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The effects of doping on the spectral properties of low doped systems are investigated by means
of Coherent Potential Approximation to describe the distributed disorder induced by the impurities
and Phonon-Phonon Non-Crossing Approximation to characterize a wide class of electron-phonon
interactions which dominate the low-energy spectral features. When disorder and electron-phonon
interaction work on comparable energy scales, a strong interplay between them arises, the effect of
disorder can no more be described as a mere broadening of the spectral features and the phonon
signatures are still visible despite the presence of strong disorder. As a consequence, the disorder-
induced metal-insulator transition, is strongly affected by a weak or moderate electron-phonon
coupling which is found to stabilize the insulating phase.
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I. INTRODUCTION

In the last years the developement of more ac-
curate methods of investigations such as Angu-
lar Resolved PhotoEmission Spectroscopy (ARPES),
joined with the fabrication of novel materials as
high-Tc superconductors1,2, colossal magnetoresistance
manganites3, correlated oxides4, topological insulators5

and graphene6 in different topological conditions (from
bulk, to surfaces and eterostructures, up to single mono-
layers), allowed a deep insight in low-energy electronic
and spectral properties. The countinuosly increased mea-
surements’ accuracy in experiments gives the opportu-
nity to detect and study such low-energy features which
in many cases were recognized as the fingerprint of the
electron-phonon interaction.

The possibility to tune the chemical potential by dop-
ing offers a great potentially useful way to modify the
materials’ electronic structures and properties. Very re-
cently, in the low doping conditions electron-phonon sig-
natures were successfully detected in the ARPES spec-
tra of many different systems, from oxygen vacancies
doped SrT iO3 surface7 or lightly bulk doped SrT iO3

8,9,
to monolayer pnictide FeSe growth on SrT iO3

10,
from tridimensional Anatase11 to Ba1−xKxBiO3

12 and
CuxBi2Se3

13 superconductors, up to Z2 topological
non-trivial materials as Bi2Se3 and Bi2Te3

13, as well
as on the quasi two-dimensional layered lightly-doped
Sr2T iO4

14. Such a rich variety of different materials
displaying common electron-phonon low-energy features
calls for a deeper understanding of the underlying mech-
anism at play. However, once all these systems are taken
into account and in particular when dealing with sur-
faces, monolayers and low-dimensional systems, the role
of disorder cannot be neglected. In fact the growth pro-
cesses on substrates and/or the action of chemical dop-
ing imply the presence of disorder, whose impact largely

depends on which energy scale one is focused on. For
example, impurity bands can be formed close to the con-
duction band of the pristine material as a consequence
of the presence of the dopant energy levels14,15, or can
have magnetic origins as in Mn-doped GaAs16,17. On
the other hand, oxygen vacancies on the substrate7 may
represents centers of scatterings for carriers in the de-
posited film. Interestingly in this sense, recent ARPES
experiments and ab-initio theoretical works suggest how
charge carriers can be trapped by oxygen vacancies at the
LaAlO3/SrT iO3 (LAO/STO) interface18 and SrT iO3

surface19,20, naturally introducing the role of disorder in
the understanding of the electronic properties of oxide-
oxide heterostructure interfaces and oxide surfaces, where
confined two-dimensional electron gases (2DEGs) should
also undergo superconducting phase transitions21.

Usually disorder can be added perturbatively in
the theoretical explanation of ARPES spectra as a
weak source of scattering leading to an intrinsic band
linewidth. Within this approach, interactions such as
electron-phonon coupling contribute to the low-energy
properties of the spectrum and the disorder simply pro-
vides a further smearing of the electron-phonon fea-
tures. However this is not the case when disorder and
electron-phonon interaction act on comparable energy
scales. For example let us consider the case of an in-
termediate electron-phonon coupling; in the very low
doping limit, the system is prone to polaron formation
and the presence of scattering centers may provide, in a
synergic way, the necessary energy to stabilize a small
polaron22–26. Another example is that of a low (but
finite) electron density and weak electron-phonon cou-
pling. In this case when disorder and electron-phonon
interaction are treated self-consistently impurity and
phonon contributions to electron scattering are not addi-
tive when the Fermi energy is of the order of the phonon
frequency27,28, and impurity scattering has a significant
nonlinear effect29. In this work we approach the problem
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of the interplay between disorder and electron-phonon
interaction starting from a weak electron-phonon cou-
pling, going beyond the self-consistent Born approxima-
tion used in refs.27–29 by using the Coherent Potential
Approximation (CPA) thus extending our treatement to
the case of strong disorder. Previous studies of mod-
els in this peculiar regime concentrated on the case of
classical phonons in binary alloys30 or, in the same con-
text, on the effects of electron-phonon interaction on
transport properties at high temperature31. Electron-
phonon interaction and strong disorder have also been
studied in the classical phonon case32 within the con-
text of the Falicov-Kimball model of correlated electrons,
for which CPA is the exact solution33. Noticeably, the
Mott transition in the Falicov-Kimball model can be de-
scribed as a disorder-induced metal-insulator transition
(MIT) in the alloy context33. Here we address the single
particle properties, namely how disorder and electron-
phonon interaction modifies ARPES spectra of lightly-
doped materials34. A proper quantum treatment of the
phonon is, in this case, crucial to explain the low energy
features of ARPES spectra. The disorder-induced metal-
insulator transition is also studied as it depends on the
strength of the electron-phonon interaction.

The paper is organized as follows: in Section II we dis-
cuss the model Hamiltonians and the types of electron-
phonon couplings taken into account in this work. In
Section III we explain how such models can be solved in
presence of local disorder as introduced by an Anderson
type Hamiltonian, and we discuss the fluctuation of the
electron-phonon self-energy due to disorder. In Section
IV we present the main results of our work discussing
the interplay between electron-phonon interaction and
disorder to explain the features of the ARPES spectra,
we discuss also the electron-phonon dependence of the
disorder-induced metal-insulator transitiion. In Section
V we draw our conclusions and further remarks.

II. MODEL HAMILTONIANS

We consider in this work an Anderson type Hamil-
tonian for twodimensional tight-binding electrons inter-
acting with dispersionless optical phonon modes of the
general form

H = Hel +Hph +He−ph +Hdis . (1)

The electronic nearest-neighbor tight-binding part

Hel = −t
∑

<i,j>(c
†
i cj + h.c.) gives rise to a twodimen-

sional energy dispersion εk = −2t(cos kx+cos ky); c
†
i and

ci are the charge carrier creation and annihilation opera-
tors, respectively. The half-bandwidth D = 4t will be the
energy unit throughout the paper and all k-vectors are
given in units of π/a where a is the lattice spacing. We
also choose the zero energy level ω = 0 to the position of
the chemical potential.

The disorder part is assumed to be of the Anderson
type

Hdis =
∑

i

ξic
†
i ci , (2)

where ξi are disorder independent random energies taken
according to the following disorder distributions:
i) the bimodal Pi(ξ) = xδ(ξ−Eb)+(1−x)δ(ξ) character-
izing a concentration of x impurities in the host material,
ii) the gaussian Pg(ξ) = (1/

√
2σ2) exp(−ξ2/2σ2) where

σ2 is the disorder variance to mimic a conformational
disorder,
iii) or as the sum of two independent variables, one of
which distributed according to Pi, and the other one dis-
tributed according to Pg.
For the free phonon part, we assume a simple undis-

persed Einsteins’ phonon Hamiltonian Hph = ω0

∑

i a
†
iai

with a characteristic phonon frequency ω0. We fix the
value of the phonon frequency in the adiabatic regime
ω0/D = 0.05.
For the electron-phonon interaction part He−ph we

consider three different kinds of models. The first two
can be obtained from the following density-displacement
Hamiltonian

He−ph = −
∑

i,j

gi,jc
†
i ci(aj + a†j) . (3)

The Holstein local (LOC) model is obtained when gi,j =
gδi,j , whereas a general, even long-range Fröhlich type
interaction (NLOC), can be considered in more general
cases. In the spirit of our work, here we focus our at-
tention on the two-dimensional screened Fröhlich type
interaction. Let us consider the long wavelength limit
of the Fourier transform of the longitudinal optic (LO)
polar coupling [g2]i,j =

∑

k gi,kgk,j

g2(k) =
1

N

∑

R

e−ikR[g2]i,i+R . (4)

If g2(k) is of the Fröhlich type, i.e. g2(k) ∝ 1/k2, after
summing over all possible value of kz, we get an effective
coupling which at small k behaves as g2(k) ∝ 1/k de-
pending only on the two-dimensional wave-vector k

35.
Since in our model electrons are free to have planar mo-
tions, we next consider the action of the two-dimensional
screening of the in-plane carriers. This screening is in-
dependent on the carrier density, and the effective cou-
pling is thus replaced by g2(k) → g2(k)/ǫ(k, ω = 0),
where ǫ(k, ω = 0) = 1 + κ/k and κ = 2m∗e2/h̄2ǫr is
the two-dimensional screening wave-vector. The large k
behaviour of g2(k) is obtained restoring the lattice sym-
metries by replicating the small k form

g2(k) =
C

NG

∑

G

|k+G|
|k+G|+ κ

(5)
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where G is a reciprocal lattice vector and NG is the num-
ber of summed terms in eq. (5). For our aims, we find
that a summation over the nearest-neighbor reciprocal
vectors is sufficient. The normalization constant C is
chosen by fixing the value of a coupling constant g

g2 =
1

N

∑

k

g2(k) . (6)

In both LOC and NLOC models the dimensionless
electron-phonon coupling constant is defined in terms of
g as

λ = 2g2/ω0D . (7)

Another model which we consider in this work is the
so-called interaction with a phonon mode such as that
occurring with apical oxygens in layered perovskites36,
to which hereafter we refer as Apical Oxygens Hamilto-
nian (AO)37. The form of the Hamiltonian is the same as
in eq. (1), but now we consider several two-dimensional
planes where electron carriers are free to move (index α)
unconnected by out-of-plane hopping processes. The in-
teraction between different planes is introduced through
the following AO electron-phonon coupling

HBM
e−ph = − g√

2

∑

i.α

c†i,αci,α(xi,α+1/2 − xi,α−1/2) , (8)

where xi,α+1/2 is the (dimensionless) displacement

xi,α+1/2 = (a†i,α+1/2 + ai,α+1/2) of the interplane api-

cal atom in the i-th site of the α-th plane. Within
this AO model, disorder variables are chosen uncorre-
lated as before, and the Anderson term now reads as

HBM
dis =

∑

i,α ξi,αc
†
i,αci,α. In AO model the dimension-

less electron-phonon coupling constant is defined as in
the LOC and NLOC models through Eq. (7).

III. METHODS OF SOLUTION FOR LOCAL

AND NON-LOCAL ELECTRON-PHONON

HAMILTONIANS

A. CPA and Phonon-Phonon Non-Crossing

Approximation in the Holstein model

Here we introduce our approximations in the case of
purely local electron-phonon interaction (LOC). We use
the CPA to treat the local disorder. The CPA can be
thought as an exact theory on an infinite coordination
lattice38; for this reason it is therefore much similar to the
single-site Dynamical Mean Field Theory (DMFT)39,40.
As in DMFT, for solving the LOC model we consider
a single site embedded into a self-consistent medium40.
The single-site propagator G can be expressed in terms
of a local propagator which embodies the average action
of the environment (G0(ω)) and a self-energy Σ(ω)40:

G(ω) = 1

G−1
0 (ω)− Σ(ω)

. (9)

The site propagator G can be expressed as an aver-
age over disorder variable (hereafter a generic quantity
A which depends on disorder realizations is denoted by
Â while its average is A = [Â]ξ)

G(ω) =
[

1

G−1
0 (ω)− ξ − Σ̂eph(ω)

]

ξ

, (10)

where ξ is the local disorder variable and Σ̂eph(ω) is the
electron-phonon self-energy which depends on the local
disorder variables.
Electron-phonon interaction in the LOC model can

be self-consistently taken into account within a CPA
— or equivalently DMFT — scheme at zero electron
density41. At finite electron density we choose a self-
consistent Phonon-Phonon Non-Crossing Approximation
(PPNCA) for the electron-phonon self-energy42 (see dia-
grams of type a) in Fig. 1):

Σ̂eph(ω) = −g2

β

∑

m

D0(ω − ıωm)Ĝ(ıωm)

+ Σ̂H , (11)

where D0(ω) is the free-phonon Green’s function while
the frequency independent Hartree term of the electron-
phonon self-energy

Σ̂H = −2g2

ω0
n̂ (12)

is expressed in term of the local density n̂ which is given

by n̂ = − 1
β

∑

n Ĝ(ıωn)e
iωn0

+

. In this approximation the

phonon propagator is not renormalized by the electron
density fluctuations; we therefore associate the phonon
frequency to that obtained by experiment or assume that
the phonon frequency renormalization is negligible at low
electron density.
After Matsubara’s frequency summation the PPNCA

self-energy is written as

Σ̂eph(ω) = g2
∫

dǫÂ(ǫ)

[

b(ω0) + f(ǫ)

ω + ω0 − ǫ+ ıδ
+

b(ω0) + 1− f(ǫ)

ω − ω0 − ǫ+ ıδ

]

+ Σ̂H , (13)

with b(ω0) and f(ǫ) referring to the Bose-Einstein

and Fermi-Dirac distributions respectively, and Â(ǫ) =

(−1/π)ℑĜ(ǫ) being the spectral function.
The averaged propagator is translationally invariant.

It can be expressed in terms of the local self-energy as:
G(k, ω) = 1/[ω − ǫk − Σ(ω)]. The averaged local propa-
gator is thus:

Gloc(ω) =

∫

dǫN(ǫ)
1

ω − ǫ− Σ(ω)
, (14)

where N(ǫ) =
∑

k δ(ǫ − ǫk) is the non-interacting den-
sity of states. The self-consistency condition requires the
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single-site Green’s function (10) to coincide with the local
lattice Green’s function (14)

Gloc(ω) = G(ω) . (15)

In this way equations (9,10,13,14,15) define a self-
consistency loop to be iterated to get the self-consistent
local self-energy which takes into account disorder at
the CPA level as well electron-phonon interaction com-
ing only from diagrams of type a) in Fig. 1. We call
this scheme PPNCACPA. From the operative point of
view, starting with an educate ansatz for G0, we use Eqs.
(10,13) to determine G, Eq. (15) to obtain Σ and Eq. (9)
to obtain a new G0 for iterating the procedure. This iter-
ation scheme differs from DMFT due to the approximate
treatment of the electron-phonon interaction trough PP-
NCA.

B. PPNCACPA in the AO model

FIG. 1: Electron-phonon interaction diagrams. Open straight
line is the non-averaged electron propagator, filled straight
line is the disorder-averaged electron propagator, wavy line is
the phonon porpagator.

To generalize PPNCACPA to the AO model we have to
introduce the planar structure into our single-site model.
We have a chain of single-site models as depicted in Fig.
2. The interaction between neighboring planes occurs
through the electron-phonon interaction (see Eq. (8)).
In the AO model we neglect the interplane hopping and
therefore the self-consistent G0 is plane-diagonal. Eq.
(10) can be generalized as

G(ω) =
[

1

G−1
0 (ω)− ξα − Σ̂α

eph(ω)

]

ξ

, (16)

where α is the plane index. Notice that after averaging
G does not depend on the plane indexes.

Now we have to generalize Eq. (13) to the BM model.
Defining the upper and lower local phonon propagators
as

D(±)(t) = −i〈Txi,α±1/2(t)xi,α±1/2(0)〉 , (17)

the Fock and Hartree terms of the electron-phonon self-
energy take the form

Σ̂α
F (ω) = − g2

2β

∑

m

D+(ω − ıωm)Ĝα(ıωm)−

− g2

2β

∑

m

D−(ω − ıωm)Ĝα(ıωm) , (18)

Σ̂α
H =

g2

2

(

D+(0)n̂α −D−(0)n̂α+1
)

+

g2

2

(

D+(0)n̂α −D−(0)n̂α−1
)

, (19)

where D(±)(iωn) are the local phonon propagators in the

Matsubara frequencies and n̂α = − 1
β

∑

n Ĝα(ıωn)e
iωn0

+

is the local density on a generic site of the plane α. Notice
that n̂α still depend on the disorder realization. Notice
also that interplane coupling occurs due to the Hartree
term in the self-energy Eq. (18). After Matsubara’s
frequency summation the Fock contribution to the self-
energy is written as

Σ̂α
F (ω) = g2

∫

dǫÂα(ǫ)

[

b(ω0) + f(ǫ)

ω + ω0 − ǫ+ ıδ
+

+
b(ω0) + 1− f(ǫ)

ω − ω0 − ǫ+ ıδ

]

, (20)

with Âα(ǫ) = (−1/π)ℑĜα(ǫ) being the α-th plane spec-
tral function. The scheme of iteration is basically the
same as for the Holstein (LOC) model with an important
difference: we have to iterate the self-consistency condi-
tion for an array of planes. Adopting periodic boundary
conditions, we need 64 planes to achieve convergence for
the sets of parameters used throughout the paper.

C. Generalization to non-local models of

electron-phonon interaction

Now let us consider a general non-local electron-
phonon interaction as that of the model NLOC Eq. (3).
The perturbation theory in terms of the electron-phonon
coupling constant gi,j can be written in the lattice space.
This is shown diagramatically in Fig. 1. The diagrams
sets are divided into two groups: a) refers to local type
diagrams in which only the [g2]n,n appears (see discus-
sion about the LOC model) while b) contains extra terms
which include [g2]n,m for m 6= n. We divide our calcu-
lation into two steps.
In a first step we implement the PPNCACPA previ-

ously described for the Holstein (LOC) model taking into
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FIG. 2: DMFT mapping of the AO model. a) Lattice model
in which electrons move on the planes and interact with the
AO phonon. b) Mapping of the lattice problem into a single
chain single-site model.

account the a) diagrams for the electron-phonon interac-
tion. We use in this stage a coupling constant g2 = [g2]i,i.
Within such a treatement, we are taking into account dis-
order and electron-phonon interaction at the local level.
Now we include the non-local part of electron-phonon in-
teraction including diagrams of type b) at the average

level, i.e. we consider the internal propagator averaged
over disorder. Average restores translational invariance
and the Hartree term (tadpole diagram in Fig. 1b)),
which is independent on frequency, can be reabsorbed in
the definition of the chemical potential. The only rel-
evant term is the Fock one averaged over disorder, as
depicted in Fig. 1b) and highlighted by the blue arrow.
The self-energy thus takes into account both disorder and
electron-phonon interaction, while disorder and local part
of electron-phonon interactions (diagrams a)) are eval-
uated self-consistently; the non-local part is taken into
account non-selfconsistently on a final stage. Therefore
this approach should not be extended to the polaronic
type of couplings. However, due to the relevance of dis-
order in our calculations, we have checked that the results
are quite insensible to the actual value of the screening
wavevector provided that κ > 0.001, and thus on the
specific form of the non-local e-ph coupling.

D. Alternative CPA schemes

In order to investigate the correlations in the one par-
ticle spectra between disorder and electron-phonon in-
teraction, in the local PPNCACPA loop we can compare
two CPA schemes, the one we are actually using in which
the electron-phonon self-energy do depend on local ran-
dom potentials (CPA2) and a more simpler scheme in
which we average the e-ph self-energy diagrams of type

a) on disorder (CPA1). In the case of NLOC models, to
take into account the non-locality of the electron-phonon
interaction, we finally implement the second stage of our
approximation having the local self-energy from CPA2
or CPA1 formulations. Notice that CPA1 scheme in ab-
sence of electron-phonon interaction is usually referred
as virtual-crystal approximation43. The comparison be-
tween the two schemes sill give us an idea of the rele-
vance of the electron-phonon self-energy fluctuations due
to disorder at different energy scales.
We notice that, averaging the internal propagators ap-

pearing in diagrams of type a) shown in Fig. 1, means
substituting the internal electron propagators with their
averages. The Hartree contribution (tadpole diagram in
fig. 1a)) averages to a frequency and k-independent value
thus reducing to a mere shift of the chemical potential.
The remaining contribution is the Fock term in which
the internal propagator has been averaged over disorder.
This average procedure neglects i) correlations between
the density and the disorder variable at a given site and
ii) disorder and electron-phonon correlated scatterings.
From a perturbative point of view the diagrams which
contribute to these two mechanisms are depicted in Fig.
3. We notice that, due to our strong-disorder approach,

FIG. 3: Examples of diagrams neglected in CPA1 scheme for
gaussian distributed disorder. a) A correction which takes
into account disorder correlations in the Hartree part of the
self-energy entering in Eq. (10) within CPA2 scheme but
neglected in the same expansion within CPA1 scheme. Solid
line represents the self-consistent propagator G0, wavy line
the phonon propagator, dashed line disorder insertion. b) A
disorder-induced vertex correction appearing in the expansion
of the Fock part of the local electron-phonon self-energy.

these contributions are not included in the self-consistent
Born approximation approach of ref.27.

IV. RESULTS

Here we present results obtained using basically two
kinds of disorder. We first consider a dichotomic disor-
der (Pi distribution) in which a percentage x = 5% of
sites have a lower energy Eb = −0.5 (in unit of the half
bandwidth) than all the other sites. This kind of disor-
der mimics the introduction of impurities associated with
doping. To this aim we fix the filling factor to the same
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value x. We also consider gaussian uncorrelated disorder
(Pg distribution) which can mimic a strong structural
disorder, as usually happens in thin films. Even if 5%
of impurities seems to be a rather small quantity, it can
affect severely the lower part of the energy spectrum as
can be seen in Fig. 4. Moreover this is precisely the
energy range in which electron-phonon interaction is rel-
evant (ω ≃ ω0).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-0.3 -0.2 -0.1  0  0.1  0.2

A
(ω

)

ω

free
dis

FIG. 4: DOS, A(ω), of the non-interacting system (free)
shifted to match the filling of the 5% doped system (dis).
Unit of frequency is D; the zero of frequency is set to the
chemical potential.

On top of this disordered system we consider a weak
electron-phonon interaction λ = 0.22, which is the same
in all the considered models. To disentangle the separate
action of electron-phonon and disorder we show the spec-
tral function in the case of LOC model in Fig. 5. There
the spectral function is compared along a cut on kx axis
around the Γ point in the presence of electron-phonon
interaction only (panel a)), in the presence of impurities
without electron-phonon interaction (panel b)) and under
the action of both electron-phonon and impurity-disorder
in panel (c)). It’s immediately seen that the spectra in
panel c) cannot be obtained by a simple broadening of
the spectra of panel a). A complete redistribution of the
spectral weight is obtained under the action of a quite low
electron-phonon coupling in presence of disorder. The
growing of an impurity band appears to be evident at the
bottom of the coherent electronic band with a merging
around the chemical potential. On the other hand, the
action of such a strong disorder does not prevent the typi-
cal fingerprints of the electron-phonon interaction, as the
kinks at the phonon frequency (see Appendix A). This re-
sult highlights the fact that when disorder and electron-
phonon coupling interact at the same energy scales, as
in the considered case, the action of disorder cannot be
taken into account as a simple broadening of the spec-
tral features in absence of disorder, since disorder and
electron-phonon interaction work in a cooperative way.
In panel d) we plot the spectra obtained using a gaus-

sian disorder with σ2 = 0.08. We have chosen the vari-
ance of disorder requiring the same value of the Fermi
kF as that given by the 5% impurities. In this case an

energy-dependent broadening can be seen in the picture
while the phonon signature, even weak, is still visible.
Clearly the interplay of impurities and distributed gaus-
sian disorder with electron-phonon interaction is very dif-
ferent.

The scenario presented in Fig. 5 is rather general; in-
deed it holds also in the case of highly non-local electron-
phonon interaction. In Fig. 6 we have considered an
electron-phonon interaction of the kind of Eq. (5) with
the screening k-vector κ = 10−3. Comparing the spectra
in absence of disorder (Fig. 5 a) and 6 a)) we see that the
enhanced forward scattering present in the NLOC model
broadens the low-energy features around the Γ point.
However in the presence of impurities (Fig. 5 c) and
6 b)) the spectra look much more similar even if phonon
signatures are more marked in the NLOC model. This
is consistent with the relevance of such a strong disorder
at the highest binding energies. Increasing the screening,
the range of electron-phonon interaction reduces, and the
qualitative scenario becomes increasingly similar to that
of LOC model. With the chosen values of parameters at
κ = 10−2 the spectra are almost indistinguishable from
those of Fig. 5.

A quantitative measure of the interplay between
electron-phonon and disorder effects can be probed by
measuring the deviation of the Fermi wave-vector (kF )
from that predicted by Luttinger’s theorem44 at a given
electron density. In Fig. 7 (upper panel) the momen-
tum distribution curve (MDC) is obtained from the spec-
tral function. The Luttinger’s prediction for kF coincides
with the position of the peaks in the presence of electron-
phonon interaction only. Indeed in this case the damping
at the Fermi energy is zero and the Fermi surface area
is conserved; thus the sole presence of electron-phonon
interaction does not lead to a Fermi vector reduction.
Disorder alone, even strong as in our case, contributes
to a decreasing of kF only by 10%, while the additional
presence of a relatively weak electron-phonon interaction
dramatically reduces kF by 60%. If one takes the Lut-
tinger’s theorem44 for granted in this conditions, the ob-
tained electron density is far from the nominal one given
by the impurities’ concentration. These evidences should
be carefully taken into account for the interpretation of
experimental ARPES spectra, being the fingerprint of a
strong interplay between disorder and electron-phonon
interaction14. In the lower panel of Fig. 7 is shown a
comparison of the MDC curves for the LOC, NLOC and
AO models. We see that the reduction of kF is less ef-
fective in NLOC and AO models compared to LOC one.
We will discuss the reason for this behaviour below.

The cooperative action of electron-phonon and disor-
der interactions is particularly evident in the disorder-
induced metal-insulator transition that occurs as a func-
tion of the electron-phonon coupling λ. In this work, the
disorder-induced MIT is defined looking at the vanishing
of the Fermi vector kF . A vanishing kF is a precursor of
a vanishing density of states at the Fermi level, which in
turn leads to an insulating state. It is well known that,
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FIG. 5: The spectral function A(k, ω) for the LOC model. a) Electron-phonon interaction only λ = 0.22 b) Disorder only c)
Electron-phonon interaction + disorder d) Electron-phonon interaction + gaussian disorder, the colourmap (range of z) has
been expanded in this case to take into account the lower value of the spectral function.

FIG. 6: The spectral function A(k, ω) for the NLOC model.
a) Electron-phonon interaction only λ = 0.22 b) Electron-
phonon interaction + disorder

in a disordered system, increasing the binding energy of
the impurities will produce a metal-insulator transition
in which an impurity band detaches from the conduction
band45. Here we achieve the same phenomenon using the
synergistic action of electron-phonon interaction as it is
shown in Fig. 8 for two different impurity concentrations.

For a given value of Eb = −0.5 we report the DOS
which clearly opens a gap at λ = 0.275 in Fig. 9 (upper
panel). The vanishing of the Fermi surface occurs at a
lower value of λ as it is shown in the inset of the same fig-
ure. The synergistic work of electron-phonon interaction
originates from the action of the Hartree term Eq. (12)
which provides an electron-phonon induced increasing of

the binding energy which is proportional to the carrier
density at a given site. This is correlated with the pres-
ence of the impurity since the density will be higher just
at the impurity sites (see Appendix B). When electron-
phonon-interaction is non-local this effect is less marked
as can be seen in Fig. 9 (lower panel). For instance in
the AO model, as the Hartree energy Eq. (18) does de-
pend on the density on nearest neighbor planes along the
chain, the interplay between electron-phonon interaction
and disorder is less effective, as seen also in the smaller
reduction of the Fermi surface with respect to the LOC
model (see Fig. 7 lower panel).

Moreover, a further insight into the interplay between
electron-phonon and disorder interaction can be obtained
by the comparison of our results within the two CPA
schemes (see Section III). The DOSs and the spectra ob-
tained by CPA1 and CPA2 approximations are compared
in Fig. 10 (upper and lower panels respectively). We see
how the interplay between e-ph interaction and disorder
affect the DOS below the Fermi energy, just in the en-
ergy region in which both disorder and e-ph are present.
Noticeably phonon signatures appear much more evident
in the CPA2 scheme, and a large spectral weight redis-
tribution occurs at higher binding energies. Moreover
we see that within CPA1 scheme the effect of disorder
is largely dominant, as can be seen by comparing the
spectrum of Fig. 10 (lower left panel) and that obtained
in the presence of pure disorder (see Fig. 5 c)). Since
in CPA1 we average the electron-phonon self-energy over
the disorder variable we can ascribe the large discrepan-
cies between the spectra in Fig. 10 to the correlation
between electron-phonon and disorder effects in the self-
energy. This issue can be analyzed from the point of
view of perturbative expansions. The resummation in
CPA2 scheme of diagrams of type a) in Fig. 3 which
take into account the correlation at the Hartree level be-
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FIG. 7: Upper Panel: an MDC scan at Fermi energy in the
LOC model. (eph) stands for the non-disordered system un-
der the action of electron-phonon interaction only. (dis) is
the purely disordered system without electron-phonon inter-
action. (eph+dis) is the system under the action of both
electron-phonon and disorder. Lower Panel: an MDC scan
at Fermi energy in the LOC compared with NLOC and
AO model for the same value of electron-phonon coupling
λ = 0.22 and the same disorder variables x = 0.05, Eb = −0.5.
Vertical arrows mark the Luttinger’s theorem value for kF .

tween electron-phonon and local disorder, leads to an en-
hancement of the electron-phonon interaction effects on
the energy scale of the emerging impurity band (around
≃ Eb from the Fermi level). In contrast to CPA1 the
CPA2 Hartree term is correlated to the presence of the
impurity leading to the λ dependence of the disorder-
induced metal-insulator transition (see discussion above
and upper panel of Fig. 9). For this reason, as shown
in Fig. 10, the impurity band within CPA2 seems to
be more marked than that in CPA1. However another
aspect is clear from the comparison in Fig. 10: the
CPA2 impurity band is also much wider that that ob-
tained within CPA1, and, despite the strong disorder,
prominent phonon signatures are still evident on the im-
purity band. This should be ascribed to the correlation
between disorder and electron-phonon self-energy at the
Fock level diagrams of type b) in Fig. 3. In previous
work an interplay between electron-phonon interaction
and disorder has been found within self-consistent Born
approximation27–29 in which, despite the self-energy sep-
arates into electron-phonon and disorder parts, non ad-

 0
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 0  0.2  0.4  0.6  0.8  1

|E
b
|

λ
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kF=0
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x=0.03

FIG. 8: The phase diagram of the LOC model at zero temper-
ature for x = 0.03 ans x = 0.05. Points are obtained at values
of parameters such that kF = 0. Dashed lines are linear fits
of the data. At a given value of λ the increase of impurity
concentration stabilizes the conductive phase.

ditivity in electron scattering time is found due to the
self-consistency condition. We remark here the difference
in our strong-disorder approach in which the self-energy
appearing in Eq. (14) is no longer separable into two
contributions. We thus have analyzed the strong fluctu-
ations of the self-energy due to disorder rather than its
separability into electron-phonon and disorder part.

V. CONCLUSIONS

In conclusion, in this work we have investigated the
role of the electron-phonon interaction in disordered sys-
tems, and their strong interplay when the energy scales
in which they act are comparable. It is well known
that trapping impurities provide the necessary energy for
the polaronic transition stabilizing the polaronic state at
weaker electron-phonon coupling23–26. Here we have dis-
cussed this interplay at finite electron density and weak
electron-phonon coupling, thus relying our study on the
PPNCA to deal with weak electron-phonon interaction.
We have developed a theoretical method to combine the
PPNCA with the CPA to study strongly disordered sys-
tems, and we have extended such theory to the Apical
Oxygens model37 and to a non-local electron-phonon in-
teraction characteristic of couplings with crystal’s polar
modes. We mainly focused our attention on low dimen-
sional systems such as quasi twodimensional or layered
ones, since in these cases the effect of disorder can in
principle be larger with respect to purely 3D systems.
On the other hand, we concentrated on low doped sys-
tems in which the impurity band can be very close, and
hybridizes, with the bottom of the electronic one. This
peculiar, but quite common experimental and theoret-
ical evidence7–9,14–17 allowed us to study when disorder
and electron-phonon interaction act in a cooperative way,
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FIG. 9: Upper panel: the interacting density of the states
for x = 0.05 and disorder level Eb = −0.5 as a function of
electron-phonon coupling λ. In the inset is shown the value
of kF as a function of λ. Lower panel: The DOS of the LOC
and AO models at λ = 0.3, here a gaussian disorder of std.
deviation σ = 0.05 has been added to the dichotomic disorder.

and the action of disorder cannot be included in a per-
turbative way as a source of weak broadening of the
spectral features. On the contrary, impurity-type dis-
order strongly affects the electronic structure giving rise
to a significant spectral weight redistribution. This could
lead to a dramatic Fermi surface reduction even at mod-
erate electron-phonon couplings, which in turns can be
detected as a Luttinger’s theorem violation14 and eventu-
ally an electron-phonon driven metal-insulator transition
as the Fermi surface vanishes. From a quantitative point
of view, the strongest interplay between electron-phonon
and local disorder is found for the local electron-phonon
interaction (LOC model). Non-local couplings studied in
this work (AO, NLOC) both display a less effective inter-
play with disorder as a consequence of the interactions’
non-locality.

CPA approximation used to approach the strong disor-
der regime is a reasonable approximation for the DOS or
the average spectral function in three dimensions46. In
our 2 (LOC,NLOC) or 2+1 (AO) dimensional systems
there are however some deviations which can be treated
within a non-local DCA framework47. Generally speak-
ing CPA overestimates the disorder induced gap. As
a consequence in our treatment of the disorder-induced
MIT we expect that the disorder needed to reach the

 0
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FIG. 10: Upper panel: DOS of LOC model within CPA1 and
CPA2 approximations,vertical dotted lines marks the Fermi
energy (ω = 0) and the two phonon resonances at ±ω0. Lower
panel: Comparison of CPA1 (left) and CPA2 (right) spectra.

MIT would be slightly lower going beyond CPA. Localiza-
tion effects, absent in CPA approach, which are however
beyond the present work, can be relevant for transport
properties in low dimensional systems. Their effects can
be probed at the local level by anomalous fluctuations
of the local DOSs which can be relevant to tunneling
experiments. Instead of the averaged DOS taken into
account in this work one can consider the typical DOS
obtained as geometric averages of local DOSs46. As far
as local quantities are concerned for the LOC model one
can generalize our self-consistency equations to the case
of typical quantities following the lines of refs.46,48.
PPNCA approximation for electron-phonon interac-

tion used in our work cannot be used to attach the po-
laronic regime which can be interesting to study, since
the recently found polaronic resonances in single layer
high-Tc superconducting FeSe10. Also from a theoret-
ical point of view, the interplay between disorder and
polaronic electron-phonon interaction could be much dif-
ferent from that proposed in the present paper37. To this
aim a beyond-NCA approach such as DMFT should be
useful also to include electronic correlations. A cluster-
DMFT approach could also be useful to include spatial
correlations which we neglect in our local approach in the



10

LOC model case, overcoming in this way the well known
problems of single site DMFT in dealing with systems at
low dimensionality49.
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A. Taleb-Ibrahimi, P. Le Févre, G. Herranz, M. Bibes, N.
Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy and M. J.
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Appendix A: Second derivative of the spectral

function

A common used technique to highlight subtle spectral
features is to take the second derivative of the spectral

function ∂2

∂ω2A(k, ω). In Fig. 11 we plot this function
using CPA1 and CPA2 iteration schemes. In both cases
the phonon’s signatures are evident but a little bit more
within CPA2. More importantly at higher binding ener-
gies, CPA1 spectra clearly shows disorder non-dispersed
features while in CPA2 clear phonon’s higher order reso-
nances are visible up to fourth order, even in the presence
of such a strong disorder.

Appendix B: Electron-phonon induced Mott

transition

Let us consider the bimodal disorder case Pi(ξ) =
xδ(ξ−Eb)+(1−x)δ(ξ) in the LOC model. Let us consider
only the action of the Hartree term in the self-energy Eq.
(12), so that the single-site Green function Eq. (10) reads

G(ω) = x

G−1
0 (ω)− Eb + λn1

+
1− x

G−1
0 (ω) + λn0

, (B1)

where

n1 = − 1

β

∑

n

x

G−1
0 (ω)− Eb + λn1

eiωn0
+

(B2)

n0 = − 1

β

∑

n

1− x

G−1
0 (ω) + λn0

eiωn0
+

, (B3)

where n1 is the electron density in the impurity site and
n0 is the density everywhere else. In the atomic (zero
hopping) limit we have n1 = 1, n0 = 0 but due to the
hibridization of the impurity sites n1 < 1 and n0 > 0.
From Eqs. (B1,B2,B3) it is evident that as far as the
electron-phonon interaction is considered at the Hartree
level Eb → Eb − λ(n1 − n0) and the disorder-induced
metal-insulator transition occurs when

|Eb| = |EMIT | − λ(n1 − n0) (B4)
with |EMIT | the binding energy at the impurity site
needed to detach the impurity band in absence of
electron-phonon interaction. Eq. (B4) explains the lin-
ear dependence found for small λ for the disorder-induced
metal-insulator transition in Fig. 8. It is worth to note
that this effect is absent in CPA1 where the electron-
phonon self-energy is mediated and as a consequence
there is no electron-phonon contribution to the binding
energy at the impurity site.

FIG. 11: Comparison of second derivative of the spectral func-
tion within CPA1 (left) and CPA2 (right) spectra.
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