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Abstract

We study the strong instability of standing waves eiωtφω(x) for nonlinear Schrödinger equa-

tions with an L2-supercritical nonlinearity and an attractive inverse power potential, where

ω ∈ R is a frequency, and φω ∈ H1(RN) is a ground state of the corresponding stationary equa-

tion. Recently, for nonlinear Schrödinger equations with a harmonic potential, Ohta (2018)

proved that if ∂2
λ
S ω(φλω)|λ=1 ≤ 0, then the standing wave is strongly unstable, where S ω is the

action, and φλω(x) := λN/2φω(λx) is the scaling, which does not change the L2-norm. In this

paper, we prove the strong instability under the same assumption as the above-mentioned in

inverse power potential case. Our proof is applicable to nonlinear Schrödinger equations with

other potentials such as an attractive Dirac delta potential.

1. Introduction

1. Introduction
In this paper, we consider the nonlinear Schrödinger equation with an attractive inverse

power potential

(NLS) i∂tu = −∆u −
γ

|x|α
u − |u|p−1u, (t, x) ∈ R × RN ,

where

N ∈ N, γ > 0, 0 < α < min{2,N}, 1 +
4

N
< p < 1 +

4

N − 2
,(1.1)

and u : R × RN → C is an unknown function of (t, x) ∈ R × RN . Here, 1 + 4/(N − 2) stands

for∞ if N = 1 or 2.

Let us consider the Cauchy problem for (NLS). Since the potential V(x) := −γ|x|−α be-

longs to (Lr + L∞)(RN) for some r > max{1,N/2} under the assumption (1.1), the mul-

tiplication operator v �→ V(x)v is continuous from H1(RN) to (Lρ
′

+ L2)(RN) for some

ρ ∈ [2, 2N/(N − 2)), and thus, the potential energy
∫

RN V(x)|v(x)|2 dx is well-defined on

H1(RN). Therefore, the local well-posedness of (NLS) in the energy space H1(RN) fol-

lows from the standard theory, e.g., [3, Theorems 3.3.5, 3.3.9, Proposition 4.2.3]. More

precisely, for each u0 ∈ H1(RN), there exist a maximal interval Imax = [0, T+) ⊂ R with

T+ = T+(u0) ∈ (0,∞] and a unique solution u ∈ C(Imax,H
1(RN)) of (NLS) with u(0) = u0

such that if T+ < ∞, then limtրT+ ‖u(t)‖H1 = ∞. Here, if T+ < ∞, we say that the so-

lution u(t) blows up in finite time. Moreover, the solution u(t) of (NLS) satisfies the two

2010 Mathematics Subject Classification. 35Q55, 35B35.
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conservation laws

E(u(t)) = E(u0), ‖u(t)‖L2 = ‖u0‖L2

for all t ∈ Imax, where

E(v) :=
1

2
‖∇v‖2

L2 −
γ

2

∫

RN

|v(x)|2

|x|α
dx −

1

p + 1
‖v‖

p+1

Lp+1

is the energy.

By a standing wave, we mean a solution of (NLS) with the form eiωtφ(x), where ω ∈ R is

a frequency, and φ ∈ H1(RN) is a nontrivial solution of the stationary equation

(1.2) −∆φ + ωφ −
γ

|x|α
φ − |φ|p−1φ = 0, x ∈ RN .

Eq. (1.2) can be written as S ′ω(φ) = 0, where

S ω(v) := E(v) +
ω

2
‖v‖2

L2

is the action. The following existence and variational characterization of ground states by

using the Nehari functional

Kω(v) := ∂λS ω(λv)|λ=1 = 〈S
′
ω(v), v〉

= ‖∇v‖2
L2 + ω‖v‖

2
L2 − γ

∫

RN

|v(x)|2

|x|α
dx − ‖v‖

p+1

Lp+1

are known (see [6, Remarks 1.2 and 1.3]), where a ground state is a nontrivial solution of

(1.2) with the least action.

Proposition 1.1. Assume (1.1) and

(1.3) ω > ω0 := − inf

{

‖∇v‖2
L2 − γ

∫

RN

|v(x)|2

|x|α
dx

∣

∣

∣

∣

∣

∣

v ∈ H1(RN), ‖v‖L2 = 1

}

.

Then the set of ground states

ω := { φ ∈ ω | S ω(φ) ≤ S ω(v) for all v ∈ ω }

is not empty, where

ω := { φ ∈ H1(RN) \ {0} | S ′ω(φ) = 0 }

is the set of all nontrivial solutions of (1.2). Moreover, if φ ∈ ω, then

(1.4) S ω(φ) = inf{ S ω(v) | v ∈ H1(RN) \ {0}, Kω(v) = 0 }.

For the sake of completeness, we give a proof of Proposition 1.1 in Section 2 by using the

argument in [8, Section 3].

In the present paper, we study the strong instability of the standing wave solution eiωtφω

of (NLS), where ω > ω0 and φω ∈ ω. We recall the definitions of stability and instability

of standing waves.
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D 1.2. Let eiωtφ be a standing wave solution of (NLS).

• We say that eiωtφ is stable if for each ε > 0, there exists δ > 0 such that if u0 ∈

H1(RN) satisfies ‖u0 − φ‖H1 < δ, then the solution u(t) of (NLS) with u(0) = u0

exists globally in time and satisfies

sup
t≥0

inf
θ∈R
‖u(t) − eiθφ‖H1 < ε.

• We say that eiωtφ is unstable if eiωtφ is not stable.

• We say that eiωtφ is strongly unstable if for each ε > 0, there exists u0 ∈ H1(RN)

such that ‖u0 − φ‖H1 < ε, and the solution u(t) of (NLS) with u(0) = u0 blows up in

finite time.

Now, we state some known results related to our works. The stability and instability of

standing waves with a ground state profile for nonlinear Schrödinger equations have been

studied by many researchers. For (NLS) in the nonpotential case γ = 0, Berestycki and

Cazenave [1] proved the strong instability for any ω > 0 when 1 + 4/N ≤ p < 1 + 4/(N − 2)

(for the case p = 1+ 4/N, see also [22]). On the other hand, Cazenave and Lions [4] proved

the stability for any ω > 0 if 1 < p < 1 + 4/N. For abstract Hamiltonian systems including

nonlinear Schrödinger equations, Grillakis, Shatah, and Strauss [10, 11] gave sufficient con-

ditions for the stability and instability, that is, if ∂ω‖φω‖
2
L2 > 0, the standing wave is stable,

and if ∂ω‖φω‖
2
L2 < 0, the standing wave is unstable (see also [20, 21, 23]).

For the nonlinear Schrödinger equation with a general potential

(1.5) i∂tu = −∆u + Ṽ(x)u − |u|p−1u, (t, x) ∈ R × RN ,

Rose and Weinstein [19] proved the stability for ω > ω̃0 sufficiently closed to ω̃0 even when

1 + 4/N ≤ p < 1 + 4/(N − 2) by using the criteria of Grillakis, Shatah, and Strauss [10],

where −ω̃0 is the smallest eigenvalue of the Schrödinger operator −∆ + Ṽ . In [6], Ohta and

Fukuizumi improved the stability results of Rose and Weinstein, and in [7], they proved the

instability for sufficiently large ω when 1 + 4/N < p < 1 + 4/(N − 2) by using the sufficient

condition of Ohta [15], that is, if ∂2
λ
S̃ ω(φ̃λω)|λ=1 < 0, the standing wave eiωtφ̃ω is unstable,

where S̃ ω is the action corresponding to (1.5), and vλ(x) := λN/2v(λx) is the scaling, which

does not change the L2-norm (see also [8, 9] in the Dirac delta potential case and [5] in the

harmonic potential case).

For the nonlinear Schrödinger equation with an attractive Dirac delta potential

(1.6) i∂tu = −∂
2
xu − γ̃δ(x)u − |u|p−1u, (t, x) ∈ R × R,

Ohta and Yamaguchi [18] proved the strong instability of the standing wave with positive

energy Ẽ(φ̃ω) > 0 when γ̃ > 0 and p > 5, and as a corollary, they proved the strong insta-

bility for sufficiently large ω (see also [17] for related works). Recently, for the nonlinear

Schrödinger equation with a harmonic potential

(1.7) i∂tu = −∆u + |x|2u − |u|p−1u, (t, x) ∈ R × RN ,

Ohta [16] proved the strong instability under the same assumption ∂2
λ
S̃ ω(φ̃λω)|λ=1 ≤ 0 as in

[7, 15] when 1 + 4/N < p < 1 + 4/(N − 2).

In view of the graph of λ �→ S̃ ω(φ̃λω), we see that Ẽ(φ̃ω) > 0 implies ∂2
λ
S̃ ω(φ̃λω)|λ=1 < 0.
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Therefore, the question naturally arises whether the standing wave is strongly unstable or

not in the case Ẽ(φ̃ω) ≤ 0 and ∂2
λ
S̃ ω(φ̃λω)|λ=1 ≤ 0 for (1.6). However, the proof for (1.7) in

[16] is not applicable to (1.6).

Now we turn to (NLS). In order to treat more general potentials with suitable properties

related to the scaling λ �→ vλ, we study the nonlinear Schrödinger equation with an inverse

power potential. To the standing wave solution eiωtφω of (NLS), we can apply the results of

Fukuizumi and Ohta [6, 7] and Ohta and Yamaguchi [18]. More precisely, if ω is sufficiently

closed to ω0, then the standing wave is stable, if ∂2
λ
S ω(φλω)|λ=1 < 0, then it is unstable, and if

E(φω) > 0, then it is strongly unstable.

In this paper, we consider the strong instability of standing waves under the same assump-

tion as in [7, 15, 16]. Now, we state our main result.

Theorem 1.3. Assume (1.1), ω > ω0, and that φω ∈ ω satisfies ∂2
λ
S ω(φλω)|λ=1 ≤ 0, where

φλω(x) = λN/2φω(λx). Then the standing wave solution eiωtφω of (NLS) is strongly unstable.

It is proven in [7, Section 2] that the assumption ∂2
λ
S ω(φλω)|λ=1 ≤ 0 is satisfied for suffi-

ciently large ω. Therefore, we have the following corollary.

Corollary 1.4. Assume (1.1). Then there exists ω1 > ω0 such that if ω ≥ ω1 and φω ∈ ω,

the standing wave solution eiωtφω of (NLS) is strongly unstable.

R 1.5. Theorem 1.3 can be extended to more general settings. The important fea-

ture used in the proof of Theorem 1.3 is that the energy satisfies

E(v) =
1

2
‖∇v‖2

L2 −
1

2
G(v) −

1

p + 1
‖v‖

p+1

Lp+1 ,(1.8)

G(v) ≥ 0, G(λv) = λ2G(v), G(vλ) = λαG(v), ‖vλ‖
p+1

Lp+1 = λ
β‖v‖

p+1

Lp+1(1.9)

with 0 < α < 2 < β. Since the energy of (1.6) satisfies (1.8) and (1.9) with G(v) =

γ|v(0)|2, α = 1, and β = (p − 1)/2, the proof is applicable to (1.6) for p > 5. This gives an

improvement of the result of Ohta and Yamaguchi [18].

The proof of blowup for nonlinear Schrödinger equations relies on the virial identity

(1.10)
d2

dt2
‖xu(t)‖2

L2 = 8Q(u(t)),

where Q is the functional on H1(RN) defined by

Q(v) = ‖∇v‖2
L2 −
γα

2

∫

RN

|v(x)|2

|x|α
dx −

N(p − 1)

2(p + 1)
‖v‖

p+1

Lp+1 .

Note that

S ω(vλ) =
λ2

2
‖∇v‖2

L2 +
ω

2
‖v‖2

L2 −
γλα

2

∫

RN

|v(x)|2

|x|α
dx −

λN(p−1)/2

p + 1
‖v‖

p+1

Lp+1 ,

Q(v) = ∂λS ω(vλ)|λ=1.

Since x · ∇V(x) = γα|x|−α ∈ (Lq + L∞)(RN) for some q > max{1,N/2} under the assump-

tion (1.1), from the standard theory [3, Proposition 6.5.1], we obtain the local well-posedness

of the Cauchy problem for (NLS) in the weighted space
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Σ := { v ∈ H1(RN) | ‖xv‖L2 < ∞},

and the virial identity (1.10) holds for all t ∈ Imax.

To prove Theorem 1.3, we introduce the set

ω =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v ∈ H1(RN)

∣

∣

∣

∣

∣

∣

∣

S ω(v) < S ω(φω), ‖v‖L2 ≤ ‖φω‖L2 ,

‖v‖Lp+1 > ‖φω‖Lp+1 , Q(v) < 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Then we have the following blowup result.

Theorem 1.6. Assume (1.1), ω > ω0, and that φω ∈ ω satisfies ∂2
λ
S ω(φλω)|λ=1 ≤ 0. If

u0 ∈ ω ∩ Σ, then the solution u(t) of (NLS) with u(0) = u0 blows up in finite time.

Theorem 1.3 follows from Theorem 1.6 and the fact that the ground state φω belongs to

the closure of ω ∩ Σ in H1-topology.

The key to the proof of Theorem 1.6 is Lemma 3.2 below. The same assertion of Lemma

3.2 is proven in [16, Lemma 4] for (1.7). In [16, Lemma 4], the proof is divided into two

cases ‖xφ̃ω‖
2
L2 ≤ ‖xv‖

2
L2 and ‖xv‖2

L2 ≤ ‖xφ̃ω‖
2
L2 . Although the first case is easy to treat, the

second case is more complicated. In the second case, the inequality ‖xv‖2
L2 ≤ ‖xφ̃ω‖

2
L2 is used

to obtain upper bounds for the potential energy. However, in our case, this argument does

not work well because the sign of the potential is different from that of (1.7). In our proof

here, to obtain upper bounds for the potential energy, we use the inequality coming out of

the variational characterization of the ground state (see Lemma 2.6 (i) below).

We remark that in [16, 18], they consider
⎧

⎪

⎪

⎨

⎪

⎪

⎩

v ∈ H1(RN)

∣

∣

∣

∣

∣

∣

∣

Ẽ(v) < Ẽ(φ̃ω), ‖v‖L2 = ‖φ̃ω‖L2 ,

‖v‖Lp+1 > ‖φ̃ω‖Lp+1 , Q̃(v) < 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

∩ Σ

as the set of initial data of blowup solutions. On the other hand, in our definition of ω, we

use the action S ω instead of the energy E in order to treat more general initial data.

We finally remark that the assumption ∂2
λ
S ω(φλω)|λ=1 ≤ 0 is not a necessary condition for

the instability because it is known for (1.6) that there exist unstable standing waves satisfying

∂2
λ
S̃ ω(φ̃λω)|λ=1 > 0 (see [18, Section 4]). It is an open problem whether the standing wave is

strongly unstable or not in this case.

This paper is organized as follows. In Section 2, we give a proof of Proposition 1.1 and

prove a useful lemma (Lemma 2.6 below). In Section 3, we prove Theorem 1.6. In Section 4,

we prove Theorem 1.3.

2. Existence and variational characterization of ground states

2. Existence and variational characterization of ground states
The aim of this section is to prove Proposition 1.1 and Lemma 2.6 below. Here, we

assume (1.1) and ω > ω0, where ω0 is defined in (1.3). Hereafter, we denote

(2.1) G(v) = γ

∫

RN

|v(x)|2

|x|α
dx.

We define

d(ω) = inf{ S ω(v) | v ∈ H1(RN) \ {0}, Kω(v) = 0 },

ω = { v ∈ H1(RN) \ {0} | Kω(v) = 0, S ω(v) = d(ω) }.
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Note that since −ω0 is the smallest eigenvalue of the Schrödinger operator −∆−γ|x|−α, under

the assumption ω > ω0, we have the equivalence of norms

(2.2)
√

Lω(v) ≃ ‖v‖H1 ,

where

Lω(v) = ‖∇v‖2
L2 + ω‖v‖

2
L2 −G(v).

First, we show that ground states of (1.2) are characterized as the minimizers for S ω under

the constraint Kω = 0.

Lemma 2.1. ω ⊂ ω.

Proof. Let φ ∈ω. Then by Lω(φ) − ‖φ‖
p+1

Lp+1 = Kω(φ) = 0, we have

(2.3) 〈K′ω(φ), φ〉 = 2Lω(φ) − (p + 1)‖φ‖
p+1

Lp+1 = −(p − 1)‖φ‖
p+1

Lp+1 < 0.

Therefore, there exists a Lagrange multiplier η ∈ R such that S ′ω(φ) = ηK′ω(φ). Moreover,

since

η〈K′ω(φ), φ〉 = 〈S ′ω(φ), φ〉 = Kω(φ) = 0,

it follows from (2.3) that η = 0, which implies S ′ω(φ) = 0.

Furthermore, if v ∈ H1(RN) satisfies v � 0 and S ′ω(v) = 0, then by Kω(v) = 〈S ′ω(v), v〉 = 0

and the definition of ω, we have S ω(φ) ≤ S ω(v). Thus, we obtain φ ∈ ω. This completes

the proof. �

Lemma 2.2. If ω is not empty, then ω ⊂ω.

Proof. Let φ ∈ ω. Since ω is not empty, we take ψ ∈ω. Then by Lemma 2.1, we

have ψ ∈ ω. Therefore, if v ∈ H1(RN) satisfies v � 0 and Kω(v) = 0, then S ω(φ) = S ω(ψ) ≤

S ω(v). This implies φ ∈ω. This completes the proof. �

Next, we show that ω is not empty. By using the expressions

S ω(v) =
1

2
Kω(v) +

p − 1

2(p + 1)
‖v‖

p+1

Lp+1(2.4)

=
1

p + 1
Kω(v) +

p − 1

2(p + 1)
Lω(v),

we rewrite d(ω) as

d(ω) = inf

{

p − 1

2(p + 1)
‖v‖

p+1

Lp+1

∣

∣

∣

∣

∣

∣

v ∈ H1(RN) \ {0}, Kω(v) = 0

}

(2.5)

= inf

{

p − 1

2(p + 1)
Lω(v)

∣

∣

∣

∣

∣

∣

v ∈ H1(RN) \ {0}, Kω(v) = 0

}

.(2.6)

Lemma 2.3. If Kω(v) < 0, then

p − 1

2(p + 1)
‖v‖

p+1

Lp+1 > d(ω),
p − 1

2(p + 1)
Lω(v) > d(ω).
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In particular,

d(ω) = inf

{

p − 1

2(p + 1)
‖v‖

p+1

Lp+1

∣

∣

∣

∣

∣

∣

v ∈ H1(RN) \ {0}, Kω(v) ≤ 0

}

(2.7)

= inf

{

p − 1

2(p + 1)
Lω(v)

∣

∣

∣

∣

∣

∣

v ∈ H1(RN) \ {0}, Kω(v) ≤ 0

}

.

Proof. Let

λ1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Lω(v)

‖v‖
p+1

Lp+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1/(p−1)

,

where note that Lω(v) > 0 by (2.2). Then since Kω(λv) = λ2Lω(v)−λp+1‖v‖
p+1

Lp+1 and Kω(v) < 0,

we have Kω(λ1v) = 0 and 0 < λ1 < 1. Therefore, by (2.5),

d(ω) ≤
p − 1

2(p + 1)
‖λ1v‖

p+1

Lp+1 = λ
p+1

1

p − 1

2(p + 1)
‖v‖

p+1

Lp+1 <
p − 1

2(p + 1)
‖v‖

p+1

Lp+1 .

Similarly, by using (2.6), we obtain d(ω) <
p−1

2(p+1)
Lω(v). This completes the proof. �

It is well known that in the nonpotential case γ = 0, the set of all minimizers


0
ω := { v ∈ H1(RN) \ {0} | K0

ω(v) = 0, S 0
ω(v) = d0(ω) }

is not empty (see e.g., [12, 14]), where

S 0
ω(v) =

1

2
‖∇v‖2

L2 +
ω

2
‖v‖2

L2 −
1

p + 1
‖v‖

p+1

Lp+1 ,

K0
ω(v) = ‖∇v‖2

L2 + ω‖v‖
2
L2 − ‖v‖

p+1

Lp+1 ,

d0(ω) = inf{ S 0
ω(v) | v ∈ H1(RN) \ {0}, K0

ω(v) = 0 }

= inf

{

p − 1

2(p + 1)
‖v‖

p+1

Lp+1

∣

∣

∣

∣

∣

∣

v ∈ H1(RN) \ {0}, K0
ω(v) = 0

}

.

Lemma 2.4. d0(ω) > d(ω) > 0.

Proof. First, we show d0(ω) > d(ω). Since 0
ω is not empty, we take ψ ∈0

ω. Since

Kω(ψ) = K0
ω(ψ) −G(ψ) = −G(ψ) < 0,

by Lemma 2.3, we have

d(ω) <
p − 1

2(p + 1)
‖ψ‖

p+1

Lp+1 = d0(ω).

Next, we show that d(ω) > 0. Let v ∈ H1(RN) satisfy v � 0 and Kω(v) = 0. By the

Sobolev embedding, (2.2), and Lω(v) = ‖v‖
p+1

Lp+1 , we have

‖v‖2
Lp+1 ≤ C1‖v‖

2
H1 ≤ C2Lω(v) = C2‖v‖

p+1

Lp+1

for some positive constants C1 and C2. Since v � 0, we have ‖v‖Lp+1 ≥ C
−1/(p−1)

2
. Taking the

infimum over v, we obtain d(ω) > 0. This completes the proof. �
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Lemma 2.5. Let (vn)n ⊂ H1(RN) be a minimizing sequence for d(ω), that is,

vn � 0, Kω(vn) = 0, S ω(vn)→ d(ω).

Then there exist a subsequence (vnk
)k of (vn)n and v0 ∈ H1(RN) such that vnk

→ v0 in H1(RN),

Kω(v0) = 0, and S ω(v0) = d(ω). In particular, ω is not empty.

Proof. First, by Kω(vn) = 0, S ω(vn)→ d(ω), and (2.4), we have

(2.8)
p − 1

2(p + 1)
Lω(vn) =

p − 1

2(p + 1)
‖vn‖

p+1

Lp+1 → d(ω).

Therefore, it follows from (2.2) that (vn)n is bounded in H1(RN). This implies that there exist

a subsequence of (vn)n, which is still denoted by (vn)n, and v0 ∈ H1(RN) such that vn ⇀ v0

weakly in H1(RN).

Next, we show v0 � 0. Since vn � 0, letting

λn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

‖∇vn‖
2
L2 + ω‖vn‖

2
L2

‖vn‖
p+1

Lp+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1/(p−1)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Lω(vn) +G(vn)

‖vn‖
p+1

Lp+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1/(p−1)

,

then we have λn > 0 and K0
ω(λnvn) = 0. Moreover, by (2.8) and the weak continuity of the

potential energy (cf. [13, Theorem 11.4]), we obtain

(2.9) lim
n→∞
λn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d(ω) +
p−1

2(p+1)
G(v0)

d(ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1/(p−1)

.

By Lemma 2.4, K0
ω(λnvn) = 0, and the definition of d0(ω), it follows that

d(ω) < d0(ω) ≤
p − 1

2(p + 1)
‖λnvn‖

p+1

Lp+1 = λ
p+1
n

p − 1

2(p + 1)
‖vn‖

p+1

Lp+1

for all n ∈ N. Therefore, taking the limit, by (2.8) and (2.9), we have

d(ω) <

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d(ω) +
p−1

2(p+1)
G(v0)

d(ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(p+1)/(p−1)

d(ω).

Since d(ω) > 0, we obtain G(v0) > 0. This implies v0 � 0.

Finally, we show the strong convergence of (vn)n in H1(RN). Taking a subsequence of

(vn)n if necessary, we may assume that vn → v0 a.e. in RN . Then by using the Brezis–Lieb

lemma [2], we have

Lω(vn) − Lω(vn − v0)→ Lω(v0),(2.10)

−Kω(vn − v0)→ Kω(v0),(2.11)

where we used Kω(vn) = 0 in (2.11). Since Lω(v0) > 0 by v0 � 0, it follows from (2.10) and

(2.8) that

p − 1

2(p + 1)
lim
n→∞

Lω(vn − v0) <
p − 1

2(p + 1)
lim
n→∞

Lω(vn) = d(ω).

From this and (2.7), we have Kω(vn − v0) > 0 for large n. Therefore, by (2.11), we obtain

Kω(v0) ≤ 0, and thus, by (2.7) and the weak lower semicontinuity of norms,
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d(ω) ≤
p − 1

2(p + 1)
Lω(v0) ≤

p − 1

2(p + 1)
lim
n→∞

Lω(vn) = d(ω).

This and (2.10) imply that Lω(vn−v0)→ 0, and therefore, vn → v0 in H1(RN). This completes

the proof. �

Finally, we give a useful lemma for the proof of Theorem 1.6.

Lemma 2.6. Let φ ∈ ω. If v ∈ H1(RN) satisfies ‖v‖Lp+1 = ‖φ‖Lp+1 , then the following

hold.

(i) Kω(v) ≥ 0,

(ii) S ω(v) ≥ S ω(φ).

Proof. Inequality (i) follows from Lemma 2.3 and d(ω) =
p−1

2(p+1)
‖φ‖

p+1

Lp+1 . Inequality (ii)

follows from (2.4) and (i). �

3. Blowup solutions

3. Blowup solutions
In this section, we prove Theorem 1.6. Throughout this section, we impose the same

assumption as in Theorem 1.6, that is, we assume (1.1), ω > ω0, and

(3.1) ∂2
λS ω(φλω)|λ=1 = ‖∇φω‖

2
L2 −
α(α − 1)

2
G(φω) −

β(β − 1)

p + 1
‖φω‖

p+1

Lp+1 ≤ 0,

where vλ(x) = λN/2v(λx), G is defined in (2.1), and

β =
N(p − 1)

2
.

By using this notation, we have

S ω(vλ) =
λ2

2
‖∇v‖2

L2 +
ω

2
‖v‖2

L2 −
λα

2
G(v) −

λβ

p + 1
‖v‖

p+1

Lp+1 ,(3.2)

Q(vλ) = λ2‖∇v‖2
L2 −
αλα

2
G(v) −

βλβ

p + 1
‖v‖

p+1

Lp+1 = λ∂λS ω(vλ),(3.3)

Kω(vλ) = λ2‖∇v‖2
L2 + ω‖v‖

2
L2 − λ

αG(v) − λβ‖v‖
p+1

Lp+1 .(3.4)

Now, we define

ω = { v ∈ H1(RN) | S ω(v) < S ω(φω), ‖v‖L2 ≤ ‖φω‖L2 , ‖v‖Lp+1 > ‖φω‖Lp+1 }.

Recall that

ω = { v ∈ ω | Q(v) < 0 }.

Lemma 3.1. If u0 ∈ ω, then the solution u(t) of (NLS) with u(0) = u0 satisfies u(t) ∈ ω

for all t ∈ Imax.

Proof. Since E and ‖·‖L2 are conserved quantities of (NLS), we have ‖u(t)‖L2 ≤ ‖φω‖L2 and

S ω(u(t)) < S ω(φω) for all t ∈ Imax. By Lemma 2.6 (ii), it follows that ‖u(t)‖Lp+1 � ‖φω‖Lp+1

for all t ∈ Imax. Therefore, by ‖u0‖Lp+1 > ‖φω‖Lp+1 and the continuity of the solution u(t), we

obtain ‖u(t)‖Lp+1 > ‖φω‖Lp+1 for all t ∈ Imax. This completes the proof. �
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The following is the key lemma for our proof.

Lemma 3.2. Let v ∈ H1(RN) satisfy

‖v‖L2 ≤ ‖φω‖L2 , ‖v‖Lp+1 ≥ ‖φω‖Lp+1 , Q(v) ≤ 0.

Then

(3.5)
Q(v)

2
≤ S ω(v) − S ω(φω).

In particular, if u0 ∈ ω, then the solution u(t) of (NLS) with u(0) = u0 satisfies u(t) ∈ ω

for all t ∈ Imax.

Proof. Let

λ0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

‖φω‖
p+1

Lp+1

‖v‖
p+1

Lp+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1/β

.

Then we have

0 < λ0 ≤ 1, ‖vλ0‖L2 = ‖v‖L2 ≤ ‖φω‖L2 , ‖vλ0‖
p+1

Lp+1 = λ
β

0
‖v‖

p+1

Lp+1 = ‖φω‖
p+1

Lp+1 .

Now, we define

f (λ) = S ω(vλ) −
λ2

2
Q(v)

= −
1

2

(

λα −
αλ2

2

)

G(v) +
ω

2
‖v‖2

L2 −
1

p + 1

(

λβ −
βλ2

2

)

‖v‖
p+1

Lp+1

for λ ∈ (0, 1]. If we have f (λ0) ≤ f (1), then it follows from Lemma 2.6 (ii), Q(v) ≤ 0, and

f (λ0) ≤ f (1) that

(3.6) S ω(φω) ≤ S ω(vλ0) ≤ S ω(vλ0) −
λ2

0

2
Q(v) ≤ S ω(v) −

Q(v)

2
,

which is the desired inequality (3.5).

In what follows, we prove f (λ0) ≤ f (1), which is rewritten as

G(v) ≤
2(2λ

β

0
− βλ2

0
− 2 + β)

(p + 1)(αλ2
0
− 2λα

0
− α + 2)

‖v‖
p+1

Lp+1 .(3.7)

By αKω(φω) − (α + 1)Q(φω) = 0 and (3.1), we have

αω‖φω‖
2
L2 = ‖∇φω‖

2
L2 −
α(α − 1)

2
G(φω) +

(

α −
β(α + 1)

p + 1

)

‖φω‖
p+1

Lp+1

≤

(

α +
β(β − α − 2)

p + 1

)

‖φω‖
p+1

Lp+1 .

Therefore, it follows from ‖v‖L2 ≤ ‖φω‖L2 and ‖φω‖
p+1

Lp+1 = λ
β

0
‖v‖

p+1

Lp+1 that

(3.8) ω‖v‖2
L2 ≤

(

1 +
β(β − α − 2)

(p + 1)α

)

λ
β

0
‖v‖

p+1

Lp+1 .

By using Lemma 2.6 (i) for vλ0 , (3.4), (3.8), and Q(v) ≤ 0, we have
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G(v) ≤ λ2−α
0 ‖∇v‖

2
L2 + λ

−α
0 ω‖v‖

2
L2 − λ

β−α

0
‖v‖

p+1

Lp+1

≤ λ2−α
0 ‖∇v‖

2
L2 +
β(β − α − 2)

(p + 1)α
λ
β−α

0
‖v‖

p+1

Lp+1

≤
α

2
λ2−α

0 G(v) +
β

p + 1

(

λ2−α
0 +

β − α − 2

α
λ
β−α

0

)

‖v‖
p+1

Lp+1 ,

and thus,

(3.9) G(v) ≤
2β

(p + 1)(2 − αλ2−α
0

)

(

λ2−α
0 +

β − α − 2

α
λ
β−α

0

)

‖v‖
p+1

Lp+1 .

In view of (3.7) and (3.9), we only have to show that

β

2 − αλ2−α

(

λ2−α +
β − α − 2

α
λβ−α
)

≤
2λβ − βλ2 − 2 + β

αλ2 − 2λα − α + 2

for all λ ∈ (0, 1), which is equivalent to

g1(λ) :=
(2 − αλ2−α)(2λβ − βλ2 − 2 + β)

βλβ−α(αλ2 − 2λα − α + 2)
−

1

λβ−2
−
β − α − 2

α
≥ 0.

Since limλր1 g1(λ) = 0, it suffices to show that

g′1(λ) =
2(1 − λ2−α)

βλβ−α+1(αλ2 − 2λα − α + 2)2

(

2α(2 − α)λβ − αβ(β − α)λ2

+ 2β(β − 2)λα − (β − α)(β − 2)(2 − α)
)

≤ 0

for all λ ∈ (0, 1), which holds if we have

g2(λ) := 2α(2 − α)λβ − αβ(β − α)λ2 + 2β(β − 2)λα − (β − α)(β − 2)(2 − α) ≤ 0.

Since g2(1) = 0, it is enough to show that

g′2(λ) = 2αβλα−1
(

(2 − α)λβ−α − (β − α)λ2−α + β − 2
)

≥ 0

for all λ ∈ (0, 1). This is equivalent to

g3(λ) := (2 − α)λβ−α − (β − α)λ2−α + β − 2 ≥ 0.

Since g3(1) = 0 and

g′3(λ) = −(β − α)(2 − α)λ1−α(1 − λβ−2) ≤ 0,

we have g3(λ) ≥ 0 for all λ ∈ (0, 1). Therefore, we obtain f (λ0) ≤ f (1), and thus, the

inequality (3.6) follows.

The last claim of Lemma 3.2 follows from Lemma 3.1 and (3.5). This completes the

proof. �

Proof of Theorem 1.6. Let u0 ∈ ω ∩ Σ and let u(t) be the solution of (NLS) with

u(0) = u0. Then by the virial identity (1.10), Lemma 3.2, and the conservation of S ω, we

have

(3.10)
d2

dt2
‖xu(t)‖2

L2 = 8Q(u(t)) ≤ 16
(

S ω(u(t)) − S ω(φω)
)

= 16
(

S ω(u0) − S ω(φω)
)

< 0

for all t ∈ Imax.
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If T+ = ∞, then it follows from (3.10) that ‖xu(t)‖L2 becomes negative for large t. This is

a contradiction. Thus, the solution u(t) blows up in finite time. �

4. Strong instability of standing waves

4. Strong instability of standing waves
In this section, we prove Theorem 1.3. We impose the same assumption as in Theo-

rem 1.3.

Lemma 4.1. φλω ∈ ω for all λ > 1.

Proof. By the definition of the scaling λ �→ φλω, we have ‖φλω‖L2 = ‖φω‖L2 and ‖φλω‖Lp+1 =

λβ/(p+1)‖φω‖Lp+1 > ‖φω‖Lp+1 for all λ > 1, where β = N(p − 1)/2 > 2.

Now, we show that S ω(φλω) < S ω(φω) and Q(φλω) < 0 for all λ > 1. In view of (3.2),

the function S ω(φλω) of λ has the form S ω(φλω) = Aλ2 + B − Cλα − Dλβ with some positive

constants A, B, C, and D. By ∂λS ω(φλω)|λ=1 = 0 and the assumption ∂2
λ
S ω(φλω)|λ=1 ≤ 0, we

have −β(β − 2)D ≤ −α(2 − α)C. This leads to

∂3
λS ω(φλω) = α(α − 1)(2 − α)Cλα−3 − β(β − 1)(β − 2)Dλβ−3

≤ −α(2 − α)λα−3
(

(β − 1)λβ−α − (α − 1)
)

C < 0

for all λ > 1. Therefore, for λ > 1, it follows that ∂2
λ
S ω(φλω) < ∂2

λ
S ω(φλω)|λ=1 ≤ 0, ∂λS ω(φλω) <

∂λS ω(φλω)|λ=1 = 0, and thus S ω(φλω) < S ω(φω). Moreover, by differentiating (3.3), we have

∂λQ(φλω) = ∂λS ω(φλω) + λ∂2
λ
S ω(φλω) < 0. This implies Q(φλω) < Q(φω) = 0. This completes

the proof. �

Now, we prove the main theorem.

Proof of Theorem 1.3. Let ε > 0. Then since φλω → φω in H1(RN) as λ ց 1, there

exists λ0 > 1 such that ‖φω − φ
λ0
ω ‖H1 < ε/2. Let χ ∈ C∞[0,∞) be a function satisfying

0 ≤ χ ≤ 1, χ(r) = 1 if 0 ≤ r ≤ 1, and χ(r) = 0 if r ≥ 2. For M > 0, we define a cutoff

function χM ∈ C∞c (RN) by χM(x) = χ(|x|/M). Then we see that χMφ
λ0
ω → φ

λ0
ω in H1(RN) as

M → ∞. Moreover, we have χMφ
λ0
ω ∈ Σ and ‖χMφ

λ0
ω ‖L2 ≤ ‖φ

λ0
ω ‖L2 = ‖φω‖L2 for all M > 0.

Therefore, by Lemma 4.1 and the continuity of S ω, ‖ · ‖Lp+1 , and Q, there exists M0 > 0 such

that ‖φ
λ0
ω − χM0

φ
λ0
ω ‖H1 < ε/2 and χM0

φ
λ0
ω ∈ ω ∩ Σ. Thus, we obtain ‖χM0

φ
λ0
ω − φω‖H1 < ε,

and by Theorem 1.6, the solution u(t) with u(0) = χM0
φ
λ0
ω blows up in finite time. Hence,

the standing wave solution eiωtφω of (NLS) is strongly unstable. �
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