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The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account

for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral

diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge

slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed

simulations to accurately predict membrane-protein diffusivities and related transport properties.

Estimates for the relative error associated with periodic boundary artifacts are 50% and higher

for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY

membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion

in pure DPPC bilayers support the underlying hydrodynamic model. C 2015 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4932980]

I. INTRODUCTION

Lipid bilayer membranes and the proteins embedded

within them are crucial to a wide variety of biological

processes.1 Increasingly, molecular simulations are employed

in the study of the membrane surface, with models rang-

ing from very detailed united-atom and all-atom descrip-

tions,2–4 to coarse-grained models with chemical specificity,5

to aggressively coarse-grained generic lipid models in implicit

solvent.6,7 Though these models are often used to study

thermodynamics, equilibrium fluctuations and rapid local

dynamics of, e.g., single lipid chains, simulation studies related

to transport coefficients in the membrane environment are

becoming more common.8–14 This paper cautions that diffusion

coefficients for membrane-embedded objects modeled via

molecular simulation may be strongly affected by finite-

size effects and provides estimates for the magnitude of the

problem.

Simulated diffusion coefficients for solutes in a fluid

phase are known to display systematic errors that depend on

system size.15,16 These effects arise because the hydrodynamic

disturbance caused by a moving object is long-ranged; in an

unbounded homogeneous three-dimensional (3D) fluid, the

velocity field of a translating spherical body decays only as 1/r ,

where r is the distance away from the sphere (see, e.g., Ref. 17).

For simulations of a solute in a homogeneous bulk fluid

contained in a periodic cubic box of linear dimension L, it is

well known15,16 that the solute diffuses more slowly than in an

infinite fluid. Corrections to the infinite-system result converge

to zero like 1/L as box size is increased. Theoretically, this

result may be derived via creeping flow hydrodynamics in the

periodic geometry. The membrane analog to 3D creeping flow

is provided by the Saffman-Delbrück (SD) model, which treats

membranes as a thin viscous two-dimensional (2D) fluid layer,

surrounded by a less viscous bulk.18,19 The hydrodynamic flow

around a membrane-embedded moving body in the SD model

is substantially more complex than in a pure 3D fluid.18–20

Reflecting aspects of both 2D flow within the membrane

and 3D flow around the membrane, SD hydrodynamics has

been described as “quasi-two-dimensional” (quasi-2D).21 The

question of how quasi-2D SD flow affects diffusion coefficients

in a periodic simulation box is the primary subject of this

paper.

II. SAFFMAN-DELBRÜCK HYDRODYNAMICS
AND THE MEMBRANE OSEEN TENSOR
FOR A PERIODIC GEOMETRY

The traditional Saffman-Delbrück model is easily

extended to a membrane in a periodic geometry. This geometry,

sketched in Fig. 1, includes a square (L × L) 2D fluid

membrane patch with surface viscosity ηm, surrounded by

a bulk fluid with viscosity η f . The membrane is embedded in

a rectangular box with periodic boundary conditions (PBCs);

the total slab of simulated water has height 2H . If H = L/2,

the simulation box would be a cube, assuming an infinitely

thin membrane. For a physical membrane of finite thickness,

H = L/2 implies a simulation box that is longer in the z than

the x,y dimensions by the thickness of the bilayer.

Appendix A demonstrates that an in-plane force density of

f(r) applied to the membrane of Fig. 1 yields the lipid velocity
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FIG. 1. Illustration of membrane model. A periodic simulation box (dashed

red line) with total water thickness 2H and lateral dimensions L×L is

assumed. The membrane is treated as an incompressible 2D fluid with surface

viscosity ηm, while the surrounding incompressible fluid has viscosity η f .

The protein (or other diffusing object) is modeled as a cylinder of radius R

embedded within the membrane.

field v(r) with

vi(r) =


d2r ′TPBC

i j (r − r′) f j(r
′), (1)

where we have assumed the Einstein summation convention

over the x, y Cartesian coordinates indexed by i and j and the

PBC membrane Oseen tensor is given by

TPBC
i j (r) =

1

L2



k,0

TPBC
i j (k)e−ik·r, (2)

TPBC
i j (k) =

1

ηmk2 + 2η f k tanh(kH)

(

δi j −
kik j

k2

)

. (3)

Note that the notation above uses identical symbols for both

the real-space and Fourier-space versions of the membrane

Oseen tensor; distinction between the two is indicated by the

argument of the function. This convention will be followed

throughout the paper. It should be stressed that Eq. (2)

is not precisely a Fourier series: the sum includes only

nonzero wavevectors k, i.e., k = 2π
L
(m,n) with integer m,n,

excepting m = n = 0. This restriction arises because the

periodic system evolves with conservation of momentum and

an assumed stationary center of mass—there is no net velocity

in the system, so the k = 0 mode of velocity must be zero.

Alternately, because of the stationary center of mass, the total

force applied to the membrane must sum to zero. This point is

discussed extensively in Refs. 15 and 16.

In the limit of H → ∞,L → ∞, the PBC membrane

Oseen tensor reduces to the well-known result for an infinite

system,22,23

T∞i j (k) =
1

ηmk2 + 2η f k

(

δi j −
kik j

k2

)

,

with

T∞i j (r) =


d2k

(2π)2
T∞i j (k)e

−ik·r. (4)

T∞
i j
(r) can be expressed in closed (but messy) form in terms

of Bessel and Struve functions (see, e.g., Refs. 21 and 23). A

closed form solution for the general PBC case does not seem

possible.

III. PREDICTION OF DIFFUSION COEFFICIENTS
IN THE PERIODIC BOX

Traditionally, the calculation of particle diffusion coef-

ficients from a hydrodynamic theory involves solving a

boundary-value problem for the Stokes flow of fluid around a

steadily translating object with no-slip boundary conditions on

its surface (see, e.g., Ref. 17). With the fluid velocity field in

hand, the hydrodynamic drag on the particle may be calculated.

The drag coefficient is the inverse of the particle mobility µ,

and the diffusion coefficient follows via the Einstein relation

as D = kBT µ. Unfortunately, these hydrodynamic boundary-

value problems can be difficult to solve analytically. Expres-

sions for D for simply shaped objects in 3D fluids are known,17

but an exact solution for quasi-2D membrane geometry is

known only for a circular disk in an infinite membrane

surrounded by an infinite bulk (the well-known Saffman-

Delbrück-Hughes-Pailthorpe-White, SDHPW, result18–20) and

that solution is so complex that simplified functional forms are

often used to approximate the true solution.24,25 It seems highly

unlikely that this expression could be generalized to the finite

periodic geometry, and even if it could, the resulting equations

would almost certainly be prohibitively complicated.

A practical numerical approach to the prediction of D

via the immersed boundary (IB) method26 is presented in this

section. In the IB approach, solution of a complicated boundary

value problem is avoided by approximating the solid diffusing

object as a fluid region. Although initially developed for use

in continuum level simulations of particulate suspensions, the

IB scheme provides an elementary means to compute single-

particle diffusion coefficients numerically.27 In the infinite

quasi-2D membrane geometry, IB calculations successfully

reproduce the SDHPW diffusion coefficient.28 IB calculations

also reproduce known PBC effects on the diffusion of spherical

particles in 3D16,29 (Appendix C). It should be stressed that

while IB calculations only approximate exact solutions for D

of no-slip solid bodies, the approximation works very well

and no-slip boundaries are themselves imperfect models of

physical behavior. Further, the purpose of this paper is to

explore the effects of PBC on lateral diffusion coefficients

in membranes, not to attempt quantitative prediction of

membrane-protein diffusion coefficients in periodic boxes. If it

were possible to quantitatively predict D for real proteins, there

would be no need to carry out simulations at all. If one were

inclined to refine the IB calculations here to quantitatively

reproduce no-slip boundary value solutions for D, methods

have been introduced to do this, both in 3D30–32 and in the

membrane geometry.33–35

Implementing the IB scheme to calculate D is straightfor-

ward. A force density is applied to the IB “particle,” assumed

radially symmetric and located at the origin: f(r) = FδR(r),

where δR is a “finite delta” function (i.e.,


d2rδR(r) = 1, and

δR has a characteristic envelope size R). The velocity of the

membrane-embedded object caused by this forcing is taken to
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be V =


d2r ′v(r′)δR(r
′). Without loss of generality, the force

is applied in the x direction, so that F = Fx̂; by symmetry V

is in the x̂ direction. It follows from Eq. (1) that V = µF, with

the mobility given by

µ =
1

L2



k,0

|δR(k)|
2TPBC

xx (k). (5)

The diffusion coefficient is, by the Einstein relation, D

= kBT µ.

For convenience, δR(r) is chosen to be a Gaussian. The

width of δR(r) is chosen to yield good correspondence with the

SDHPW results in the infinite-system-size limit, for a cylinder

with radius R. The choice δR =
1

πb2 e−r
2/b2

with b = βR and

β = 0.828 49436 reproduces the SDHPW result19,20,24,25 to

within 6% over the entire range 10−5 ≤ R/Lsd ≤ 105 (here,

Lsd = ηm/2η f is the Saffman-Delbrück length). With this

choice,

DPBC =
kBT

2L2



k,0

1

ηmk2 + 2η f k tanh(kH)
e−k

2β2R2/2. (6)

By comparison, in an infinite system (L → ∞, H → ∞),

D∞ =
kBT

2


d2k

(2π)2
1

ηmk2 + 2η f k
e−k

2β2R2/2. (7)

Results (6) and (7) apply to membrane-spanning cylinders of

radius R and are expected to be appropriate for capturing the

behavior of transmembrane proteins. These expressions may

be generalized to cylinders that span only a single leaflet of the

bilayer as a crude model for monotopic proteins or lipids; see

Appendix B. The numerical examples in the body of this paper

will focus on the transmembrane case, with lipid diffusion

considered separately in Appendix B.

Eq. (6) is the primary theoretical result of this paper,

and we will spend the remainder of this section exploring

its implications. While the series in Eq. (6) cannot be

summed analytically, numerical summation is straightforward,

since the integrand vanishes exponentially for k ≫ 1/R. In

addition, some important consequences of PBC on D can

be gleaned directly from inspection of Eq. (6). Consider the

summand of Eq. (6). In the small-k (large wavelength) limit, it

asymptotically approaches
�

(ηm + 2η f H)k2
�−1

; this suggests

that at wavelengths long compared to H , the combination of

membrane and surrounding periodic fluid acts as a single two-

dimensional fluid with surface viscosity ηm + 2η f H . It is thus

expected for DPBC to diverge logarithmically with L as L → ∞
with H fixed, in analogy to the pure 2D case18 (i.e., the Stokes

paradox). This behavior is demonstrated explicitly in Fig. 2.

(As noted in Refs. 18 and 19, inertial effects should eventually

regulate this divergence for macroscopic values of L, but this

is not expected to be relevant for boxes on the order of microns

or smaller. Including the effects of non-zero Reynolds numbers

into mobility calculations can be difficult;37 to our knowledge,

no systematic attempt to do this for the membrane geometry

has been made.)

From Eqs. (6) and (7), the relative error in D due to

periodic confinement, (DPBC − D∞)/D∞, depends on H , L,

and R only in terms of the unitless variables H/Lsd, L/Lsd,

and R/Lsd; errors are thus expected to be small if both L

and H exceed Lsd. What is the Saffman-Delbrück length

FIG. 2. Varying the lateral system size L without changing the height H

leads to systematic errors in the measured diffusion coefficient. Although

increasing L has the effect of raising D to approach infinite-system results

in small systems, the growth of D is unbounded and asymptotically grows

logarithmically in L to eventually overshoot the infinite-system results. R = 1

nm and the MARTINI DPPC value of Lsd= 8.6 nm is assumed.

for a typical simulated bilayer system? In the case of fully

atomistic simulations, molecular architectures are faithfully

represented and one expects Lsd to closely mimic experimental

values. Experimental measurements of Lsd for lipid bilayer

systems are typically in the 100 nm to micron range.24,25,38–42

In coarse-grained models, some details of lipid and solvent

structure are lost and there is no reason to expect close

correspondence to experimental numbers. For example, in the

coarse-grained MARTINI force field,5 ηm has been determined

to be 1.2 × 10−8 P cm for DPPC bilayers, with water viscosity

η f = 7 × 10−3 P.9 Within MARTINI simulations, we expect

Lsd ≈ 8.6 nm—much smaller than the experimental range.

United-atom simulations lead to results intermediate between

experiment and MARTINI.43

Fig. 3 plots the predicted relative error in D as a function

of H and L for parameters appropriate to both MARTINI simu-

lations (Lsd = 8.6 nm) and all-atom simulations. (Lsd = 78 nm

as suggested by the experiments of Ref. 40 involving proteins

of different sizes diffusing on black lipid membranes. This

value is among the lowest reported in the experimental

literature—Lsd = 163 nm was measured by Ref. 44, and much

larger numbers have also been reported.45 Lsd = 78 nm serves

as a conservative estimate for the purposes of this paper; larger

values of Lsd exacerbate the errors associated with PBC.) The

data are presented for a small protein of radius 1 nm, but

similar results are obtained for larger R. Table I lists numerical

predictions for D for a few representative transmembrane

proteins using parameters appropriate to typical all-atom and

MARTINI simulations. Errors associated solely with PBC

conditions range from 30% to 80%, with the errors being larger

for big proteins and for all-atom simulations. Of course the

MARTINI simulations are expected to introduce other (larger)

sources of absolute error relative to experiment owing to the

incorrect viscosities present in the simulations.

Figs. 2 and 3 and Table I paint a bleak picture for

those that would hope to extract quantitative membrane-

protein diffusivities directly from molecular simulations. For

representative all-atom numbers, DPBC can be less than 1/4
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FIG. 3. In a periodic membrane simulation, the observed diffusion coefficient

may be significantly larger or smaller than the value in an infinite system, D∞.

(a) Ranges of errors in diffusion coefficients appropriate for coarse-grained

simulations (MARTINI). The solid box indicates a typical range of MARTINI

simulation sizes, L ranging from 10 to 50 nm, and H ranging from 2-5 nm

(H is half the total water height. See Fig. 1). Lsd= 8.6 nm for MARTINI.

The protein radius assumed is R = 1 nm. (b) Errors predicted for all-atom

simulations with experimentally accurate viscosities. Lsd= 78 nm as in the

experiments of Ref. 40. A typical range of all-atom simulation sizes with

H from 1.5 to 3 nm, and L from 10 to 20 nm is indicated by the yellow

dashed box. The protein radius R = 1 nm in both plots. The zero-error contour

is plotted to emphasize the fact that both positive and negative differences

between DPBC and D∞ can be observed depending on box geometry.

the infinite system value. In fact, the situation is likely even

worse, since the value Lsd = 78 nm40 assumed for experimental

membrane systems is conservative—most measurements find

larger values for Lsd.24,25,38,39 The errors associated with

TABLE I. Predicted diffusion coefficients in typical PBC box geometries

(Eq. (6)) and in infinite systems (Eq. (7)) for three representative proteins.

For MARTINI simulations, H = 5 nm, L = 25 nm, ηm = 1.2×10−8 P cm,

and Lsd= 8.6 nm. For all-atom simulations, H = 2 nm, L = 15 nm, ηm = 1.5

×10−7 P cm, and Lsd= 78 nm (viscosity values chosen to match experiments

of Ref. 40). T = 323 K in both calculations.

D∞ DPBC D∞ DPBC

Radius (all-atom) (all-atom) (MARTINI) (MARTINI)

Protein (nm) (10−7 cm2/s) (10−7 cm2/s) (10−7 cm2/s) (10−7 cm2/s)

WALP23 0.5 1.25 0.63 9.31 6.79

LacY 2 0.93 0.31 5.63 3.12

GltT 4 0.77 0.16 4.03 1.56

fully atomistic boxes will only increase for larger values of

Lsd. The errors inherent to PBC are less severe in the case

of MARTINI simulations, due to both the smaller Lsd in

MARTINI and the larger system sizes tractable to simulation;

however, DPBC can still be as small as 40% of D∞. (It should

always be remembered that MARTINI D∞ can be larger than

experimental results by nearly an order of magnitude due to the

unphysically low Lsd values. This point is clear in the absolute

numbers of Table I but is lost in the relative errors plotted in

Figs. 2 and 3.)

A point of particular concern involves the logarithmic

growth of DPBC with L at fixed H , seen in Fig. 2. It is a common

practice in molecular simulations to include minimal cushions

of water around the membrane in an attempt to minimize

computational expense spent on solvent while modeling as

large a membrane patch as possible. Waters are added around

the membrane to the point of full hydration of the bilayer,

or perhaps slightly beyond this point, leading to simulation

boxes that are anisotropic with larger lateral dimensions (L)

than the normal dimension (H). Though this strategy may be

adequate for modeling many thermodynamic observables and

fluctuations, it is very clear that this could be a disastrous

protocol for modeling lateral transport in the membrane.

Following such a way of thinking, one would naively seek to

converge simulation results by increasing the membrane size

L, while keeping the cushion of water around the membrane

constant (i.e., constant H). Repeating simulations at ever larger

values of L, DPBC will simply grow without bound, passing

through D∞ as the zero error contour of Fig. 3 is crossed and

continuing on to infinitely large values. Although Fig. 3 might

seem to indicate that one could simply choose L to lie on the

zero error curve to reproduce D∞ exactly, the curve itself can

only be drawn with a prior knowledge of D∞.

To be sure, it is theoretically possible to converge

simulation results to the limit of an infinite box, but this

requires both H and L to significantly exceed Lsd. The

physical reasoning behind this assertion is that at wavelengths

below Lsd, a quasi-2D membrane behaves essentially as a

2D system—which will have a system size dependence of

ln L. It is only for lengths beyond Lsd that the membrane

begins to lose sufficient momentum to its surroundings that

a more traditional 3D hydrodynamic behavior is observed.18

However, this crossover at Lsd in lateral dimensions presumes

a sufficient cushion of water surrounding the membrane to

accept this transmitted momentum and not return it to the

membrane. In the infinite system, it can be shown that the fluid

flows in the bulk around the membrane decay exponentially

away from the membrane with the same lengthscale as the

wavelength of the flow within the membrane itself.22,23 In

other words, to see the expected crossover to 3D-like behavior

for lateral dimensions of Lsd, there should also be a cushion

of water surrounding the membrane comparable to or larger

than Lsd. To quantify these qualitative ideas, Fig. 4 plots the

relative errors in D as a function of box size while holding

the ratio H/L constant. Unlike Fig. 2, moving to the right

on the x-axis on this plot corresponds to increasing both

L and H simultaneously. It is observed that increasing H

and L simultaneously will generally lead to convergence to

the infinite system size results. However, depending on the
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FIG. 4. Simultaneously increasing L and H leads to a decrease in absolute

percentage error between periodic simulations and the infinite-system limit.

Here, (HL2)1/3 is used as a measure of the nominal linear “size” of the

simulation on the x-axis for various fixed ratios of H to L. If linear scaling is

assumed, computational cost will grow like HL2; converging the simulations

to the indicated 5% error tolerance would require system sizes well beyond

those currently possible on today’s computers. The same parameters are

used as in Fig. 3. The non-monotonic behavior of the blue curve in the

MARTINI pane indicates an accidental coincidence between DPBC and D∞ at

a particular box geometry, i.e., the system has passed through the “zero-error

contour” of Fig. 3.

ratio H/L, this convergence can be faster or slower, and may

even be non-monotonic. As is apparent in Figs. 2 and 3

above, box shape has a strong influence on DPBC, which

can create accidental coincidences with the infinite system

size result at finite box sizes in specific geometries—but

only in the limit of both H and L large will the results

truly converge. This convergence only occurs at relatively

large system sizes. To converge a MARTINI simulation of

a 1 nm protein within 5% error of the infinite system size,

assuming H/L = 0.1 (our best case in Fig. 4), we would need

L ≈ 115 nm and H ≈ 11.5 nm. This is a factor of 8 larger in

volume than typically applied simulations. The situation is far

worse in all-atom computations, where the required sizes for

5% error would be roughly L ≈ 700 nm and H ≈ 70 nm—

a completely unreasonable size for today’s computers, but

an unavoidable conclusion dictated by the physically relevant

value of Lsd = 78 nm assumed in the plot. Again, it is stressed

that Lsd = 78 nm represents the low end of measurements for

the Saffman-Delbrück length. If Lsd is closer to the micron

scale, as reported in some experiments,24,25,38,39,45 the required

box sizes would be even larger.

There would not appear to be a direct and straightforward

way to infer D∞ solely based on finite size simulations.

In principle, one could imagine fitting multiple simulations

over varied box geometries to Eq. (6) in order to obtain the

hydrodynamic parameters of the model (η f , ηm,R). In turn,

these parameters could be used to estimate D∞ via Eq. (7).

As a matter of practice, it seems likely that such a scheme

would be difficult to implement and could be problematic if

the hydrodynamic theory of Eqs. (6) and (7) fails to account

for all the necessary physics in the system (see Sec. VI).

IV. DIMERS OF PROTEINS

Knight et al. have recently studied the diffusion of dimers

of membrane-bound proteins,10 observing both experimentally

and in molecular dynamics simulations that diffusion coeffi-

cients of protein dimers are half that of individual proteins.

This implies that the hydrodynamic correlations between the

two proteins are negligible, i.e., they are freely draining. Two

of us recently showed that the strength of these correlations

strongly depends on the hydrodynamic environment of the

membrane, with particular focus paid to the influence of

a solid supporting substrate beneath the bilayer.34 In this

section, it is shown that PBC can also change hydrodynamic

correlations significantly, and that quantitative comparison

between experiment and simulations of membrane dimer

diffusion must consider the effects of PBC.

To calculate the diffusion coefficient of a protein dimer

(as illustrated in Fig. 5), the mobility of the assembly in

directions parallel to (µ ∥) and perpendicular to (µ⊥) its

long axis must be computed. Without loss of generality, the

dimer’s long axis is assumed coincident with the x direction.

Applying a steady total force Fx̂ to the dimer (Fx̂/2 to each

monomer), the dimer will move with a constant velocity v

= µ ∥Fx̂. Considering either protein, its velocity will include a

contribution µmonomerF/2x̂ from the direct force on that protein

and a contribution of Txx(r)F/2, where Txx is the membrane

Oseen tensor and r the separation of the proteins. (This descrip-

tion, which approximates the hydrodynamic correlations

between the monomers in the point-particle approximation,

should be regarded as a quasi-2D version of the Kirkwood

FIG. 5. (a) Illustration of dimer of proteins separated by distance r within

simulation box; periodic boundary conditions are assumed but not shown.

(b) Snapshot of representative frame of simulation of LacY dimer within a

MARTINI DPPC bilayer.
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approximation.31,33) Thus, µ ∥ =
1
2
[µmonomer + Txx(r)];

34,35,46

the dimer diffusion coefficient approaches half the monomer

diffusion coefficient only when the hydrodynamic correlations,

represented by the membrane Oseen tensor, are negligible.

Similarly, µ⊥ =
1
2

�

µmonomer + Ty y(r)
�

. Though the dimer will

have different diffusion coefficients along its two axes (D∥
= kBT µ ∥, D⊥ = kBT µ⊥), in the long time limit its center

of mass will diffuse with an isotropic diffusion coefficient

Ddimer =
�

D∥ + D⊥
�

/2 owing to rotational averaging.47 There-

fore, the long-time, rotationally averaged diffusion coefficient

of a protein dimer with separation r is

Ddimer =
1

2

�

Dmonomer + kBT T̄(r)
�

, (8)

where T̄(r) = 1
2
tr Ti j(r) =

1
2

�

Txx(r) + Ty y(r)
�

and r is the

center-center separation of the protein dimer. This result

applies generally to both the PBC and infinite case. Differences

between the two result from the different values for both mono-

mer diffusion and the membrane Oseen tensor between the two

hydrodynamic geometries. The Kirkwood approximation will

break down in the limit where the separation r approaches

the size of the protein;34,35 in fact, T̄(r) diverges as r→ 0.

For numerical simplicity in converging the sum in Eq. (2), a

regularized Oseen tensor is used,34 multiplying the integrand

of Eq. (2) by φϵ(r) =
1

2πϵ2 e−r
2/2ϵ2

with ϵ = 0.3 nm; it was

verified that this does not affect any of the results shown.

Predicted dimer diffusion coefficients for an imagined

MARTINI simulation are shown in Fig. 6. The dimer-

monomer ratio is seen to depend strongly on system size. In

particular, for commonly used system sizes, the hydrodynamic

correlation can drop to zero or even become negative at

separations of 4-5 nm, and therefore the dimer diffusion

coefficient can drop below half of the monomer diffusion

coefficient—representing an anticorrelation between the mo-

tion of two proteins at certain separations. This suggests that

dimer simulations in MARTINI10 could potentially observe

an apparent absence of correlations due to PBC, even if the

Saffman-Delbrück model would predict strong correlations in

the infinite system. It should be noted that if r is comparable

to L, T̄PBC(r) is noticeably anisotropic; Fig. 6 considers only

the orientationally averaged results.

FIG. 6. Diffusion coefficients of a dimer of proteins with radius R = 1 nm in

the Kirkwood approximation (Eq. (8)). Dmonomer is computed via Eq. (6) for

the given system size, and this plot assumes the typical MARTINI value of

Lsd= 8.6 nm. Results reflect an average over orientation within the simulation

box (see text). Only separations with r < L/2 are plotted.

Fig. 6 also illustrates that the dimer/monomer ratio will

eventually converge to the result for an infinite system, but that

this takes very large system sizes, of the order of hundreds of

nanometers. This is comparable to the system sizes required

to converge the monomer diffusion coefficients, as studied

above.

V. MARTINI SIMULATIONS OF TRANSMEMBRANE
PROTEIN DIFFUSION: MONOMER AND DIMERS

To assess the predictions of Secs. II–IV, simulations

of the membrane spanning protein LacY (Fig. 5(b)) were

run in the MARTINI coarse-grained force field5,48,49 using

GROMACS 4.0.5.50 Both monomers and dimers were studied;

the dimers are connected by stiff harmonic constraints with

equilibrium lengths of 6 and 10 nm and a force constant

of 1250 kJ mol−1 nm−2. This spring connects the CA bead

of Pro123 on one LacY monomer to the CA bead of

Pro123 on the other; these are the beads closest to the LacY

center.

All systems contained 2048 DPPC lipids and 50 784

waters and were simulated at a temperature of 323 K

with a Nosé-Hoover thermostat51,52 and Parrinello-Rahman

barostat.53 Although this integrator is not ideal for studying

hydrodynamic effects,54,55 attempts to implement strict energy

and momentum conserving simulations within GROMACS

were not successful and were ultimately abandoned. While

use of the NPT thermostat is recognized to be a potential

issue, the below results do seem to indicate support for the

predictions in Secs. II–IV.

To set up the initial lipid bilayers, the procedure used

in Knight et al.10 was followed. The bilayers equilibrated to

L = 25.0 nm with water height H = 5.1 nm and a membrane

thickness of 4 nm (i.e., total z-dimension box size of 14.2 nm).

25 starting conformations were chosen from equally spaced

coordinate sets in the last 1/4 of a microsecond equilibration

for each of the systems. New velocities were assigned, and

each of these was run for 1.8 µs of NPT. The first 100 ns

of each simulation was considered equilibration and the final

1.7 µs as production.

The starting configuration and force field parameters for

LacY were taken from the CGDB.49 PyMOL56 was used

to manually align LacY with one of the pre-equilibrated

2048-lipid bilayer systems. After adding counterions and

deleting overlapping waters and lipids, the system was energy

minimized and run for 1 µs at NPT. The same procedure

was followed for LacY dimers separated by 6 and 10 nm.

All three systems were then simulated as described above,

yielding 75 trajectories and 127.5 µs of production. Diffusion

coefficients were determined by fitting to the mean square

displacements of the LacY monomer or LacY dimer center of

masses.

Diffusion coefficients for monomeric LacY and the

two dimers (6 nm and 10 nm separations) were found

to be Dmonomer = (2.06 ± 0.19) × 10−7 cm2/s, Ddimer (6 nm)

= (1.33 ± 0.19) × 10−7 cm2/s, and Ddimer (10 nm) = (1.16

± 0.11) × 10−7 cm2/s, respectively.57 To compare these data

with theory, ηm for MARTINI DPPC was treated as a fitting
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constant in Eq. (6) to reproduce the simulated value of

Dmonomer. The remaining constants were held to the values

specified above: H = 5.1 nm, L = 25.0 nm, R = 2 nm, and

η f = 7 × 10−3 P. The resulting best-fit ηm = 1.99 × 10−8 P cm,

which is reasonably close to the value previously reported

in the literature: 1.2 × 10−8 P cm.9 Although the disparity

between the best-fit ηm and the literature value might trouble

some, it is important to recognize that there are many sources

for possible inconsistency between continuum theories and

dynamics at the molecular level. Both length scales H and R

are poorly defined on the molecular scale; it is unclear if these

sizes should reflect the bare sizes of the bilayer and protein

(as we have done), or some larger effective “hydrodynamic”

lengths incorporating solvating layers of water around the

bilayer and/or solvation shells of lipids around the protein.

Beyond this, if LacY causes a distortion of the lipids and/or

waters in its immediate vicinity, this will lead to further

ambiguities in the hydrodynamic parameters. The literature

value of viscosity for MARTINI DPPC is based on a single

measurement of an isolated homogeneous lipid system without

protein inclusions,9 which is expected to need some refinement

for application to the present system if all other parameters

are taken as fixed. Using ηm = 1.99 × 10−8 P cm along with

the other fixed parameters in Eq. (8) leads to the theoretical

predictions for dimer diffusivities in Fig. 7 (blue curve). The

predictions are in reasonable agreement with the simulated

Ddimer values.

If one were to attempt to fit the simulated data assuming

an infinite box theory—i.e., just repeat the procedures of

the above paragraph, but interpret the simulations as if H

= L = ∞ using Eq. (7) for the ηm fit—the resulting value for

η∞m = 5.71 × 10−8 P cm. This value is in considerably worse

agreement with the literature precedent than is the value from

the PBC fit, which in itself might discredit use of the infinite

theory. Furthermore, the subsequent theoretical prediction for

dimer diffusion based on the infinite geometry (red dashed

curve in Fig. 7) appears inconsistent with the simulations.

There are obvious serious limitations when one attempts to

use hydrodynamic theory for quantitative predictions at the

∼nm scale, but the simulations do seem to indicate a clear

influence of PBC artifacts.

FIG. 7. Simulations of LacY dimer diffusion in a lipid bilayer membrane

are consistent with a theory including PBC, but not one neglecting those

effects. The viscosities presented are determined by fitting to the simulated

monomer diffusion coefficient Dmonomer= 2.06×10−7 cm2/s (see text). We

have averaged our theory over orientation within the simulation box, as in

Fig. 6.

VI. DISCUSSION

Throughout this work, the validity of the Saffman-

Delbrück hydrodynamic model is assumed. With this assump-

tion follows the unavoidable conclusion that strong size-

dependent effects should influence simulations of lipid bilayer

membranes that aim to study lateral transport. Though we

believe the Saffman-Delbrück picture to be largely correct, we

highlight a few potential issues that may limit the quantitative

applicability of our conclusions. The following points are

discussed in the paragraphs below: (1) simulations without

momentum conservation are not expected to agree with hydro-

dynamic theories like Saffman-Delbrück, (2) the Saffman-

Delbrück model assumes creeping flow, completely neglecting

inertia, (3) at the small scales of proteins and lipids, continuum

models may break down, (4) the membrane’s undulations may

alter diffusion coefficients, and (5) non-hydrodynamic sources

of dissipation may be important, especially if proteins distort

the membrane.

1. The Saffman-Delbrück model is a hydrodynamic model

that assumes momentum conservation. This assumption is

violated in some common molecular dynamics algorithms.

For example, in Langevin dynamics, each particle is

subjected to a frictional drag and a stochastic force obeying

a fluctuation-dissipation theorem (see, e.g., Ref. 58).

This additional friction force significantly changes the

hydrodynamics of a simulated fluid,29 and one should not

expect either the present results or the SDHPW results to

hold in Langevin dynamics simulations. Other thermostats,

including the commonly used Nosé-Hoover approach,

may also potentially disrupt hydrodynamic flows.54,55 To

study transport properties, either an NVE integrator or

a thermostat specifically designed to preserve hydrody-

namics (e.g., dissipative particle dynamics thermostats59,60)

would be most appropriate. Unfortunately, most large-

scale simulation packages suitable for studying realistic

lipid architectures do not support this functionality without

some degree of modification and tinkering. A robust test

of the theories presented here will require further simu-

lations.

2. The Saffman-Delbrück model and its extensions here

assume the Stokes limit, where the inertia of the mem-

brane and surrounding fluid are completely neglected.

Certain aspects of our predictions, particularly the 2D-

like divergence of D with L at fixed H , would likely be

modified with the inclusion of inertial effects. In a true

2D fluid, the Reynolds number is a singular perturbation37

that can regularize similar divergences and we expect

that analogous effects may apply to our PBC quasi-2D

geometry. However, extension of Stokes limit diffusion

coefficient calculations to nonzero Reynolds number can

be quite difficult. We know of no systematic attempts to

treat this for the membrane geometry.

3. Saffman-Delbrück approaches assume a continuum model

for the membrane, which is normally only valid for

objects much larger than the dimensions of the constituent

molecules. Membrane proteins typically have radii in

the nm scale, while the lipid head radius is around

0.5 nm, which could cause one to be uneasy about
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continuum hydrodynamic models (see, e.g., Refs. 41 and

61). Even if the hydrodynamic approach is reasonable

for proteins, one might be more skeptical about its use

to analyze finite size effects solely for lipids.12 Molec-

ular dynamics simulations of the diffusion of spherical

objects in fluid show that the Stokes-Einstein result

with slip boundary conditions is recovered for smooth

solutes four times larger than the solvent particle,62 and

stick boundary conditions can be recovered from rough

solutes in some cases.63,64 Some of these non-continuum

effects may not be as relevant for membrane proteins

as for spherical solutes, as the Saffman-Delbrück model

predicts relatively modest changes between slip and stick

boundary conditions.18,19 Though this problem has been

extensively studied in three dimensions, we are unaware

of any attempts to treat it for membranes. Highly coarse-

grained molecular dynamics simulations have claimed

agreement with Saffman-Delbrück,8 but determining any

non-continuum effects would be difficult without both

accounting for the finite size effects we describe here and

independently measuring the membrane and surrounding

fluid viscosities.

4. The Saffman-Delbrück model and our work assume a

perfectly flat bilayer, neglecting membrane undulations.

Over a sufficiently rough surface, the projected diffusion

coefficient may differ from the real one.65,66 In addition,

distortions in the membrane could potentially influence

hydrodynamics,11 though to linear order in-plane and

out-of-plane membrane dynamics are believed to be

uncoupled.23

5. Finally, if a protein distorts the surrounding membrane,

additional drag may be caused, reducing the protein’s

diffusion coefficient.66–70 If these effects are strong enough,

they could potentially compete with or even overwhelm

the hydrodynamic contributions to D discussed in this

work.

Above caveats notwithstanding, if the Saffman-Delbrück

model is correct in essence, our system size predictions follow

naturally. The mentioned complications are not anticipated to

drastically modify these predictions unless the assumptions of

the Saffman-Delbrück model are flagrantly violated, e.g., by

using Langevin dynamics with a large friction.29 Testing

these system size effects in simulations may provide a

validation of the Saffman-Delbrück assumptions, without

having to deal with the complications arising from varying

protein sizes, as done experimentally.40,44,71 Even if Saffman-

Delbruck predictions are not fully accurate in the description

of experiment, as claimed by some,71,72 this does not mean

that hydrodynamic flows are irrelevant to the self-diffusion

of proteins and/or lipids in the bilayer. For example, even

within the context of non-continuum “free area” theories for

lipid diffusion, hydrodynamic traction from the surrounding

water may still influence diffusivities.61 In such a case, PBC

would still be expected to influence lipid diffusivity, even

though the predictions of Appendix B may be quantitatively

off.

In addition to single-particle self-diffusion, many other

physical phenomena subject to hydrodynamic flow in the

membrane should be influenced by PBC. An important

example has been discussed already: hydrodynamic corre-

lations, which influence the diffusion coefficients of dimers.

Using the periodic Oseen tensor will also quantitatively change

the correlations measured in two-particle microrheology73,74 in

membranes. Hydrodynamic effects also arise in the long time

tails of objects in fluids28,75,76 and may be affected by PBC.

Rates of protein association in three dimensions are known

to depend on hydrodynamic interactions,77,78 suggesting that

associations at the membrane surface may also be sensitive

to hydrodynamics and subject to PBC artifacts. However,

not all hydrodynamic phenomena are expected to be as

strongly influenced by PBC as self-diffusion. In comput-

ing membrane-protein mobility, the flows are very long-

ranged because of the underlying force monopole. Properties

controlled by higher-order force moments (e.g., rotational

diffusion,18 domain relaxation,38 or increased intrinsic vis-

cosity21,70) are expected to be less sensitive to finite system

sizes.

Though this study has focused on changes in membrane

hydrodynamics with finite system sizes, some of these effects

may show up in three-dimensional isotropic fluids in strongly

anisotropic boxes. If fluid flow is essentially uniform over the

z direction, the fluid will again be nearly two-dimensional (as

in the 2D-3D transition in soap films79), and the divergence of

D with increasing L may appear.

The approaches discussed here are easily extended to

various complications in membrane geometry (e.g., supported

lipid bilayers34). A particularly relevant case involves includ-

ing the two-leaflet structure of the bilayer explicitly; friction

between the two leaflets then can influence the dynamics of

bodies localized within a single leaflet, such as a monotopic

protein or individual lipid.34,80–82 A generalization to the

two-leaflet case is provided in Appendix B. Should these

single-leaflet results be applied to lipids? As discussed above,

there are good reasons to be skeptical of a hydrodynamic

theory applied at the scale of individual lipids, at least

for quantitative predictions. However, simulations of lipids

in varying box sizes qualitatively agree with theoretical

predictions. Specifically, increasing L systematically increases

the diffusion coefficient of lipids (Appendix B). This suggests

that many of the qualitative features described here (large

errors, systematic changes with D ∼ ln L) may be relevant

to pure lipid systems and calls into question the reliability of

simulation estimates for lipid self-diffusion (see Refs. 12–14

and references within).
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APPENDIX A: OSEEN TENSOR FOR A MEMBRANE
WITH PERIODIC BOUNDARY CONDITIONS IN x , y ,
AND z

We want to solve the membrane Stokes equations with

periodic boundary conditions in x, y , and z. The fluid above

and below the membrane obeys the incompressible Stokes

equations

η f∇2v±f − ∇P±f = 0, (A1)

∇ · v±f = 0. (A2)

The velocity of the fluid above the membrane matches the

velocity at the membrane—this implies that v f (r⊥, z = 0)

= vm(r⊥) where vm(r⊥) is the membrane velocity at r⊥
= (x, y). We assume that the membrane velocity vm is only

in the x y plane, vm(r⊥) = (vm,x, vm, y,0). Because of the

periodic boundary conditions in z, we must have v+
f
(r⊥, z = H)

= v−
f
(r⊥, z = −H), or equivalently that v+

f
(r⊥, z = 2H) = v+

f

(r⊥, z = 0) = vm(r⊥), and a similar constraint on v−
f
. v f must

also obey periodic boundary conditions in x and y , v±
f

(x = L/2, y, z) = v±
f
(x = −L/2, y, z) and v±

f
(x, y = L/2, z)

= v±
f
(x, y = −L/2, z).

The membrane obeys the equations

ηm∇2vm − ∇Pm + Π
+ · n̂+ + Π− · n̂− + f(r⊥) = 0, (A3)

∇ · vm = 0, (A4)

where Π± is the stress tensor of the fluid above (below)

the membrane, Π±
i j
= η f

�

∂iv f , j + ∂jv f , i
�

− Pmδi j, n̂± are the

upper (lower) normals to the membrane, and f(r⊥) is a force

applied to the membrane. Here, i and j run over x,y , and

z. We assume that the membrane is flat, i.e., n̂± = ±ẑ and

that the membrane velocity is only in the plane—therefore,

Π
+ · n̂+ = η f ∂zv

+
f
(r⊥, z)|z=0. By the symmetry of the problem,

Π
− · n̂− = −η f ∂zv

−
f
(r⊥, z)|z=0 = Π

+ · n̂+.
Because vm must obey periodic boundary conditions in x

and y , we can expand vm in a Fourier series,

vm =
1

L2



q

vm(q)e
−iq·r⊥, (A5)

where the sum is over q = (m,n,0) 2π
L

where m and n are

integers.

We will take the Ansatz that

v+f (x, y, z) = vm(x, y) f (z). (A6)

With this Ansatz, v+
f

is incompressible in three dimensions as

long as vm is incompressible in the plane. Because we have

assumed a Fourier series form for vm, both vm and v+
f

will

satisfy the periodic boundary conditions in x and y . To ensure

that v+
f
(r⊥, z = 2H) = v+

f
(r⊥, z = 0) = vm(r⊥), we must have

f (0) = f (2H) = 1. We must only ensure that our Ansatz solves

the Stokes equations in the bulk fluid, Eq. (A1). Taking the curl

of Eq. (A1) to eliminate the pressure, we find∇2
(

∇ × v+
f

)

= 0;

taking the z component of this equation, we find

1

L2



q

e−iq·r⊥
�

f ′′(z) − q2 f (z)
�

(A7)

×
�

−iqxvm(q) · ŷ + iqyvm(q) · x̂
�

= 0, (A8)

and therefore f ′′(z) = q2 f (z), requiring f (z) = A(q)e−qz

+ B(q)eqz. Applying the boundary conditions f (0) = 1,

f (2H) = 1, we find

f (z) = cosh [q(H − z)] sech [Hq] . (A9)

This allows us to calculate the traction from the outside fluid

on the membrane,

Π
+ · n̂+ = η f ∂zv

+
f (r⊥, z)|z=0 (A10)

=
1

L2



q

�

η f f ′(z = 0)
�

vm(q)e
−iq·r⊥ (A11)

=
1

L2



q

�

−η f q tanh (qH)
�

vm(q)e
−iq·r⊥. (A12)

The other traction follows similarly. If we look at the Fourier

transform of Eq. (A3), we thus find

−ηmq2vm(q) − iqPm(q) − 2η f q tanh(qH)vm(q) + f(q) = 0.

(A13)

We may solve this equation and eliminate the pressure

by applying the projection operator ℘⊥
i j
(q) ≡ (δi j − qiqj/q2);

by incompressibility, ∇ · vm = 0 and thus q · vm(q) = 0 and

℘⊥vm(q) = vm(q). We find

vm, i = Ti j(q) f j(q), (A14)

with Ti j(q) given by Eq. (3).

APPENDIX B: GENERALIZATION TO MONOTOPIC
PROTEINS AND LIPIDS

The results of Section III and Appendix A are easily

generalized to describe the behavior of objects embedded

within only one leaflet of the membrane. Using an elementary

model for two-leaflet bilayers,34 it is found that

DPBC =
kBT

2L2



k,0

A(k)

A(k)2 − B(k)2
e−k

2β2R2/2, (B1)

D∞ =
kBT

2


d2k

(2π)2
A(k)

A(k)2 − B(k)2
e−k

2β2R2/2, (B2)

A(k) = ηmonok2 + η f k coth(2Hk) + b, (B3)

B(k) = b + η f k csch(2Hk), (B4)

where b is the intermonolayer friction coefficient and ηmono

= ηm/2 is the monolayer surface viscosity. It is readily verified

that in the limit b→ ∞, Eqs. (B1) and (B2) reproduce Eqs. (6)

and (7).

Figure 8 displays the predicted relative error in D for

a single-leaflet or “monotopic” body approximately the size

of a lipid or small peptide (R = 0.5 nm). The results are

qualitatively similar to Fig. 3: the logarithmic divergence

at large L for fixed H persists, as does the convergence to

infinite-box results when H,L ≫ Lsd. However, the complex

interplay between viscosities, intermonolayer friction, and

box geometry does lead to some quantitative differences

with Fig. 8. The most obvious of these differences is the

relatively small disparity between the MARTINI and all-

atom cases (panes (a) and (b)) as compared to the bilayer-

spanning example displayed in Fig. 3. This is not a general
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FIG. 8. The influence of PBC on a monotopic object (Eq. (B1), displayed here) is qualitatively similar to that of a membrane-spanning object (Eq. (6), see

Fig. 3). (a) Errors in diffusion coefficients appropriate for coarse-grained simulations (MARTINI), with membrane monolayer viscosity ηmono= 6×10−9 P cm

and η f = 0.007 P (Lsd= 8.6 nm), and interleaflet friction coefficient b = 2.4×105 P/cm.9 (b) Errors in diffusion coefficients appropriate for all-atom simulations,

with viscosities set to match that of Ref. 40, ηmono= 7.5×10−8 P cm, η f = 0.0096 P (Lsd= 78 nm), and interleaflet friction b = 107 P/cm (a representative

physical value; see Ref. 34 and references within). (c) Errors in diffusion coefficients appropriate for all-atom simulations, with viscosities set to match that of

Ref. 44, ηmono= 1.63×10−7 P cm, η f = 0.01 P (Lsd= 163 nm), and interleaflet friction b = 107 P/cm. The object radius assumed is R = 0.5 nm in all plots,

corresponding to a small peptide or lipid. The zero-error contour is plotted to emphasize the fact that both positive and negative differences between DPBC and

D∞ can be observed depending on box geometry.

consequence of single-leaflet particles but results from the

particular numerical values used for the monolayer viscosity

and intermonolayer friction. To make this point clear, an

additional pane (c) is included, using a different estimate

of Lsd = 163 nm, which is also experimentally motivated.44

Indeed, as discussed previously, the value Lsd = 78 nm is

among the lowest reported in the experimental literature;

Lsd = 163 nm can be considered closer to a consensus value

and it is likely that pane (c) of Fig. 8 provides a more accurate

prediction of all-atom simulations than does pane (b).

As mentioned in Sec. VI, there are obvious reasons to

question the direct application of Eq. (B1) to lipids. However,

preliminary simulations of lipid diffusion appear qualitatively

consistent with the hydrodynamic model; these results are

briefly summarized here. Eight MARTINI DPPC bilayer

simulations to compare both the effects of box size/geometry

and MD integrators (NPT vs NVE) were carried out. Given our

previously mentioned inability to implement strictly energy-

conserving simulations within GROMACS, the systems were

pre-equilibrated in GROMACS and run for production in

CHARMM.83 The MARTINI force field uses a cosine-based

angle potential; this was implemented using DOMDEC84 for

fast parallel computation within CHARMM that would be

exactly comparable to GROMACS. DPPC bilayers were set

up following the procedure in the work of Knight et al.10

Four equilibrated bilayers were prepared in GROMACS,

with L = 12.7 nm and H = 4.85 nm, L = 25.4 nm and H

= 4.85 nm, L = 12.7 nm and H = 9.70 nm, and L = 25.4 nm

and H = 9.70 nm, all with a membrane thickness of 4.0 nm.

These systems were simulated at a temperature of 323 K

with Parrinello-Rahman semi-isotropic pressure coupling and

Nosé-Hoover temperature coupling. New velocities were

assigned, and these were run for 2.3, 1.0, 2.5, and 1.0 µs

of NPT, respectively. Each system was then resized to fit

into a tetragonal unit cell and further equilibrated for 2 ns

in CHARMM using extended system pressure coupling and

Nosé-Hoover temperature coupling to maintain a pressure of

1 atm and a temperature of 323 K. Those four equilibrated

bilayers were used to start eight production runs (four NPT

and four NVE), with total production times shown in Table II.

Diffusion coefficients were obtained by fitting to the linear

portion of the mean square displacement curve. Standard

errors were obtained by block averaging, with ten blocks per

simulation.

The molecular dynamics simulations of MARTINI DPPC

lipids within CHARMM display qualitative, though not

quantitative agreement with Eq. (B1) (see Table II). As

quantitative agreement is not expected between simulation and

TABLE II. Comparison of lipid diffusion coefficients in MARTINI simula-

tions to the predictions of Eq. (B1). In qualitative agreement with Eq. (B1)

at the studied box geometries, increasing L causes significant increases in

simulated lipid diffusivity, but increasing H has little effect.

D, theory

D, NVE

MARTINI

D, NPT

MARTINI

Simulation

time (µs)

L (nm) H (nm) (10−7 cm2/s) (10−7 cm2/s) (10−7 cm2/s) NVE/NPT

12.7 4.85 8.51 7.65 ± 0.2 8.14 ± 0.1 6.9/6.6

25.4 4.85 10.1 9.52 ± 0.2 10.2 ± 0.2 2.0/1.9

12.7 9.7 8.51 7.99 ± 0.2 8.57 ± 0.2 4.8/3.7

25.4 9.7 9.99 9.85 ± 0.2 9.83 ± 0.2 1.7/1.8
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hydrodynamic theory for lipids, no attempt has been made to

fit the parameters (ηmono, b) of Eq. (B1) in comparison to

the simulations. Rather, the nominal MARTINI DPPC values

reported in Ref. 9 were used, as detailed in Fig. 8.

APPENDIX C: RELATION WITH PREVIOUS
APPROACHES: THE IMMERSED BOUNDARY METHOD
REPRODUCES KNOWN RESULTS IN 3D

We compare the immersed-boundary approach to known

results in three dimensions. Yeh and Hummer16 claim in 3D

that, for a sphere of radius R in a three-dimensional box of

linear size L with fluid of viscosity η,

DPBC
3D = D∞3D −

kBT

6πηL

(

ξ − 4πR2

3L2

)

, (C1)

where ξ ≈ 2.837 297.

We will show that the immersed-boundary approach

reproduces Eq. (C1) very accurately, as long as the relationship

between the immersed boundary object size a and the

sphere radius R is calibrated appropriately. First, we compute

the immersed-boundary result for the mobility in a three-

dimensional infinite system, with an immersed-boundary

Gaussian of size a; we will address the relationship between

a and R below

µ∞3D =


d3k

(2π)3
e−k

2a2

ηk2

(

1 − kzkz

k2

)

(C2)

=
2

3


d3k

(2π)3
e−k

2a2

ηk2
(C3)

=
1

6π3/2ηa
. (C4)

We see here that we get the correct Stokes-Einstein scaling

µ ∼ 1/ηa (a result similar to that obtained in Ref. 85). If

we require µ = [6πηR]−1, we find that R =
√
πa, i.e., the

immersed boundary object with size parameter a corresponds

with a no-slip object of R > a. (We use a slightly different

FIG. 9. Second correction to the mobility, ηa∆µ(2)=ηaµPBC
3D
−ηaµ∞

3D

+
ξ

12π2α. ηaµPBC
3D

is calculated from Eq. (C6); the sum is calculated over

the range n,m, p ∈ [−nmax,nmax] where nmax= ⌊4/α⌋ (⌊ · · ·⌋ is the floor

function). These values of nmax are sufficient to ensure convergence.

convention for the size parameter here; above, we have written

our equations in terms of b =
√

2a.)

In cubic periodic boundary conditions with a linear size

L, the immersed-boundary result is

µPBC
3D =

1

L3



k,0

e−k
2a2

ηk2

(

1 − kzkz

k2

)

, (C5)

where the sum is over k = 2π
L (m,n,p) with m,n,p varying over

all integers (aside from m = n = p = 0). We can cast this into

the form

µPBC
3D =

1

ηa

2

3

α

(2π)3

′

m,n,p

e−(m
2+n2+p2)α2

m2 + n2 + p2
, (C6)

where the prime indicates the exclusion of m = n = p = 0 and

α = 2πa/L. As α → 0, Eq. (C6) approaches Eq. (C4). What

should the finite-size corrections look like? From Eq. (C1), if

we assume that R = γa, we expect

�

µPBC
3D − µ∞3D

�

= ∆µ(1) + ∆µ(2), (C7)

where

ηa∆µ(1) = − ξ

12π2
α, (C8)

ηa∆µ(2) =
2

9
γ2 α3

(2π)3
. (C9)

We show that this is the case in Fig. 9 by plotting ηaµPBC
3D

− ηaµ∞
3D
+

ξ

12π2α as a function of α. In fact, we find that

the “effective radius” of R =
√
πa (γ =

√
π), as motivated

by the comparison to an infinite-volume Stokes mobility

above, is a very good fit for the residual error; the best

fit is R = 0.977
√
πa. This corresponds to saying b = βR in

three dimensions, with β ≈
√

2
0.977π

≈ 0.82—surprisingly close

to the value found for the membrane geometry above (β

= 0.828 494).

1R. B. Gennis, Biomembranes: Molecular Structure and Function (Springer-

Verlag, Berlin, 1989).
2J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’Connor, D. J. Tobias, C.

Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, Jr., and R. W. Pastor,

J. Phys. Chem. B 114, 7830 (2010).
3L. Rosso and I. R. Gould, J. Comput. Chem. 29, 24 (2008).
4O. Berger, O. Edholm, and F. Jähnig, Biophys. J. 72, 2002 (1997).
5S. Marrink, H. Risselada, S. Yefimov, D. Tieleman, and A. De Vries, J. Phys.

Chem. B 111, 7812 (2007).
6I. R. Cooke, K. Kremer, and M. Deserno, Phys. Rev. E 72, 011506 (2005).
7G. Brannigan, L. C.-L. Lin, and F. L. Brown, Eur. Biophys. J. 35, 104

(2006).
8G. Guigas and M. Weiss, Biophys. J. 91, 2393 (2006).
9W. den Otter and S. Shkulipa, Biophys. J. 93, 423 (2007).

10J. Knight, M. Lerner, J. Marcano-Velázquez, R. Pastor, and J. Falke, Biophys.

J. 99, 2879 (2010).
11M. Chavent, T. Reddy, J. Goose, A. C. E. Dahl, J. E. Stone, B. Jobard, and

M. S. Sansom, Faraday Discuss. 169, 455 (2014).
12J. B. Klauda, B. R. Brooks, and R. W. Pastor, J. Chem. Phys. 125, 144710

(2006).
13E. Flenner, J. Das, M. C. Rheinstädter, and I. Kosztin, Phys. Rev. E 79,

011907 (2009).
14T. Apajalahti, P. Niemelä, P. N. Govindan, M. S. Miettinen, E. Salonen, S.-J.

Marrink, and I. Vattulainen, Faraday Discuss. 144, 411 (2010).
15B. Dünweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).
16I.-C. Yeh and G. Hummer, J. Phys. Chem. B 108, 15873 (2004).
17S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected

Applications (Dover Publications, 2005).

http://dx.doi.org/10.1021/jp101759q
http://dx.doi.org/10.1002/jcc.20675
http://dx.doi.org/10.1016/S0006-3495(97)78845-3
http://dx.doi.org/10.1021/jp071097f
http://dx.doi.org/10.1021/jp071097f
http://dx.doi.org/10.1103/PhysRevE.72.011506
http://dx.doi.org/10.1007/s00249-005-0013-y
http://dx.doi.org/10.1529/biophysj.106.087031
http://dx.doi.org/10.1529/biophysj.107.105395
http://dx.doi.org/10.1016/j.bpj.2010.08.046
http://dx.doi.org/10.1016/j.bpj.2010.08.046
http://dx.doi.org/10.1039/C3FD00145H
http://dx.doi.org/10.1063/1.2354486
http://dx.doi.org/10.1103/PhysRevE.79.011907
http://dx.doi.org/10.1039/B901487J
http://dx.doi.org/10.1063/1.465445
http://dx.doi.org/10.1021/jp0477147


243113-12 Camley et al. J. Chem. Phys. 143, 243113 (2015)

18P. G. Saffman and M. Delbrück, Proc. Natl. Acad. Sci. U. S. A. 72, 3111

(1975).
19P. Saffman, J. Fluid Mech. 73, 593 (1976).
20B. D. Hughes, B. A. Pailthorpe, and L. R. White, J. Fluid Mech. 110, 349

(1981).
21N. Oppenheimer and H. Diamant, Biophys. J. 96, 3041 (2009).
22D. K. Lubensky and R. E. Goldstein, Phys. Fluids 8, 843 (1996).
23A. J. Levine and F. C. MacKintosh, Phys. Rev. E 66, 061606 (2002).
24E. P. Petrov and P. Schwille, Biophys. J. 94, L41 (2008).
25E. P. Petrov, R. Petrosyan, and P. Schwille, Soft Matter 8, 7552 (2012).
26C. Peskin, Acta Numer. 11, 1 (2002).
27P. J. Atzberger, Phys. Lett. A 351, 225 (2006).
28B. A. Camley and F. L. H. Brown, Phys. Rev. E 84, 021904 (2011).
29B. Dünweg, J. Chem. Phys. 99, 6977 (1993).
30A. J. Levine and T. C. Lubensky, Phys. Rev. E 63, 041510 (2001).
31M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon

Press, 1999).
32R. Cortez, SIAM J. Sci. Comput. 23, 1204 (2001).
33A. J. Levine, T. B. Liverpool, and F. C. MacKintosh, Phys. Rev. E 69, 021503

(2004).
34B. A. Camley and F. L. Brown, Soft Matter 9, 4767 (2013).
35E. Noruzifar, B. A. Camley, and F. L. Brown, J. Chem. Phys. 141, 124711

(2014).
36This value is not precisely the one that we used in Ref. 28, which was

β = 0.797 91. The value for β used in this paper was fitted to the corrected

Saffman-Delbrück interpolation presented in Ref. 25, as the one developed

in Ref. 24 and used for our earlier paper has a typo.
37J. Veysey II and N. Goldenfeld, Rev. Mod. Phys. 79, 883 (2007).
38B. A. Camley, C. Esposito, T. Baumgart, and F. L. H. Brown, Biophys. J. 99,

L44 (2010).
39A. R. Honerkamp-Smith, F. G. Woodhouse, V. Kantsler, and R. E. Goldstein,

Phys. Rev. Lett. 111, 038103 (2013).
40K. Weiß, A. Neef, Q. Van, S. Kramer, I. Gregor, and J. Enderlein, Biophys.

J. 105, 455 (2013).
41W. L. Vaz, F. Goodsaid-Zalduondo, and K. Jacobson, FEBS Lett. 174, 199

(1984).
42Y. A. Domanov, S. Aimon, G. E. Toombes, M. Renner, F. Quemeneur, A.

Triller, M. S. Turner, and P. Bassereau, Proc. Natl. Acad. Sci. U. S. A. 108,

12605 (2011).
43T. J. Müller and F. Müller-Plathe, ChemPhysChem 10, 2305 (2009).
44S. Ramadurai, A. Holt, V. Krasnikov, G. Van Den Bogaart, J. Killian, and B.

Poolman, J. Am. Chem. Soc. 131, 12650 (2009).
45T. T. Hormel, S. Q. Kurihara, M. K. Brennan, M. C. Wozniak, and R.

Parthasarathy, Phys. Rev. Lett. 112, 188101 (2014).
46This brief derivation provides the correct result, but has ignored the forces

of constraint associated with the dimer. A rigorous derivation may be found

in Section V of Ref. 35.
47Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, Science

314, 626 (2006).
48L. Monticelli, S. Kandasamy, X. Periole, R. Larson, D. Tieleman, and S.

Marrink, J. Chem. Theory Comput. 4, 819 (2008).

49M. Sansom, K. Scott, and P. Bond, Biochem. Soc. Trans. 36, 27 (2008).
50B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl, J. Chem. Theory

Comput. 4, 435 (2008).
51S. Nosé, J. Chem. Phys. 81, 511 (1984).
52W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
53M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
54D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algo-

rithms to Applications (Academic Press, 2001), Vol. 1.
55S. D. Stoyanov and R. D. Groot, J. Chem. Phys. 122, 114112 (2005).
56Schroedinger, LLC, The PyMOL Molecular Graphics System, Version 1.4.1,

2011.
57In computing these diffusion coefficients, bilayer center of mass motion

was removed. Trajectories were converted from GROMACS to CHARMM

format, and CHARMM’s correl command was used to calculate MSD

curves. Diffusion coefficients were obtained by fitting to the linear portion

of the MSD curve.
58G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).
59R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).
60T. Soddemann, B. Dünweg, and K. Kremer, Phys. Rev. E 68, 046702

(2003).
61W. L. Vaz, R. M. Clegg, and D. Hallmann, Biochemistry 24, 781 (1985).
62F. Ould-Kaddour and D. Levesque, Phys. Rev. E 63, 011205 (2000).
63J. Schmidt and J. Skinner, J. Phys. Chem. B 108, 6767 (2004).
64J. Schmidt and J. Skinner, J. Chem. Phys. 119, 8062 (2003).
65A. Naji and F. L. Brown, J. Chem. Phys. 126, 235103 (2007).
66A. Naji, P. Atzberger, and F. L. H. Brown, Phys. Rev. Lett. 102, 138102

(2009).
67A. Naji, A. J. Levine, and P. Pincus, Biophys. J. 93, L49 (2007).
68B. A. Camley and F. L. Brown, Phys. Rev. E 85, 061921 (2012).
69V. Démery and D. S. Dean, Phys. Rev. E 84, 011148 (2011).
70B. A. Camley and F. L. Brown, J. Chem. Phys. 141, 075103 (2014).
71Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N. S. Gov, M. Genest,

R. S. Hodes, and W. Urbach, Proc. Natl. Acad. Sci. U. S. A. 103, 2098 (2006).
72Y. Gambin, M. Reffay, E. Sierecki, F. Homblé, R. S. Hodges, N. S. Gov, N.

Taulier, and W. Urbach, J. Phys. Chem. B 114, 3559 (2010).
73A. J. Levine and T. C. Lubensky, Phys. Rev. E 65, 011501 (2001).
74V. Prasad, S. Koehler, and E. Weeks, Phys. Rev. Lett. 97, 176001 (2006).
75R. Zwanzig and M. Bixon, Phys. Rev. A 2, 2005 (1970).
76B. Alder and T. Wainwright, Phys. Rev. A 1, 18 (1970).
77D. Brune and S. Kim, Proc. Natl. Acad. Sci. U. S. A. 91, 2930 (1994).
78J. Antosiewicz and J. A. McCammon, Biophys. J. 69, 57 (1995).
79V. Prasad and E. R. Weeks, Phys. Rev. Lett. 102, 178302 (2009).
80K. Seki, S. Mogre, and S. Komura, Phys. Rev. E 89, 022713 (2014).
81T. Han, T. P. Bailey, and M. Haataja, Phys. Rev. E 89, 032717 (2014).
82R. J. Hill and C.-Y. Wang, Proc. R. Soc. A 470, 20130843 (2014).
83B. R. Brooks, C. L. Brooks, A. D. MacKerell, L. Nilsson, R. J. Petrella, B.

Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch et al., J. Comput. Chem.

30, 1545 (2009).
84A.-P. Hynninen and M. F. Crowley, J. Comput. Chem. 35, 406 (2014).
85P. J. Atzberger, P. R. Kramer, and C. S. Peskin, J. Comput. Phys. 224, 1255

(2007).

http://dx.doi.org/10.1073/pnas.72.8.3111
http://dx.doi.org/10.1017/S0022112076001511
http://dx.doi.org/10.1017/S0022112081000785
http://dx.doi.org/10.1016/j.bpj.2009.01.020
http://dx.doi.org/10.1063/1.868893
http://dx.doi.org/10.1103/PhysRevE.66.061606
http://dx.doi.org/10.1529/biophysj.107.126565
http://dx.doi.org/10.1039/c2sm25796c
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1016/j.physleta.2005.10.107
http://dx.doi.org/10.1103/PhysRevE.84.021904
http://dx.doi.org/10.1063/1.465444
http://dx.doi.org/10.1103/PhysRevE.63.041510
http://dx.doi.org/10.1137/S106482750038146X
http://dx.doi.org/10.1103/PhysRevE.69.021503
http://dx.doi.org/10.1039/c3sm00073g
http://dx.doi.org/10.1063/1.4896180
http://dx.doi.org/10.1103/RevModPhys.79.883
http://dx.doi.org/10.1016/j.bpj.2010.07.007
http://dx.doi.org/10.1103/PhysRevLett.111.038103
http://dx.doi.org/10.1016/j.bpj.2013.06.004
http://dx.doi.org/10.1016/j.bpj.2013.06.004
http://dx.doi.org/10.1016/0014-5793(84)81157-6
http://dx.doi.org/10.1073/pnas.1102646108
http://dx.doi.org/10.1002/cphc.200900156
http://dx.doi.org/10.1021/ja902853g
http://dx.doi.org/10.1103/PhysRevLett.112.188101
http://dx.doi.org/10.1126/science.1130146
http://dx.doi.org/10.1021/ct700324x
http://dx.doi.org/10.1042/BST0360027
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1103/PhysRevA.31.1695
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1063/1.1870892
http://dx.doi.org/10.1103/PhysRevA.33.3628
http://dx.doi.org/10.1063/1.474784
http://dx.doi.org/10.1103/PhysRevE.68.046702
http://dx.doi.org/10.1021/bi00324a037
http://dx.doi.org/10.1103/PhysRevE.63.011205
http://dx.doi.org/10.1021/jp037185r
http://dx.doi.org/10.1063/1.1610442
http://dx.doi.org/10.1063/1.2739526
http://dx.doi.org/10.1103/PhysRevLett.102.138102
http://dx.doi.org/10.1529/biophysj.107.119222
http://dx.doi.org/10.1103/PhysRevE.85.061921
http://dx.doi.org/10.1103/PhysRevE.84.011148
http://dx.doi.org/10.1063/1.4892802
http://dx.doi.org/10.1073/pnas.0511026103
http://dx.doi.org/10.1021/jp911354y
http://dx.doi.org/10.1103/PhysRevE.65.011501
http://dx.doi.org/10.1103/PhysRevLett.97.176001
http://dx.doi.org/10.1103/PhysRevA.2.2005
http://dx.doi.org/10.1103/PhysRevA.1.18
http://dx.doi.org/10.1073/pnas.91.8.2930
http://dx.doi.org/10.1016/S0006-3495(95)79874-5
http://dx.doi.org/10.1103/PhysRevLett.102.178302
http://dx.doi.org/10.1103/PhysRevE.89.022713
http://dx.doi.org/10.1103/PhysRevE.89.032717
http://dx.doi.org/10.1098/rspa.2013.0843
http://dx.doi.org/10.1002/jcc.21287
http://dx.doi.org/10.1002/jcc.23501
http://dx.doi.org/10.1016/j.jcp.2006.11.015

