a,q;) = p for some a € ¥. For proving it is a strong -
synchronized it is enough to show that there exist a word v € ¥* that takes
each state ¢ € Q into s, s € @ such that fy/(q,v,s) = u where p is a minimal
weight and p € (0,1]. Assume that fy(q,w,s) > v Vg € Q. Since it is
aperiodic and deterministic automata there exist a word u € X* such that
fulg,wu, q;) = e Vg € Q, . € (0,1]. Now, fu(g, wua,q;) = p. Now, Let
wua = v such that fu(q,v,q¢;) = n V ¢ € Q. Hence the - synchronized
automata is a strong y-synchronized automata for the word v € »*.

4 ALGORITHM

1) Consider the Non-synchronized fuzzy automata M.
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2) Using stability relation, find the equivalence classes of the states of M.

3) Construct the Quotient automaton (F') by considering each equivalence
class as a state.

4) Relabel the Quotient automaton (F) into F', preserving the stability
classes.

5) Obtain M from F' which is relabeling of M.

6) M' will give the y-synchronized word (say w) at the state s,s € Q.

7) In M', there exist two states g;, g¢; such that f,; (¢, a,q;) = p where p
is a minimal real number for some a € ¥ and p € (0, 1].

8) Choose the suitable word (say u) such that the word u reaches the state
¢; from the state s.

9) The word wua takes each state ¢ € () into the state g; such that

v (¢, wua,qj) = p. Hence the word wua gives the strong y-synchronized
automata.
Example
In Fig-2.1, the corresponding Quotient automata F is
b(0.1)0
—_~ &
£ =
= - 2,30 &
b(0.5)0
Fig-4.10
Relabeled Quotient automata F' is
a(0.8)0
=
S s
& =
= ~ 2,30 =
b(0.5)0
Fig-4.20

Relabeled automata M’ is
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1 b(0.5)0 20
>t 2
o S &
i S 2R E
T o AS = =
«
a(0.8)0
40 30
b(0.7)0
Fig-4.30

The above automata is y-synchronized for the word ba € X* such that F'(ba) =
0 0 0 05
0 0 0 0.3
0 0 0 0.1
0 0 0 07
In M', there exist two states 3 and 2 such that f,,/(3,b,2) = 0.1.
The word babb € ¥* is strong v-synchronized for the automata M  such that
0 01 00
0 01 00
0 01 00
0 01 00

F(babb) =

Hence the automata is a strong y-synchronized automata.
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