
Progress of Theoretical Physics, Vol. 97, No.1, January 1997 

Strong Gravitational Lensing and Velocity Function 
as Tools to Probe Cosmological Parameters 

- Current Constraints and Future Predictions .. 

Takahiro T. NAKAMURA* and Yasushi SUTO*'** 

* Department of Physics, University of Tokyo, Tokyo 113 

** Research Center for the Early Universe, University of Tokyo, Tokyo 113 

(Received October 15, 1996) 

Constraints on cosmological models from strong gravitational lensing statistics are in

vestigated. We pay particular attention to the role of the velocity function in the calculation 

of the lensing probability. The velocity function derived from the observed galaxy luminos
ity function, which is used in most previous work, is unable to predict the large separation 

lensing events. In this paper, we also use the Press-Schechter theory to construct a velocity 

function theoretically. Model predictions are compared with the observed velocity function 
and the HST snapshot survey. Comparison with the latter observation shows that the pre
dictions based on the theoretical velocity function are consistent with the observed large 

separation events in COBE normalized low-density models, especially with a non-vanishing 
cosmological constant. Adopting the COBE normalization, however, we have not been able 

to find a model which simultaneously satisfies both the observed velocity function and the 

HST snapshot survey. We systematically investigate various uncertainties in the gravita

tionallensing statistics including finite core radius, the distance formula, magnification bias, 
and dust obscuration. The results are very sensitive to these effects as well as theoretical 

models for the velocity function, implying that current limits on the cosmological parameters 
should be interpreted with caution. Predictions for future surveys are also presented. 

§1. Introduction 

49 

It is well known that the probability of gravitational lensing (hereafter GL) of 

high redshift objects is sensitive to the cosmological constant A through the geomet

rical effect 1) - 4) and that extremely A-dominated universes predict too many lensing 

events, inconsistent with the observed low frequency of lensed quasars in current 

samples. 5) -7) Kochanek,8) for example, concludes that AO := A/(3H6) < 0.66 at 

95% confidence. 

GL limits on AO should be contrasted to the other cosmological tests which fa

vor low density universes with non-vanishing Ao. The latter tests include the two

point angular correlation function of galaxies,9) the galaxy number counts, 10) the 

cluster mass and peculiar velocity functions 11) -14) (see Refs. 15) and 16) for re

views). Moreover, the recent measurements of the (local) Hubble constant Ho =: 

100hkms-1Mpc-1 give somewhat large values around h "-' 0.7-0.8. 17)-20) To recon

cile the age of the universe "-' HOI with that of the oldest globular clusters 21) and 

of the young galaxies,22) it seems inevitable to introduce non-null A of AO ~ 0.8. 23) 

Therefore it is worth while to reexamine the previous constraints on A from GL 

statistics by taking account of several uncertainties involved in the calculation of GL 

probability. 
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50 T. T. Nakamura and Y. Suto 

In this paper, we pay particular attention to the role of the velocity function 

(hereafter VF) of lensing objects. Previous work on GL statistics usually uses VF 

determined from the observed galaxy luminosity function. Moreover, it is often as

sumed that the comoving number density oflensing objects is constant. However, the 

luminosity function counts only luminous objects, while invisible dark objects might 

as well be responsible for GL. Bearing this in mind, we also use the VF derived from 

the Press-Schechter theory 24) (hereafter PS) with some specific cosmological models 

such as the cold dark matter (CDM) and the primeval isocurvature baryon (PIB) 

models. 25
) The theoretical velocity function, by its construction, properly counts 

all gravitationally bound dark halos as well as luminous objects, and automatically 

takes account of the hierarchical evolution of objects for various cosmological param

eters. 26) Narayan and White 27) first applied the PS theory to GL statistics, but only 

in the standard CDM cosmology with no comparison with observation. Kochanek 28) 

extended their calculation for various cosmological parameters and discussed the con

straints on the bias parameter b within the standard CDM model. However, we will 

see that the PS theory in its original form is not a perfect one in deriving VF, and we 

therefore adopt theoretical attempts towards more realistic VF. We compare these 

theoretical VF and their predictions on GL statistics with the observed VF 29) and 

the HST snapshot survey30) for COBE normalized CDM and PIB models. 

We also make quantitative estimates of the following uncertainties in GL statis

tics: the effect of inhomogeneity of the universe in the distance formula, the finite 

core size oflensing objects, the obscuration ofimages by dusts in the lensing galaxies, 

and the different definitions of the magnification bias. Although each topic is already 

discussed separately, 6), 8), 31) - 35) we take account of all the above effects consistently 

and systematically for the first time. 

This paper is organized as follows. In § 2, we briefly summarize the basic for

mulae of GL statistics. In § 3 we present the VF's which are applied tQ GL statistics 

in later sections. In § 4, we compare the theoretical VF and its GL prediction with 

observation. In § 5, we survey the various uncertainties described above and study 

how the results in § 4 are affected by them. In § 6, we give predictions for future 

GL surveys. Finally in § 7, we summarize the main results of this paper. Our main 

results are discussed after § 4 and are summarized in Table II. Those who are fa

miliar with GL and the PS theory can skip §§ 2 and 3 which are written only for 

completeness and terminology. 

Throughout the paper, we use the units c = G = 1. The cosmological parameters 

are defined as 

A 
A:= 3H2' 

87rpo 
no:= 3Hfi' 

A 
Ao:= --2' 

3Ho 

a [-3 ( ) -2 ]1/2 H := - = Ho noa + 1 - no - Ao a + Ao , 
a 

(1·1) 

(1·2) 

where p = po/a3 = Po(1 + z)3 is the mean density of the universe at redshift z and 

the subscripts 0 mean the present epoch z = o. 
This paper is largely based on a master thesis 36

) (unpublished) of one of the 

authors which contains further detailed discussion. 
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Gravitational Lensing and Velocity Function 51 

§2. Brief summary of GL statistics 

2.1. Lens model and GL cross section 

We assume that the lensing objects are spherical and isothermal in describing 

GL statistics. The spherical lens model gives a sufficiently accurate description of 

the properties of lensed images such as the image separation and the magnification, 

as compared with more realistic elliptical lens models. 37) - 39) The isothermal profile 

is characterized by the internal one-dimensional velocity dispersion v. 40) Thereby 

we start from the lens potential 41 ) (twice the Newtonian potential integrated along 

line-of-sight) : 

(2·1) 

where { is the impact parameter in the lens plane and the core radius {c eliminates 

the central singularity. *) The lens model with {c = 0 is the "singular isothermal 

sphere" (SIS). Due to the spherical symmetry, the lens equation 41) becomes a scalar 

equation: 

(2·2) 

where 11 is the source position in the source plane, DOL, Dos and DLS are the angular 

diameter distances between the observer, lens and source, and &({) := (d/d{)~({) is 

the deflection angle. The thin lens approximation, which is implicit in Eq. (2·2), can 

be justified 42) - 44) in the case of strong GL, because highly virialized and compact 

galaxies or clusters are considered here as the lensing objects. Defining 

c* .'= 4"'"v2 DODLDLS , 4 2D .." 11*:= 7rV LS, 
os 

(2·3) 

x := {/{* , y := 11/11* , Xc:= {cI{* , (2·4) 

one can rewrite Eq.(2·2) as 

(2·5) 

Given a source position y, the image position X is obtained by solving Eq. (2'5). 

If Xc < 1 and y < Yr := (1 - x~/3)3/2e(1 - xc), triple images form [e(x) is 

the step function]. The brightness of an image at x is magnified by a factor 4l
} 

J.Lp(x) := I (y/x)(dy/dx) 1-1. When Xc "I 0, we solve Eq. (2·5) numerically for the 

image positions Xi(Y) (i = 1,2,3; Xl < X2 < X3) and calculate ..1x(y) := X3 - Xl 
(separation of the outer two images), J.L(Y) := 2:i J.Lp(Xi) (total magnification of all 

the images), and r(y) := exp Iln[J.Lp(X3)/ J.Lp(Xl)]I (brightness ratio [> 1] of the outer 

two images). As noted in Ref. 32), it is safe to approximate ..1x(y) ~ ..1x(O) = 2xt := 

2(1 - x~)1/2e(1 - xc). The separation angle (J in radian is 

(J - 2{*xt _ 8 2 DLS (1 _ 2)1/2 
- - 7rV xC' 

DOL Dos 
(2·6) 

0) The parameter €c defined here approximately corresponds to twice the core radius of Ref. 32). 
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52 T. T. Nakamura and Y. Suto 

The GL cross section 41) &(Q) (defined as the area of such a region in the source 

plane that a source is lensed with certain properties Q if it resides within the region) 

is generally written as the integral in the y-plane 

u(Q) = 21rTJ: 10
00 

S(y,Q)ydy. (2·7) 

For example, if Q is "formation of triple images", then S(y, Q) = 8(Yr - y) and 

& = 1r(TJ*Yr)2 j if Q is "image separation is larger than Llx/' and "magnification is 

larger than JL*" and "brightness ratio is smaller than r * ", then 

where 

u(JL*,r*) := 21r fo
Yr 

dyy8 (JL(Y) - JL*) 8 (r* - r(y)) . 

2.2. Distance formula 

(2·8) 

(2·9) 

The angular diameter distances (DOL, Dos, DLS) are given by the solutions of 
the Dyer-Roeder equation: 45) - 47) 

[ ~ + 3+q(z) ~ + ~ ii.a(z) 1 D - 0 
dz2 l+z dz 2(1+z)2 -, 

(2·10) 

where q := ~.n - A is the deceleration parameter, and the "smoothness parameter" 

ii (0 < ii < 1) measures the degree ofinhomogeneity of the universe (for derivation, 

see Ref. 41)). The last term of Eq. (2·10), the Ricci focusing term, represents the 

matter density inside the beam of photons. Denoting D & (z*, z) as the distance from 

z* to z (> z*), the initial conditions of the differential equation (2·10) are 

d I 1 -D&(z*, z) - . 
dz z=z. (1 + z*)H(z*) 

(2·11) 

In particular, we write D&(z) := D&(O, z). The solution with ii = 1 is the "filled

beam distance," and gives the standard angular diameter distance in an exactly 

homogeneous FRW space-time,48) while that with ii = 0 is the "empty-beam dis

tance." In the derivation of Eq. (2·10), it is assumed that the focusing due to the 

tidal shear (Weyl focusing) is negligible. It has been shown 49) - 51) that this assump

tion is plausible in most astronomical situations. In Appendix A, we present specific 

solutions of Eq. (2·10). 

2.3. GL probability formula 

The probability that a source at redshift Zs is lensed with properties Q is gener

ally written as 41) 

1 {Zs (1+z)2 2 J h 

P(Q,zs) = D~(zs) 10 dz H(z) D1(Z) dxu(Q,x,z,zs)Nx(X,z) , (2·12) 

where the integral variables z and X are, respectively, the redshift and the parameter 

of the lensing objects, with the latter completely characterizing their properties (X 
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Gravitational Lensing and Velocity Function 53 

is not necessarily a one-dimensional quantity), and Nx(X, z)dX is the "X-function", 

i.e., the comoving number density of lensing objects with the parameter X '" X + dX 

at z (the reason why the filled-beam distances are used in Eq. (2·12) is discussed in 

§ 5.1). 

In the above lens model (Eq. (2·1)), the lensing cross section is characterized by 

the single parameter v (assuming that ec is empirically related to v as Eq. (2·16)). 

This is why VF plays a fundamental role in the calculation of GL probability. Substi

tuting Eq. (2·8) into Eq. (2·12), the probability that a source at Zs is multiple-imaged 

with image separation angle larger than 0 and total magnification larger than J.L* and 

brightness ratio smaller than r * is 

167r
2 rz· (1 + z)2 2 2 l V2 

4 
P(O,J.L*,r*,zs) = Di(zs) 10 dz H(z) DI(z)D&(z,zs) VI dvv Nv(v,z)u(J.L*,r*). 

(2·13) 

The limits VI and V2 (> VI) of the v-integral are determined by Eq. (2·6) (see 

Eq. (B·1)). IT xc(v) does not increase with v (i.e., ec increases less rapidly than 

ex v2
), VI is given by the sole positive solution of Eq. (2·6) for given 0, and V2 = 00 

formally (strictly speaking, setting V2 = 00 is inconsistent with the isothermal lens 

model because the isothermal profile does not continue to infinite radii. However, 

one can show that the truncation of the isothermal profile at the virial radius makes 

little difference). IT xc(v) increases with v, then VI and V2 are two positive solutions 

of Eq. (2·6). The probability distribution of the image separation angle is 

d 
P6( 0, J.L*, r*, zs) := - dO P ( 0, J.L*, r *, zs) (2·14) 

167r2 {Z. (1 + z)2 2 2 [dV 4 ] VI 

= Di(zs) 10 dz H(z) DI(z)D&(z,zs) dO v Nv(v,z)u(J.L*,r*) v2·(2.15) 

Assuming 

ec = ec*v
p

, 

dv/dO in Eq. (2·15) is calculated from Eq. (2·6) as 

dv v 1 - x~(v) 

dO - (j 2 - px~(v) . 

(2·16) 

(2·17) 

In § 5.2, we will see that observations suggest p '" 3. In Appendix B, we give analytic 

expressions for VI and V2 in the cases p = 0,1,2,3 and 4. 

2.4. Magnification bias 

Because GL causes a magnification of images and bright QSO's are easy to 

discover, lensed QSO's have a relatively high probability of being included in a QSO 

sample. This selection effect (magnification bias 52)) is computed as follows. Let 

!P2(L)dL be the luminosity function of sources, and let !PQ(L) := If !P2(L')dL'. 
When one searches for lensed QSO's of the observed flux brighter than S, the GL 

probability increases as: 53) 

(2·18) 
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54 T. T. Nakamura and Y. Suto 

where Pe",o := -(d/dl-'*)Pe, il := [Da(zs)/ Dl(Zs)]2, and the luminosity 

L := 411"(1 + zs)4 Dr(zs)(l + zsp-l S (2·19) 

must be calculated from S in the same way as in the determination of iJ?2 (L ). The 

last factor (l+zp-l is the K-correction,54) which assumes that the energy spectrum 

of QSO's is of the form E ex v-"'(. We put the factor il in Eq. (2·18) because the 

''unlensed'' sources are also magnified (if a < 1) by that factor on average from the 

flux conservation. 55) Substituting Eq. (2·15) into Eq. (2·18), the biased probability 

pf is expressed as Eq. (2·15) with (1'(1-'*, r.) replaced by (cf. Eq. (2·9)): 

211" f Yr 
( ilL ) 

(1'B(S, r*) := iJ?Q(L) J
o 

dyye (r. - r(y)) iJ?Q I-'(Y) . (2·20) 

Similarly, for a QSO of observed flux S, the GL probability is given by Eq. (2·15) 

with (1'(1-'*, r *) replaced by*) 

(1'~(S, r*):= ~11" f
Yr 

dy y e (r* _ r(y)) iJ?2 ( il(L)) 1-'(-). 
iJ?L (L) Jo I-' y I-' Y 

(2·21) 

The observed QSO luminosity function is fitted by the two power-law model 56) 

(2·22) 

with the luminosity evolution 

(2·23) 

where 0: = 3.79, {3 = 1.44, ¢* = 6.4 x 1O-6h3Mpc-3, kL = 3.15, and the absolute 

B-band magnitude corresponding to Lo is Mo = -20.91 + 5 log h. These values are 

obtained from a Zs < 2.2 QSO sample, assuming (flo, AO) = (1,0) and I = 0.5 in 

Eq. (2·19) (but the values of 0: and (3 do not depend on the assumed cosmological 

models). Following Ref. 57), we assume that Eq. (2·23) is valid up to Zs = 3 and 
that, for Zs > 3, L*(zs) = L04kL 3.2(zs-3)!(a-,(3) and ¢*(zs) = ¢'O 3.2-(zs-3)(a-l)!(a-,(3) 

with the same values of the parameters. The behavior of this luminosity function 

at Zs > 3 is such that the bright end remains constant while the faint end slides 

down by a factor of 3.2 in every unit redshift. We also assume that the QSO sample 

in Boyle et al. 56) itself does not suffer from the magnification bias and neglect the 

possible magnification due to microlensing by stars in the lensing galaxies. 58) 

§3. Velocity function 

3.1. Schechter VF: observational viewpoint 

Standard calculation of GL probability in most previous works uses VF from 

the observed galaxy luminosity function of Schechter form at z = 0: 

(3·1) 

0) We use (Yr - y)(3-{3)/2 as an integral variable in Eqs. (2·21) and (2·20) in order to eliminate 

the divergence of the integrand on the radial caustics Y = Yr. 
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Gravitational Lensing and Velocity Function 55 

Autofib survey 59) concludes that 0: = 1.09, 4>* = 0.026h3Mpc-3 and the absolute 

magnitude corresponding to L* is M* = -19.20 + 5 log h in B-band. Combining this 

with the Tully-Fisher or Faber-Jackson relation L/L* = (v/v*)1', Eq. (3·1) yields 

(

V )-1'i(O-I) [( v )'Yi] dv 
N~ch(v,O)dv = L 4>*i'Yi -. exp - -. -

i=E,SO,S v*, v*, V 

(3·2) 

(hereafter SchVF). Here it is often assumed that the comoving number density of 

lensing objects is constant, i.e., Nv(v, z) = Nv(v, 0). Using the B-band Tully-Fisher 

and Faber-Jackson relations in Ref. 29), one finds h',v*) = (2.9, 126kms- l
) for S 

galaxies, and h',v*) = (3.3,175kms- l
) for E and SO galaxies at the above value of 

L*. The morphological composition is 4>*E + 4>*so = 0.444>* and 4>*s = 0.564>*.60) We 

adopt the above values. 

Several problems in applying SchVF to GL statistics include: (1) SchVF counts 

only luminous objects though they are not the only lenses; invisible dark haloes 

might as well be responsible for GL. (2) It is possible that the assumption of no 

evolution makes the Sch VF strongly affected by the local and recent property of the 

universe around us. In fact, Autofib survey 59) found that the luminosity function 

steepens with redshift up to z = 0.75 at the faint end. Several authors 35), 61) - 63) 

have considered specific evolution models, but their conclusions do not seem decisive 

in that the models include some arbitrary free parameters. [Inclusion of dark objects 

(1) and the evolution effect (2) into GL statistics would, in principle, lead to tighter 

limits on A.] (3) The Tully-Fisher and Faber-Jackson relations may not be universal 

in particular at high z. (4) SchVF has an uncertainty in the velocity dispersion of 

early-type galaxies by a factor 1.5,64) which changes the GL probability by (1.5)2 

(see Ref. 8) for a detailed study offering evidence against these arguments). (5) 

Clusters of galaxies, which are not counted in Sch VF, can also contribute to strong 

lensing of QSO's. 65),66) Because of these uncertainties, we would like to introduce 

another approach below to the computation of VF. 

3.2. Press-Schechter VF: theoretical viewpoint 

Narayan and White 27) and Kochanek 28) applied the PS mass function (see, e.g., 

Ref. 67) for introduction) to compute VF: 

(3·3) 

where 

(3·4) 

is the rms of linear density fluctuation presently on the comoving scale R 

[2M/(noHff)J1/3 (P(k) and W(kR) are the power spectrum at z = 0 and the 

k-space window function) and 8co(z) is the critical density contrast extrapolated lin

early to the present epoch in order to virialize by z (Eq. (C·30)). Assuming the 

isothermality of the lensing objects again, the one-dimensional velocity dispersion is 
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56 T. T. Nakamura and Y. Suto 

related to the mass through 

(3·5) 

where Tv is the virial radius of the object and 'l?vO(z) := (RjTv )3 is the overdensity of 

an object at Z = 0 which virialized at Z (Eq. (C·29)). Calculation of dco and 'l?vo in 

A = 0 universe is found in Ref. 26). We give analytic formulae for these in n + A = 1 

universe in Appendix C, using the spherical collapse model. We normalize u(R) 
so that u{8h-1Mpc) = b-1 (b is the bias parameter) and use the top-hat window 

function W{x) = 3(sinx - xcosx)jx3
• From Eqs. (3·3) and (3·5), VF is constructed 

theoretically as 68), 69) (hereafter PSVF): 

(3·6) 

with the v-R relation in Eq. (3·5). PSVF, by its construction, properly counts all 

gravitationally bound objects (including the clusters of galaxies) as well as luminous 

objects, and automatically takes account of the hierarchical evolution of objects in 

the universe for various cosmological parameters. 26) The theoretical foundation of 

the PS mass function is now more secure 70) and it is also supported by cosmological 
N-body simulations. 71),72) 

PSVF strongly increases with no and weakly dependent on AO. The former 

is due to the fact that the comoving scale R is smaller for larger no with fixed v 

(Eq. (3·5)): since the density fluctuation is large on small scales [u{R) is large], 

larger (}o universes have more objects at fixed v. The latter follows from the fact 

that dco and 'l?vo do not depend strongly on AO at low redshifts. At higher redshifts, 

however, dco and 'l?vo are more sensitive to AO and so is PSVF. The bias parameter 

b affects PSVF most strongly: since u(R) ex: b- 1
, PSVF behaves like ex: bexp{-b2). 

The dependence on hand {}B is very weak because they enter only through r (see 

Eq. (4·1)). 

3.3. Formation rate in theoretical VF 

PSVF is derived with the assumption that all objects have just virialized at 

the moment one evaluates VF 73), 74) (see the definition of 'l?vo). In the application 

to GL statistics here, this implies that the deflection of light and the formation 

(virialization) of the deflector occurs simultaneously. In reality, however, a virialized 

object survives for some time until it merges into a more massive object, 26), 75) and 

hence there must be an accumulation of objects in a specific velocity range which 

formed at some earlier epochs. Therefore, we must take account of the formation 

epoch distribution of objects in the universe to avoid the above assumption. 

Kitayama and Suto 75) proposed a practical prescription for obtaining the forma

tion epoch distribution using the random-walk method,70) and calculated theoreti

cally the comoving number density F(M, Z{, z)dMdzf of those objects which formed 

at Zf rv Zf + dZf with mass M rv M + dM and survive without destructed (absorbed 

into larger hierarchies) until z. Integrating over Zf, more realistic VF may be written 
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Gravitational Lensing and Velocity Function 57 

as (hereafter KSVF): 

KS roo dM 
Nv (v,z)dv = dV}z dzrF{M, Zr, z) dv . (3·7) 

The explicit form of F is found in Eq. (23) of Ref. 75). Compared with PSVF, KSVF 

is shifted in the direction oflarger velocity relative to PSVF, especially on small scales 

(see Figs. 1 and 2). This is due to the accumulation of objects, as mentioned above: 

because smaller objects (at z = 0) are likely to have formed earlier in the bottom up 

scenario, and because older objects have higher velocities (see Eq. (3·5)), the velocity 

of small objects becomes larger when we take the formation history into account. 

Equation (3·7) refines the original PSVF in the sense that the formation epoch is 

taken into account, though not fully satisfactorily. 75) 

§4. Comparison with observation 

4.1. Comparison with observed VF 

In this section, we compare theoretical VF in § 3 with the observed one at 

z = 0. 29) We consider four specific cosmological models listed in Table 1. The first 

three models (SC, OC and LC) use the scale invariant (n = 1) power spectrum of 

the cold dark matter (CDM) model in Ref. 76), and the last model (LP) uses that of 

the primeval isocurvature baryon 25) (PIB) model in Ref. 77) with slope n = -1.15 

at the large wavenumber. The Hubble constant h in each model is chosen so that the 

age ofthe universe is longer than 13 Gyr21) for given (no, AO). The bias parameters b 

adopts the COBE DMR 2yr data normalization, 78) and the baryon density parameter 

nB in the CDM models is from the big-bang nucleosynthesis constraint. 79) The r 
parameter in the CDM model is empirically fitted as 78) 

(4·1) 

where To ~ 2.726K is the temperature of the cosmic microwave background. 

In Fig. 1, we plot the theoretical VF's (PSVF and KSVF) for these models at 

z = O. In (J + A = 1 case, we used the fitting formulae for dco and -avo in Eqs. (C·19) 

and (C·33). Plotted with crosses are the observed VF compiled by Shimasaku. 29) He 

multiplied the observed central velocity dispersion of stars in E and SO galaxies by a 

1.51/ 2 factor to take account of the difference between the distributions of luminous 

matter and isothermal dark halos. Since the error bars in the raw data represent 

only statistical errors, we lengthened the error bars of galaxy VF by a factor of 1.51
/
2 

into the smaller velocity direction. However, it should be cautioned that this is an 

Table I. Model parameters. 

Model P(k} no Ao h b I nBh~ 

SC CDM 1 0 0.5 1.3 0.016 

OC CDM 0.3 0 0.7 0.52 0.016 

LC CDM 0.2 0.8 0.8 1.0 0.016 

LP PIB 0.2 0.8 0.8 1.0 0.128 
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Fig. 1. PSVF (Eq. (3·6)) and KSVF (Eq. (3·7)) in the cosmological models listed in Table I. Crosses 

show the observed VF in Ref. 29). 

over-modification, especially at the low velocity end, because S galaxies do not have 

this factor. The cluster VF is translated from the observed temperature function 80) 

through the isothermal.B-model assuming.B = 1. 

At least the VF observation should give a lower bound for the theoretical VF, 

because the observed VF counts only luminous objects. In Fig. 1, model SC fits the 

galaxy VF fairly well but predicts too many large scale objects. Model OC fails on all 

scales due to the small value of the normalization b-1 from the COBE data. Models 

LP and LC are very good on cluster scale but significantly underpredict galactic size 

objects, except for the KSVF in model LP. Shimasaku 29) also compared PSVF with 

the observation, and concluded that no COBE normalized models are consistent with 

VF observation within PSVF. However, as noted in § 3.3, PSVF has a flaw: PSVF 

neglects the accumulation of objects which formed earlier. Although KSVF and 

PSVF are not so different within the CDM models, they differ significantly in model 

LP. This originates from the fact that the PIB models have more powers on small 

scales than do CDM models: since smaller objects survive longer, the accumulation 

in pm models is more significant than that in CDM models, especially on small 

scales. 

On nearly all scales, KSVF in model LP seems consistent with observation if we 

allow the error bars to exclude the 1.51/ 2 factor. However, it should be borne in mind 

that there is a great deal of uncertainty both in theory and observation of VF. On 

the observational side: (1) The factor of 1.51
/

2 is quite generous and may represent 

an error considerably larger than the actual one. (2) Although the galaxies in the 

Virgo cluster are excluded in the Shimasaku 29) data, it is possible that galaxies in 

small groups are counted as individual objects in that data. From the construction 
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of theoretical VF's, a group of galaxies should be counted as one object and the 

galaxies inside should be neglected. (3) The assumption of f3 = 1 for cluster VF 

may not be justified because of the f3-discrepancy problem. 81) (4) The observed VF 

may not represent the cosmic mean. On the theoretical side we have the following 

points: (5) KSVF has some problems in the counting argument. 75) (6) We have not 

taken any dissipative processes into account in the dynamics of virialization, both in 

PSVF and KSVF. That is, we have related mass with velocity (Eq. (3·5)) only from 

a virial analysis and neglected a possible dissipation of energy from the collapsing 

object. 

Here let us discuss the last point (6) at some length. If one takes these dissipa

tive processes into account, the velocity may increase because of the contraction to 

smaller radii. Based on the arguments of cooling and dynamical time scales, 82), 83) 

these effects are expected to be unimportant on cluster scales. On galactic scales 

where cooling is likely to be effective, theoretical VF will shift to the right and should 

become steeper than in the dissipationless case. This line of argument might make 

the model LC consistent with the observed VF. We do not estimate here quantita

tively to what extent dissipation modifies the theoretical VF but only note that the 

degree of dissipative effects in the galaxy formation can be measured by comparing 

the observed VF with the theoretically best VF without dissipation. 

In considering GL statistics, it is desirable to use VF's which are theoretically 

well-motivated and consistent with the observed VF. In particular, the evolution 

of the VF's is important in the calculation below. If one adopts the observed VF, 

however, one must assume an ad-hoc number evolution. Given these uncertainties 

and problems, we have decided to apply theoretical and observed VF's in computing 

the GL probabilities on an equal basis. Further comparison between the theory and 

observation of VF should wait for future VF observation at higher redshifts. 

In Fig. 2 we plot the number evolution of PSVF and KSVF for the cosmological 

models in Table I. The decrease of small scale objects is slower in KSVF than that 

in PSVF, especially in models LC and LP. This is because the accumulation of small 

objects becomes less significant for higher redshifts in KSVF. The two VF's become 

almost identical at the redshift of rv 4. Recently, Mo and Fukugita 84) compared 

PSVF with the abundance of giant galaxies at z = 3 and concluded that spatially 

flat CDM models with ~o rv 0.7 are favorable. However, their conclusion seems 

premature in that the models are already inconsistent with observation at z = 0 

(Fig. 1). 

4.2. Comparison with the HST snapshot survey 

Let us now calculate the GL probability in the ec = 0 (SIS lens model) case, and 

compare the result with the observed GL frequency in the HST snapshot 

survey. 85) - 87),30) Various uncertainties, including the non-zero core radius, are exam

ined in the next section. Although there exist different surveys in optical band, 88) - 90) 

we do not mix these data to obtain the larger number of samples 8) because we are 

mainly concerned with how the results are affected by various uncertainties described 

in §§ 4.1 and 5. 

Using the redshifts and V-band magnitudes of all the 502 QSO's in the HST 
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Fig. 2. Evolution of KSVF (solid) and PSVF (dotted) for the cosmological models listed in 

Table I. SchVF without 1.51
/

2 is also shown in dot-dashed curve for reference. From the 

upper to the lower curves in high velocity end, z = 0, 0.5, 1, 1.5, 2, 2.5. 

survey, we calculate the expected number of lensed QSO's in the survey for various 

cosmological parameters as 

502 

n~(O) := L pl(O, Si, T*i, Zi) (4·2) 
i=l 

with Eqs. (2·18) and (2·21), where Si and Zi are the observed V-band flux and 

redshift of the i-th QSO in the survey. The HST survey can detect multiple images 

if 0> 0.1" and if the brightness ratio is smaller than 7) 

(4·3) 

where Slim is the faintest flux detectable by HST (the corresponding apparent mag

nitude is mlim = 22 in V-band). We assume B - V = 0.2 85) when the V-band 

magnitudes are inserted into the B-band QSO luminosity function Eq. (2·22). The 

luminosities Li of QSO's are calculated from Si by Eq. (2·19) with (ilo, AO) = (1,0) 
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Fig. 3. Image separation distribution of the expected number of lensed QSO's in the HST survey. 

(a) Predictions from SchVF. (b) Predictions from PSVF and KSVF. Model parameters in (b) 

are listed in Table 1. Histogram exhibits the observed distribution. SIS lens model (~c = 0) and 

the filled-beam distance (& = 1) are used. 

and 'Y = 0.5. 56),91) We use the standard angular diameter distance (& = 1; filled 

beam) for Dti(z, zs) in Eq. (2·15). 

Figure 3( a) displays the prediction based on Sch VF, while in Fig. 3(b) we plot the 

PSVF and KSVF predictions for the model parameters listed in Table I. In models 

OC and LC, the KSVF and PSVF predictions are almost indistinguishable (see 

Fig. 1). Shown in the histogram is the distribution ofthe observed 6 GL candidates in 

the HST survey. These are 1208+1011, 1413+117, 1115+080,0142-100,0957+561, 

1120+0154, and the image separation angles are 0.47", 1.22", 2.0", 2.2", 5.7" and 

6.6", respectively. Despite the high resolution imaging of the HST Planetary Camera, 

1208+ 1011 is the only sub-arcsecond GL candidate found by the survey. 92),93) 

Note that the Sch VF can never predict large separation lensing events such as 

0957+561 and 1120+0154, even if the 1.51
/
2 factor is included. Usually these large 

separation events are neglected as statistical flukes in the literature of GL statistics 

based on SchVF. Maoz and Rix,7) for example, neglect 0957+561 because it is not 

the lensing by a single galaxy but the lensing galaxy may be embedded in a cluster. 94) 

They also neglect 1120+0154 because the images might be a physical pair (but see 

Refs. 95) and 96)). However, we believe that it is important to consider these large 

separation lensing events when the PSVF or KSVF predictions are compared with 

observation, because the theoretical VF's in principle count all the gravitationally 

bound dark objects as well as luminous objects. The apparent absence of any obvious 

lensing object in 1120+0154 may be due to such non-luminous massive objects. 

It is also interesting to note that the predictions from observed VF and theoret-
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ical VF have opposite dependence on no. This is because theoretical VF naturally 

decreases with no (low density universe has fewer lenses). On the contrary, since 

Sch VF does not at all depend on the cosmological parameters but is fixed by ob

servation, the no and >'0 dependence of Sch VF prediction enters only through the 

cosmological geometry (distance formulae and the Hubble constant). In the case 

of PSVF and KSVF predictions, the >'0 dependence comes mainly from the COBE 

normalized bias parameter b. 

It is shown in Fig. 3(a) that the SchVF prediction apparently prefers A = 0 

models to highly A-dominated models. 5)-8) In Fig. 3(b), model SC predicts too 

many lensing events in all separation ranges. 28) Again model OC is not viable: the 

COBE normalized density fluctuation amplitude b-1 in this model is too small to 

accommodate a sufficient number of lensing objects. The most likely values of no 
in open universes should lie between 0.3 and 1. Model LC seems relatively good, 

while model LP is good at large separations but overpredicts the number of small 

separation events. We tabulate in Table II the expected number nexp := J n~XP(f))df) 
of lensed sources for these models, and their X2 significance level 97) 

(4·4) 

where nfbs and n~XP are the observed and expected number of lensed sources in the 

i-th bin. We set the bin width to be Ll~in = I" as shown in Fig. 3, and calculate 

nexp and Q within the separation range 0" < f) < 4" for Sch VF predictions, and 

within 0" < f) < 10" for PSVF and KSVF predictions (see the first row of the table 

denoted as "standard"). 

We note that, if the 1.51
/
2 factor is excluded, the A = 0 models in the Sch VF 

prediction have a very low level of significance, because these models do not predict 

a sufficient number of lensed QSO's around f) rv 2" (1115+080 and 0142-100). If 

the 1.51
/
2 factor is included, the values of Q in A = 0 models are larger than those in 

A -=F 0 models only relatively: no models in the Sch VF prediction can fit the observed 

distribution satisfactorily. The maximum likelihood analysis 98) is unable to show this 

fact, where only the relative values of the likelihood among the models are calculated. 

This is why we do not use the likelihood analysis for the cosmological parameters. * ) 

We caution, however, that the probabilities in the table are not particularly reliable 

because of the small number of lensed candidates. More reliable tests will be possible 

after the next-generation of GL samples becomes available (see § 6). 

As seen from Fig. 3 and Table II, GL statistics based on theoretical VF's prefers 

spatially flat low density models with the non-vanishing cosmological constant (if 

COBE normalized), as opposed to the SchVF prediction (this is consistent with 

the results in Ref. 66) which focused on the large separation lensing statistics using 

the observed cluster mass function 13»). In particular, the model LC matches the 

observation fairly well. However, this results from the fact that the VF itself in the 

.) We do not use the Kolmogorov-Smirnov test here because we wish to compare the amplitude 

of the observed event rate with that of the theoretical predictions. This is also the reason why we 

use the X2 test although the binning is very crude. 
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Table II. The expected nwnber nexp of lensed QSO's in the HST snapshot survey and the X2 

significance level Q (Eq. (4·4)) of the models (see Table I). (a,b) SchVF predictions within the 

separation range 0" < (} < 4"; (c) PSVF predictions within 0" < (} < 10"; (d) KSVF predictions 

within 0" < (J < 10"; are compared with the observation. 

(a) VF SchVF without 1.51
/

2 

(no,>'o) (1,0) (0.3,0) (0.2,0.8) 

0" < (} < 4" (nobs = 4) nexp Q nexp Q nexp Q 

Standard (§ 4.2) 2.5 < 0.1% 3.7 < 0.1% 10 2.1% 

Distance formula& (§ 5.1) 1.4 < 0.1% 2.9 <0.1% 7.2 0.5% 

Core radiusb (§ 5.2) 2.3 < 0.1% 3.4 < 0.1% 9.4 1.2% 

Magnification biasc (§ 5.3) 1.7 < 0.1% 1.9 < 0.1% 5.3 0.5% 

Dust obscurationd (§ 5.4) 1.8 < 0.1% 2.7 < 0.1% 7.8 4.2% 

(b) VF SchVF with 1.51
/

2 

(no, >'0) (1,0) 

0" < (} < 4" (nobs = 4) nexp Q 

Standard (§ 4.2) 5.1 

Distance formula& (§ 5.1) 2.8 

Core radius b (§ 5.2) 4.4 

Magnification biasc (§ 5.3) 2.6 

Dust obscurationd (§ 5.4) 4.1 

(c) VF 

Model SC 

0" < (} < 10" (nobs = 6) nexp Q 

Standard (§ 4.2) 29 3.2% 

Distance formula & (§ 5.1) 17 55% 

Core radiusb (§ 5.2) 18 44% 

Magnification biasc (§ 5.3) 23 17% 

Dust obscurationd (§ 5.4) 27 6.5% 

(d) VF 

Model SC 

0" < (} < 10" (nobs = 6) nexp Q 

Standard (§ 4.2) 32 1.3% 

Distance formula& (§ 5.1) 18 43% 

Core radius b (§ 5.2) 21 27% 

Magnification biase (§ 5.3) 22 23% 

Dust obscurationd (§ 5.4) 29 3.4% 

a : Self-consistent formula with & = 0 is used. 

b: ee = 0.2(v/200kms- 1 )3h- 1kpc. 

38% 

3.7% 

26% 

9.1% 

45% 

nexp 

1.7 

1.3 

1.6 

1.4 

1.3 

nexp 

1.6 

1.2 

0.7 

1.0 

1.2 

c : Magnification of only the brighter image is used. 

d: TeV = 1, ed = 0.3h- 1kpc. 

(0.3,0) (0.2,0.8) 

nexp Q nexp Q 

7.5 30% 20 0.7% 

5.9 25% 15 5.2% 

6.5 26% 18 1.5% 

3.8 19% 11 19% 

6.0 43% 17 2.7% 

PSVF 

OC LC LP 

Q nexp Q nexp 

< 0.1% 6.1 79% 16 

< 0.1% 4.6 48% 9.3 

< 0.1% 5.4 55% 11 

< 0.1% 5.1 60% 11 

< 0.1% 5.7 79% 12 

KSVF 

OC LC LP 

Q nexp Q nexp 

< 0.1% 6.0 77% 21 

<0.1% 4.5 47% 14 

< 0.1% 5.4 53% 19 

< 0.1% 4.2 40% 13 

< 0.1% 5.6 77% 19 

Q 

45% 

81% 

73% 

79% 

79% 

Q 

18% 

58% 

20% 

62% 

33% 
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model LC underpredicts the number of galaxy scale lenses existing at the present 

epoch (Fig. 1). Although the KSVF in model LP is the only theoretical VF (among 

the four models) consistent with the VF observation in Fig. 1, it is shown in Fig. 3(b) 

that the KSVF prediction of the model LP is unfavorably larger than the observed 

events at small separations. 

As discussed in § 4.1, the observed VF on galaxy scales may be affected by 

dissipative effects. However, it is not clear whether the observed VF or the theoretical 

VF without dissipation is relevant for GL statistics: if the lensing objects cannot be 

modeled as isothermal, then it might well be that the observed velocity dispersion 

in their central parts is larger than the effective value of v inside the Einstein radius 

of the isothermal model. If this is the case, the observed VF will overestimate 

the deflection angle, and thus the GL cross section. In passing we note that, if 

the observed VF is affected by dissipative effects, and if theoretical VF's without 

dissipation are relevant for GL statistics, then the model LC may become consistent 

with both of the VF and GL observations. 

§5. Various uncertainties in GL statistics 

Within the SIS lens model and the standard distance formula (0: = 1), we could 

not find a cosmological model which satisfies both GL and VF observations. In this 

section we consider various uncertainties (free parameters) in the predictions of GL 

statistics. The results are summarized in Table II. 

5.1. Distance formula 

We have no knowledge at present as to what value of the smoothness parameter 

0: in the distance formula (Eq. (2·10)) describes our universe best. First of all, it 

is important to realize that the distances appearing in the lens equation (Eq. (2·2)) 

and the GL probability formula (Eq. (2·12)) have slightly different meanings. First 

let us discuss why the filled beam (0: = 1) distances are used in Eq. (2·12). 

Actually Eq. (2·12) has two different derivations. One of these is the "self

consistent" formula 31) which uses 0: = 1 in the GL probability formula (as in 

Eq. (2·12)), and the other is the "optical-depth" formula 99),53) which does not dis

tinguish the distances in Eqs. (2·2) and (2·12), and uses the same value of 0: in both 

the equations. In the self-consistent formula, the lensing cross section is defined in 

the source plane (as in Eq. (2·7)) and the GL probability is defined by the ratio of the 

total lensing cross section to the entire area of survey regions in the source plane. 

In this case, the distances in Eq. (2·12) measure the proper area in the lens and 

source planes subtended by the solid angle of the regions. Thus, if one observes the 

GL frequency in the entire 471' steradians in the sky, the filled beam distances should 

be used in Eq. (2·12) because (we assume that) the universe is on average homoge

neous. On the other hand, in the optical-depth formula, the lensing cross section is 

defined in the lens plane and the GL probability is defined by the mean number of 

deflections along line-of-sight. Since Dl (zs) / D ci (zs) ::; 1, the optical depth formula 

is always smaller than the self-consistent formula 31),6) and the difference becomes 

larger for smaller 0:, larger zs, ilo and >'0. For example, when 0: = 0, (il, >.) = (1,0), 
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and Zs = 2, the two GL probabilities differ by a factor of 0.645. We adopt the self

consistent formula because, as pointed out, 31) the line-of-sight cannot be treated as 

a random variable, but the source position on the source plane can be. Although the 

GL observation data used in § 4.2 do not cover the whole 41r steradians, the survey 

region is wide enough to assume statistical homogeneity. 55), 100) 

On the other hand, the distances appearing in the lens equation (Eq. (2·2)) 

measure the proper lengths in the lens and source planes on scales of the typical 

image separation. Sasaki 101) showed that the choice of 0: in Eq. (2·2) depends on 

how clumpy one imagines the universe to be on that scale. Thus 0: in Eq. (2·2) 

is a statistical quantity and may depend on the directions in the sky. Sasaki 101) 

also argues that, when one calculates the deflection angle 0: = (d/d~)~, 0:15 should 

be subtracted from the density profile of lensing objects for consistency, because 

the lens potential ~ (Eq. (2·1)) is a perturbative quantity against the homogeneous 

background. In the case of strong lensing, however, the subtraction of 0:15 makes little 

difference; if we assume that the lensing object has virialized before the light passes 

by it, the density of the lens is at least {)y times larger than the background when 

the light is deflected. Since the deflection angle is roughly proportional to the mass 

of the lens, and since {)y 2: 181r2 (Eq. (C·18)), the fractional change in the deflection 

angle due to 0:15 is at most a factor of 10-2
, which is observationally negligible. 

To be pedantic, setting 0: = 1 in Eq. (2·2) is inconsistent because strong GL can

not occur in the 0: = 1, perfectly homogeneous universe. As 0: decreases from unity, 

the GL probability (without magnification bias) increases through the geometrical 

effect: because of the decreasing focusing, the proper area of the GL cross section 

increases. The effect of 0: is larger for larger ilo or .\0 universes. This is because 0: 

in the Ricci focusing term (Eq. (2·10)) is multiplied by il(z) and larger .\0 makes 

il{ z) approach unity faster at higher redshifts. On the contrary, if the magnification 

bias is taken into account, the GL probability decreases as 0: decreases, because of 

the factor p, := [Da{zs)/ Dl(Zs)]2 in Eqs. (2·21) and (2·20). However, this decrease 

of GL probability with 0: is rather artificial; intuitively, as 0: decreases, the universe 

becomes clumpy so the number of lensing objects and the GL probability should 

increase. It may be that the number density of lensing objects should be multiplied 

by (1 - 0:) to take this effect into account. 

Figure 4 is the same as Fig. 3{b) except that 0: = 0 (extreme case). Figure 4(a) 

displays the PSVF and KSVF predictions from the self-consistent formula, while in 

Fig. 4(b) we use the optical depth formula. Because of the decrease of the magnifi

cation bias mentioned above, the GL predictions decrease as compared with Fig. 3. 

In our opinion, previous work (e.g., Ref. 6)) might overestimate the magnification 

bias because of the absence of the factor ji in Eq. (2·21). What is essential to the 

magnification bias is the relative magnification I'(y) / P, of a lensed source to unlensed 

sources. The X2 significance levels of the models are tabulated in the second row of 

Table II. In extremely inhomogeneous (0: = 0) universes the models SC and LP are 

viable. 
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10 

self -consistent formula (a) 

8 
(a=O) 

upper: KSVP \ 

lower: PSVP 

6 -- SC 

'" - - - - OC 
~ LC 

4 
I 
., , 

- - - LP , 

2 

.~."....- ._."..-,;.-

0 

0.etical- depth formula (b) 

8 
(0:=0) 

upper: KSVP \ 

lower: PSVP 

6 \ -- SC 

'" - - - - OC 
~ LC 

4 - - - LP 
I' 

, 
, , 

2 4 6 8 10 

e /arcsec 

Fig. 4. Same as Fig. 3{b), except that the smoothness parameter (Eq. (2·10)) is & = O. (a) Self

consistent formula {Eq. (2·15)) with the empty-beam distance (& = 0) is used; (b) optical-depth 

formula with the empty-beam distance (& = 0) is used instead of Eq. (2·15). 

5.2. Core radius 

It is known 32) that a small but finite core radius can change the lensing prob

ability by an order of magnitudej since the strength of a lens is determined by its 

central condensation of the surface density, the removal of the central singularity 

reduces the lensing cross section significantly [ex (1 - x~/3)3j Eq. (2·8)]. However, 

as noted in Ref. 8), the inclusion of a core radius increases the magnification biasj 

the significant decrease in the GL probability with the core radius is compensated to 

some extent by the increase of the magnification bias. The probability even increases 

with core radius when the source luminosity is greater than rv 20L*. 

From Eq. (2·3), the scaled core radius Xc is written as 

X rv 0 72 [ v ] -2 Dos [hDOL] -1 hec (5.1) 
c -. 100kms-1 DLS Gpc kpc' 

On galaxy scales, the core radius is rather small. Fukugita and Turner 5) estimate 

{c = 324 h-1pc at v = 225 km s-1 from the observation of E galaxies in Ref. 102), 

which corresponds to Xc rv 0.12 for a lens redshift of z rv 0.5. From the same data, 

Krauss and White 103) obtained {c = 557 h-1pc at v = 306kms-1 (xc rv 0.14) and 

{c ex LO.73 , though the scatter in the data is very large. Using the Faber-Jackson 

relation, one obtains p rv 2.9 (see Eq. (2·16)). Wallington and Narayan 57) argue that 

{c must be smaller than about 200 h-1pc at v = 225kms-1 (xc "-' 0.08) so that the 

observed even number of lensed images is explained by the demagnification of the 

central image. On cluster scales the core radius is typically {c "-' 20-30h- 1kpc at 

v = 1000 km s-1 which corresponds to Xc "-' 0.4--0.6. 65),66),104) These data suggest 
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'" ~ 

10~~~.-~~-.~~~~~~~~~ 
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4 

1\11 

11\\ 
~c=~c.(v /200kms- l ) 

~c·=O-04h-Ikpc 

KSVF 

--SC 
- - - DC 
....... LC 

-- LP 

KSVF 

--SC 
- - - DC 

LC 
-- LP 

KSVF 

--SC 
- - - DC 

... LC 

- - LP 

(a) 

(b) 

(c) 

o~~~~ 
o 2 4 6 8 10 

e /arcsec 

67 

Fig. 5. Same as Fig. 3(b), except that the finite core radius ec is included and only the KSVF 

predictions are shown. (a) ec = ec.(v/200kms-
1
)j (b) ec = ec.(v/200kms- 1

)2 j (c) ec 
ec.(v/200kms-1

)3 j with ec. = O,O.1,O.2,O.3,OAh- 1kpc from the upper to the lower curves. 

that p '"" 3 and ec '"" 0.2h- I kpc at v = 200kms- I
. 

Figure 5 plots the same quantities as in Fig. 3(b) except that the finite core 

radius is included and only the KSVF predictions are shown. We examined p = 1,2 

and 3 (Eq. (2·16)), in Figs. 5(a), (b) and (c), respectively. From the upper to lower 

of the five curves for each model, the core radius is ec = 0,0.1,0.2,0.3, O.4h- I kpc at 

v = 200kms- I . When p < 2, the GL probability decreases mainly at small () and 

asymptotically approaches the SIS (ec = 0) case at large (), simply because Xc ex vp
-

2 

(Eq. (2·6)). Whenp > 2 the opposite behaviour occurs, and whenp = 2, it decreases 

uniformly. We note that the effect of the core radius is slightly smaller in larger AQ 

universes. This is because the scale length e* (Eq. (2·3)) increases with increasing 

AO due to the cosmological geometry: larger e* means that the light traverses farther 

away from the lensing object, so the core radius looks effectively smaller. For the 

core radius of ec = 0.2(v/200kms-1 )3h-1kpc, the X2 significance levels ofthe models 

are summarized in the third row of Table II. 
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68 T. T. Nakamura and Y. Suto 

The above estimates for the core radius of early-type galaxies are based on pre

HST data. But recent observation of these galaxies by HST 105), 106) indicates that 

they have nearly singular cores. Moreover, it is argued 107) that the inclusion of finite 

core radius should increase the velocity dispersion of dark matter for consistency. 

Based on these arguments, the effect of the core radius may be smaller than that 

given in Table II in practice. 

5.3. Magnification bias 

The magnification bias (Eqs. (2·21) and (2·20)) contains p,(y) which is defined 

in § 2.1 as the total magnification of all the images. However, depending on the 

properties of a QSO sample or the GL configuration, p,(y) in the bias factor should 

be interpreted as the magnification of only the brighter image or the fainter image 

among the outer two images. If individual QSO's in a sample are not examined 

closely enough to determine whether they are lensed or not, the magnification of 

only the fainter image should be used 35) because the fainter image should be bright 

enough to be recognized as one of the multiple images. On the contrary, if one 

examines the QSO's closely enough to search for the second image by a follow

up observation (as in the HST snapshot survey), the magnification of the brighter 

image or the total magnification should be used. 108) Which magnification - the 

brighter image or the total - should be used may depend on the image separation 

angle: if one searches for lensed sources of small separation angles, then the total 

magnification may be relevant, because it is likely that the brightness of a lensed 

source with a small separation is recognized as the total brightness of all the images. 

10 

upper total (a) 

mid brighter 
8 lower: fainter 

to.A.o) 
6 ~- 10) 

'" SchVF - - - - 0.3,0) 
r:: (0.2,0.8) 

4 
without 1.5 1/ 2 

0 
(b) 

\ \ KSVF 

.~ 6' \ \ . 
-- SC 

'" 
\ \ \ - - - - OC 

r:: I \ 

LC \ \ 

4\ \. ',~ - -- LP 
, " -------

2 -~ --------
--

0 
0 2 4 6 8 10 

e /arcsec 

Fig. 6. Same as Fig. 3, except that p(y) in the magnification bias (2·21) is defined as the magnifi

cation of the brighter image (the middle curves) or the fainter image (the lower curves) of the 

outer two images. The upper curves use the total magnification of all the images for p(y) as in 

Fig. 3. 
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In Fig. 6 we show how different choices for the magnification bias affect the 

GL prediction for the HST survey. The upper curves for each model use the total 

magnification for J-t(Y), while the middle and lower curves use the magnification of 

brighter and fainter image, respectively. Only the KSVF predictions and Sch VF 

predictions without the 1.51
/
2 factor are shown. For the middle curves, the X2 

significance levels of the models are shown in the fourth row of Table II. Because the 

effect of the magnification bias is very large in the GL prediction, different choices 

of the bias factor changes the result significantly. 

The uncertainties in the QSO luminosity function (Eq. (2·22)), a = 3.79 ± 0.15, 

kL = 3.15 ± 0.10 and Mo = -20.91 ± 0.25 + 5 log h, change the GL prediction 

by "" ±40%, ±40% and ±20%, respectively, while j3 = 1.44 ± 0.20 does not cause 

significant changes because QSO's brighter than L* are preferentially selected in the 

HST snapshot survey in order to achieve high efficiency of the lens detection. 109) 

5.4. Dust obscuration 

When the light from a lensed source passes by the lensing galaxy, the lensed 

image may be obscured by the dust ingredients in the galaxy. For example, the scale 

length (Eq. (2·3)) 

-1 [ v ] 2 DLS hDoL e* c::: 1.4h kpc 1 k -1 -D -G 
00 ms OS pc 

(5·2) 

is about 2h-1kpc for a lensing galaxy of v = 200kms-1 and z = 0.5, which may 

be well inside the baryonic parts of the galaxy. The dust obscuration reduces the 

GL probability in two ways: i) Due to the dust demagnification, the magnification 

bias decreases. ii) The brightness ratio of the images is amplified and so it becomes 

difficult to detect the second image, because the fainter image, which is nearer to 

the lens center, is more appreciably demagnified than the brighter image. 

Let us estimate this effect quantitatively by a simple model. 33),34),8) Since el

liptical galaxies dominate over spiral galaxies in GL statistics (§ 3.1), the former are 

considered here as lensing galaxies. Let T(e) be the (2-dimensional) optical depth 

profile due to obscuration by dusts at the impact parameter e from the center of the 

galaxy. We assume the following form of T(e): 

(5·3) 

where Te is the optical depth at the center and ed is the dust core radius. The 

light ray which passes by the lensing galaxy at e is demagnified by the factor e-7"(e). 

Accordingly we must redefine the total magnification J-t(Y) and the brightness ratio 

r(y) in Eq. (2·21) by replacing J-tp(x) in § 2.1 with J-tp(x)e-7"(e.:c), and recalculate the 

magnification bias. The optical depth is sensitive to the wavelength A. Following 

Ref. 34), we use the fitting formula of Ref. 110) 

(5·4) 

where x := (AI J-tm)-I, TeV is the optical depth in V-band (xv = 1.8), and the 

functional form of X(x) is found in Ref. 34). If QSO is observed in the wavelength 
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~d=03h-lkpc 

Tcy=0-4 

SchVF 

(a) 

(Oo,Ao) 
-(1,0) 
---- (03,0) 

(0.2,0.8) 

without 1.51/2 

6 

e /arcsec 

KSVF 

~- SC 

- - - - DC 

LC 
- - - LP 

8 

(b) 

10 

Fig. 7. Same as Fig. 3, except that the dust obscuration effect by lensing galaxies is included, and 

only KSVF predictions and SchVF predictions without the 1.51
/

2 factor are shown. From the 

upper to the lower curves, the optical depth of the dust obscuration is reV = 0,1,2,3,4 (see 

Eq. (5·3)). 

Aobs and the lensing galaxy is at redshift z, then the demagnification factor should 

be evaluated at the wavelength Aobs/(l + z). Wise and Silva 111) obtained TeV rv 1 

comparing their dust model with the data of 52 elliptical galaxies. We estimate ed 
rv 0.3h-1kpc, assuming that ed is 0.1 times the effective radius of the de Vaucouleurs 

profile. 40) To be more realistic, TeV and ed should depend on the velocity dispersion 

v (the sizes of galaxies) and on z (the evolution of galaxies). However, we assume 

that they are constant for simplicity because we wish to examine the extent to which 

dust obscuration affects the GL probability. 

Figure 7 displays the dust obscured GL predictions on the HST survey. Only 

KSVF predictions and Sch VF predictions without the 1.51
/
2 factor are shown. Among 

the five curves for each model, the optical depth is TeV = 0,1,2,3,4 from the up

per to the lower curves, and ed is set to 0.3h-1kpc. The dust obscuration effect is 

considerably large at small separation angles. We note, however, that the effect be

comes small if one includes a finite core radius, because the brightness ratio becomes 

small. For the "realistic" value TeV = 1, the X2 significance levels of the models are 

presented in the fifth row of Table II. 

Let us note general features of the effect of the dust obscuration. Larger AQ 

universes experience a smaller effect of dust obscuration because light rays are likely 

to pass by farther from the lens center, as noted in § 5.2. If ed increases with v 

less rapidly than ex v 2
, the GL probability decreases mainly at small separation and 

asymptotes to the no-dust curve at large separation, and the converse is true if ed 
increases more rapidly than v 2

, for exactly the same reason as in Fig. 5. If TeV 
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increases with z due to the star formation activities at higher redshifts,33) lensed 

images with small separations are more obscured than those with large separations, 

because the former are likely to be produced by lensing objects of high redshifts (see 

Eq. (2·6)). Observation 111),112) suggests that the dusts are more diffusely distributed 

as Pdust(r) ex r-1 rather than as Eq. (5·3). In this case, large separation images are 

more obscured than in Fig. 7. 

§6. Predictions for future surveys 

With the limited statistics of the current data, the constraints on the parameters 

are not yet decisive. We expect, however, that a much larger number of sources will 

be homogeneously sampled in one systematic lens survey in the near future. For 

example, the Sloan Digital Sky Survey (SDSS) plans a spectroscopic survey of 105 

QSO's over 7l" steradians brighter than 19 magnitude in g_band. 113
) In this section, 

we will make predictions on future GL surveys, mainly bearing the SDSS in mind. 

Let n8(O, S)dO be the expected number of lensed QSO's with image separation 

o rv 0 + dO and observed flux brighter than S, within the solid angle asa in the 

sky. We assume that the survey examines all the QSO's in the sky homogeneously. 

Then, using the cumulative QSO luminosity function ~Q in § 2.4, n8(O, S) can be 

calculated as 

(%max dr 2 B 
n8(O, S) = ilsa 10 dz dz r (z)~Q(L, Z)P8 (0, S, r*, z), 

-....... ~ ~-- - ..... -. " 

'" 
>=: 1 m~m=18,19,20 

~c =0.2( V /200kms-1 )3h -'kpc 

~d=O:lh-lkpc T cv =l 

e /arcsec 

SchVF 

without 1.5 1
/

2 

(Oo,Ao) 

--(1,0) 

- - - -(03,0) 

(0.2,0.8) 

KSVF 

(6·1) 

Fig. 8. Image separation (J distribution of the expected number of all the lensed QSO's per unit 

steradian in the sky (Eq. (6·1}). (a) Predictions from SchVF. (b) Predictions from KSVF. 

From the lower to the upper of the three curves for each model, the limiting magnitude is 

m = 18,19,20 in B-band. 
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Table III. The expected number of lensed QSO's per unit steradian brighter than 18, 19 and 20 

B-mag. (a) SchVF predictions within the separation range 0" < (J < 5"; (b) PSVF and KSVF 

predictions within 0" < (J < 5"; (c) PSVF and KSVF predictions within 5" < (J < 10"; for 

models in Table I. We adopt ee = 0.2(v/200kms- 1 )3h-1kpc, TeV = 1 and ed = 0.3h- 1kpc as 

the models ofthe core radius and the dust obscuration (see §§ 5.2 and 5.4). 

0" < (J < 5" 

(a) Sch VF without 1.51
/

2 SchVF with 1.51/~ 

(ilo,Ao) B < 18 19 20 18 19 20 

(1,0) 13 35 70 25 66 132 

(0.3,0) 19 52 106 37 100 202 

(0.2,0.8) 57 158 326 111 306 629 

0" < (J < 5" 

(b) PSVF KSVF 

Model B < 18 19 20 18 19 20 

SC 102 233 436 118 270 508 

OC 11 27 53 10 25 48 

LC 28 74 151 27 72 146 

LP 65 172 348 114 305 620 

5" < (J < 10" 

(c) PSVF KSVF 

Model B < 18 19 20 18 19 20 

SC 43 92 165 46 97 176 

OC 0.5 1.0 1.9 0.4 0.9 1.6 

LC 5.6 14 28 5.4 14 27 

LP 10 25 49 12 30 58 

where L is related to S by Eq. (2·19), r{z) := (1 + z)Dt{z) is the proper motion 

distance from us to z, and Eqs. (2·18) and (2·20) are substituted for Pp. Since we 

use Eq. (2·22) for !pQ{L) which assumes (il,'x) = (1,0) and 'Y = 0.5, these values of 

the parameters are also used in Eq. (2·19) and r{z). We set Zmax = 5,57) and use 

the same detection limit r* = 19{Ojarcsec)O.85 as that of the HST survey. 

Figure 8 and Table III display the predictions on future surveys: the expected 

number of lensed QSO's per unit steradian (.asa = 1). We adopt ~e = 0.2 

{vj200kms- t )3h- t kpc, TeV = 1 and ~d = 0.3h-1kpc as the models of the core ra

dius and the dust obscuration, which we regard as the realistic values (see §§ 5.2 and 

5.4). The standard angular diameter distance (0: = 1) is used. In Fig. 8, the KSVF 

predictions and the Sch VF predictions without the 1.51
/

2 factor are shown. Among 

the three curves for each model, the apparent limiting magnitudes corresponding to 

S are m = 18,19,20 in B-band from the lower to the upper curves. Table III{a) 

displays the Sch VF predictions within the separation range 0" < 0 < 5", while Ta

bles III(b) and (c) display the PSVF and KSVF predictions within 0" < 0 < 5/1 

and 5/1 < 0 < 10". The KSVF prediction is strongly dependent on .aD and the bias 

parameter b. Therefore, we believe that Fig. 8(b) will provide a promising test for 

one of these parameters if the other is given independently. 

We propose that the cosmological tests should be carried out at a large separation 
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range so that various uncertainties do not enter: dust obscuration may be ineffective 

at () ~ 3" (Fig. 7); theoretical VF is free from uncertainties concerning the formation 

rate or the dissipative processes (§ 4.1) at () ~ 7" (corresponding to v'" 500kms-1; 

Eqs. (2·6) and (5·1)) which nearly discriminate the galaxy scale and cluster scale, 

etc. Alternatively, lensing events with () ~ 7" should provide information about VF 

and the dissipative effects on the dynamics of galaxy formation. 

In closing we give some cautionary remarks with regard to Fig. 8. It may be that 

the predictions in the figure are overestimated because of the assumption that the 

QSO luminosity function of Boyle et al. 56) is valid up to z = 3. The dependences 

on the core radius and the dust obscuration are similar to Figs. 5 and 7. The 

uncertainties in the values of MO' and kL change the predictions by '" ±20% and 

±1O%. Those of a and (3 do not cause a significant change. 

§7. Summary and conclusion 

It is well known that GL statistics disfavors cosmological models dominated by 

the positive cosmological constant A, 5),7),8) in contrast to the other cosmological 

tests suggesting a low density universe with non-zero A. 15),16) In light of this, we 

reexamined the current constraints on A from GL statistics, paying attention mainly 

to the role of VF in the calculation of GL probability. 

Most previous work on GL statistics uses SchVF, which counts only luminous 

galaxies as lensing objects. Moreover, it is often assumed that the comoving number 

density of lensing objects is constant (no evolution). To take account of dark lensing 

objects and their number evolution, VF was constructed theoretically from the PS 

theory in § 3. 27),28) Actually the PS theory in its original form is not a perfect one in 

deriving VF, and we attempted in § 3.3 to construct a more realistic VF (KSVF) from 

the hierarchical clustering model in Ref. 75). Then we compared these theoretical 

VF's with the observed VF 29) for COBE normalized CDM and PIB models in § 4.1. 

There we found that KSVF in the model LP - the spatially flat PIB model with 

(ilo, AO) = (0.2,0.8) (Table I) - matches the observation best (Fig. 1). We also 

discussed that the model LC - the CDM model with (0.2,0.8) - may become viable 

if the observed VF on galaxy scales is affected by the dissipative processes. 

At first sight, one might expect that the inclusion of dark lenses and their evo

lution into GL statistics would lead to tighter limits on AO. However, when we 

compared the predictions of the theoretical VF's with the HST snapshot survey 30) 

in § 4.2, we saw that spatially flat models with non-zero A (model LC) are viable 

among the COBE normalized models (Fig. 3). This is because the PSVF in low 

density universes underpredicts the number of galaxy scale lenses (Fig. 1). Though 

the KSVF in the model LP is consistent with the VF observation, the model pre

dicts a higher lensing frequency at small separations than observed. We were not 

able to find a COBE normalized cosmological model which satisfies both VF and GL 

observations, within the SIS, a = 1 and no dust model. 

In § 5, we examined various uncertainties in the GL predictions systematically, 

the choice of the a parameter in the distance formula (Eq. (2·10)), core radius ~c, 

magnification bias, and the obscuration of images by dusts in the lensing galaxies. 
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All these uncertainties reduce the GL prediction considerably from the standard cal

culation within a realistic range of the values of free parameters. The core radius 

and the dust obscuration are effective mainly at large and small separation range, 

respectively (Figs. 5 and 7), while the uncertainties in Ii and the magnification bias 

reduce the GL prediction uniformly on all separation range. Because of these uncer

tainties, it is premature to put strong constraints on cosmological models, including 

A, from the rather small number of observed lensed sources. When a large number of 

QSO's are homogeneously sampled, a more reliable comparison will become possible. 

See Table II for a summary. 

In § 6, we made GL predictions relevant for the next generation survey like the 

SDSS. We believe that the predictions from theoretical VF will provide a promising 

test for no and ~o, combining with the COBE normalization. We proposed that the 

comparison between the predictions and the data should be made at large separation 

so that the various uncertainties do not enter: () ~ 7" may be ideal for cosmological 

tests because the theoretical VF is expected to be reliable on large scales. Lensing 

at the intermediate range (3" ~ () ~ 7") may provide information about the degree 

of dissipative effects on the galaxy formation. At the same time, the theory of VF 

needs improvements on the formation rate (§ 3.3) as well as on the dissipative effects. 
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Appendix A 
-~ Specific Solutions of the Dyer-Roeder Equation ~~ 

In this appendix, specific solutions ofthe Dyer-Roeder equation (Eq. (2·10)) are 

presented in the cases Ii = 1 (filled beam) and Ii = 0 (empty beam). We use the 

units c = Ho = 1, and the notations a := (1 + z)-l and 

w:= n-1 -1 = { woa, 
woa3 , 

with Wo := nol - 1 (see also Eq. (1·1)). 

i) Ii = 1 (filled beam) 

i-i) ~ = 0 

(~ = 0) 

(n+~=l) 
(A·l) 

Dl(Zl, Z2) = ~ [a~/2(l + Wl)1/2(1 + 2W2) - a~/2(1 + W2)1/2(1 + 2w1)] , 

(A·2) 
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i-ii) n + oX = 1 

D1(Z1, Z2) = ~ [a~/2 F (~, ~,~; -W1) - a~/2 F (~, ~,~; -W2)] , 

where F is the hypergeometric function of type (2,1). 

ii) 0: = 0 (empty beam) 

ii-i) oX = 0 

DO(Z1' Z2) = do 2 [2a~/2(1 + W1)1/2(2w1 - 3) 
8 owoa1 

-2a~/\1 + W2)1/2(2w2 - 3) + 3Iwol-1/2(7J1 -172)] , 

(A·3) 

(A·4) 

where 7J:= arccosh(1 + 2w) when n < 1 and 7J := arccos(1 + 2w) when n> 1. 

ii-ii) n + oX = 1 

_ 2 [5/2 ( 1 5 11. ) 5/2 (1 5 11. )] 
DO(Z1' Z2) - 5v'lloa1 a1 F 2' 6' 6' -W1 - a2 F 2' 6' 6' -W2 . (A·5) 

75 

We do not use Eqs. (A·3) and (A·5) because the evaluation of the hypergeomet

ric function is much more time-consuming than the direct numerical integration of 

Eq. (2·10). 

Appendix B 
--- Analytic Expressions for Vi and V2 ---

From Eqs. (2·6) and (2·16), V1 and V2 in Eqs. (2·13) and (2·15) are determined 

by the equation: 

where 

The analytic expressions for V1 and V2 in the cases p = 0,1,2,3 and 4 are 

p = 0 : V1 = (X2 + y2)1/4 , 

where 

P = 1 : V1 = [X2 + (X4 + 4y2)1/2]1/2 /J2, 

p = 2 : V1 = vY(1 - X2)-1/4 , 

1 [1 2 (2 )]1/2 
P = 3 : V1 = X 3 + 3 cos 371" - Z , 

1 [1 2 ] 1/2 
V2 = X 3 + 3 cos Z , 

P = 4: V1,2 = (J2X)-1/2[1 T (1- 4X2y2)1/2]1/4, 

1 [27 ] Z := 3 arccos 1 - 2 (X2y)2 . 

When p :::; 2, V2 = 00. 

(B·1) 

(B·2) 

(B·3) 

(B·4) 

(B·5) 

(B·6) 

(B·7) 

(B·S) 
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Appendix C 
-- Spherical Collapse in {} + A = 1 Universe ---

Consider a local spherical region of radius r and mass M in an il+A = 1 universe 

with A > O. From the expansion equation: 

d2r M A 
dt2 = - r2 + 3 r , (C·1) 

one obtains 

r ( 2M A )-1/2 
t = Jo dr' 2E + -.;:;- + 3r '2 , (C·2) 

when dr 1 dt > 0 (we neglect the decaying mode). The sphere "turns around" at a 

radius rta defined by 

if 

M A 2 
E= -- --r 

rta 6 ta 

/"._ Arfa ! 
... - 6M < 2 

(C·3) 

(C·4) 

[our ( corresponds to "1/2 of Ref. 114)]. Then Eq. (C·2) is rewritten as 115) 

( 
() 1/2 {Y [1 ] -1/2 

Ht = ~ Jo dx ~ - (1 + () + (x
2 

, (C·5) 

where y := rlrta. On the other hand, from Eq. (1·2) the age of the global universe 

in il + A = 1 models is 

1 
Ht = 3 (ilw)-1/2arccosh(1 + 2w), (C·6) 

where w is defined in Eq. (A·1). The sphere collapses to r = 0 in twice the turn

around time. In reality, however, it will reach a virialized state through violent 

relaxation, 116) and thereafter r remains constant rv determined by 114) 

4(y~ - 2(1 + ()Yv + 1 = 0, (C·7) 

where and hereafter the subscript v indicates the virialization time. Equation (C·7) 

has the solution 

y = (2 + 2()1/~os {~7r _ ! arccos [_! (~)3/2l} (C.8) 
v 3( 3 3 ( 2 + 2( 

in the range 0 < ( < 0.5. Let p:= 3MI(47rr3
) be the mean density inside the sphere. 

The over density against the background is written as 

p w 
'19 := 1 + 8 := fi = y3( . (C·g) 

Let us calculate the overdensity of an virialized object at the virialization time: 

Pv wv 
'I9v := Pv = y~( (C·lO) 
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In order to relate ( with W y , we equate the local time inside the sphere (Eq. (C·5)) 

with the global cosmic age (Eq. (C·6)) at the virialization epoch. The former is often 

approximated by the collapse time: 

(
()1/2 {l [1 ]-1/2 

Hyty = 2 >.y 10 dx ~ - (1 + () + (x
2 

_ 1 -1/2 - 3>'y [AK(k) - BII(v, k)], 

(C·U) 

(C·12) 

where K (k) and II (v, k) are the complete elliptic integrals of the first and third kind, 

respectively (see Ref. 97) for their definitions), and 

A := [1 + (1 - 2()1/2]C, B:= 2(1 - 2()1/2C, 

C := 12C1/2[2 - (+ 2(1 - 2()1/2rl/2, 

k2 ._ 2 - ( - 2(1 - 2()1/2 

.- 2 - ( + 2(1 - 2()1/2 ' 

v := _(-2[1 - ( - (1 - 2()1/2]2 . 

(C·13) 

(C·14) 

(C·15) 

(C·16) 

Note that Eq. (C·12) does not assume the spatial flatness n+>. = 1. From Eqs. (C·6) 

and (C·12), ( and Wy are related as 

1 
Wy = 2{ cosh[AK(k) - BII(v, k)] - I}. (C·17) 

Now we obtain the analytic formula for {)y in n + >. = 1 universe through the 

parameter (. Given a value of (, one can compute {)y and fly from Eqs. (C·8), 

(C·lO), (C·17) and (A·1). In practice, however, it is useful to write {)y as a function 

of ny • For this purpose, we give the fitting formulae 

(C·18) 

or 

(C·19) 

Equations (C·18) and (C·19) are accurate within 5% for ny > 0.1 and 1.7% for 

ny > 0.01, respectively. 

Next, let us calculate oc, the density contrast in the early universe extrapolated 

linearly to the virialization time. Since y « 1 in the early stages, we expand the 

integrand of Eq. (C·5) in powers of x and keep the linear term only: 

(
() 1/2 {Y 1 

Ht = -:x 10 #[1 + 2(1 + ()x]dx 

2 (()l/2 3 
= - - y3/2[1 + -(1 + ()y]. 

3 >. 10 

Similarly, W « 1 in Eq. (C·6) yields 

Ht = ~fl-l/2. 
3 

(C·20) 

(C·21) 

(C·22) 
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Equating Eq. (C·21) with (C·22), y is written iteratively as 

(
W)1/3 [1 (W)1/3] y=, 1- 5(1+(), . (C·23) 

Substituting this into Eq. (C·9), the density contrast of the spherical region in the 

early universe is 

(C·24) 

which grows as ex w 1/ 3 ex a in accord with the linear perturbation theory. 117) The 

linear growth rate in fl + .oX = 1 universe is 118) 

D = w1/ 3 F - 1 _·-w (
1 11 ) 
3' , 6 ' 

(C·25) 

which is normalized as D / a ....... w~/3 when a ....... 0, with F being the hypergeometric 

function of type (2,1). Extrapolating Eq. (C·24) by Eq. (C·25) until av , one obtains 

(C·26) 

One can compute ~c and flv from Eqs. (C·17), (C·26) and (A·1) through the param

eter (. We give fitting formulae so that one can obtain ~c directly from a given value 

of flv: 

~ ~ ~ (127r)2/3 flO.00539 
c 20 v 

(C·27) 

or 

(C·28) 

Equations (C·27) and (C·28) are accurate within 2.4% for flv > 0.1 and 0.1% for 

flv > 0.01, respectively. 

Of more practical use (in, e.g., the PS theory) are the following quantities 

'i?vo := Pv/po = 'i?v/a~, (C·29) 

(C·30) 

(C·31) 

where 
x (wv ) ~ fl;O.215 (C·32) 

or 
X(wv ) ~ 1 + (5.1066w;1.0812 + 2.0215w;O.35396)-1. (C·33) 

The accuracies of Eqs. (C·32) and (C·33) are within 1.8% for flv > 0.1 and 3.1% for 

flv > 0.01, respectively. The corresponding formulae in an open (.oX = 0) universe 

are found in Ref. 26). 
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