
J
H
E
P
0
5
(
2
0
1
9
)
1
9
0

Published for SISSA by Springer

Received: February 4, 2019

Revised: May 6, 2019

Accepted: May 18, 2019

Published: May 28, 2019

Strong gravitational radiation from a simple dark

matter model

Iason Baldes and Camilo Garcia-Cely

DESY,

Notkestraße 85, D-22607 Hamburg, Germany

E-mail: iason.baldes@desy.de, camilo.garcia.cely@desy.de

Abstract: A rather minimal possibility is that dark matter consists of the gauge bosons of

a spontaneously broken symmetry. Here we explore the possibility of detecting the gravita-

tional waves produced by the phase transition associated with such breaking. Concretely,

we focus on the scenario based on an SU(2)D group and argue that it is a case study for the

sensitivity of future gravitational wave observatories to phase transitions associated with

dark matter. This is because there are few parameters and those fixing the relic density

also determine the effective potential establishing the strength of the phase transition. Par-

ticularly promising for LISA and even the Einstein Telescope is the super-cool dark matter

regime, with DM masses above O(100) TeV, for which we find that the gravitational wave

signal is notably strong. In our analysis, we include the effect of astrophysical foregrounds,

which are often ignored in the context of phase transitions.

Keywords: Cosmology of Theories beyond the SM, Thermal Field Theory

ArXiv ePrint: 1809.01198

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2019)190

mailto:iason.baldes@desy.de
mailto:camilo.garcia.cely@desy.de
https://arxiv.org/abs/1809.01198
https://doi.org/10.1007/JHEP05(2019)190


J
H
E
P
0
5
(
2
0
1
9
)
1
9
0

Contents

1 Introduction 1

2 DM as massive gauge bosons 3

2.1 The model 3

2.2 Relic density 5

2.3 Direct detection 6

3 Gravitational waves 7

3.1 Calculation of the spectrum 7

3.2 Symmetry breaking at tree level 10

3.3 Radiatively-induced symmetry breaking: standard freeze-out and super-cool

DM 12

4 Discussion and conclusion 16

A The effective potential 18

A.1 Symmetry breaking at tree level 18

A.2 Classically scale invariant potential 20

B The gravitational wave spectrum 20

B.1 Summary of the contributions 20

B.2 Determination of the relevant contribution 22

C Super-cool DM regimes (ib) and (iib) 23

D Completion of the phase transition 23

1 Introduction

Cosmological and astrophysical observations strongly suggest that, in contrast to the ordi-

nary substances found on Earth, baryons are not the dominant constituent of the matter

in the Universe [1]. Such non-baryonic matter is called dark because its interactions with

the Standard Model (SM) particles — particularly with photons — are constrained to be

very weak. This, along with the obvious fact that dark matter (DM) must be stable on

cosmological timescales, are the two most important properties of any DM candidate.

The first property is often invoked as an argument for the electroweak (EW) nature of

DM interactions. In fact, models where DM is directly coupled to the W or Z bosons natu-

rally explain the DM relic density by means of the thermal freeze-out of DM annihilations

in the Early Universe. Nevertheless, these scenarios have been dramatically constrained
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in the past couple of decades by direct and indirect detection experiments, together with

colliders, most recently the LHC [2–4]. In contrast, models where DM is directly coupled

to the Higgs and not to the W or Z bosons are much less constrained by the aforementioned

experiments, especially in regimes where the DM is heavier than the Higgs boson. Inter-

estingly, gravitational waves (GWs) offer a new complementary way to probe the latter

scenarios. This is because they typically require the existence of additional scalar fields,

which can potentially trigger a first-order phase transition (PT) in the Early Universe and

therefore the emission of GWs [5–8]. Of course, DM can be probed in this way only if its

properties are closely related to the PT [9–12]. This is the subject of the present work.

In order to motivate a concrete choice for the DM model, we will invoke the second DM

property mentioned above, i.e. its stability. This is often ensured by imposing a discrete

symmetry in the DM sector. The most common examples being Z2 symmetries or the so-

called R-parity in supersymmetric theories. Nevertheless, such symmetries are not known

to exist in nature.1 Better-motivated scenarios are those where DM is stable as a result

of its own dynamics. In fact, this is exactly what happens with the stable particles of the

SM. For instance, proton stability follows from baryon number conservation, which is an

accidental symmetry due to the SU(3)C × SU(2)L × U(1)Y charges of the matter fields.

An incomplete list of examples of this type of scenarios include Minimal DM [13], spin-one

DM models [14–17] and QCD-like models of DM [18].

The previous observations motivate us to study the spin-one DM model proposed

in [14], in which the DM portal to the SM is the Higgs boson. Concretely, we extend the

SM with a dark SU(2)D local symmetry, under which all the SM particles are assumed to

be singlets. In addition, we postulate a dark scalar doublet which carries no SM charges

and whose vacuum expectation value (VEV) breaks the SU(2)D symmetry via a Higgs

mechanism in the dark sector, ensuring the theoretical consistency of the model containing

massive spin-one fields. After symmetry breaking, the particle content includes — besides

the SM — three mass-degenerate particles of spin-one and one dark Higgs boson. In this

model there is a custodial SO(3) symmetry remaining in the broken phase, under which

the gauge bosons transform, ensuring their stability. Collectively, these comprise our DM

candidate, which only couples to itself, to the SM Higgs h, and to the dark Higgs hD. The

Higgs portal interaction allows hD to decay to light SM particles, thus avoiding it becoming

a DM component.

We will consider two production regimes for the DM relic density. First, the standard

thermal freeze-out of DM annihilations into dark Higgs bosons. Second, super-cool DM [19],

a more exotic possibility in which we assume a classically scale invariant potential for our

model [20–23]. As pointed out recently, this can result in a period of late-time inflation

which sets the relic density in a completely novel way. In both cases, a PT takes place in the

early Universe from a SU(2)D symmetric vacuum in which the would-be-DM is massless,

to a vacuum in which the dark gauge symmetry is broken and the DM is massive. The key

point of our analysis is that the parameters setting the relic density also enter the effective

potential determining the PT. As we will see, this allows us to find correlations between

the GW signal and the DM properties.

1CPT is the only SM discrete symmetry that is conserved.
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This study is timely, as much work is being done on understanding GWs from cosmo-

logical PTs in anticipation of LISA [8], and follow-up proposals such as BBO [24]. Our

analysis differs from recent similar works in at least three aspects. First, as already men-

tioned, our scenario is rather minimal, with only four parameters in the general case and

two for super-cool DM. This allows us to establish a close connection between the emission

of GWs and the relic density or direct detection. Second, in our analysis astrophysical fore-

grounds will be taken into account. These are mostly due to binaries of white dwarfs and

are crucial for estimating the signal-to-noise ratio at future GW observatories [6, 7]. Finally,

we discuss for the first time the GW signatures of the super-cool DM regime. The paper

is organized as follows. In section 2, we present our DM model and its phenomenology. In

section 3, we calculate the GW signal arising from the PT for the standard and the classi-

cally scale invariant cases. We conclude in section 4 by presenting a summary and outlook

for this work. Appendix A is devoted to details concerning the effective potential, which

determines the nature of the PT, appendix B summarises the contributions to the GW spec-

tra, appendix C includes some additional material regarding the classically scale invariant

potential, and appendix D discusses bubble percolation in the vacuum dominated regime.

2 DM as massive gauge bosons

2.1 The model

In this section we will describe the model and define notation. As mentioned in the in-

troduction, we consider an extension of the SM with a dark SU(2)D gauge symmetry [14],

under which all the SM particles are singlets. In addition to the dark gauge bosons Ai
Dµ

(i = 1, 2, 3), the model has a dark scalar doublet, HD, which carries no SM charges. Hence,

the Lagrangian of the model is

L = LSM− 1

4
FD ·FD+(DHD)

†(DHD)−µ2
2H

†
DHD−λ2 (H

†
DHD)

2−λ3H
†
DHD H†H , (2.1)

where LSM ⊃ −µ2
1H

†H − λ1(H
†H)2 and H is the SM scalar doublet. Here, FD is the

field strength tensor of the SU(2)D gauge symmetry and D = ∂ + igDτ
i · Ai

D/2 is the

corresponding covariant derivative. We write scalar doublets as

H =
1√
2

(

G2 + iG3

φ+ h+ iG1

)

, HD =
1√
2

(

G2
D + iG3

D

η + hD + iG1
D

)

, (2.2)

where φ and η are the classical field values breaking the EW and the SU(2)D symmetries,

respectively. In addition, h, hD, G
i and Gi

D(i = 1, 2, 3) are the corresponding Higgs and

Goldstone boson fields.

Symmetry breaking at tree level. In this case, the minimum of the potential associ-

ated with eq. (2.1) is located at (φ, η) = (vφ, vη), where vφ = 246GeV and

µ2
1 = −λ1 v

2
φ − 1

2
λ3 v

2
η , µ2

2 = −λ2v
2
η − 1

2
λ3v

2
φ . (2.3)
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The mixing of the real scalars is captured by the usual angle

tan 2θ =
λ3 vφ vη

λ2 v2η − λ1 v2φ
. (2.4)

This is constrained by the Higgs signal strength measurements, |θ| . O(0.1) [25, 26],

with the precise limit depending on which combination of measurements is taken. For

convenience we commit a small abuse of notation, and from now on also label the mass

eigenstates with h and hD, where mh = 125GeV. The mass eigenvalues are given by

m2
h = 2λ1 v

2
φ cos2 θ + 2λ2 v

2
η sin2 θ − λ3vφ vη sin 2θ , (2.5)

m2
hD

= 2λ1 v
2
φ sin2 θ + 2λ2 v

2
η cos2 θ + λ3vφ vη sin 2θ . (2.6)

All the dark gauge bosons obtain the mass, mA = gDvη/2. In fact, they transform as a

triplet under a custodial SO(3) symmetry. Notice the presence of light fermionic fields

transforming under SU(2)D would spoil the stability of the vector DM, allowing the gauge

bosons to decay, as occurs in the SM [14]. The absence of such fermions allows the model

to remain rather minimal with only four parameters in the DM sector, which we take as

mA, gD, θ and mhD
.

Radiatively-induced symmetry breaking. An alternative possibility is to consider a

classically scale invariant realisation of this model [19–23], where the mass terms in eq. (2.1)

are forbidden and symmetry breaking is achieved through radiative effects. This is known

as the Coleman-Weinberg mechanism [27, 28]. A systematic analysis of radiative symmetry

breaking with the above field content can be found, e.g. in [23]. In the present analysis, the

parameter regime of interest corresponds to what has been termed sequential symmetry

breaking [23]. The running of λ2 results in it turning negative in the IR, breaking the

SU(2)D symmetry via the Coleman-Weinberg mechanism.2 If λ3 < 0, the breaking of EW

symmetry follows sequentially from the induced tachyonic mass λ3v
2
η/4, which leads to

vφ = vη
√

−λ3/(2λ1). Since we are interested in DM above the EW scale, i.e. vφ ≪ vη, the

magnitude of the portal must be very small, |λ3| ≪ 1. This implies that the approximation

of ignoring the φ direction in studying the SU(2)D symmetry breaking is consistent. Under

these assumptions, we can study SU(2)D symmetry breaking by focusing on the term

L ⊃ −λ2η
4/4, where the coupling λ2 is evaluated at a sliding scale given by the value of

the η field, giving

λ2(η) ≈
9 g4D
128π2

Ln

(
η

η0

)

, (2.7)

with η0 being the scale at which λ2 flips sign. Here, we neglect the contributions of λ2 and λ3

to R.H.S. of eq. (2.7), which is a valid approximation provided λ2 ≪ g4D and λ2
3 ≪ g4D [23].

We also ignore the running of gD. Note the dark and visible sectors are close to decoupled

not only because the portal coupling is small but also because the corresponding beta

2The β functions can be found in [20].
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Figure 1. The dominant DM annihilation channels for mA ≫ mhD
and θ ≪ 1.

function is proportional to λ3. In fact, the running of the latter between vη and vφ is not

so large as to affect our analysis.3

As alluded to above, λ2 < 0 signals the breaking of the SU(2)D gauge symmetry. In

fact, the minimization conditions to leading order in λ3, give vη = η0e
−1/4 together with

m2
hD

=
9 g4D
128π2

v2η and m2
h = −λ3v

2
η . (2.8)

As in the previous case, the dark gauge bosons obtain a mass mA = gDvη/2. Notice

also that, after accounting for mh = 125GeV and vφ = 246GeV, there are only two free

parameters, which we choose as mA and gD. Before discussing DM production, we would

like to emphasize that this scenario is not simply a limit of the previous case when µ1 and

µ2 approach zero because here the breaking of the symmetry does not occur at tree level.

(For a detailed discussion on such a limit, see [27].)

2.2 Relic density

We will consider two production regimes for the DM relic density: the standard freeze-out

scenario and super-cool DM.4 The latter only takes place for the classically scale invariant

case, i.e. when the gauge symmetry is broken radiatively. Details are given in section 3.3.

For the former case, we make the mild assumption that λ3 and gD are large enough so that

DM was in thermal equilibrium with the SM fields in the Early Universe. Freeze-out leads

to the observed dark matter abundance, Ωh2 ≃ 0.12, when the corresponding cross section

is of the order 2.3 × 10−26 cm3/s. This means that for given mA, mhD
, and θ, the relic

density fixes the dark coupling gD. We are interested in the regime in which mA > 2mhD

so that DM (semi-)annihilates into dark Higgs bosons. We make the further simplifying

assumption, mA ≫ mhD
and θ ≪ 1, so that the annihilations into SM particles by means

of a scalar exchange in the s-channel are negligible and the dominant annihilation channels

are those shown in figure 1. In this regime the correct relic density is achieved for,

gD ≈ 0.9×
√

mA

1 TeV
and vη ≈ 2.2TeV ×

√
mA

1 TeV
. (2.9)

A more accurate determination can be achieved by numerically solving the Boltzmann

equations. Given the uncertainties of the gravitational wave spectrum, however, the use

3One can make this statement more precise by considering a scalar potential improved with

Renormalization-Group effects, as recently suggested in refs. [23, 29]. This can cure any potential pit-

fall associated to the disparity of VEVs in the scalar potential. However, such analysis lies beyond the

scope of this work.
4Other production mechanism for this model have been discussed in [30].
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Figure 2. Mixing angles excluded by Xenon1T [31] (shaded area) together with the projected

sensitivity from LZ [32] (solid line). Here we assume mA & 0.1TeV. Left: assuming the relic

density is produced via the freeze-out mechanism. Right: for the classically scale invariant potential,

including contours for some choices of the DM mass.

of eq. (2.9) is sufficient for our purposes. The coupling gD is fixed by the relic abundance,

which effectively collapses the higher dimensional parameter space to three (one) dimen-

sions in the standard (classically scale invariant) case, which would otherwise have to be

scanned over.

2.3 Direct detection

The spin independent scattering cross-section of dark matter off nucleons is [14]

σSI =
g4D f2m4

N v2η
64π (mN +mA)2 v2φ

(

1

m2
h

− 1

m2
hD

)2

sin2 2θ, (2.10)

where mN denotes the nucleon mass and f ≃ 0.3 is a constant that depends on the

nucleon matrix element. Thus, current experiments such as Xenon1T [31, 33, 34] constrain

the mixing angle between the scalars. This is shown in figure 2 assuming mA & 0.1TeV

together with the corresponding future sensitivity from LUX-Zepelin [32, 35–37]. In the left

panel, the gauge coupling is fixed by freeze out. In the right panel, we consider radiatively-

induced symmetry breaking and therefore we use eq. (2.8) to calculate the cross section.

No production mechanism is assumed in the latter case.

The left panel of the figure can be understood as follows. Working in the limit

mA ≫ mhD
≫ mh and substituting eq. (2.9) into σSI, one finds σSI ∝ mA sin2 2θ, i.e. with

no further dependence on the other DM parameters. Then comparing to direct detection

constraints — which also scale as σlimit
SI ∝ mDM for mDM & 100GeV — we find current ex-

periments such as Xenon1T demand θ . O(0.1). Future experiments such as LUX-Zepelin,

– 6 –
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will improve σlimit
SI by two orders of magnitude and therefore probe down to θ ∼ O(0.01).

On the other panel, eq. (2.8) indicates that σSI ∝ 1/m6
A with no further dependence on

the other dark sector parameters. Hence, σlimit
SI ∝ mDM excludes contours of constant DM

mass. In fact, for the classically invariant case, the current direct detection constraint

demands mA & 0.9TeV [19].

3 Gravitational waves

3.1 Calculation of the spectrum

A first-order PT takes place by means of the nucleation of true-vacuum bubbles in a false-

vacuum background. At a given temperature T , the rate per unit of volume at which this

occurs scales as T 4e−S , where S is the Euclidean action evaluated at the solution describing

one bubble. In practice, S can be approximated by the smallest of S3/T or S4, where Sn is

the O(n) symmetric action. For our model, we have checked5 that S3/T < S4 and therefore

S ≈ S3

T
=

4π

T

∫

r2

{

1

2

(
dφ

dr

)2

+
1

2

(
dη

dr

)2

+ V (φ, η, T )− V (φ0, η0, T )

}

dr. (3.1)

Here, r is the radial coordinate of the bubble, V (φ, η, T ) is the finite-temperature

effective potential, which we calculate using the well-known techniques of thermal field

theory, and (φ0, η0) are the field values of the false vacuum. The thermal functions which

enter V (φ, η, T ) are evaluated numerically. Further details are given in appendix A. To

calculate S3, we use the over/under shooting method implemented in our code to find the

bubble profile by solving the equations of motion,

d2φ

dr2
+

2

r

dφ

dr
=

∂V

∂φ
,

d2η

dr2
+

2

r

dη

dr
=

∂V

∂η
, (3.2)

with the boundary conditions dφ/dr
∣
∣
r=0

= dη/dr
∣
∣
r=0

= 0 and φ|r→∞ = φ0 and η|r→∞ =

η0. Physically, these conditions correspond to demanding a smooth profile at the centre of

the bubble, r = 0, together with the Universe being in the false vacuum well outside of the

bubble, r → ∞. In our discussion here we have remained general by including both fields,

however, in the PTs studied below only the η field value will be changing which simplifies

our calculation of the action.

Nucleation occurs at a temperature Tn, when the bubble nucleation rate in the horizon

volume becomes comparable to the Hubble parameter, from now on denoted H. Hence,

5More precisely, after calculating the nucleation temperature by means of eq. (3.4), we also computed S4

for the parameter points which exhibit the largest supercooling (including, of course, points in the vacuum

dominated regime). For all the points we checked, we found S3/T < S4.

– 7 –
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we find the nucleation temperature by solving [38]

S3

T
≈ 4Ln

(
T

H

)

(3.3)

≈







146− 4 Ln

(
T

100 GeV

)

− 2 Ln

(
g∗
100

)

, radiation dominated,

135 + 4 Ln

(
T

100 GeV

)

− 8 Ln

(

ρ
1/4
vac

1 TeV

)

, vacuum dominated,

(3.4)

where ρvac is the vacuum energy density, and g∗ counts the effective radiation degrees of

freedom. With the field content of the present model, g∗ = 116.75 when all species are

relativistic and thermalised. For the parameter regions of interest in this work, we find

that the nucleation temperature is significantly different from the one associated with EW

symmetry breaking. As a result, the phase transition — and therefore the GW emission

— is mostly determined by the one-dimensional η direction.

An isolated spherical bubble does not radiate gravitationally because its quadrapole

moment is zero. In contrast, the collision of several bubbles generates GWs by means of at

least three different processes: collision of bubble walls (mostly determined by the dynamics

of the scalar fields), bubble percolation producing sound waves, and magnetohydrodynamic

turbulence in the plasma. These give rise to

h2ΩGW(f) ≡ h2
f

ρc

dρGW

df
, (3.5)

where ρc is the critical density, and dρGW /df is the differential GW energy density. Its

determination is an active area of research with a large number of ongoing investigations.

This is illustrated by the fact that the study of GWs from spin-one DM that was briefly

discussed in ref. [20] only accounted for the collision of bubble walls. Nevertheless, as

discussed at length below, recent developments [39] when applied to our model indicate

that sounds waves and turbulence give the dominant contribution, at least for the case

when symmetry breaking occurs at tree level.

In the light of this, here we use the compendium of results presented in ref. [8] and

summarized in appendix B in finding the GW spectrum. The spectrum depends on four

parameters: the Hubble parameter at nucleation, the wall velocity, vw, the latent heat

(here normalised to the radiation density ρrad),

α =
1

ρrad

(

1− T
∂

∂T

)(

V [φ0, η0]− V [φn, ηn]

)∣
∣
∣
∣
Tn

(3.6)

where (φn, ηn) is the true vacuum at Tn, and the timescale of the transition,

β = H Tn
d

dT

(
S3

T

) ∣
∣
∣
∣
Tn

. (3.7)
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Figure 3. An example of the gravitational wave spectrum when the symmetry breaking occurs

at tree level, together with the white-dwarf white-dwarf binary foreground, and LISA and BBO

sensitivity curves. Here we assume vw = 1.

For the strongest of PTs, we expect the wall velocity to be close to luminal, vw ≃ 1. This

is because the mean field potential typically satisfies,

V = V (φn, ηn, T = 0)− V (φ0, η0, T = 0) (3.8)

+
T 2

24

(
∑

bosons

[
m2

b(φn, ηn)−m2
b(φ0, η0)

]
+

1

2

∑

fermions

[
m2

f (φn, ηn)−m2
f (φ0, η0)

]

)

< 0.

This is the Bodeker-Moore (BM) criterion [40]. We shall make clear on our plots where

the BM criterion holds and what we assume regarding vw when it does not.

Even when the BM criterion holds, however, the wall is not expected to runaway with

γ → ∞, due to the transition radiation effect from the gauge bosons [41]. Therefore,

provided the gauge boson population has not been overly diluted by false vacuum infla-

tion, energy released in the transition is transfered to the radiation bath, in which sound

waves [39, 42, 43] and magnetohydrodynamic turbulence [44, 45], rather than the bubble

wall collisions directly [46–51], lead to a gravitational wave signal.

In summary, determining Tn, α, and β from eqs. (3.1), (3.3), (3.6) and (3.7) allows

us to find h2ΩGW(f) by means of the spectra summarized in appendix B. An example

of the spectrum is shown in figure 3. We use estimated sensitivity of the gravitational

wave detectors to stochastic backgrounds, h2Ωsens(f), for LISA [8], BBO [24], and when

applicable the Einstein Telescope (ET) [52–54] (for which we use the updated sensitivity

curve from [55]). The signal-to-noise ratio can be estimated using [8]

SNR =

√

tobs

∫ [
h2ΩGW(f)

h2Ωsens(f)

]2

df, (3.9)

where tobs is the time of observation in years. We assume tobs = 5 throughout.

Confusion noise from astrophysical foregrounds may be an issue at these frequencies.

We shall compare to some estimates of the unresolvable components given in the literature.

– 9 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
0

The ensemble of white dwarf - white dwarf (WD-WD) binaries are thought to be the

dominant source of this foreground, exceeding the unresolvable neutron star - neutron star

(NS-NS) foreground [56, 57]. In this work we restrict ourselves to the foreground from

the extragalactic WD-WD ensemble and use the central value given in [56]. We make

this choice because, in contrast to the extragalactic ensemble, it is thought the WD-WD

Galactic foreground [58–60] can be subtracted [61, 62]. The continuous extragalactic NS-

NS foreground extends to higher frequencies in the BBO band, however, it is thought that

this can also be subtracted [63, 64]. We also adopt an alternative, foreground-limited,

estimate of the signal-to-noise ratio

SNRFGL =

√

tobs

∫ [
h2ΩGW(f)

h2Ωsens(f) + h2ΩFG(f)

]2

df, (3.10)

in which we attempt to naively capture the degradation of the sensitivity once the fore-

ground, h2ΩFG(f), is taken into account. The aim of introducing eq. (3.10) is to be able

to roughly capture, in a single number, whether the signal extends above the sensitivity

and foreground estimate. Whether such a PT signal could actually be separated from the

astrophysical foreground depends, of course, on a myriad of factors, e.g. the robustness

of the estimates of the amplitudes and spectral shapes of the signal and foreground, to-

gether with the confidence in our knowledge of the instrumental noise. These are topics

worthy of further study, but we will not attempt to do them justice here. Nevertheless, we

would like to remark that the LISA SNRFGL value associated to the spectrum of figure 3

clearly illustrates the importance of astrophysical foregrounds, even though they are often

ignored in similar studies. Furthermore, we wish to emphasize that our sensitivity analysis

in terms of SNR significantly improves that from ref. [20], where GWs from spin-one DM

were briefly discussed.

3.2 Symmetry breaking at tree level

As discussed above, in this case the DM production proceeds via the standard freeze-

out mechanism. Interesting for us is the regime with a large gD, as this will lead to a

strong phase transition. This pushes us to large mA and vη, see eq. (2.9), and the dark

phase transition will generally occur prior to the EW one. Thus the task of studying the

phase transition reduces to one dimension in field space. We have seen an example of the

gravitational wave spectrum, together with the dominant foreground, in figure 3. We have

also fixed θ to 0.1 and 0.01 (motivated by present and future direct detection constraints

as shown in the left panel of figure 2), scanned over the parameters mA and mhD
,6 and

calculated the GW signal. The result is shown in figure 4. Likewise, using the expressions

of appendix B, we calculate the peak frequency and the peak GW energy density for each

point of the parameter space and show the results in figure 5.

These plots can be understood as follows. A larger DM mass, mA, requires a larger

gauge coupling in order to return the observed DM density. This results in a stronger phase

6By manually choosing the points, we were able to obtain acceptable fits for the various contours with

the PT parameters calculated for ∼ 100 points in total.
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Figure 4. The parameter space returning a significant BBO or LISA signal, SNR > 5, when the

symmetry breaking occurs at tree level (standard potential). For LISA we assume vw = 1 as the

BM criterion is fulfilled roughly in this region. For BBO we show contours assuming vw = 0.1 and

1. Only the strongest transitions, close to the point at which no transition occurs at all, can be

probed by LISA in this case. In contrast BBO can probe a substantial fraction of the parameter

space with a strong first order phase transition. Here we show the SNR with no foreground. If the

foreground is included the BBO area remains practically unchanged, while the already small LISA

area is approximately halved.

Figure 5. Similar to figure 4, but with contours of the peak frequency and the corresponding GW

energy density assuming vw = 1.
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Figure 6. Left: the classically scale invariant potential (T = 0) with vη = 2TeV and two choices

of the gauge coupling. Right: the nucleation temperature as a function of the gauge coupling in

the classically scale invariant case, for a fixed nucleation condition S3/T = 142, and ignoring QCD

effects.

transition from the one-loop effects of the gauge bosons. Similarly, in analogy with the SM,

a lighter dark Higgs — corresponding to a smaller quartic λ2 — also leads to a stronger

transition because the broken phase minimum is shallower. Nevertheless, for particularly

large values of mA/mhD
, the one-loop effects can raise the broken phase minimum too far,

resulting in the Universe becoming stuck in the symmetric phase. The latter can either be

a false or true minimum, corresponding to the orange and red shaded regions of the figures

respectively. We expect the allowed parameter space to be increased somewhat, into the

orange region, if S4 nucleation at lower temperatures were to be taken into account.

3.3 Radiatively-induced symmetry breaking: standard freeze-out and super-

cool DM

Another possibility is to impose classical scale invariance on the theory, as explained above.

This scenario with our field content has been studied in [19, 20]. Such a potential typically

exhibits a large amount of supercooling [65–83]. This is because, lacking a mass term, the

T = 0 potential is very flat in field space. Furthermore, the positive thermal corrections

from the gauge bosons will lead to a barrier being present for any finite T . Somewhat

counter intuitively, a smaller gD actually leads to more supercooling because the T = 0

potential becomes shallower, as shown in figure 6. The thermal barrier also becomes

smaller, but the shallower potential ends up being the more important effect.

Of importance for the DM relic density in this scenario, is not just the DM annihilation

cross section, but also the details of the phase transition. In particular the nucleation tem-

perature, Tn, the temperature when inflation starts, Tinfl, and the reheating temperature,

TRH. The latter two quantities are calculated following the methods in [19].

Furthermore, due to the large amount of supercooling, the PT may actually not take

place before the temperature falls to T ∼ ΛQCD. In this particular case, the SU(2)D PT

is induced by QCD effects [65, 67, 79, 82]. Our calculation of the nucleation temperature,

ignoring the QCD trigger for now, is shown in figure 6.
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As a result, in the classical invariance scenario two distinct possibilities for the relic

density can play out.

• Regime (i): standard freeze-out.

(ia). Tn > ΛQCD. There is a large thermal abundance of massive gauge bosons

after the phase transition, i.e. if TRH/mA and gD are large enough to bring (or keep)

the gauge bosons in thermal equilibrium. Therefore, following the phase transition,

the relic density is set through the usual freeze-out mechanism. Typically this occurs

for gauge couplings gD ∼ 1 and mA & 1.2TeV.

(ib). Tn < ΛQCD. This is similar to above, except the sequence of PTs is switched.

Most of the parameter space corresponding to this regime has been ruled out by direct

detection [19], except for the mass range 0.9 TeV . mA . 1.2TeV, see figure 2.

• Regime (ii): super-cool DM.

(iia). Tn > ΛQCD. There is sufficient supercooling for a period of late time infla-

tion to take place. Before the phase transition, the gauge bosons are massless and

have a large abundance. This abundance is diluted away by the period of late time

inflation. The relic density in principle consists of the diluted, now super-cool, pop-

ulation of gauge bosons, together with an additional sub-thermal component created

through scatterings after reheating. Numerically, however, we find the sub-thermal

population is negligible in the parameter space corresponding to this regime, leav-

ing the DM relic abundance set by the super-cool population of gauge bosons. The

parameter space here corresponds to gD ∼ 1 and mA & 370TeV.

(iib). Tn < ΛQCD. This is again conceptually similar to above except the PTs are

switched. The sub-thermal DM population is now important for a large range of the

parameter space, which corresponds to gD . 1 and mA . 370TeV.

In all regimes, once the relic density constraint is used, we are left with one free parameter

which we take to be mA. Here we wish to point out, supported by our calculations, that

large portions of the parameter space of the classically scale invariant scenario can be

probed through GW observatories. We shall now in turn discuss the GW signal in regimes

(ia) and (iia), which both exhibit promising GW signals. Regimes (ib) and (iib) on the

other hand, which are less promising and include larger uncertainties, are relegated to

appendix C.

Regime (ia). The GW signal in this regime has previously been discussed in [20]. Here

we provide our own — updated and expanded — calculation for completeness. For sim-

plicity we assume the spectrum is given by the sum of the sound wave and turbulent

contributions over the entire regime, although H becomes vacuum dominated in the lower

mA range. For justification of this choice, together with details of the GW spectrum used,

see appendix B. The key phase transition parameters are shown in figures 7 and 8, together

with the foreground-free and foreground-limited signal-to-noise ratios. Note reheating is

efficient in this regime: there is no period of matter domination immediately following the

PT, as the decay rate of the inflaton is sufficiently large, Γ > H.
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Figure 7. Left: the key phase transition parameters in regime (ia) of the scale invariant case.

Right: the SNR for LISA and BBO. The Bodeker-Moore criterion, showing vw ≃ 1, is satisfied for

mA . 3.8TeV. Above this we still assume vw ≈ 1, though it could be lower, which would reduce

the SNR.

Figure 8. Left: the peak frequency in regime (ia). Right: the gravitational wave amplitude at the

peak frequency in regime (ia).

As can be seen from figure 7, LISA can probe DM masses in this regime up to mA ∼
4TeV, even in the presence of the WD-WD foreground. This is more than competitive

with projections for future direct detection experiments [32, 35–37], which can probe up

to mA ∼ 2TeV [19]. (The current direct detection constraint demands mA & 0.9TeV [19,

31, 33, 34].) The BBO proposal could test the entire parameter space shown here, well

into what corresponds to the neutrino floor for direct detection experiments. Note for

mA . 1.2TeV we find ourselves in regime (ib), which is discussed below.

Regime (iia). Following the methods in [19], we find this regime corresponds to param-

eters gD ≈ 1 and mA & 370TeV. Notice that these DM masses are well above the usual

unitarity constraint from the thermal freeze-out of DM [84, 85], which does not take place

here. Numerically the required gD grows slowly, from gD = 0.95 for mA = 370TeV, to

gD = 1.02 for mA = 10000TeV. Our calculation of TRH and Tinfl is shown in figure 9.

In this regime, reheating is inefficient following the PT, thus TRH 6= Tinfl. Indeed, there

is a period of matter domination following the PT, as η oscillates about the minimum of

its potential. More precisely, the ratio of scale factors between the PT and the end of
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Figure 9. Left: the temperature when inflation starts, Tinfl, the reheating temperature, TRH, and

the nucleation temperature, Tn, in regime (iia). The ratio (Tinfl/TRH) determines the amount of

additional redshifting of the signal due to the matter dominated reheating period following the PT.

Right: the detectability of the GW signal in regime (iia). Here the BM criterion holds over the

entire range.

Figure 10. Left: the peak frequency in regime (iia). Right: the peak amplitude in regime (iia). In

this regime α ∼ O(1015) and β/H ≈ 7 largely independent of mA.

reheating is given by

aPT
aRH

=

(
TRH

Tinfl

)4/3

. (3.11)

This leads to greater expansion of the Universe between the PT and today, suppressing

the signal, and redshifting the frequency further than would otherwise be the case.

The GW spectrum is determined in the following way. First of all, due to the large

amount of supercooling the scalar field configuration — and not sound waves or turbu-

lence — is the source of the signal (see appendix B.2 for further discussion). It has been

suggested that the oscillations of the scalar field after the PT may increase both that peak

frequency and energy density of the GW signal by an order of magnitude [86]. We choose

to remain conservative, however, and base our spectrum on the non-oscillating scalar field

contribution, as indicated in appendix B.1. Once the Universe enters the late inflationary

stage at Tinfl, the energy density remains constant until the plasma temperature reaches

Tn, and so the Hubble scales at both temperature are the same H(Tn) = H(Tinfl). Taken
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together, β and H ∼ T 2
infl/MPl set the initial frequency of the GW signal. We then redshift

this value to TRH when the Universe once again enters a radiation dominated phase. The

redshifting from TRH to today then follows the standard calculation [8]. Taking all this,

together with eq. (3.11) into account, the peak frequency is given by

f
(iia)
peak = 16.5µHz

(
TRH

Tinfl

)1/3(f∗
β

)(
β

H

)(
Tinfl

100GeV

)( g∗
100

)1/6
, (3.12)

where g∗ counts the effective degrees of freedom contributing to the radiation density, and

f∗/β = 0.62/(1.8−0.1vw+v2w) is taken from simulations [51]. Due to cancellations between

the various factors, we find the peak frequency here is ∼ 10−2 Hz and almost independent

of mA, as shown in figure 10. The amplitude of the spectrum is also suppressed with

respect to the case with no early period of matter domination,

ΩGW →
(
TRH

Tinfl

)4/3

ΩGW, (3.13)

because ΩGW = ρGW/ρc ∝ a0, (a−1) in a radiation (matter) dominated Universe. Ac-

counting for these factors, we find the GW spectra and summarise their detectability in

figure 9. Examples of the spectra are shown in figure 11. Notice that for these large masses,

the frequency of the gravitational waves extends well above 1 Hz, motivating us to com-

pare our signal against sensitivity curves from current and future LIGO configurations O1

and O5 [64], and ET [52–55]. Finally note we have explicitly checked the phase transition

completes even though we are in the vacuum dominated regime. Details are presented in

appendix D.

4 Discussion and conclusion

We have explored the possibility of spin-one DM from a hidden SU(2)D gauge group. The

stability of DM is elegantly assured through a custodial symmetry. Given the massive vec-

tor bosons, unitarity demands that the SU(2)D be broken through the Higgs mechanism.

This implies a phase transition or crossover occurred in the dark sector, i.e. the symme-

try was initially unbroken at high temperatures. A strong phase transition will result in

gravitational waves possibly detectable at future gravitational wave observatories.

In this scenario the SU(2)D gauge coupling plays a crucial role in determining the relic

abundance through freeze-out or late-time inflation. The same gauge coupling controls

both the scattering cross-section and the thermal effects of the gauge bosons relevant for

the phase transition. The model is therefore well suited as a case study for the sensitivity

of future gravitational wave observatories to phase transitions in DM sectors.

We studied both tree level and radiatively-induced symmetry breaking. After finding

the resulting gravitational wave spectra we identified parameter space which can be probed

by LISA and BBO. As is known from previous studies, only limited parameter space of

standard polynomial type potentials can be tested by LISA. The prospects improve for

the classically scale invariant scenario. In this case, LISA is competitive with future direct

detection experiments in the freeze-out regime and can probe the new regime of super-cool
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Figure 11. Examples of GW spectra in regime (iia). Although α ≫ 1, and β/H is similar for both

phase transitions, the period of matter domination after the PT is longer for larger mA, leading to

a suppressed signal. For purposes of illustration we also include the unresolvable foreground from

black hole binaries with masses 102M⊙ − 1010M⊙ (MBH-MBH) [57].

DM, which is inaccessible to direct and indirect detection. Nevertheless, a conclusive test

could only be performed by a more powerful observatory such as BBO.

We saw how foregrounds, which have so far been largely ignored in phase transition

studies, apart from in [6, 7], can be taken into account in the estimates of the signal-

to-noise ratio. Our results should be taken as indicative; we expect updated estimates of

foregrounds to become available as our knowledge of the binary populations improves. More

sophisticated studies, taking into account the precise capability of the LISA and eventually

BBO spacecraft are required. Simulations of sound waves in the plasma for α > 0.1 should

also be performed. Only then will it be possible to conclusively rule out models from their

implied gravitational wave signals using future LISA and BBO data. A positive signal at

LISA — which requires a very strong phase transition — would most likely point toward

exotic new physics at the TeV scale such as the close-to-conformal potential studied here.
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Note added. After our paper was released on arXiv, ref. [87] appeared, which confirmed

the validity of our one-dimensional field space approximation for the classically scale in-

variant potential.

A The effective potential

A.1 Symmetry breaking at tree level

The full effective potential is composed of four pieces

V (φ, η, T ) = Vtree(φ, η) + V 0
1 (φ, η) + V c.t

1 (φ, η) + V T
1 (φ, η, T ) . (A.1)

The tree-level piece. This directly follows from eq. (2.1) and it is given by

Vtree(φ, η) =
µ2
1

2
φ2 +

λ1

4
φ4 +

µ2
2

2
η2 +

λ2

4
η4 +

λ3

4
η2φ2. (A.2)

Coleman-Weinberg potential at zero temperature. Knowing the field dependent

masses, mi(φ, η), in the Laudau gauge the one-loop T = 0 contribution is given by

V 0
1 (φ, η) =

∑

i

gi(−1)F

64π2
m4

i (φ, η)

(

Ln

[
m2

i (φ, η)

µ2

]

− Ci

)

, (A.3)

where µ is the MS renormalization scale and gi = {1, 3, 6, 12, 1, 9, 3, 3} for the

h, Z, W±, t, η, A, G, GD. In addition, Ci = 5/2 for gauge bosons and Ci = 3/2

otherwise. Finally, F = 0 (1) for bosons (fermions).

The masses as a function of the scalar field values for the fermions and gauge bosons

of the SM are

m2
Z(φ, η) =

1

4
(g22 + g2Y )φ

2 , m2
W (φ, η) =

1

4
g2Y φ

2 , m2
t (φ, η) =

1

2
y2t φ

2 . (A.4)

Similarly, for the dark gauge bosonsm2
A(φ, η) = g2Dη

2/4. Due to the coupling λ3 in eq. (2.1),

the scalar sectors mix with each other and the masses for the real scalar fields entering in

eq. (A.3) are the eigenvalues of the matrix

m2
Higgs =

(

µ2
1 + 3λ1φ

2 + 1
2λ3η

2 λ3 φη

λ3 φη µ2
2 + 3λ2η

2 + 1
2λ3φ

2

)

. (A.5)

In spite of this, the Goldstone bosons do not mix at tree level. In fact, in the Landau

gauge, their masses are given by

m2
G(φ, η) = µ2

1 + λ1φ
2 +

1

2
λ3η

2 , (A.6)

m2
GD

(φ, η) = µ2
2 + λ2η

2 +
1

2
λ3φ

2 , (A.7)

which vanish at (φ, η) = (vφ, vη), as follows from eqs. (2.3).
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The counter-term potential. The counter terms to the potential in eq. (A.3) are

V c.t
1 (φ, η) =

δµ2
1

2
φ2 +

δλ1

4
φ4 +

δµ2
2

2
η2 +

δλ2

4
η4 +

δλ3

4
η2φ2. (A.8)

By demanding no changes to the masses and VEVs of the scalars from their tree level

values, that is, by imposing

∂φ,η(V
0
1 + V c.t

1 )

∣
∣
∣
∣
(φ,η)=(vφ,vη)

= 0 , (A.9)

∂φ,η∂φ,η(V
0
1 + V c.t

1 )

∣
∣
∣
∣
(φ,η)=(vφ,vη)

= 0 , (A.10)

we calculate the couplings in eq. (A.8). Moreover, we find7

V 0
1 (φ, η) + V c.t

1 (φ, η) =
∑

i

gi(−1)F

64π2

{

m4
i (h, η)

(

Ln

[
m2

i (φ, η)

m2
i (vφ, vη)

]

− 3

2

)

+2m2
i (φ, η)m

2
i (vφ, vη)

}

+O(λ2
3) . (A.11)

In this equation, the prescription for the scalars m2
i (φ, η) is the following. They are the

eigenvalues of the mass matrix in eq. (A.5), ordered in such way that

m2
±(0, 0) = F±(µ

2
1, µ

2
2) and m2

±(vφ, vη) = F±(m
2
φ,m

2
η) , (A.12)

where

F±(a, b) =
1

2
(a+ b± (a− b)sgn(|a| − |b|)) . (A.13)

Notice that Σ±F±(a, b) = a + b and that, when a and b are both positive (negative),

F+(a, b) is the maximum (minimum) of them.

Finite-temperature potential. The one-loop finite T contribution is given by

V T
1 (φ, T ) =

∑

i

gi(−1)FT 4

2π2

×
∫ ∞

0
y2 Ln

(

1− (−1)FExp

[

−
√

y2 +m2
i (h, η)/T

2

])

dy. (A.14)

We evaluate these integrals numerically. In order to take into account the resummation of

the Matsubara zero modes one includes the daisy term

VDaisy(φ, T ) =
∑

i

giT

12π

{[
m2

i (φ, η)
]3/2 −

[
m2

i (φ, η) + Πi(T )
]3/2

}

(A.15)

7There is a subtle issue for the contribution of the Goldstone bosons to eq. (A.3). As explained above,

their tree-level masses vanish at (vφ, vη) leading to an infrared divergence in eq. (A.3). Such a divergence

is spurious [88] and disappears after accounting for the one-loop contributions to the Goldstone-boson self

energies. Neglecting any possible mixing effect due to non-vanishing λ3, the latter can be calculated by

means of δm2
G(φ, η) = (1/2)∂2V

(0)
1 /∂2φ and δm2

GD
(φ, η) = (1/2)∂2V

(0)
1 /∂2η.
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where the sum runs only over scalars and the longitudinal degrees of freedom of the vector

bosons, i.e ḡi ≡ {1, 1, 1, 2, 1, 3, 3, 3} for h, Z, γ, W±, η, A, G, GD. Here the thermal

masses are given by [89]

ΠHiggs =

(
1
2λ1 +

1
6λ3 +

3
16g

2
2 +

1
16g

2
Y + 1

4y
2
t 0

0 1
2λ2 +

1
6λ3 +

3
16g

2
D

)

T 2 , (A.16)

ΠG =

(
1

2
λ1 +

1

6
λ3 +

3

16
g22 +

1

16
g2Y +

1

4
y2t

)

T 2, (A.17)

ΠGD
=

(
1

2
λ2 +

1

6
λ3 +

3

16
g2D

)

T 2 , (A.18)

ΠZ/γ =







(
5

6
+

nf

3

)

g22 0

0

(
1

6
+

5nf

9

)

g2Y







T 2 , (A.19)

ΠW =

(
5

6
+

nf

3

)

g22T
2, (A.20)

ΠA =
5

6
g2DT

2, (A.21)

where nf = 3 is the number of fermionic families with SU(2) × U(1) charge. Note for the

scalars and the Z/γ, the prescription here is that m2
i (φ, η) represents the relevant eigenvalue

of the zero temperature mass matrix andm2
i (φ, η)+Πi(T ) the relevant eigenvalue of the zero

temperature mass matrix with the thermal masses added along the diagonal. This means

the Z and γ mix at finite temperature. To avoid spurious contributions to the thermal

masses from the SU(2)D gauge bosons at large field values, we cut off the gD contributions

with a factor (mA/T )
2K2(mA/T )/2, where K2(x) is the modified Bessel function of the

second kind of order two.

A.2 Classically scale invariant potential

As explained in the text, in this case we have radiative symmetry breaking and the potential

at one loop becomes [19, 20, 27, 28]

V 0
1 (η) ≃

9g4Dη
4

512π2

(

Ln

[
η

vη

]

− 1

4

)

, (A.22)

where the φ direction plays a completely negligible role in the area of parameter space in

which we shall be interested. (The EW symmetry is broken by the induced mass term,

λ3v
2
η/2, from the cross quartic.) The thermal effects are dominated by the gauge bosons.

Thus the effective potential is well approximated by eq. (A.22), together with the one-loop

thermal, eq. (A.14), and daisy terms, eq. (A.15), for the SU(2)D gauge bosons.

B The gravitational wave spectrum

B.1 Summary of the contributions

If directly after the PT the Universe becomes radiation-dominated, the stochastic GW

background receives a number of contributions, summarised in [8]. First, if no significant
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plasma is present, the scalar field contribution [51] dominates

h2ΩGW(f) ≃ 1.67× 10−5

(
H∗

β

)2(100

g∗

) 1
3
(

κηα

1 + α

)2( 0.11 v3w
0.42 + v2w

)

S1(f). (B.1)

Alternatively, if a significant plasma is present, the following contributions dominate

h2ΩGW(f) ≃ 2.65× 10−6

(
H∗

β

)(
100

g∗

) 1
3
(

κvα

1 + α

)2

vw S2(f)

︸ ︷︷ ︸

sound waves

+3.35× 10−4

(
H∗

β

)(
100

g∗

) 1
3
(
κturb α

1 + α

) 3
2

vw S3(f)

︸ ︷︷ ︸

magnetohydrodynamic turbulance

. (B.2)

Note we do not sum eq. (B.1) with (B.2), following the updated recommendations in [41].

Here H∗ is the Hubble parameter when the GWs are emitted and κη, κv, and κturb are the

fractions of the latent heat that is converted into energy density in the scalar field, bulk

motion of the fluid, and turbulence respectively. These can be calculated in terms of the

wall velocity and α. For this, we use the expressions reported in refs. [8, 90]. In addition,

the spectral shapes are given by

Sa(f) =







3.8 (f/f1)
2.8/

[
1 + 2.8 (f/f1)

3.8
]

a = 1

(f/f2)
3
[
7/
(
4 + 3 (f/f2)

2
)] 7

2 a = 2

(f/f3)
3/
[

(1 + (f/f3))
11
3 (1 + 8πf/h∗)

]

a = 3

. (B.3)

The corresponding peak frequencies are

fa =

(
β

H∗

)(
T∗

100GeV

)( g∗
100

) 1
6

(
1

vw

)

×







16.5µHz × (f∗/β) a = 1

19µHz a = 2

27µHz a = 3

, (B.4)

where f∗/β = 0.62/(1.8 − 0.1vw + v2w) is taken from simulations [51]. If the after the

PT there is a period of matter domination, the previous expressions must be rescaled as

explained in the main text. See eqs. (3.12) and (3.13).

In this work, we are interested in phase transitions with significant supercooling, which

lead to signals possibily observable by LISA. We caution that for strong phase transitions,

α > 0.1, considerable uncertainty enters into the use of eqs. (B.1)–(B.4), despite the fact

that they become insensitive to α when the latter takes values much greater than one. This

is partly due to the uncertainties in determining the relevant contribution, which have only

been started to be explored following the updated results of [41] (see appendix B.2 below).

Furthermore, numerical simulations of sound waves in the plasma have also only been

performed up to α = 0.1. Until further simulations have been performed, we are therefore

resigned to extrapolating the results to large α, as in [8].
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B.2 Determination of the relevant contribution

We provide an estimate to justify our use of the sound wave plus magnetohydrodynamic

turbulence in regime (ia), and the scalar field contribution in regime (iia), of the classically

scale invariant potential. This is crucial as in the vacuum dominated regime, depending on

the amount of supercooling, the energy transferred to the plasma and hence sound waves

and magnetohydrodynamics may become negligible. Bodeker and Moore [41] find a next-

to-leading-order contribution to the pressure difference due to transition radiation across

the wall which, using the parameters relevant to our model, scales as

PNLO ∼ γg2DmAT
3. (B.5)

This is to be compared with the pressure driving the bubble expansion

PExpand = ∆V ∼ m4
A, (B.6)

where we assume vacuum domination and suppress some numerical factors in line with

the accuracy of the analysis. Now let us estimate whether the bubble wall continues to

accelerate from nucleation until collision. At nucleation the bubble size is

rn ∼ 1

T
. (B.7)

The bubble size at collision is given by the timescale of the transition, β−1, multiplied by

the wall velocity, vw ≃ 1, hence

rcoll ∼
1

β
∼
(
H

β

)
MPl

m2
A

. (B.8)

Therefore, if the bubble continues to accelerate during its expansion, i.e. PExpand > PNLO,

it will reach a highly relativistic state at collision

γcoll =
rcoll
rn

∼
(
H

β

)
MPlT

m2
A

, (B.9)

typically ∼ 109 in regime (iia). Using eqs. (B.5), (B.6), and (B.9), we find the condition

PExpand > PNLO is maintained throughout the expansion of the bubble, provided that

Tn .

(
β

H

m5
A

g2DMPl

)1/4

= 0.5 TeV

(
1

gD

)1/2( β

H

)1/4 ( mA

1000 TeV

)5/4
. (B.10)

This is satisfied in regime (iia), but not in regime (ia), of our analysis. Thus in regime

(iia) we expect a significant amount of energy to be stored in the walls — rather than

in the plasma — before the bubbles collide. We wish to emphasise that the estimates

provided here, similar to those in [91], are of a preliminary nature. Indeed the transition in

regime (iia) ends with an oscillating scalar field dominating the Universe, rather than with

a relativistic plasma. The scalar field oscillations may further enhance the GW spectrum,

as indicated by the results of numerical simulations [86].
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Figure 12. Left: an example calculation for the phase transition in the classically scale invariant

case. Here the percolation condition is achieved at Tp ≃ 10.5GeV. Right: the physical volume of

false vacuum is rapidly diminished at and below Tp ≃ 10.5GeV.

C Super-cool DM regimes (ib) and (iib)

In this appendix we comment briefly on these regimes, in which the SU(2)D phase transition

occurs after QCD confinement, although they are less promising from the point of view of

GWs. In these regimes the QCD phase transition occurs with six massless quarks and is

first order [92, 93]. There is a chance this could lead to an observable GW signal [9, 79]

(although note the vacuum domination continues for some time after the QCD PT, diluting

the signal). We cannot, however, use our techniques above to accurately calculate the phase

transition parameters, α and β for the QCD phase transition [79]. Most likely a lattice

study is required in order to more carefully explore this possibility. Alternative techniques

have been pursued in [77, 80].

We now turn to the details of the SU(2)D phase transition following after the QCD

one. The quark condensate formed after chiral symmetry breaking leads to a tadpole term

and hence a VEV for the EW Higgs. This in turn leads to a mass term for η through

the cross-quartic. Provided 3m2
A & 2m2

h, which corresponds to our regime of interest, the

thermal barrier from the gauge bosons is still large enough to prevent immediate SU(2)D
breaking. Instead, a first order phase transition occurs just before the barrier disappears

at T ∼ mhΛQCD/mA. As can be checked numerically, the non-zero mass term for η means

this phase transition now occurs with a very large β, and does not lead to an observable

gravitational wave signal.

D Completion of the phase transition

We have checked the phase transitions in the classically scale invariant potential occurring

in the vacuum dominated regime do indeed complete. This can be seen through an explicit

calculation of the percolation temperature. Percolation requires a small probability of a

point in the comoving volume being in the false vacuum [91, 94–97]:

P (T ) ≡ e−I(T ) . 1/e =⇒ I(T ) & 1, (D.1)
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where

I(T ) =
4π

3

∫ Tc

T
dT ′ Γ(T ′)

(T ′H(T ′))4

(
∫ T ′

T

dT̃

H(T̃ )

)3

. (D.2)

One also requires that the physical volume of the false vacuum be decreasing significantly

inside of one Hubble time [91, 94–97]

1

HVfalse

dVfalse

dt
= 3 + T

dI

dT
. −1. (D.3)

An example calculation showing these conditions are met is shown in figure 12. The under-

lying reason this can occur is because the nucleation rate continues to grow exponentially as

the temperature falls, allowing sufficient bubble formation to overcome the Hubble driven

expansion of the false vacuum. In contrast, for very strong phase transtions in standard

polynomial type potentials, S3/T may remain constant or even grow as the temperature

drops. Meaning the phase transition may not complete even if the nucleation condition

Γ ∼ H4 is achieved [91, 94–97].
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