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STRONG ITERATIVE PAIRS AND THE REGULARITY

OF CONTEXT-FREE LANGUAGES (*)

by A. EHRENFEUCHT (*) and G. ROZENBERG (2)

Communicated by J. BERSTEL

Abstract. — The notion of an itérative pair introduced by Boasson, formalizes pumping pro-
perties of (long enough) words in languages as e. g., expressed by the celebrated pumping lemma
for context-free languages. Such an itérative pair (x, y, z, u, t) of a language K must be such
that xyzuteK, yu # A, and for every n > 1, xynzunt€ K. Since n>\,an itérative pair allons pumping
upwards. A strong itérative pair is like an itérative pair except that we allow every n>0 ; thus
also pumping downwards is permitted. A (strong) itérative pair (x, y, z, w, t) is said to be very
degenerate iffor every n, m>0, xynzumteK. It is proved that if K is a context-free language
such that each of the strong itérative pairs of it is very degenerate then K is regular; this result
generalizes an analogous result for itérative pairs proved by Boasson.

Résumé. — La notion de paire itérante introduite par Boasson formalise des propriétés d'ité-
ration de mots (assez longs) de langages, comme formulé par le célèbre lemme de la double étoile
pour les langages algébriques. Une telle paire itérante (x, y, z, a, t) d'un langage K doit vérifier
xyzuteK, yu^A, et par tout n^l, xynzunteK. Comme n ^ l , une paire itérante permet une
itération croissante. Une paire itérante forte est comme une paire itérante, sauf que tout n^O
est autorisé ; ceci permet également une itération décroissante. Une paire itérante (forte) (x, y, z,u,t)
est dite très dégénérée si pour tout «, m>0, on a xynzumteK. On montre que si K est un langage
algébrique dont toute paire itérante forte est très dégénérée, alors K est un langage rationnel.
Ce résultat généralise un résultat analogue prouvé par Boasson pour les paires itérantes.

INTRODUCTION

The class of context-free languages (if CF) and the class of regular languages
(<yREG% where &REG + if CF, are important classes of languages within formai
language theory, see, e. g., [4] and [5]. A way to understand the structure
of context-free grammars is to impose restrictions on them which will
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4 4 A. EHRENFEUCHT, G. ROZENBERG

guarantee that the languages generated will be regular. Several restrictions
of this kind are known, see, e. g., [4] and [5],

On the other hand, in order to understand the combinatorial structure of
context-free languages, one can attempt to formulate conditions (combina-
torial in nature) on the interrelationship of words in a context-free language
which would force such a language to be context-free, see, e. g., [1 ]. A starting
point can be the celebrated pumping lemma for context-free languages.
Based on it, the notion of an itérative pair was introduced in [2], see also [1 ].
If K is a language, K £ Z*, then p=(x, y, z, M, t) is an itérative pair in K if,
for every n> 1, xynzunteK where yu is a nonempty word. Such a synchronized
pumping of subwords (y and u) in a word (xyzut) in K gives one a possibility
(using one itérative pair only) to generate context-free but not regular languages
(e. g., { anbn : n > 1 } ). However, if one desynchronizes such a pumping, that
is, one requires that, for ail r, s>0, xyrzusteK, then an itérative pair yields
a regular language, This observation leads one to a conjecture that if each
itérative pair p = (x, y, z, w, t) of a context-free language K is vêry degenerate
(that is, for ail r, s>0, xyrzusteK) then K must be regular. This conjecture
was shown to be true in [2]. An itérative pairs allows only "upward pumping",
expressed by the fact that n>l and in this sensé it does not fully formalize
the idea from the pumping lemma for context-free languages where also
pumping "downward" (i. e., n=0) is allowed. If in the définition of an itérative
pair we require n>0 rather than n> l , then we get a strong itérative pair.

In this paper we prove that if every strong itérative pair of a context-free
language K is very degenerate then K is a regular language. This resuit genera-
lizes the resuit from [2] in the sensé that we can obtain the latter directly
from our resuit. It provides a positive solution of a conjecture stated in [1 ].

0. PRELIMINARIES

We assume the reader to be familiar with the theory of context-free and
regular languages, e. g., in the scope of [4] or [5]. We will use rather standard
formai language theoretic notation and terminology. Perhaps only the follow-
ing points require an additional explanation. For a finite set A, %A dénotes
its cardinality. N dénotes the set of natural numbers (including 0) while Z+

dénotes the set of positive integers. We consider finite alphabets only.
A dénotes the empty word. For a word w, alph{w) dénotes the set of all letters
appearing in w and | w | dénotes the length of w; if a is a letter, then #a(w)
dénotes the number of occurrences of a in w. If w ̂  A then last (w) dénotes the

R.A.I.R.O. Informatique théorique/Theoretical Informaties



REGULARITY OF CONTEXT-FREE LANGUAGES 45

last letter of w and w/last (w) dénotes the word obtained from w by removing
the last letter of it. For a language K, Pref (K) dénotes the set of all préfixes
of all words in K.

For an équivalence relation R, index (R) dénotes its index.

For an alphabet E, HOM (E, E) dénotes the set of all homomorphisms
from E* into E*.

We recall now the basic characterization of regular languages.

DÉFINITION 0.1 : Let K be a language, K ç S*. The Myhil-Nerode relation

induced by K, denoted by ~K9 is defined as follows. For x9 yeE*, x~Ky if
and only if, for every ueE*, xueK if and only if yueK. •

It is easily seen that ~ K is an équivalence relation. The following theorem
(see, e. g., [5]) provides the fondamental characterization of regular languages.

THEOREM 0.1: Let K be a language, X ^ E * . K is regular if and only if

~K is of finite index. •

In the sequel we will need a somewhat modified version of this resuit.

Let K be a language, K e E*. Let MK= { weE+ : uteK for some teE* } .
Let (~K)M be the relation ~K restricted by MK, hence

(~K)MK = {(*> y): (*> y)e~K> x e M K a n d yeMK} •
THEOREM 0.2: Let K be a language, X ^ E * . /ƒ ( ^ ^ is of finite index

then K is regular.

Proof: Let wel,*. Then either w = A or weMK or w$Pref(K). Consequently
index(~K)< index((~^)MK) + 2 and so ~K is of finite index. Thus, by Theo-
rem 0.1, K is regular. •

1. BASIC NOTIONS

In this section several notions very basic to this paper are introduced
and their rudimentary properties investigated.

We start by introducing the notion of a strong itérative pair which directly
generalizes the notion of an itérative pair as introduced in [2], see also [1 ].
(This generalization was suggested by [3 ]). The différence is that we allow
also shortening of a word and so we can consider the itération starting from 0.

DÉFINITION 1.1 : Let K be a language, K ç E*. A strong itérative pair,

abbreviated SIP, of K is a 5-tuple/> = (*, y, z, w, t) where x, y, z, M, reE*, yu^A

and, for every neiV, xynzunteK. We say that p is a uery degenerate strong

itérative pair, abbreviated VDSIP, of K if, for every n,meN, xynzumteK. •
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46 A. EHRENFEUCHT, G. ROZENBERG

For a language K, SIP(K) will dénote the set of strong itérative pairs of K
and VDSIP (K) will dénote the set of very degenerate strong itérative pairs
of K.

The following generalization of the notion of a strong itérative pair will
be a very useful technical tool in our investigation.

DÉFINITION 1.2: Let K be a language, K ç £*. A generalized strong itérative

pair, abbreviated GSIP, of K is a (4/+l)-tuple

where leZ+
9xv .. .9xl9y%9 ...9yltz9ul9 ...9uvtp . . . . t ^ Z * and, for ail

nv . . . , n,eiV, x ^ î ^ - V ? • • • ̂ iyTzuniltiuT-l • • • «î^iGK We say that /? is a
üerj; degenerate generalized strong itérative pair, abbreviated VDGSIP, of K
if, for every n p .. .,n/s w p . . .,mteN, xxy\l . . . xly

n
l
lzuT^ltl ... u ^ e X " . D

For a language X, GSIP(K) will dénote the set of generalized strong itéra-
tive pairs of K and VDGSIP (K) will dénote the set of very degenerate genera-
lized strong itérative pairs of K. Also, in the above définition we refer to /
as the length of p. Clearly SIP(K)<= GSIP(K).

The following resuit makes a useful connection between SIP(X) and
GSTP(K).

THEOREM . 1 . 1 : Let K be a language. If SIP{K)^ VDSIP (K) then

GSIP(K)çVDGSIP(K). D

Proof: Let peGSIP(K); we have to prove that, under the assumption of
the theorem, p e VDGSIP (K). We will prove this by the induction on the
length of p.

If the length of p equals one then peSlP(K)9 hence peVDSlP(K) and
consequently p € VDGSIP (K).

Assume that the theorem holds for every GSIP p of K that is of length
not exceeding ƒ—1 where />2.

Consider now a GSIP p of length /; let

Let nv .. .,n{eN and let us consider the word

W-A-JV^1 \(\f-u
fl'tl . . . ^ 7 , ;

since p is a G S I P , weK. Let x=x1y\l . . . y"ls^xl9 y=yv u = ut and
t=tlu

n
lL'l

1 . . . u\Hv Clearly (JC,J>,Z,U, t

R.A.I.R.O. Informatique théorique/Theoretical Informaties



REGULARITY OF CONTEXT-FREE LANGUAGES 4 7

Thus, by the assumption of the theorem, for all mv m2eN and for all
nv .. ^n^^N we have

•Xi/i1 • • • yT-ixiyTizuT2tiuT-i • • • «ï
Consequently for all mv m2eN

is an element of GSIP(X) and the length of q(mvm2) equals /—1. Thus, by
the inductive assumption, q(mvm2)e\DGSlP(K)t Hence for all m19 m2eJV,
for all nv .. .,nl_leN and for all rv . . .9rt_xeN we have

and consequently pe VDGSIP(K).
Hence the theorem holds. •
Another important notion of this paper is that of a type of a word. It is

defined as follows.

DÉFINITION 1.3: Let E be an alphabet and let u, we E*. We say that w is

of type u or that u is a type of w (denoted T(M, W)) if
(i) for every aeE, %a(u)<l, and

(ii) there exists a homomorphism /ieHOM(S, X) such that
(ii. 1) for every aeE, h(a)e {a} u { a } Z * {a} 9 and
(ii.2) h(u) = w.

If u satisfies the above, we also say that u is a type in E*. •

Example 1.1; (1) Let £ = {a,b,c,d}, u = abcd and w^abcabccd. Then
T(M, W) where we use the homomorphism h is defined by h(a) = abca, h(b)=b,

h(c) = cc and h(d) — d. It is instructive to notice that also the homomorphism Ti

defined by h(a)=a, h{b) = bcab, h(c) = cc and h(d)=d will yield %(u>w).

(2) Let £ = (a, fr, c}, u1 = acb, u2=ab and w—acbabcb. Then T(U15 W) if
we use the homomorphism h1 defined by fc1(a)=a, hx{c)^=cbabc and hx{b)=^b,

Also T(M2, W) if we use the homomorphism ft2 defined by h2(a) — acba, /i2(è) = bcb

and h2(c) = c. D

LEMMA 1.1: Let S öe an alphabet. Then

(i) for every weS* there exists a u e l * such that T(M, w), and
(ii) the number of types in S* is finite.
Proof: (i) Let wel*. We will prove part (i) of the lemma by induction

on %alph(w).

If 9alph(w)=0 then clearly x(A, w).
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48 A. EHRENFEUCHT, G. ROZENBERG

If %alph(w)= 1 then, for some aeZ and neZ+w=an. Hence t(a, w). Assume
that the lemma holds whenever #alph(w)<m where meN, m>2. Let now
#alph(w) = m.

If no letter from Z occurs twice in w then x(w, w).
Otherwise write w in the form w~w1aw2aw3 where wv vv2, w3eS*, öeZ,

a4alph(wx% a$alph(w3) and if w ^ A then every letter from alphty^ occurs
exactly once in w.

By the inductive assumption, there exists a w3eZ* such that x(u3, w3);
let / i 3 b e a homomorphism involved. Now we define the homomorphism h
of Z* as follows: for fceZ, h(b) = b if bealph{wx\ h(b) = aw2a if è = a and
h(b) = h3(b) if bealph(w3). Clearly /i satisfies condition (ii) of Définition 1.3
and so it is easily seen that x(w1aw3, w).

This complètes the inductive step and consequently part (i) of the lemma
holds.

n

(ii) Obviously the number of types in Z* equals £ r ! where n = #2T. G
r = 0

/n £/ie sequel of this paper we will consider an arbitrary butfixed context-free
grammar G in Chomsky Normal Form, G = (Z, A, P, S) such that L(G) is infinité
(hère Z is the total alphabet of G, A its terminal alphabet, P its set of productions
and S its axiom). We will use DG to dénote the set of ail dérivation trees in G.
The following construction is very essential for our paper.

CONSTRUCTION 1.1 : Let TeDG and let p = vov1 . . . vs be a path in T where
5>1, v0 is the root of T, vs is a leaf of T and l{vo\ l(vt\ ..., l(vs) are the node
labels corresponding to nodes of p. Let 6p=((ï;i11^i12X * • ̂ ( ^ ^ vtr2)) ^

e a

séquence of pairs of nodes from p such that r >0, ijl < ij2 for 1 <j<r, ij2 < i{j+ in

for \<j<r — 1 if r>2 and /(^-.^/(tvj f°r 1^7^^- Let ƒ be a function from
{ 1, . . . , r } into { U R } ; for 1 </ < r* ƒ(ƒ) is the /ote/ of (i?Oi, i?.>2).

Let T(p, gp, ƒ) be a tree obtained from T as follows. Successively for each
j= 1, . . . , r perform the following:

— if f(j) = L delete from T every subtree Î7 such that its root, root{U),

is to the left of p and the direct ancestor of root(U) in T is among the nodes

— if f{j) = R delete from T every subtree U such that root(U) Is to the
right of p and the direct ancestor of root(U) in T is among the nodes

Example 1.2 : A dérivation tree TeDo looks a follows (Fig. 1) where p is the
path consisting of nodes 1 through 10. Clearly yield(T) — a(bc)2bab2cb.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Fie. 2

Let GpM(2,4),(4,5),(7,9)) and /((2,4))=L, /((4,5)) = R and
Then T(p, Qp,f) looks as in Fig. 2. Note that yield(T(p, Q

Note that, in gênerai T(p, Qp, ƒ) does not have to be a dérivation tree
in G. Ho wever, T(p, gp, ƒ) has a frontier and so its word, yield (T(p, Ôp> ƒ))
is well defined. If T is a tree such that T' = T(p, Qp, ƒ) for some p, Qp and ƒ
then we say that the prune relation holds between T and T' and we write
prune(T, T). Then we define

PR(DG)= { T : there exists.a TeDG such that prune(T, T')}.

The usefulness of "pruned versions" of dérivation trees in G stems from
the following result.

LEMMA 1.2: Assume that SIP{L(G))^VDSIP{L{G)). Then yield{T)sL{G)

for every T'GPR(DG).

Proof: Let T'ePR(Z)G) and let TeDG be such that prune{T, T'); let p, Qp

and ƒ be such that r = T(p, gp) ƒ). Let yieW(T) = w.
Let Qp=((vhiivii2l .. .,(viri,vir2)) where p=vovx ... vs, s>l. If r = 0 then

obviously T=T' and the lemma holds.

vol. 19, n° 1, 1985



50 A. EHRENFEUCHT, G. ROZENBERG

Assume then that r > l .

Let w^=w1zw2 where the depicted occurence of a subword zeA+ is the
contribution of vir2 to w.

Let

x1 be the contribution to wx of the séquence of nodes v09 .. ,9v( t (if
this séquence is empty then x1 — A) through nodes to the left of p,

yi be the contribution to wt of the séquence of nodes viii9 . . . , vii2 _ x through
nodes to the left of p,
and, for 2<j<r,

yj be the contribution to wx of the séquence of nodes vijl9 . . •>vij2_l through
nodes to the left to p,

. = A,

otherwise JĈ  is the contribution to wx of the séquence of nodes
n o d e s t o t h e lef t o f P-

Analogously to the séquence xv yv . . .,xr,yr, we define the séquence
tvuv . . . , tr, ur where the only différence is that we consider the contributions
of the appropriate séquences of nodes on p to w2 (through nodes to the right
of p) rather than to wv

F r o m t h e w a y t h a t t h e s é q u e n c e x19y19 .. ,9xr9yr9z9ur9tr9 .. ,9u19t1 w a s

constructed it immediately follows that

p = {xv .. ., xr, yv . _ y,, z, ur, . . . , uv tr, . . . , tJ

Hence by Theorem 1.1 and the assumption of the lemma it follows that
/>eVDGSIP(L(G)).

We notice now that

where, for 1 <j < r, n- = 0 and mj = 1 if ƒ {ƒ) = L, while n} = 1 and m- = 0 if ƒ (/) = R.

Since /?eVDGSIP(L(G)), yield{T)eUG) and so the lemma holds. D
The following construction marking a fixed path in a dérivation tree allows

one to retain enough information in specially marked (labelled) nodes of
the path to be able to produce dérivation trees (with special properties) starting
with such a marked path only.

Let X={(A,B,C,k):ke{1,2} and A-+BCeP}v{(A,a):A^aeP}Kj A;

we refer to S as the marking alphabet (of G).

CONSTRUCTION 1.2: Let TeDG and let p = vovx . . . vs be a path in T where
s> 1, u0 is the root of T, vs is a leaf of T and l(v0), l(vx\ ..., /(r5) are the labels

R.A.I.R.O. Informatique théorique/Theoretical Informaties



REGULARITY OF CONTEXT-FREE LANGUAGES 51

corresponding to nodes of p. Now for each node Vp 0<j<s, change its label
to l(Vj) as foliows:

(1) if A -> BC is the production used to rewrite the node j (hence l(Vj) = A)

and Vj has a direct descendant to the left of p, then J(i?.) is changed to
\vj) = (A,B9C,l),

(2) if A -> BC is the production used to rewrite the node j and t?. has a
direct descendant to the right of p, then l{v}) is changed to \v3)=(A, B, C, 2),

(3) if A -> a is the production used to rewrite the node y then l(Vj) is changed
to l(Vj)=(A,a), and

ï

The resulting tree is called the marked p-version ofT and denoted by T(p).
The word 7(u0) . . . l(vs) is referred to as the spine of T(p) and denoted by
spine(T(p)). D

Example 1.3: Let TeDG be as follows (Fig. 3) where p consists of nodes 1
through 7.

J S . A . B , 1)

FIG. 3 FIG. 4

Then T(p) looks as in Fig. 4 and

spine(T(p)) = (S, A9 B, 1){B9 C, B, 1)(B, C, 5,2)(C, A, X, 2)(^l, A, B,

2. THE MAIN RESULT

In this section we prove the main resuit of this paper which states that if
every strong itérative pair of a context-free language K is very degenerate,
then K is a regular language.

vol. 19, n° 1, 1985



52 A. EHRENFEUCHT, G. ROZENBERG

We start by defining a ternary relation n ^ X + x X + x £*, a binary relation
5 ^ S + x l + and a function 0 from ML(G), the set of nonempty préfixes
of L(G), into the set of types in Z* as follows:

(i) for we£+ , z eS + and «el*, |i(w, z, M) if and only if VVMGL(G) and there
exists a dérivation tree T of wu in G and there exists a path p in T ending on
the last (occurrence of a) letter of w such that spine T(p)) = z,

(ii) for weS + , zeZ+ , 5(w,z) if and only if there exists a u e l * such that
\i(w, z, u\ __ _

(iii) for VVGML(G), 0(W) = { xeE+ : T(JC, Z) and S(w, z) for some zeE+ } .
The following lemma forms the major step in proving our main resuit.

LEMMA 2.1: Let w, w'eML{Gy If ®(w) = ©(w')

Proof: Clearly, to prove the lemma it suffices to show that for every
if ®(w) = ®(w') and wueL(G) then w'ueL(G) (*).

To this aim we proceed as follows.
Let weE* be such that wueL(G). Consider a dérivation tree T of wu in G.

Let p be a path in T beginning in the root of T and ending on the last (occur-
rence of a) letter of w. Consider T(p) and let z = spine(T(ç>)).

Let xeE + be such that x(x,z), say x = X1 . . . Xs, s>l, where XJ.GË for
1 < 7 < S . Let h be a homomorphism satisfying condition (ii.l) of Défini-
tion 1.3 (with S replaced by S) such that h(x) = z. Let z=z1 . . . zs where
Zj = h(Xj) îor l<j<s.

Since ©(w) = 0(w')5 JCG©(W'). Thus there exist t/e2*, a dérivation tree T'
of w'u' in G, a path p' in T' beginning in the root of T' and ending on the
last (occurrence of a) letter of w' such that spine(T'(p')) = z' where x(x, zf).

Let hf be a homomorphism satisfying condition (ii.l) of Définition 1.3
(with h replaced by W and Z replaced by E) such that h'(x) = z'.

Let z' = z; . . . z's where z} = /z'(Z;) for l<y<5.

Let £eS+ be such that t = £x . . . ts where, for l<j<s, tj = (zj/last(zj))z'j;
each tj is referred to as the / t h block of t.

Note that such a / th block ^ must be of one of the following four catégories.

CATEGORY l.-IflZj.) >2and|z^.| >2thent j = aylay2awhereae%yv

zj = ayla and zr^ay2a. We will refer to the three depicted occurences of a
in tj as the first, the middle and the /ast pointer of ^ respectively; );1 and y2

are referred as the first and the /ast bridge of t. respectively.

C A T E G O R Y 2 : If \z}\ >2 a n d | z j | = 1 then tj = ay1a whe re

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Zj=ayla and z'j=a. We will refer to the two depicted occurrences of a in t.

as the first and the last pointer of tj respectively; yx is referred as the bridge

off,

CATEGORY 3: If \z.| =1 and \z'j\ >2 then tj—ay2a where aeS, y2eE*,
Zj = a and z^.=aj;2a. We will refer to the two depicted occurences of a in t.
as the^zrst and the last pointer of tj respectively; y2 is referred as the bridge
Off,

CATEGORY 4: If | z} \ = \ z'. \ = 1 then t} = a where aeZ and Zj = zJ=a.

CLAIM 2.1: There exists a dérivation tree U in G and a path y in U such
that t = spine{U(y)).

Proofofthe claim: This foliows easily from the observation that every two
consécutive letters in t are either two consécutive letters in z or two consécutive
letters in z'. •

Note that, clearly, such a path y together with direct descendant nodes
attached to it is (up to node isomorphism) uniquely determined by t. The
so formed tree will be denoted by sur(t). The word t induces the obvious
division of path y in sur(t) into consécutive segments yv . . . , ys corresponding
to blocks tv . . . , ts respectively. In this way we can talk about the nodes of yp

1 <j<s, which are the (first, middle or last) pointers of y. or which are nodes
of the (first or last) bridge of yr We say that yp1 <j < s, is of Category i, 1 < i < s,
if tj is of Category i.

Also the nodes in sur(t) which are not on y are called the outside nodes
(of sur(t))\ the outside nodes to the right of y are called right outside nodes,
similarly we get left outside nodes. By construction of t, these outside nodes
correspond uniquely either to nodes of T or to nodes of T"; to simplify termi-
nology we will say that they are from T or from T".

We will extend now sur(t) into a dérivation tree in G as folio ws. Consider
one by one each segment y. of y, l<y<s.

Assume that y. is of Category 1. From the définition of t. it follows imme-
diately that either for each pointer of y. its outside direct descendant is a
right outside node (Case 1) or for each pointer of ŷ  its outside direct descendant
is a left outside node (Case 2). If Case 1 holds then we replace the outside direct
descendant node e1 of the first pointer by the subtree of T rooted at et

(remember that, according to our terminology, e1 is also a node of T). The
tree isomorphic to this one (with corresponding labels being the same) replaces
also the outside direct descendant node em of the middle pointer of yr The
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outside direct descendant node ex of the last pointer of y. is replaced by the
subtree of T" rooted at ev

If Case 2 holds then we replace the outside direct descendant node ex

of the first pointer of y. by the subtree of V rooted at ev The tree isomorphic
to this one (with corresponding labels being the same) replaces also the outside
direct descendant node em of the middle pointer of y.. The outside direct
descendant node ex of the last pointer of y. is replaced by the subtree of T'
rooted at ev

In both cases each outside direct descendant e of a node on the first bridge
is replaced by the subtree of T rooted at e and each outside direct descendant e
of a node on the second bridge is replaced by the subtree of Tf rooted at e.

lîjj is either of Category 2 or of Category 3 then the process is quite analogous
except that we do not have (outside direct descendants of) middle pointers
to process. If y. is of Category 2 then outside direct descendants of nodes
on the bridge are replaced by appropriate subtrees from T while if y. is of
Category 3 then outside direct descendants of nodes on the bridge are replaced
by appropriate subtrees from T'.

If y. is of Category 4 then nodes in y. do not leave direct descendants.
In this way we have extended sur{t) into a dérivation tree in G; this tree

will be denoted by SUR(t).
The last step of our construction needed to prove (*), and hence to prove

Lemma 2.1, is to construct the tree SUR'(t) such that prune{SUR(t), SUR'(f))
holds.

Consider y. For each block y. of y, l</<s> we do the foliowing. If ŷ . is
of Category 1 then it yields two pairs of nodes: {pivpjr^ folio wed by {pjm,p^
wherep^p im ^ndpjt are the first, the middle and the last pointer of ŷ . respec-
tively. Then {pn,pjn) is referred to as the first pair of yj and {pjm,p^ is referred
to as the second pair of y..

If y. is of Category 2 or 3 then it yields one pair of nodes: {pjvp^ where
pn is the first and pn is the last pointer of yr

If going from j = 1 toj=s we select each block y. of y that is of Category 1,
2 or 3 and form the séquence of pairs of nodes described above in this order
(where for y. of Category 1 the first pair comes before the second), then we
get the séquence Qy of pairs of nodes from y.

Now to each pair from Qy the function ƒ assigns either L or R as follows.
If y. is of Category 1 then ƒ assigns L to its first pair and R to its second

pair.
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If jj is of Category 2 then ƒ assigns L to its pair.
If jj is of Category 3 then ƒ assigns R to its pair.

By the above construction we have obtained the tree

(SUR(0)(y,Öy,/)=SUR'(0.
It follows directly from the construction of SUR(0 and SUR'(£) that

yié?/d(SUR'(O)=w'u. Hence by Lemma 1.2 it follows that w'weL(G) and
consequently (*) holds. Clearly (*) implies the lemma. •

We are ready now to prove the main resuit of this paper.

THEOREM2A:LetKbeacontext-freelanguagesuch that SIP(K)£ VDSIP[K).

Then K is regular.

Proof: Let G=(E, A, P,S) be a A-free context-free grammar in Chomsky
Normal Form generating K. Consider two arbitrary words w, w'eMK. By
Lemma 2.1, if ©(w) = ©(v/) then w~Kw'. But by Lemma 1.1 (ii) the number
of types in E* is finite and consequently ( ~ K)M is of finite index. Thus by
Theorem 0.2, K is regular. •

We recall now the notion of an itérative pair as originally defined in [2],
see also [1].

DÉFINITION 2.1: Let K be a language, K ç 2*. An itérative pair, abbreviated
IP, of K is a 5-tuplep = (x,y,z9 w, t) where x, y, z, M, teZ*, yu=£A and, for every
neZ+, xynzunteK. We say that p is a uery degenerate itérative pair, abbre-
viated VDIP, of K if, for every n, meN, xynzumteK. •

For a language K, IP(K) will dénote the set of itérative pairs of K and
VDIP(K) will dénote the set of very degenerate itérative pairs of K.

Thus the différence between the strong itérative pair and an itérative pair
is that erasing of (the second and the fourth) components of a pair is allowed
if it is a SIP but not allowed if it is an IP.

The following resuit is from [2 ] ; we demonstrate now how it can be easily
obtained from our resuit.

COROLLARY 2. ULetKbea context-free language such that IP(K)^ VDIP(K).

Then K is regular,

Proof: Since SIP(K) ç IP(K), SIP(JQ<= VDIP(K) and consequently
SIP(X)^VDSIP(X). Thus, by Theorem 2.1, K is regular. •
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