
ar
X

iv
:1

80
5.

05
03

2v
2 

 [
m

at
h.

PR
] 

 2
7 

N
ov

 2
01

8

Strong law of large numbers for Betti numbers in the

thermodynamic regime

Akshay Goel Khanh Duy Trinh Kenkichi Tsunoda

November 28, 2018

Abstract

We establish the strong law of large numbers for Betti numbers of random
Čech complexes built on R

N -valued binomial point processes and related Poisson
point processes in the thermodynamic regime. Here we consider both the case
where the underlying distribution of the point processes is absolutely continuous
with respect to the Lebesgue measure on R

N and the case where it is supported
on a C1 compact manifold of dimension strictly less than N . The strong law
is proved under very mild assumption which only requires that the common
probability density function belongs to Lp spaces, for all 1 ≤ p < ∞.
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1 Introduction

The emerging research area known as random topology comprises theoretical results
that characterize the asymptotic behavior of topological properties of random objects
[2, 3, 12, 13, 25, 26]. In addition to the mathematical value, such results also find many
applications in manifold learning and topological data analysis as they provide tools
for interpreting complex high dimensional data sets (see e.g. [6, 7, 9]). One aspect of
this area is the study of random geometric complexes and their topological properties
called Betti numbers. Random geometric complexes, regarded as higher-dimensional
generalizations of random geometric graphs, are generated from random points under
certain deterministic rules. In this paper, we concentrate on random Čech complexes,
a typical type of random geometric complexes, with the aim to establish the strong law
of large numbers for their Betti numbers in the thermodynamic regime. The approach
here, however, is general enough to apply to other types of geometric complexes.

For a finite set of points X = {x1, x2, . . . , xn} in R
N and a radius r > 0, the Čech

complex, denoted by C(X, r), is defined to be an abstract simplicial complex consisting
of all non-empty subsets σ of X for which ∩x∈σB(x, r) 6= ∅. Here, B(x, r) = {y ∈
R
N : ‖x − y‖ ≤ r} denotes the closed ball of radius r centered at x with respect to

the Euclidean norm ‖·‖. In other words, the Čech complex C(X, r) is the nerve of the
union of balls ∪x∈XB(x, r). As a consequence of the nerve lemma [5], the two objects
are homotopy equivalent, and hence, have the same Betti numbers. Intuitively, the
kth Betti number βk(X) of a topological space X counts the number of k-dimensional
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(a) Sparse regime (b) Thermodynamic regime (c) Dense regime

Figure 1: Illustration of different limiting regimes by constructing Čech complexes
C(X100, r100) with r100 = 0.03 in (a), 0.06 in (b) and 0.1 in (c), where X100 is a set of
100 points drawn uniformly from [0, 1] × [0, 1] ⊂ R

2.

‘non-trivial cycles’ or ‘holes’ in it except β0(X), which counts the number of connected
components of X. For instance, a 2-dimensional sphere has β0 = β2 = 1 and β1 = 0.
Mathematically, the kth Betti number βk(X) is the rank of the kth homology group
of X, which is defined algebraically using group theory. The knowledge of homology
groups is not needed to understand our results since we consider Betti numbers as the
rank of homology groups with coefficients from some underlying field, which can be
defined easily by using elementary linear algebra. The reader interested in homology
theory may refer to [10, 16] for a comprehensive introduction.

Random Čech complexes C(X, r) are built on random points X with non-random
radius r > 0. The source of random points may come from a stationary point
process on R

N , or an i.i.d. (independent identically distributed) sequence {Xi}i≥1

of RN -valued random variables. The paper will focus on the latter case and con-
sider binomial point processes and Poisson point processes, which are defined to be
the union of the first n points Xn = {X1, . . . ,Xn} and the first random Nn points
Pn = {X1, . . . ,XNn}, respectively. Here, Nn has Poisson distribution with parameter
n and is independent of {Xi}. Let us first consider the case where the common dis-
tribution of Xi has a probability density function f(x) with respect to the Lebesgue
measure on R

N . We shall refer to this case as the Euclidean setting. It is known
that there are three main regimes: sparse regime, thermodynamic regime and dense
regime (see Figure 1) in which the limiting behavior of Betti numbers βk(C(Xn, rn))
and βk(C(Pn, rn)) is totally different. Here, {rn} is a non-random sequence of positive
numbers tending to zero for which three regimes are divided according to the limit of
{n1/Nrn}: zero, finite or infinite. Note that the tools used to determine the limiting
behavior in each regime are also different. As mentioned before, the paper concerns
with the thermodynamic regime, the regime where n1/Nrn → r ∈ (0,∞), in which
basic problems such as laws of large numbers and central limit theorem have not been
completely understood yet.

Let us introduce some known results before stating our main results. We begin
with a result on homogeneous Poisson point processes. Denote by PL(λ) the restric-
tion on ((−L/2)1/N , (L/2)1/N ]N of a homogeneous Poisson point process on R

N with
intensity λ ≥ 0. Then for 0 ≤ k ≤ N − 1, as L → ∞ [26, Theorem 3.5],

βk(C(PL(λ), r))

L
→ β̂

(N)
k (λ, r) a.s.,
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where a.s. stands for the almost sure convergence. Note that as a consequence of the
nerve lemma, βk(C(X, r)) ≡ 0, if k ≥ N , for any finite set X ⊂ R

N and any r ≥ 0.

Thus, we set β̂
(N)
k (λ, r) = 0, if k ≥ N . Now in the Euclidean setting, the following

strong law of large numbers for βk(C(Xn, rn)) and βk(C(Pn, rn)) in the thermodynamic
regime holds, i.e., as n → ∞ with n1/Nrn → r ∈ (0,∞),

βk(C(Xn, rn))

n

(

resp.
βk(C(Pn, rn))

n

)

→
∫

RN

β̂
(N)
k (f(x), r)dx a.s.,

provided that the probability density function f(x) is Riemann integrable, has convex
compact support and is bounded both below and above on the support [23, 26].
Although in stochastic geometry, weak and strong laws of large numbers have been
established for a general class of local functionals [19, 20], Betti numbers do not
belong to that class. Thus, the study of Betti numbers needs further development.
We propose here an elementary approach to show the strong law of large numbers,
which can remove all the above technical conditions on f(x) (see Theroem 2.1 after
removing the symbol ρ and taking D(x) ≡ 1), and can apply to the problem on
manifolds as well.

Now let M ⊂ R
N be a C1 compact manifold of dimension m < N . Assume that

the underlying distribution is supported on M and has a probability density function
κ(z) with respect to the volume form dz on M. It means that if Z is a R

N -valued
random variable having density κ then for every A ⊂ R

N ,

P(Z ∈ A) =

∫

A∩M
κ(z)dz,

where dz is the volume form on M. We shall refer to this case as the manifold setting.
To distinguish from the Euclidean setting, we denote binomial point processes and
Poisson point processes on manifold by Zn and Qn, respectively. It has been shown
that results in the Euclidean setting can be naturally extended to the manifold setting.
Here, the three regimes are divided according to the limit of {n1/mrn}. However, in
the thermodynamic regime, the only existing result for Betti numbers is the linear
growth of their expected value [3, Theorem 4.3]. We improve this result by showing
the strong law of large numbers stated below. In conclusion, we completely establish
the strong law of large numbers in both the Euclidean setting and the manifold
setting in this paper. The question on central limit theorem in the Euclidean setting
is partially answered in [17, 24] under a technical condition that the limiting radius
r is small enough. So we can say central limit theorems in both the settings are still
open.

Theorem 1.1 (For Manifolds). Assume that the common probability density function
κ(z) is supported on an m-dimensional compact C1 manifold M ⊂ R

N and for all
j ∈ N,

∫

M κ(z)jdz < +∞. Then as n → ∞ with n1/mrn → r ∈ (0,∞),

βk(C(Zn, rn))

n

(

resp.
βk(C(Qn, rn))

n

)

→
∫

M
β̂
(m)
k (κ(z), r)dz a.s.

Here, β̂
(m)
k (λ, r) is the limit of Betti numbers in case of homogeneous Poisson point

processes on R
m (not on R

N).

3
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Figure 2: Illustration of the limiting Betti numbers β̂
(N)
k (1, r) with N = 2 (left) and

N = 3 (right). Plots are numerical values for n−1
E[βk(C(n1/N

Xn, r))] calculated by
taking the average over 20 times of sampling n = 105 points uniformly on [0, 1]N . The
dashed lines are for the Euler characteristics, which seem to fit well with the exact

value (1−πr2)e−πr2 and
(

π4r6

6 − 4πr3 + 1
)

e
−4πr3

3 in 2 and 3 dimensions, respectively.

Note that it may be possible that for some m ≤ k < N , βk(Zn, rn) > 0, but

β̂
(m)
k (λ, r) ≡ 0 for all k ≥ m. Note also that the study of the zeroth Betti number,

which coincides with the number of connected components in a geometric graph,

has a rich literature. A formula for β̂
(m)
0 (λ, r) can be found in [18, Theorem 13.25].

In some sense, the case m = 2 is completely understood because β̂
(2)
1 (λ, r) can be

deduced from the limiting behavior of the Euler characteristic [3]. These are all the

cases where the explicit formula for β
(m)
k (λ, r) has been known. Now for general m,

and for 0 ≤ k ≤ m− 1, we gather here some known properties of β̂
(m)
k (λ, r).

(i) Scaling property: For any θ > 0, β̂
(m)
k (λ, r) = 1

θ β̂
(m)
k

(

λθ, r
θ1/m

)

.

(ii) Continuity and positivity: β̂
(m)
k (λ, r) is a continuous function in both λ and r,

which is positive if λ, r > 0.

(iii) Exponential decay: Let ωm be the volume of a unit ball in R
m and r ∈ (0,∞).

Then
β̂
(m)
k (1, r) ≤ c(ωmr)mke−(ωmr)m ,

where c is a positive constant depending only on m and k.

In addition, approximation formulae for β̂
(m)
k (λ, r), for m = 2, 3, were also studied

[22]. The scaling, continuity and positivity properties were proved in [23, 25] while
the exponential decay property follows easily from the proof of [4, Proposition 6.1].

Let us now explain a key idea to deal with the manifold setting. Let M be a
C1 manifold of dimension m < N . Assume for instance that the support of κ lies
entirely in a single chart (V, φ) (see Definition 2.5), i.e., supp(κ) ⊂ φ(V ). Then
{Xi = φ−1(Zi)}i≥1 becomes an i.i.d. sequence of random variables on V ⊂ R

m.
Moreover, if we define the metric ρ on V by ρ(x, y) = ‖φ(x) − φ(y)‖, then it is clear
that C(Zn, r) is identical with C(Xn, r, ρ), the Čech complex of radius r, constructed
on Xn ⊂ R

m using ρ. Thus, the problem on a manifold is converted to that on the
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Euclidean setting with a general metric ρ, which is easier for us to handle. (A general
result is stated in Theorem 2.1.) In general, the support of κ may not be covered by
a single chart but finitely many ones because of the compactness of M. As we shall
see later, the desired limit theorem in the manifold setting can be derived by taking
a suitable partition of the manifold, together with the spatial independence property
of Poisson point processes and the finite additivity of Betti numbers.

From the applications point of view, considering only homology is not enough.
It is important to see how persistent the ‘holes’ are, which constitutes the theory of
persistent homology. A good introduction of this topic can be found in [8]. Although
we do not discuss about the persistent homology in this article, our results for Betti
numbers can be easily extended to persistent Betti numbers, and hence to persistence
diagrams due to [11] (see Remark 2.4).

The paper is organized as follows. Since the main result in the manifold setting
is already mentioned here, we state only the main result in the Euclidean setting in
the next section. In Sections 3 and 4, we derive the strong law of large numbers for
simplex counts and Betti numbers in the Euclidean setting respectively. What we
mean by simplex counts and why the strong law for them is needed, will be clear in
the next section. Finally, we conclude this article by giving the proof of Theorem 1.1
in Section 5.

2 Main Results

Let us introduce the definition of Poisson point processes. Let λ(x) ≥ 0 be a locally
integrable function in R

N . A point process P on R
N is said to be a Poisson point

process with intensity function λ(x), denoted by P(λ(x)), if it satisfies the following
two conditions

(i) for any bounded Borel set A, the random variable P(A) counting the number
of points in A has Poisson distribution with parameter Λ(A) =

∫

A λ(x)dx, i.e.,

P(P(A) = k) = e−Λ(A)Λ(A)
k

k!
, k = 0, 1, . . . ;

(ii) for disjoint bounded Borel sets A1, A2, . . . , An, the random variables P(A1),
P(A2), . . . ,P(An) are independent.

In case λ(x) ≡ λ, P is called a homogeneous Poisson point process with intensity λ.
Poisson point processes on manifolds can be defined in a similar way. For more on
Poisson point processes, one may see [14].

In the Euclidean setting, we consider Čech complexes that are constructed using a
general metric ρ. (The reason was mentioned as the key idea to deal with the manifold
setting in the introduction.) Let A be a Borel subset of RN equipped with a metric
ρ. Let Bρ(x, r) = {y ∈ A : ρ(x, y) ≤ r} denote the ball centered at x of radius r with
respect to the metric ρ. Then for a finite set of points X = {x1, x2, . . . , xn} ⊂ A and a
radius r > 0, the Čech complex constructed using ρ, denoted by C(X, r, ρ), is the col-
lection of all non-empty subsets σ of X for which ∩x∈σBρ(x, r) 6= ∅. Our main result,
here, establishes the limiting behavior of βk(C(Xn, rn, ρ)), where the common proba-
bility density function f(x) ∈ Lp(RN ) for all 1 ≤ p < ∞ and is supported on A. We
need some conditions on the metric ρ and require that LebN (A) = 0. Here and from

5



now on, for any subset A ⊂ R
N , ∂A, LebN (A), A◦, Ā and |A| denote its boundary,

N -dimensional Lebesgue measure, interior, closure and cardinality, respectively.
The metric ρ is required to be locally approximated by a translation invariant

metric induced from a weighted N -dimensional Euclidean norm, and to be locally
comparable to the Euclidean norm. It is also assumed to be continuous to ensure
the measurability of functionals defined on C(X, r, ρ). Such properties can be easily
checked when ρ is induced from the manifold setting, as we shall do at the end of this
section. More specifically, the two properties of the metric ρ are as follows.

(P1) For fixed x ∈ A, let dx(y, z) = ‖Bx(y − z)‖, where Bx is a positive definite
N × N matrix and the map x 7→ Bx is assumed to be measurable. Then we
assume that for given ε > 0, there is a δ = δx,ε > 0 such that for y, z ∈ A,
whenever y, z ∈ B(x, δ) = {u : ‖u− x‖ ≤ δ},

(1− ε)dx(y, z) ≤ ρ(y, z) ≤ (1 + ε)dx(y, z).

(P2) There exist constants δ, c and C > 0 such that for y, z ∈ A, whenever ‖y−z‖ ≤ δ,

c‖y − z‖ ≤ ρ(y, z) ≤ C‖y − z‖.

It is clear that the properties (P1) and (P2) together imply that for x ∈ A◦,

c‖y − z‖ ≤ dx(y, z) ≤ C‖y − z‖, for all y, z ∈ R
N . (1)

Indeed, let δ, c and C be the constants in (P2). Given x ∈ A◦ and any ε ∈ (0, 1),
take a constant δx,ε < δ in (P1) for which B(x, δx,ε) ⊂ A also holds. Then for any
y, z ∈ B(x, δx,ε), it follows from (P1) and (P2) that

c

1 + ε
‖y − z‖ ≤ dx(y, z) ≤

C

1− ε
‖y − z‖.

Since both the Euclidean norm and the metric dx are translation invariant and ho-
mogeneous, i.e., dx(u + αy, u + αz) = |α|dx(y, z), for u, y, z ∈ R

N and α ∈ R, the
above inequality holds for any y, z ∈ R

N . Since ε is arbitrary, by letting ε → 0, we
arrive at the desired inequality.

In addition, when A is compact, (P1) implies (P2). To see this, for x ∈ A, let
δx = δx,1/2 > 0 be the constant in (P1) (with ε = 1/2). Then A can be covered by
finitely many balls {B(xi, δxi/2)}ni=1 because of the compactness of A. For each xi,
since Bxi is a positive definite matrix, it is clear that

λmin(Bxi)‖y − z‖ ≤ dxi(y, z) ≤ λmax(Bxi)‖y − z‖. (2)

Here, λmin(A) and λmax(A) denote the minimum and the maximum eigenvalues of a
matrix A respectively. Let

δ = min
i=1,...,n

δxi

2
, c =

1

2
min

i=1,...,n
λmin(Bxi), C =

3

2
max

i=1,...,n
λmax(Bxi).

Given y, z ∈ A with ‖y − z‖ ≤ δ, it follows that y, z must belong to B(xi, δxi) for
some i ∈ {1, . . . , n}. Then the property (P1) implies that

1

2
dxi(y, z) ≤ ρ(y, z) ≤ 3

2
dxi(y, z). (3)

6



Therefore, the property (P2) holds for c, C and δ defined above by combining the two
estimates (2) and (3).

For simplicity, when any function is defined on a Čech complex, the symbol C is
removed except at few places in the article. For example, we write βk(Xn, r, ρ) for
βk(C(Xn, r, ρ)). Our main result in the Euclidean setting is as follows.

Theorem 2.1 (For Euclidean spaces). Let (A, ρ) be a metric space, where A is a
Borel subset of RN with LebN (∂A) = 0 and the metric ρ satisfies the properties (P1)
and (P2). Assume that the common probability density function f(x) is supported on
A and for all j ∈ N,

∫

RN f(x)jdx < +∞. Then as n → ∞ with n1/Nrn → r ∈ (0,∞),

βk(Xn, rn, ρ)

n

(

resp.
βk(Pn, rn, ρ)

n

)

→
∫

RN

β̂
(N)
k

(

f(x)

D(x)
, r

)

D(x)dx a.s.,

where D(x) = det(Bx) with Bx being the positive definite matrix in the property (P1).

Other integer valued random variables defined on Čech complexes that will play
a vital role in establishing our results, are simplex counts Sj(·). Here for a simplicial
complex K, Sj(K) is the number of j-simplices in K, or the number of elements of
cardinality (j +1) in K. There are existing results in stochastic geometry which may
be applicable to simplex counts but not to Betti numbers. However, we can estimate
Betti numbers by simplex counts due to the following lemma.

Lemma 2.2. Let K, K̃ be any two finite simplicial complexes such that K̃ ⊂ K. Then
for every k ≥ 0,

∣

∣

∣
βk(K) − βk(K̃)

∣

∣

∣
≤

k+1
∑

j=k

(

Sj(K)− Sj(K̃)
)

.

Lemma 2.2 for k ≥ 1 is proved in [26, Lemma 2.2]. For more fundamental proof
of Lemma 2.2 with k ≥ 0, see [23].

To establish Theorems 1.1 and 2.1 for binomial point processes, we use the stan-
dard technique of Poissonization from [18]: the coupling of a binomial point process
with a particular type of a Poisson point process. Suppose for given λ > 0, Nλ

is a Poisson random variable with parameter λ and independent of {Xi}i≥1. Then
the point process Pλ := {X1, . . . ,XNλ

}, called a Poissonized version of the binomial
point processes, is a Poisson point process on R

N with intensity λf(x) in the Eu-
clidean setting or a Poisson point process on M with intensity λκ(z) in the manifold
setting. We denote this point process with λ = n on R

N and on M by Pn and Qn

respectively. The reason for considering these Poissonized versions is because of the
spatial independence property of Poisson point processes over disjoint sets. Moreover,
the difference of the number of simplices, and hence, of Betti numbers, of the Čech
complexes built over Xn (resp. Zn) and Pn (resp. Qn) is neglectable as n → ∞.

Lemma 2.3. (a) Assume the same assumptions on the manifold M and on the
density function κ(z) as in Theorem 1.1. Then as n → ∞ with n1/mrn → r ∈ (0,∞),

Sj(Zn, rn)

n
− Sj(Qn, rn)

n
→ 0 a.s.

(b) Assume the same assumptions on the metric space (A, ρ) and on the density
function f(x) as in Theorem 2.1. Then as n → ∞ with n1/Nrn → r ∈ (0,∞),

Sj(Xn, rn, ρ)

n
− Sj(Pn, rn, ρ)

n
→ 0 a.s.

7



By this lemma, it is sufficient to prove Theorems 1.1 and 2.1 only for Poisson
point processes. Note that the functions f(x) and κ(z) need not to be probability
density functions to prove results for Poisson point processes.

Remark 2.4. Recently, the strong laws of large numbers for persistent Betti numbers,
a generalization of those for Betti numbers, and for persistence diagrams have been
established in [11] for ergodic stationary point processes on R

N . Our results here can
be easily extended in this setting, and may be of practical interest. For example, we
can easily derive the following results for persistent Betti numbers

βs,t
k ({C(n1/NPn, r, ρn)}r≥0)

n
→
∫

RN

β̂s,t
k

(

f(x)

D(x)

)

D(x)dx a.s. as n → ∞,

and for persistence diagrams

1

n
ξk(n

1/NPn, ρn)
v→
∫

RN

νk

(

f(x)

D(x)

)

D(x)dx a.s. as n → ∞,

where n1/NPn is a Poisson point process on R
N with intensity function f(x/n1/N )

and ρn is a metric on n1/NA defined as ρn(x, y) = n1/Nρ(x/n1/N , y/n1/N ). The rest
of the notations are taken from [11].

2.1 Motivation for the assumptions on the metric ρ

Before giving the motivation, we give the definition of a C1 manifold and its boundary,
taken from [15]. Let Hm denote the upper half space in R

m, consisting of x ∈ R
m for

which the mth coordinate xm ≥ 0.

Definition 2.5. A nonempty subset M of RN , endowed with the subset topology,
is called an m-dimensional C1 manifold if for each z ∈ M there exist an open set M
of M containing z, a set V that is open in either Rm or Hm, and a C1 bijective map
φ : V → M such that

(i) φ−1 : M → V is continuous;

(ii) the Jacobian of φ at x, denoted by Jφ(x), has rank m for all x ∈ V .

The pair (V, φ) is called a chart for z.

Definition 2.6. Let (V, φ) be a chart for z ∈ M. We say z is a boundary point of
M if V is open in H

m and z = φ(x) for x ∈ R
m−1 × {0}.

Let (V, φ) be a chart and U be a convex and compact subset of Rm such that
U ⊂ V . Let U be equipped with the metric ρ(y, z) := ‖φ(y) − φ(z)‖. We will show
that the metric ρ on U satisfies the two properties (P1) and (P2). Note that we
consider now a subset of Rm (not RN ). Since U is compact, it is sufficient to verify
(P1).

Let φ = (φ1, φ2, . . . , φN ), where for all j ∈ {1, 2, . . . , N}, φj is a C1 function from
V to R. Let ∇φj(x) denote the derivative of φj . Since φj is a C1 function, for given
x ∈ U and ε > 0, there exists δj > 0 such that whenever y ∈ B(x, δj) ∩ U ,

‖∇φj(y)−∇φj(x)‖ ≤ ε.

8



Let δ = minj δj and y, z ∈ B(x, δ)∩U . Let (y, z) denote the open line segment joining
y and z. By the mean value theorem for each φj , there exists cj ∈ (y, z) ⊂ U such
that

φj(y)− φj(z) = ∇φj(cj)(y − z).

Therefore,
ρ(y, z) = ‖C(y − z)‖,

where C is the N ×m matrix whose jth row is equal to ∇φj(cj).
Let Bx = Jφ(x) and dx(y, z) = ‖Bx(y − z)‖ = ‖(Bt

xBx)
1/2(y − z)‖. Then by the

triangle inequality,

|ρ(y, z)− dx(y, z)| =
∣

∣‖C(y − z)‖ − ‖Bx(y − z)‖
∣

∣ ≤ ‖(C −Bx)(y − z)‖. (4)

Note that for an N ×m matrix B = (bi,j), it holds that

‖Bv‖2 ≤
(

∑

i,j

b2i,j

)

‖v‖2.

Therefore,

‖(C −Bx)(y − z)‖2 ≤
(

N
∑

j=1

‖∇φj(cj)−∇φj(x0)‖2
)

‖y − z‖2 ≤ Nε2‖y − z‖2.

This inequality together with the inequality (4) implies that

|ρ(y, z) − dx(y, z)| ≤
√
Nε‖y − z‖.

The verification is complete by taking into account of the inequality (2).

3 Simplex counts in the Euclidean setting

In this section, we show the strong law of large numbers for simplex counts Sj(·) in
the Euclidean setting and give the proof of the statement (b) of Lemma 2.3. Note that
the strong law for Sj(·) in the thermodynamic regime may follow from the general
theory of local functionals due to Penrose and Yukich [19, 20]. However, we present
here an elementary proof by calculating the order of the fourth moments.

Our argument is based on the following two results, called Palm theorems, to
calculate the expectation and higher moments of simplex counts. Let P(f(x)) be a
Poisson point process on R

N with intensity function f(x), which is assumed to be
integrable over RN .

Theorem 3.1 (cf. [18, Theorem 1.6]). Suppose j ∈ N and h(Y) is a bounded measur-
able function defined on all finite subsets Y of RN , satisfying h(Y) = 0 except when
Y has j elements. Then

E

[

∑

Y⊂P(f(x))

h(Y)
]

=
1

j!

∫

(RN )j
h(y)

j
∏

i=1

f(yi)dy,

where, for y = (y1, y2, . . . , yj) ∈ (RN )j , we use the shorthands h(y) := h(y1, y2, . . . , yj)
and dy := dy1 · · · dyj.

9



Theorem 3.2 (cf. [18, Theorem 1.7]). Suppose k ∈ N. Then under the same as-
sumptions on the function h(Y) as in Theorem 3.1,

E

[

∑

Y1⊂P(f(x))

· · ·
∑

Yk⊂P(f(x))

(

k
∏

i=1

h(Yi)
)

1{Yi∩Yj=∅ for 1≤i<j≤k}

]

=

k
∏

i=1

E

[

∑

Yi⊂P(f(x))

h(Yi)

]

,

where 1{Yi∩Yj=∅ for 1≤i<j≤k} is the indicator function that is equal to 1 if and only if
Yi ∩ Yj = ∅ for 1 ≤ i < j ≤ k.

Let (A, ρ) satisfy the assumptions in Theorem 2.1. Let hj,rn,d(Y) be the indicator
function which is equal to 1 if and only if Y ⊂ R

N is a j-simplex of radius rn, measured
using the metric d. When rn = 1 and d is the Euclidean metric, we write hj(Y) for
hj,1,‖·‖(Y). Then the number of j-simplices in the Čech complex C(X, r, ρ) can be
written as

Sj(X, rn, ρ) =
∑

Y⊂X

hj,rn,ρ(Y), (5)

where X ⊂ A is a finite set.
For r ∈ (0,∞) and x = (x1, x2, . . . , xj) ∈ (RN )j , define

A
(N)
j (r) =

rNj

(j + 1)!

∫

(RN )j
hj(0,x)dx,

where hj(0,x) and dx stand for hj(0, x1, x2, . . . , xj) and dx1 · · · dxj respectively.
Recall that Pn is the Poisson point process on R

N with intensity function nf(x),
where f(x) is supported on A and

∫

RN f(x)dx < ∞. We now show the right order of
the expectations E[Sj(Pn, rn, ρ)] when rn tends to zero. Then by calculating the order
of the fourth central moments, we shall prove that in the thermodynamic regime,
n−1(Sj(Pn, rn, ρ) − E[Sj(Pn, rn, ρ)]) converges to zero almost surely as n tends to
infinity. More explanation on the fourth moments will be given later.

Proposition 3.3. Assume that
∫

A f(x)j+1dx < +∞ and limn→∞ rn = 0. Then

lim
n→∞

r−Nj
n n−(j+1)

E[Sj(Pn, rn, ρ)] = A
(N)
j (1)

∫

A

f(x)j+1

D(x)j
dx.

It follows from the equation (5) and Theorem 3.1 that

r−Nj
n n−(j+1)

E[Sj(Pn, rn, ρ)]

=
r−Nj
n

(j + 1)!

∫

Aj+1

hj,rn,ρ(x0,x)

j
∏

i=1

f(xi)f(x0)dxdx0

=
r−Nj
n

(j + 1)!

∫

A

(
∫

Aj

hj,rn,ρ(x0,x)dx

)

f(x0)
j+1dx0

+
r−Nj
n

(j + 1)!

∫

Aj+1

hj,rn,ρ(x0,x)

(

j
∏

i=1

f(xi)− f(x0)
j

)

f(x0)dxdx0

= In1 + In2 .

10



We claim that In1 is asymptotic to A
(N)
j (1)

∫

A
f(x)j+1

D(x)j
dx, while In2 tends to zero as n

tends to infinity, from which Proposition 3.3 follows. Our claims are proved in the
next two lemmas.

Lemma 3.4. As n → ∞,

In1 =
r−Nj
n

(j + 1)!

∫

A

(
∫

Aj

hj,rn,ρ(x0,x)dx

)

f(x0)
j+1dx0 → A

(N)
j (1)

∫

A

f(x)j+1

D(x)j
dx.

Proof. The idea is to use the Dominated Convergence Theorem (DCT) for the integral
with respect to dx0. We first show that for n large enough the integrand is dominated
by an integrable function and then compute the point-wise limit. Let

Fn(x0) = r−Nj
n

∫

Aj

hj,rn,ρ(x0,x)dx.

Since the metric ρ satisfies the property (P2) and rn → 0 as n → ∞, there exists
n0 ∈ N such that for all n ≥ n0, hj,rn,ρ(x0,x) ≤ hj,r̃n(x0,x), where r̃n = rn/c with c
being the constant in (P2). Therefore,

Fn(x0) ≤ r−Nj
n

∫

Aj

hj,r̃n(x0,x)dx.

Applying the change of variables xi = x0 + r̃nyi for 1 ≤ i ≤ j yields

Fn(x0) ≤ c−Nj

∫

B(0,2)j
hj(0,y)dy ≤ (c−NLebN (B(0, 2)))j .

Thus for n large enough, the integrand is dominated by const · f(x0)j+1 which is
integrable by our assumption.

Next we consider the point-wise limit of Fn. Let x0 ∈ A◦. Since ρ satisfies (P1)
and rn → 0, given ε > 0, there exists nx0

∈ N such that for all n ≥ nx0
,

hj,r+n ,dx0
(x0,x) ≤ hj,rn,ρ(x0,x) ≤ hj,r−n ,dx0

(x0,x), (6)

where r+n = rn/(1 + ε) and r−n = rn/(1− ε). Let

I+ε
n (x0) = r−Nj

n

∫

Aj

hj,r+n ,dx0
(x0,x)dx, I−ε

n (x0) = r−Nj
n

∫

Aj

hj,r−n ,dx0
(x0,x)dx.

Then from the relation (6), we have that

lim
ε→0

lim
n→∞

I+ε
n (x0) ≤ lim inf

n→∞
Fn(x0) ≤ lim sup

n→∞
Fn(x0) ≤ lim

ε→0
lim
n→∞

I−ε
n (x0).

Consider I+ε
n (x0). By applying the change of variables xi = x0 + r+n yi for 1 ≤ i ≤ j,

the indicator function hj,r+n ,dx0
(x0, x0 + r+n y1, . . . , x0 + r+n yj) is equal to hj,1,dx0 (0,y)

for all large enough n since x0 ∈ A◦ and rn → 0. Thus, for x0 ∈ A◦,

lim
n→∞

I+ε
n (x0) = (1 + ε)−Nj

∫

(RN )j
hj,1,dx0 (0,y)dy = A

(N)
j (1)

(1 + ε)−Nj

D(x0)j
.

Similarly, for x0 ∈ A◦,

lim
n→∞

I−ε
n (x0) = A

(N)
j (1)

(1 − ε)−Nj

D(x0)j
.

Therefore, Fn(x0) converges to A
(N)
j (1)/D(x0)

j almost everywhere because of the

assumption LebN (∂A) = 0, from which the desired result follows.
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Remark 3.5. (i) If ρ is homogeneous and translation invariant, the change of vari-
ables can be applied directly in Fn(x0).

(ii) If A = R
N then for x0 ∈ R

N , the function hj,r+n ,dx0
(x0, x0+ r+n y1, . . . , x0+ r+n yj)

is equal to hj,1,dx0 (0,y) for all n ∈ N.

Lemma 3.6. As n → ∞,

In2 =
r−Nj
n

(j + 1)!

∫

Aj+1

hj,rn,ρ(x0,x)

(

j
∏

i=1

f(xi)− f(x0)
j

)

f(x0)dxdx0 → 0.

Proof. The absolute value of In2 is bounded by

∫

RN

(

∫

Bρ(x0,2rn)j
r−Nj
n

∣

∣

∣

∣

∣

j
∏

i=1

f(xi)− f(x0)
j

∣

∣

∣

∣

∣

dx

)

f(x0)dx0.

We claim that the above expression tends to zero as n tends to infinity. To show this,
DCT is used again. Let

Fn(x0) =

(

∫

Bρ(x0,2rn)j
r−Nj
n

∣

∣

∣

∣

∣

j
∏

i=1

f(xi)− f(x0)
j

∣

∣

∣

∣

∣

dx

)

f(x0).

Let us first show that Fn is uniformly bounded in n by an integrable function. Clearly,

Fn(x0) ≤ r−Nj
n f(x0)

∫

Bρ(x0,2rn)j

j
∏

i=1

f(xi)dx+ r−Nj
n f(x0)

j+1
(

LebN (Bρ(x0, 2rn))
)j

.

Since ρ satisfies (P2), for all large enough n, Bρ(x0, 2rn) ⊂ B(x0, 2rn/c). Therefore,

with C =
(

LebN (B(0, 2/c))
)j
, we have

Fn(x0) ≤ Cf(x0)

(

1

LebN (B(x0, 2rn/c))

∫

B(x0,2rn/c)
f(x)dx

)j

+ Cf(x0)
j+1.

Let (Mf)(x) be the centered Hardy–Littlewood maximal function, i.e.,

(Mf)(x0) = sup
1

LebN (B(x0, r))

∫

B(x0,r)
f(x)dx,

where the supremum is taken over all the balls in R
N whose center is x0. Then

Fn(x0) ≤ Cf(x0)(Mf)(x0)
j + Cf(x0)

j+1.

Thus, we only need to show that the function f(x0)(Mf)(x0)
j is integrable to conclude

that Fn is dominated by an integrable function for n large enough. Since f ∈ Lp(RN )
for 1 < p ≤ ∞ implies Mf ∈ Lp(RN ), by Hölder’s inequality with p = j + 1 and
q = (j + 1)/j,

∫

RN

f(x0)(Mf)(x0)
jdx0 ≤

(
∫

RN

f(x0)
j+1dx0

)
1

j+1
(
∫

RN

(Mf)(x0)
j+1dx0

)
j

j+1

< ∞.
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It remains to show that Fn(x0) converges to zero almost everywhere. Let x0 be a
Lebesgue point of f such that f(x0) < ∞. The convergence is proved by the induction
on j. The inductive step is to bound Fn(x0) by

(
∫

B(x0,2rn/c)j
r−Nj
n |f(xj)− f(x0)|

j−1
∏

i=1

f(xi)dx

)

f(x0)

+

(

∫

B(x0,2rn/c)j
r−Nj
n

∣

∣

∣

∣

∣

j−1
∏

i=1

f(xi)− f(x0)
j−1

∣

∣

∣

∣

∣

f(x0)dx

)

f(x0).

The first term with Vn = LebN (B(x0, 2rn/c)) can be written as

C

(

1

Vn

∫

B(x0,2rn/c)
f(x)dx

)j−1(

1

Vn

∫

B(x0,2rn/c)
|f(xj)− f(x0)|dxj

)

f(x0),

which converges to zero since x0 is a Lebesgue point of f with f(x0) < ∞. The
second term also tends to zero by the inductive hypothesis. Hence, by the Lebesgue
differentiation theorem and the almost everywhere finiteness of f , the function Fn

tends to zero almost everywhere. This completes the proof.

In the thermodynamic regime, Proposition 3.3 is restated as follows.

Corollary 3.7. Assume that
∫

A f(x)j+1dx < +∞ and limn→∞ n1/Nrn = r ∈ (0,∞).
Then

lim
n→∞

E[Sj(Pn, rn, ρ)]

n
= A

(N)
j (r)

∫

A

f(x)j+1

D(x)j
dx.

By defining Ŝ
(N)
j (λ, r) := A

(N)
j (r)λj+1, the limiting constant in the above corol-

lary can also be written as
∫

A Ŝ
(N)
j (f(x)/D(x), r)D(x)dx. Note that Ŝ

(N)
j (λ, r) is

nothing but the limiting constant of L−1
E[Sj(PL(λ), r)] when L → ∞ (for the def-

inition of PL(λ), see the introduction). The following corollary is also a result on
homogeneous Poisson point processes but with the metric dx0

, which is needed in
Section 4.1.

Corollary 3.8. Let x0 ∈ A◦. Let E ⊂ R
N be a Borel set with LebN (E) > 0, and let

En = n1/NE. Then for any λ ≥ 0 and r ∈ (0,∞),

lim
n→∞

E[Sj(P(λ)|En , r, dx0
)]

LebN (En)
= Ŝ

(N)
j

(

λ

D(x0)
, r

)

D(x0),

where P(λ)|En is the restriction of P(λ) on En.

Proof. Take f(x) = λ, A = E and rn = r/n1/N in Corollary 3.7, we get

lim
n→∞

E[Sj(Pn, rn, dx0
)]

n
= A

(N)
j (r)LebN (E)

λj+1

D(x0)j
. (7)

Consider the map x → n1/Nx with n1/Nrn = r ∈ (0,∞) on the set E. By the scaling
property of Poisson point processes, we have

E[Sj(Pn, rn, dx0
)] = E[Sj(P(λ)|En , r, dx0

)]. (8)
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Substituting the equation (8) into (7) yields

lim
n→∞

E[Sj(P(λ)|En , r, dx0
)]

LebN (En)
= A

(N)
j (r)

λj+1

D(x0)j
,

which completes the proof.

Let Y1,Y2, . . . ,Yk ⊂ Pn with |Yi| = j+1, (1 ≤ i ≤ k). Note that Theorem 3.2 can
be applied only when the sets {Yi}ki=1 are disjoint. In order to calculate the fourth
moment of Sj(Pn, rn, ρ), we need to deal with the non-disjoint case. Let us consider
the case when k = 2, and leave to the reader the straightforward generalization to
higher values of k.

Lemma 3.9. Assume that
∫

A f(x)2j+1dx < +∞ and limn→∞ n1/Nrn = r ∈ (0,∞).
Then for any 1 ≤ l ≤ j + 1,

lim
n→∞

1

n
E

[

∑

Y1⊂Pn

∑

Y2⊂Pn

hj,rn,ρ(Y1)hj,rn,ρ(Y2)1{|Y1∩Y2|=l}

]

= const.

Proof. For each finite subset Z ⊂ R
N , let

h′j,rn,ρ(Z) = 1{|Z|=2j+2−l}

∑

Y⊂Z

∑

Y ′⊂Z

hj,rn,ρ(Y)hj,rn,ρ(Y ′)1{Y∪Y ′=Z}.

Then

E

[

∑

Y1⊂Pn

∑

Y2⊂Pn

hj,rn,ρ(Y1)hj,rn,ρ(Y2)1{|Y1∩Y2|=l}

]

= E

[

∑

Z⊂Pn

h′j,rn,ρ(Z)

]

,

from which all the arguments in the proof of Proposition 3.3 can work here to show
the desired result.

We are now in the position to state and prove the strong law of large numbers for
simplex counts.

Proposition 3.10. Assume that
∫

A f(x)4j+1dx < +∞ and limn→∞ n1/Nrn = r ∈
(0,∞). Then as n → ∞,

Sj(Pn, rn, ρ)

n
→ A

(N)
j (r)

∫

A

f(x)j+1

D(x)j
dx a.s.

This section is concluded with the proofs of Proposition 3.10 and the statement
(b) of Lemma 2.3. In both the proofs, we show that the fourth moments of the
appropriate quantities are of O(nδ), where 0 ≤ δ < 3 and O(·) is Bachmann–Landau
big-O notation. This is a sufficient condition for the strong laws. For instance,
let ξn = (Sj(Pn, rn, ρ) − E[Sj(Pn, rn, ρ)]). We shall show that E[ξ4n] ≤ Kn2, for
some constant K. Then by Markov’s inequality, P(|ξn| ≥ nε) ≤ Kn−2ε−4. Since
∑

n−2 < ∞, by the first Borel–Cantelli lemma, P(lim supn |n−1ξn| ≥ ε) = 0. This
means n−1ξn converges to zero almost surely. The strong law for n−1Sj(Pn, rn, ρ) in
the thermodynamic regime then follows from the convergence of expectation, which
has been established in Corollary 3.7. Now let us get into more detail on the proof
of Proposition 3.10.
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Proof of Proposition 3.10. The presentation of this proof is similar to some parts of
the proof of Theorem 3.9 in [18]. To ease notation, we write Sj for Sj(Pn, rn, ρ) and
h′j for hj,rn,ρ. Using the binomial expansion, we have

E[(Sj − E[Sj])
4] =

4
∑

k=0

(

4

k

)

(−E[Sj ])
4−k

E[Sk
j ], (9)

where

E[Sk
j ] = E





∑

Y1⊂Pn

∑

Y2⊂Pn

· · ·
∑

Yk⊂Pn

h′j(Y1)h
′
j(Y2) · · · h′j(Yk)



 . (10)

Note that E[Sk
j ] = O(nk). So at the first look it seems that the equation (9) is of

O(n4). However, this order is not exact. To calculate the exact order, we express
E[Sk

j ] in (10) as a sum of finitely many terms according to the intersection of {Yi}ki=1

and analyze the order of each term. For instance, when k = 2, there are (j + 2)
terms corresponding to the conditions |Y1 ∩ Y2| = l, (l = 0, . . . , j + 1). The term
corresponding to l = 0 coincides with E[Sj]

2 by Theorem 3.2, and hence, has order
n2, while the other terms have order n by Lemma 3.9. In general, each term in the
expression (10) has order nk′ , where k′ ≤ k is the number of disjoint components in
{Yi}ki=1.

The only term in (10) that gives an order nk comes from the case where all
Y1,Y2, . . . ,Yk are disjoint. By Theorem 3.2, this term is equal to E[Sj]

k. Putting
back this contribution for each k in (9), we see that the coefficient of the leading order
term, the term of order n4, is zero.

Now consider terms of order nk−1 in (10). They should come from ordered k-
subsets Y1,Y2, . . . ,Yk when two of them have 1 ≤ l ≤ j + 1 points in common and
the remaining subsets have neither any point in common with each other nor with
the two subsets. Clearly, in this case there is no contribution when k = 0 or k = 1.
For fixed l and 2 ≤ k ≤ 4, this contribution, denoted by T k,l, is

T k,l =

(

k

2

)

E

[

∑

Y1⊂Pn

∑

Y2⊂Pn

h′j(Y1)h
′
j(Y2)1{|Y1∩Y2|=l}

] k
∏

s=3

E

[

∑

Ys⊂Pn

h′j(Ys)

]

=

(

k

2

)

E

[

∑

Y1⊂Pn

∑

Y2⊂Pn

h′j(Y1)h
′
j(Y2)1{|Y1∩Y2|=l}

]

E[Sj ]
k−2.

Putting back the contribution T k,l for k ≥ 2 in (9) again makes all terms of order n3

disappear. Thus, we deduce that E[(Sj − E[Sj])
4] ≤ Kn2, for some constant K. The

proof is complete.

Remark 3.11. Similarly, under the setting of Corollary 3.8, as n → ∞,

Sj(P(γ)|En , r, dx0
)

LebN (En)
→ Ŝ

(N)
j

(

γ

D(x0)
, r

)

D(x0) a.s.

We now present the proof of the statement (b) of Lemma 2.3. The statement (a)
is for the manifolds, so its proof is discussed in Section 5.
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Proof of Lemma 2.3 (b). For any m, let Sj(m,n) = |Sj(Xm, rn, ρ) − Sj(Xn, rn, ρ)|.
We first bound the probability of the event {X1 ∈ Bρ(x, rn) ∩ A}. Clearly,

P(X1 ∈ Bρ(x, rn) ∩ A) =

∫

Bρ(x,rn)∩A
f(x)dx. (11)

Applying Hölder’s inequality, we obtain that

P(X1 ∈ Bρ(x, rn) ∩ A) ≤
(
∫

RN

f(x)pdx

)1/p
(

LebN (Bρ(x, rn) ∩A)
)1/q

,

where p = 4j + 1 and q = (4j + 1)/4j. Since
∫

RN f(x)4j+1dx < ∞, ρ satisfies (P2)
and rn → 0, it follows that in the thermodynamic regime P(X1 ∈ Bρ(x, rn) ∩ A) is
bounded by c1n

−1/q for some constant c1.
For m > n ≥ j, since each j-simplex in C(Xm, rn, ρ) \ C(Xn, rn, ρ) must contain at

least one vertex in {Xn+1, . . . ,Xm}, we have

Sj(m,n) ≤
m
∑

i=n+1

ξ(Xi,Xm),

where ξ(Xi,Xm) counts the number of j-simplices with one vertex Xi in C(Xm, rn, ρ).
It follows that

E[Sj(m,n)4] ≤ (m− n)3
m
∑

i=n+1

E[ξ(Xi,Xm)4] = (m− n)4E[ξ(X1,Xm)4]. (12)

Note that ξ(X1,Xm) can be written as follows

ξ(X1,Xm) =
∑

{i1,...,ij}

hj,rn,ρ(X1,Xii , . . . ,Xij ) =:
∑

i={i1,...,ij}

ηi,

where {i1, . . . , ij} is a subset of {2, 3, . . . ,m}. We estimate the fourth moment of
ξ(X1,Xm),

E[ξ(X1,Xm)4] =
∑

i,j,k,l

E[ηiηjηkηl]. (13)

Let wt(i, j,k, l) = |{i ∪ j ∪ k ∪ l}|. Then

E[ηiηjηkηl] ≤ P(Xi ∈ Bρ(X1, rn) ∩ A : i ∈ i ∪ j ∪ k ∪ l) ≤
( c1

n1/q

)wt(i,j,k,l)
.

Note that j ≤ wt(i, j,k, l) ≤ 4j and given wt(i, j,k, l) = w, the number of terms in
the sum (13) is bounded by

(

m− 1

w

)(

w

j

)4

≤ c(w, j)mw ,

where c(w, j) is a constant depending on w and j. Therefore, the sum (13) is bounded
by

E[ξ(X1,Xm)4] ≤ c
( m

n1/q

)4j
,
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where c is a constant which does not depend on m and n. Combining the formula for
the fourth moment (12) and the above estimate, we have

E[Sj(m,n)4] ≤ c(m− n)4
( m

n1/q

)4j
.

When j ≤ m < n, we change the role of m and n to get

E[Sj(m,n)4] ≤ c(n −m)4n4j/p = c(n −m)4nδ,

where δ = 4j/(4j + 1) ∈ (0, 1). Combining two estimates, we have

E[Sj(m,n)4] ≤ c(m− n)4
[

nδ +
( m

n1/q

)4j
]

.

Therefore,

E

[

|Sj(Pn, rn, ρ)− Sj(Xn, rn, ρ)|4
]

≤ cE

[

(Nn − n)4
(

nδ +
(Nn)

4j

n4j/q

)]

≤ cE[(Nn − n)8]1/2E

[(

nδ +
(Nn)

4j

n4j/q

)2 ]1/2

.

Here in the last inequality, we have used Hölder’s inequality. Note that E[(Nn)
j ] is a

polynomial in n of degree j. Thus the second factor in the above estimate is of O(nδ).
It is easy to check that E[(Nn − n)8] is a polynomial of degree 4 in n. Therefore,

E[(Sj(Pn, rn, ρ)− Sj(Xn, rn, ρ))
4] = O(n2+δ).

This completes the proof.

4 Betti numbers in the Euclidean setting

We give the proof of Theorem 2.1 (for Poisson point processes) in this section. We first
deal with the case whereA is compact and the function f(x) is bounded. Theorem 2.1
then follows with the help of the strong law of large numbers for simplex counts and
Lemma 2.2.

4.1 Betti numbers in a compact region

We prove the following law of large numbers.

Proposition 4.1. Let (A, ρ) be a metric space, where A is a compact subset of RN

with LebN (∂A) = 0 and the metric ρ satisfies the property (P1). Assume that f(x)
is a non negative function on A and is bounded. Then as n → ∞ with n1/Nrn → r ∈
(0,∞),

βk(Pn, rn, ρ)

n
→
∫

A
β̂
(N)
k

(

f(x)

D(x)
, r

)

D(x)dx a.s.

Here, Pn is a Poisson point process on A with intensity function nf(x).
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Note that sinceA is assumed to be compact, the metric ρ also satisfies the property
(P2).

To obtain Proposition 4.1, we partition the set A as follows. Let αn = r/rn. For
fixed L > 0 and for each n, divide R

N according to the lattice (L/αN
n )1/NZ

N . Let
{Cn,i} be the cubes of the form (a, b]N that intersect with A, where a, b ∈ R and
b − a = (L/αN

n )1/N . Let An = ∪iCn,i. Observe that although ρ is defined only on
Cn,i ∩ A, the object C(Pn|Cn,i , rn, ρ) is well-defined since supp f ⊂ A. The limiting
behavior of βk(Pn, rn, ρ) will be estimated by that of βk

(

∪iC(Pn|Cn,i , rn, ρ)
)

, where
the latter is studied in the following way.

Consider the map x 7→ αnx and let Wn,i be the image of Cn,i. Define a metric on
αnA as

ρn(x, y) := αnρ (x/αn, y/αn) .

Let P̃n = αnPn. Then P̃n is a Poisson point process on R
N with intensity function

n/αN
n f(x/αn) =: fn(x).

Note that for every realization of Pn on A, C(Pn|Cn,i , rn, ρ)
∼= C(P̃n|Wn,i , r, ρn). It

then follows that for fixed L and n,

βk

(

⋃

i

C(Pn|Cn,i , rn, ρ)

)

=
∑

i

βk(P̃n|Wn,i , r, ρn), (14)

Sj

(

⋃

i

C(Pn|Cn,i , rn, ρ)

)

=
∑

i

Sj(P̃n|Wn,i , r, ρn), (15)

because of the disjoint union of simplicial complexes. Observe that the above sums
are of independent random variables, from which the following strong laws of large
numbers for βk

(

∪iC(Pn|Cn,i , rn, ρ)
)

and Sj

(

∪iC(Pn|Cn,i , rn, ρ)
)

hold.

Lemma 4.2. For fixed L > 0, as n → ∞,

(a)
1

n

∑

i

βk(P̃n|Wn,i , r, ρn) →
∫

A

E[βk(PL(f(x)), r, dx)]

L
dx a.s.,

(b)
1

n

∑

i

Sj(P̃n|Wn,i , r, ρn) →
∫

A

E[Sj(PL(f(x)), r, dx)]

L
dx a.s.

Here, PL(λ) is the restriction on WL = (−L/2)1/N , (L/2)1/N ]N of a homogeneous
Poisson point process P(λ) on R

N with intensity λ ≥ 0.

Now letting L → ∞, we obtain the following result. Recall that Ŝ
(N)
j (λ/D(x), r) =

A
(N)
j (r)(λ/D(x))j+1 from Corollary 3.8.

Lemma 4.3. As L → ∞,

(a)

∫

A

E[βk(PL(f(x)), r, dx)]

L
dx →

∫

A
β̂
(N)
k

(

f(x)

D(x)
, r

)

D(x)dx,

(b)

∫

A

E[Sj(PL(f(x)), r, dx)]

L
dx →

∫

A
Ŝ
(N)
j

(

f(x)

D(x)
, r

)

D(x)dx.
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The proof of Lemmas 4.2 and 4.3 will be given later in this subsection. By using
them, Proposition 4.1 is shown as follows.

Proof of Proposition 4.1. For fixed n and L > 0, since the union ∪iC(Pn|Cn,i , rn, ρ) is
a subcomplex of C(Pn, rn, ρ), it follows from Lemma 2.2 and the equations (14), (15)
that
∣

∣

∣

∣

∣

βk(Pn, rn, ρ)−
∑

i

βk(P̃n|Wn,i , r, ρn)

∣

∣

∣

∣

∣

≤
k+1
∑

j=k

(

Sj(Pn, rn, ρ)−
∑

i

Sj(P̃n|Wn,i , r, ρn)

)

.

Divide both sides by n. It follows from Proposition 3.10 and Lemma 4.2 that in the
thermodynamic regime, almost surely,

lim sup
n→∞

βk(Pn, rn, ρ)

n
≤
∫

A

E[βk(PL(f(x)), r, dx)]

L
dx

+

k+1
∑

j=k

∣

∣

∣

∣

A
(N)
j (r)

∫

A

f(x)j+1

D(x)j
dx−

∫

A

E[Sj(PL(f(x)), r, dx)]

L
dx

∣

∣

∣

∣

,

lim inf
n→∞

βk(Pn, rn, ρ)

n
≥
∫

A

E[βk(PL(f(x)), r, dx)]

L
dx

−
k+1
∑

j=k

∣

∣

∣

∣

A
(N)
j (r)

∫

A

f(x)j+1

D(x)j
dx−

∫

A

E[Sj(PL(f(x)), r, dx)]

L
dx

∣

∣

∣

∣

.

Now let L → ∞. By Lemma 4.3, we obtain that almost surely,

lim sup
n→∞

βk(Pn, rn, ρ)

n
≤
∫

A
β̂
(N)
k

(

f(x)

D(x)
, r

)

D(x)dx,

lim inf
n→∞

βk(Pn, rn, ρ)

n
≥
∫

A
β̂
(N)
k

(

f(x)

D(x)
, r

)

D(x)dx.

The proof is complete.

Now what remains is to prove Lemmas 4.2 and 4.3. To obtain the required results,
the following implications of the coupling property of Poisson point processes, taken
from [23, 26], are needed. Since n/αN

n → 1 as n → ∞ in the thermodynamic regime,
choose Λ > 0 such that for all n and x ∈ Wn,i, fn(x) ≤ Λ.

(CP1) Let t =
∫

Wn,i
fn(x)dx =

∫

Cn,i
nf(x)dx. Then the number of points in Wn,i,

denoted by Nt, has a Poisson distribution with parameter t. Clearly, Nt is
stochastically dominated by NΛL, which is a Poisson random variable with
parameter ΛL. Therefore,

E[Nk
t ] ≤ E[Nk

ΛL] ≤ c(k,ΛL), (16)

where c(k,ΛL) is a constant depending only on k and ΛL.

Also, for ν ∈ N,

(βk(P̃n|Wn,i , r, ρn))
ν ≤ (Sk(P̃n|Wn,i , r, ρn))

ν ≤ N
(k+1)ν
t . (17)

Combining the relations (16) and (17) yields

E[(βk(P̃n|Wn,i , r, ρn))
ν ] ≤ E[(Sk(P̃n|Wn,i , r, ρn))

ν ] ≤ c(k, ν,ΛL).
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(CP2) Let r ∈ (0,∞), λ ≥ 0, and A be a bounded Borel subset of R
N . Let

Sj(P(λ), r;A) be the number of j-simplices that has at least one vertex in
A. Then for λ ≤ Λ,

E[Sj(P(λ)|A, r)] ≤ E[Sj(P(Λ), r;A)] ≤ C(Λ, r, j)LebN (A),

where C(Λ, r, j) is a constant depending only on Λ, r and j.

We first discuss the proof of the statement (a) of Lemma 4.2, while its statement
(b) follows similarly. The almost sure convergence in Lemma 4.2, after establishing
the convergence in expectation, follows from the following result:

Lemma 4.4. Assume that for each n, the sequence {ξn,i}Tn
i=1 consists of independent

random variables and that
sup
n

sup
i

E[|ξn,i|4] < ∞.

Assume further that Tn/n → α ∈ (0,∞) as n → ∞. Then as n → ∞,

1

n

Tn
∑

i=1

(

ξn,i − E[ξn,i]
)

→ 0 a.s.

In addition, if 1
n

∑Tn
i=1 E[ξn,i] → µ then 1

n

∑Tn
i=1 ξn,i → µ almost surely as n → ∞.

Lemma 4.4 can be easily proved by calculating the order of the fourth moments.
By taking ξn,i = βk(P̃n|Wn,i , r, ρn) in Lemma 4.4, their almost sure convergence

follows from their convergence in expectation because by the property (CP1),

sup
n

sup
i

E[(βk(P̃n|Wn,i , r, ρn))
4] ≤ sup

n
sup
i

E[(Sk(P̃n|Wn,i , r, ρn))
4] < c(k, 4,ΛL) < ∞;

and since Tn = |{Cn,i}|,
Tn

n
=

Leb(N)(An)α
N
n

nL
→ Leb(N)(A)

L
∈ (0,∞) as n → ∞.

Thus, the remaining thing in the proof of Lemma 4.2 is to show the convergence
in expectation. Let 1Cn,i be the indicator function of Cn,i. The idea is to write

the quantity n−1
∑

i E[βk(P̃n|Wn,i , r, ρn)] in terms of the integral of an appropriate
function so that the Bounded Convergence Theorem (BCT) can be applied. For fixed
L > 0, define the function Fn : R

N → R as

Fn(x) :=
1

L

∑

i

E[βk(P̃n|Wn,i , r, ρn)]1Cn,i(x).

Then
∫

An

Fn(x)dx =
1

αN
n

∑

i

E[βk(P̃n|Wn,i , r, ρn)]. (18)

It is clear from the property (CP1) that Fn(x) ≤ L−1c(k, 1,ΛL).
Now we consider the pointwise limit of Fn. If x0 /∈ A, there exists nx0

∈ N such
that for all n ≥ nx0

, x0 /∈ An. In this case, Fn(x0) → 0 as n → ∞. Let x0 ∈ A◦

be a Lebesgue point of f and λ = f(x0). In this case, the limiting behavior of
Fn(x0) is determined by the following two estimates: the non-homogeneous Poisson
point process P̃n|Wn,in

is approximated by the homogeneous Poisson point process
P(λ)|Wn,in

and the non-homogeneous metric ρn on Wn,in is approximated by the
homogeneous metric dx0

on Wn,in . Here in is the unique index such that x0 ∈ Cn,in .
The first estimate is as follows.
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Lemma 4.5. Let x0 ∈ A◦ be a Lebesgue point of f and f(x0) = λ. Then as n → ∞
with n1/Nrn → r ∈ (0,∞),

(a)
∣

∣E[βk(P̃n|Wn,in
, r, ρn)]− E[βk(P(λ)|Wn,in

, r, ρn)]
∣

∣→ 0,

(b)
∣

∣E[Sj(P̃n|Wn,in
, r, ρn)]− E[Sj(P(λ)|Wn,in

, r, ρn)]
∣

∣→ 0.

Proof. (a) Let Φ be a homogeneous Poisson point process on Wn,in × [0,∞) with
intensity 1. Define the following:

An = {(x, t) ∈ Wn,in × [0,∞) : t ≤ fn(x)}; Bn = {(x, t) ∈ Wn,in × [0,∞) : t ≤ λ}.

Then P̃n|Wn,in
(resp. P(λ)|Wn,in

) has the same distribution with the projection of
Φ|An (resp. Φ|Bn) onto Wn,in . Let

∆n = {(x, t) ∈ Wn,in × [0,∞) : min(fn(x), λ) ≤ t ≤ max(fn(x), λ)}.

By using this coupling, P̃n|Wn,in
is identical with P(λ)|Wn,in

, denoted by P̃n|Wn,in
≡

P(λ)|Wn,in
, if and only if there is no point of Φ in the region ∆n. Thus

P(P̃n|Wn,in
≡ P(λ)|Wn,in

) = exp
(

−
∫

Wn,in

|fn(x)− λ|dx
)

.

Consider
∫

Wn,in

|fn(x)− λ|dx =

∫

Wn,in

∣

∣

∣

∣

n

αN
n

f

(

x

αn

)

− λ

∣

∣

∣

∣

dx

≤ n

αN
n

∫

Wn,in

∣

∣

∣

∣

f

(

x

αn

)

− λ

∣

∣

∣

∣

dx+

∫

Wn,in

λ

∣

∣

∣

∣

n

αN
n

− 1

∣

∣

∣

∣

dx

=
nL

αN
n LebN (Cn,in)

∫

Cn,in

|f(x)− λ|dx+ Lλ

∣

∣

∣

∣

n

αN
n

− 1

∣

∣

∣

∣

.

As n → ∞, n/αN
n → 1 and 1

LebN (Cn,in )

∫

Cn,in
|f(x)−λ|dx → 0 because x0 is a Lebesgue

point of f . Therefore,

P(P̃n|Wn,in
≡ P(λ)|Wn,in

) → 1 as n → ∞.

Since P(βk(P̃n|Wn,in
, r, ρn) = βk(P(λ)|Wn,in

, r, ρn)) ≥ P(P̃n|Wn,in
≡ P(λ)|Wn,in

), it
follows that

βk(P̃n|Wn,in
, r, ρn)− βk(P(λ)|Wn,in

, r, ρn) → 0 in probability.

In addition, we have

E[(βk(P̃n|Wn,in
, r, ρn)− βk(P(λ)|Wn,in

, r, ρn))
2] ≤ 2c(k, 2,ΛL).

Therefore, the convergence in expectation, or the statement (a), follows by the corol-
lary following Theorem 25.12 in [1]. The statement (b) is similarly proved. The proof
is complete.

21



For the second estimate, we need the following lemma and the uniform convergence
of the metrics. Let Ck(PL(λ), r, dx) be the set of k-simplices in C(PL(λ), r, dx), where
x ∈ A. Note that if we define Ck(PL(λ), r

+, dx) :=
⋂

s>r Ck(PL(λ), s, dx) then it
follows from the definition of Čech complexes that

Ck(PL(λ), r
+, dx) = Ck(PL(λ), r, dx).

As a consequence, E[Sk(PL(λ), r, dx)] is right continuous at r. Moreover, by the
scaling property of Poisson point processes and Theorem 3.1, it can be easily shown
that E[Sk(PL(λ), r, dx)] is also left continuous at r.

Lemma 4.6. Let Ck(PL(λ), r
−, dx) :=

⋃

s<r Ck(PL(λ), s, dx). Then for fixed r > 0,

P(Ck(PL(λ), r, dx) = Ck(PL(λ), r
−, dx)) = 1,

where ‘=’ means set equality.

Proof. Let {sn} be an increasing sequence of positive real numbers converging to r as
n → ∞. Since for all n, the set Ck(PL(λ), sn, dx) is a subset of Ck(PL(λ), r, dx), the
almost sure convergence of Sk(PL(λ), sn, dx) to Sk(PL(λ), r, dx), as sn approaches r,
implies the desired result.

Note that for any realization of P(λ) in WL, Sk(PL(λ), sn, dx) is an increasing
sequence, which is bounded by Sk(PL(λ), r, dx) and hence converges to a finite value,
denoted by F (PL(λ), r). This implies as sn → r,

E[Sk(PL(λ), sn, dx)] → E[F (PL(λ), r)].

But since E[Sk(PL(λ), r, dx)] is left continuous at r, it follows that F (PL(λ), r) =
Sk(PL(λ), r, dx) almost surely. Thus as sn → r,

Sk(PL(λ), sn, dx) → Sk(PL(λ), r, dx) a.s.,

which completes the proof.

In the following definition and lemma, the metrics ρn and dx0
onWn,in are abstract

ones, although denoted by the same notation as used for defining particular metrics
on Wn,in .

Definition 4.7. Let ρn be a sequence of metrics on Wn,in . We say ρn converges
uniformly to a metric dx0

on Wn,in , if for given ε > 0 there exists nx0
such that for

all n ≥ nx0
, whenever x, y ∈ Wn,in ,

|ρn(x, y)− dx0
(x, y)| ≤ ε.

It is clear from (P1) and the inequality (1) that ρn(x, y) = αnρ (x/αn, y/αn)
converges uniformly to dx0

(x, y) = ‖Bx0
(x − y)‖ on Wn,in , where x0 ∈ A◦. Now we

state and prove the second estimate.

Lemma 4.8. Let r ∈ (0,∞) and λ ∈ [0,∞). Assume that ρn be a sequence of metrics
on Un converging uniformly to a metric dx0

on Un. Assume further that for each n,
Wn,in is a cube of length L satisfying that ∪y∈Wn,in

Bρn(y, r) ⊂ Un. Then as n → ∞,

(a) |E[βk(P(λ)|Wn,in
, r, ρn)]− E[βk(P(λ)|Wn,in

, r, dx0
)]| → 0,

(b) |E[Sj(P(λ)|Wn,in
, r, ρn)]− E[Sj(P(λ)|Wn,in

, r, dx0
)]| → 0.

22



Proof. (a) The statement hold trivially for λ = 0. Let λ > 0. Let Wn,in = yn +W ,
where W is a fixed window of volume L. Define a metric on Un − yn as

ρ̃n(x, y) := ρn(x+ yn, y + yn).

Then βk(P(λ)|Wn,in
, r, ρn) has the same distribution with βk(PL(λ), r, ρ̃n). Note that

the metric dx0
is translation invariant. Thus, βk(P(λ)|Wn,in

, r, dx0
) also has the same

distribution with βk(PL(λ), r, dx0
). Therefore, it is clear from the proof of Lemma 4.5

that it is sufficient to show here that almost surely,

C(PL(λ), r, ρ̃n) = C(PL(λ), r, dx0
), for n large enough. (19)

By Lemma 4.6, almost surely,

C(PL(λ), r
−, dx0

) =
⋃

s<r

C(PL(λ), s, dx0
) = C(PL(λ), r, dx0

).

Fix a configuration such that the above holds. The proof is complete by showing the
identity (19).

Let σ = {v0, v1, . . . , vk} be a k-simplex in C(PL(λ), r, dx0
). We first show that σ

belongs to C(PL(λ), r, ρ̃n) when n is large enough. Indeed, σ ∈ C(PL(λ), s, dx0
) for

some s < r. Take a point v ∈ ⋂k
i=0 Bdx0

(vi, s). Then dx0
(v, vi) ≤ s, for all 0 ≤ i ≤ k.

Since ρ̃n converges uniformly to dx0
, there exists nx0

∈ N such that for all n ≥ nx0

and for all 0 ≤ i ≤ k,

ρ̃n(v, vi) ≤ (r − s) + dx0
(v, vi) ≤ r,

which implies that σ ∈ C(PL(λ), r, ρ̃n).
Conversely, we now show that, if σ ∈ C(PL(λ), r, ρ̃nj ), for some subsequence {nj}

tending to infinity, then σ ∈ C(PL(λ), r, dx0
). Let vnj ∈ ∩k

i=0Bρ̃nj
(vi, r). Because of

the compactness, there exists a subsequence {n′
j} of {nj} such that {vn′

j
} converges

to v∞. By the triangle inequality,

dx0
(v∞, vi) ≤ dx0

(v∞, vn′

j
) + dx0

(vn′

j
, vi).

Clearly, dx0
(v∞, vn′

j
) → 0 as n → ∞. In addition, by the uniform convergence

assumption, for given ε > 0, there exists nx0
∈ N such that for all n′

j ≥ nx0
and for

all 0 ≤ i ≤ k,
dx0

(vn′

j
, vi) ≤ r + ε.

Since ε is arbitrary, this implies v∞ ∈ ∩k
i=0Bdx0

(vi, r), and hence, σ ∈ C(PL(λ), r, dx0
).

The lemma is proved.

Finally we have all the ingredients to calculate the point-wise convergence of
Fn(x0). Recall x0 ∈ A◦ is the Lebesgue point of f and λ = f(x0). Since the metric
dx0

is translation invariant and P(λ) is stationary, we have

E[βk(P(λ)|Wn,in
, r, dx0

)] = E[βk(PL(λ), r, dx0
)].

So by Lemmas 4.5 and 4.8, and by the Lebesgue differentation theorem, for almost
everywhere x0, as n → ∞,

Fn(x0) →
E[βk(PL(λ), r, dx0

)]

L
.
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Therefore by BCT, as n → ∞,

∫

An

Fn(x)dx →
∫

A

E[βk(PL(f(x)), r, dx)]

L
dx.

Substitution of the value of the integral of Fn from (18) in the above expression yields
as n → ∞,

1

n

∑

i

E[βk(P̃n|Wn,i , r, ρn)] →
∫

A

E[βk(PL(f(x)), r, dx)]

L
dx.

This completes the proof of the statement (a) of Lemma 4.2. Since Lemmas 4.5 and
4.8 also hold for Sj(·), the statement (b) follows similarly.

Let us conclude this subsection with the proof of Lemma 4.3.

Proof of Lemma 4.3. Let x0 ∈ A◦ and f(x0) = λ. By the inequality (1),

C(PL(λ), r, dx0
) ⊂ C(PL(λ), r/c),

where c is the constant in (1). Thus,

E[βk(PL(λ), r, dx0
)] ≤ E[Sk(PL(λ), r, dx0

)] ≤ E[Sk(PL(λ), r/c)].

Therefore L−1
E[βk(PL(λ), r, dx0

)] and L−1
E[Sj(PL(λ), r, dx0

)] are uniformly bounded
in L by the property (CP2).

Recall from Corollary 3.8 that, as L → ∞,

E[Sj(PL(λ), r, dx0
)]

L
→ Ŝ

(N)
j

(

λ

D(x0)
, r

)

D(x0),

and from Theorem 1.5 in [23], as L → ∞,

E[βk(PL(λ), r, dx0
)]

L
=

E[βk(PL̃(λ/D(x0)), r)]

L̃
D(x0) → β̂k

(

λ

D(x0)
, r

)

D(x0),

where L̃ = LD(x0) = LebN ({Bx0
x : x ∈ WL}). Hence, by BCT, we obtain the desired

result.

4.2 Betti numbers in Euclidean spaces

This subsection contains the proof of Theorem 2.1.

Proof of Theorem 2.1 (for Poisson point processes). Since LebN (A) = 0, we assume
A is closed subset of RN without loss of generality. Let Ai be an increasing sequence
of compact subsets of A such that ∪iAi = A. For each i ≥ 1, define the function
fi : R

N → R
+ as

fi(x) =

{

min(f(x), i), x ∈ Ai

0, otherwise.

Let P(i)
n be the non-homogeneous Poisson point process on Ai with intensity function

nfi. For each i, we have the following coupling

Pn
d
= P(i)

n + P(ngi),
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where, for x ∈ R
N , gi(x) = f(x)− fi(x). So by using Lemma 2.2 for each i, we have

∣

∣

∣

∣

∣

βk(Pn, rn, ρ)

n
− βk(P(i)

n , rn, ρ)

n

∣

∣

∣

∣

∣

≤
k+1
∑

j=k

(

Sj(Pn, rn, ρ)

n
− Sj(P(i)

n , rn, ρ)

n

)

.

By first letting n → ∞, and using Proposition 4.1 (since fi is bounded) and Propo-
sition 3.10, and then letting i → ∞, we obtain that almost surely

lim sup
n→∞

βk(Pn, rn, ρ)

n
≤ lim

i→∞

∫

Ai

β̂
(N)
k

(

fi(x)

D(x)
, r

)

D(x)dx,

lim inf
n→∞

βk(Pn, rn, ρ)

n
≥ lim

i→∞

∫

Ai

β̂
(N)
k

(

fi(x)

D(x)
, r

)

D(x)dx.

Since β̂
(N)
k (0, r) = 0 and fi(x) = 0 for all x /∈ Ai, the remaining task is to show

that as i → ∞,

∫

RN

β̂
(N)
k

(

fi(x)

D(x)
, r

)

D(x)dx →
∫

RN

β̂
(N)
k

(

f(x)

D(x)
, r

)

D(x)dx. (20)

The limiting behavior (20) can be easily obtained using DCT. Indeed, since the lim-

iting constant β̂
(N)
k is continuous in the first parameter and fi(x) → f(x) as i → ∞,

the point-wise limit holds. For the uniform bound, since the kth Betti number is
bounded from above by number of k-simplices, it follows from the definition of β̂k
and Corollary 3.8 that for each i,

β̂
(N)
k

(

fi(x)

D(x)
, r

)

≤ Ŝ
(N)
k

(

fi(x)

D(x)
, r

)

≤ Ŝ
(N)
k

(

f(x)

D(x)
, r

)

,

where the second inequality comes from the monotonicity of Ŝ
(N)
k (λ, r). The rightmost

function in the above expression is integrable. This completes the proof.

Remark 4.9. It is clear that under the same setting as in Theorem 2.1, as n → ∞,

E[βk(Xn, rn, ρ)]

n
→
∫

RN

β̂
(N)
k

(

f(x)

D(x)
, r

)

D(x)dx.

5 Manifold setting

Let us begin with the theory of integration of measurable functions on manifolds.
This is an easy generalization of the integration of continuous functions considered in
[15].

Let M ⊂ R
N be a compact m-dimensional C1 manifold and κ be a measurable

function on M. Consider the case where the support of κ can be covered by a
single chart. Let (V, φ) be that chart. Since the support of κ is compact and φ−1 is
continuous, without loss of generality, we can assume that V is bounded. Then the
integral of κ over M is defined as

∫

M
κ(z)dz =

∫

V ◦

κ(φ(x))Dφ(x)dx,
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provided that the right hand side is integrable. Here, V ◦ = V if V is open in R
m,

otherwise V ◦ = V ∩ H
m
+ , where H

m
+ consists of x ∈ R

m for which xm > 0, and
Dφ(x) = det((Jt

φ(x)Jφ(x))
1/2), where Jt

φ(x) is the transpose of the Jacobian of φ at
x. The above integral is well-defined in the sense that it is independent of the choice
of chart.

To define the integration in general, we need a concept of partition of unity [15].
Instead of mentioning it, we shall use the following lemma to carry out the integration
of a measurable function κ over M.

Definition 5.1. A subset K of M is said to have measure zero in M if it can be
covered by countably many charts φi : Vi → M such that the set

Ki = φ−1
i (K ∩ Vi)

has measure zero in R
m for each i.

Lemma 5.2. Suppose (Vi, φi), for i = 1, 2, . . . , l, is a chart on M, such that Vi is
open in R

m and M is the disjoint union of open sets φ1(V1), φ2(V2), . . . , φl(Vl) of M
and a set K of measure zero in M. Then

∫

M
κ(z)dz =

l
∑

i=1

∫

Vi

κ(φi(x))Dφi
(x)dx.

The set {(Vi, φi) : i = 1, 2, . . . , l} is also called an atlas for M. Lemma 5.2 gives
us a way to calculate the integral of a measurable function over M.

To obtain results either for simplex counts or for Betti numbers in the manifold
setting, we partition the manifold M as follows. Let (Vy, φy) be a chart for each
y ∈ M. We may assume that Vy is a ball in R

m (or in H
m). Choose δy > 0 such

that B(y, δy)∩M ⊂ φy(Vy) and ∂(B(y, δy/2)∩M) has measure zero in M. Here the
boundary is taken with respect to the topology on M. Since M is compact, we can
find a finite index set I such that

M =
⋃

i∈I

(B(yi, δyi/2) ∩M) .

To simplify the notation, we replace yi by i in the subscripts. Let Ui = B(yi, δyi/2)∩
M. Taking M1 = U1 and Mi = Ui\(∪i−1

j=1Uj), we get the partition of M. Moreover,
M is the disjoint union of {M◦

i , i ∈ I} and ∪i∈I∂Mi whose measure is zero in M.
Let Ci = φ−1

i (M◦
i ). Let for each i ∈ I, ρi(x, x

′) := ‖φi(x) − φi(x
′)‖ be the metric on

Vi = Vyi .
With the above partition of M, we show the following results for simplex counts

in the manifold setting. Note that the law of large numbers simplex counts in this
setting may be proved by using arguments as in [21]. However, to make the article
self-contained, we discuss a proof here.

Lemma 5.3. Assume that
∫

M κ(z)j+1dz < ∞, and limn→∞ rn = 0. Then

lim
n→∞

r−mj
n n−(j+1)

E[Sj(Qn, rn)] = A
(m)
j (1)

∫

M
κ(z)j+1dz.
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Proof. Similar to the proof of Proposition 3.3, we can write r−mj
n n−(j+1)

E[Sj(Qn, rn)]
as a sum of two terms In1 and In2 . Moreover, using Lemma 5.2,

In1 =
r−mj
n

(j + 1)!

∑

i∈I

∫

M◦

i

(
∫

Mj

hj,rn(z0, z)dz

)

κ(z0)
j+1dz0,

In2 =
r−mj
n

(j + 1)!

∑

i∈I

∫

M◦

i

(

∫

Mj

hj,rn(z0, z)

(

j
∏

l=1

κ(zl)− κ(z0)
j

)

dz

)

κ(z0)dz0.

Let n′ ∈ N such that for all n ≥ n′, rn ≤ mini∈I(δi/2). Then when z0 ∈ M◦
i ⊂ Ui, the

indicator function hj,rn(z0, z) is equal to 1 only if z1, . . . , zj ∈ B(yi, δi) ∩M ⊂ φ(Vi).
Therefore, by the definition of integration in case of single chart, we obtain that, for
all n ≥ n′,

In1 =
r−mj
n

(j + 1)!

∑

i∈I

∫

Vi

(

∫

V j
i

hj,rn,ρi(x0,x)

j
∏

l=1

Dφi
(xi)dx

)

× κ(φ(x0))
j+1Dφi

(x0)1Ci(x0)dx0,

In2 =
r−mj
n

(j + 1)!

∑

i∈I

∫

Vi

(

∫

V j
i

hj,rn,ρi(x0,x)

(

j
∏

l=1

κ(φi(xl))− κ(φi(x0))
j

)

j
∏

l=1

Dφi
(xi)dx

)

× κ(φ(x0))
j+1Dφi

(x0)1Ci(x0)dx0,

where 1Ci(x0) is the indicator function of Ci.
Now all the arguments used in the proofs of Lemmas 3.4 and 3.6 can be applied to

show that limn→∞ In1 = A
(m)
j (1)

∫

M κ(z)j+1dz and limn→∞ In2 = 0 respectively. This
is because for each i, the metric ρi satisfies the properties (P1) and (P2) as we have
shown in Section 2.1, and the function Dφi

(·) is continuous on the compact subset
C̄i ⊂ R

m.

In the thermodynamic regime, the above lemma can be restated as follows:

Corollary 5.4. Assume that
∫

M κ(z)j+1dz < +∞ and limn→∞ n1/mrn = r ∈ (0,∞).
Then

lim
n→∞

E[Sj(Qn, rn)]

n
= A

(m)
j (r)

∫

M
κ(z)j+1dz.

Note that the proof of the strong law for simplex counts in the manifold setting
is similar to that of Proposition 3.10. So we state it without proof. Assume that
∫

M κ(z)4j+1dz < +∞ and limn→∞ n1/mrn = r ∈ (0,∞). Then as n → ∞,

Sj(Qn, rn)

n
→ A

(m)
j (r)

∫

M
κ(z)j+1dz a.s. (21)

We have now all the required results to prove Theorem 1.1 (for Poisson point
processes). Before presenting its proof, we give the proof of the statement (a) of
Lemma 2.3.
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Proof of Lemma 2.3 (a). From the proof of the statement (b) of this lemma, it is
enough to show here that the volume of B(z0, r) ∩M is bounded by crm, for r ≤ r0,
where r0 and c are constants. Assume that z0 ∈ Mi. Let x0 = φ−1(z0). Then for
r ≤ mini∈I δi/2,

∫

B(z0,r)∩M
dz =

∫

Bρi (x0,r)
Dφi

(x)dx.

The required property is now trivial because the metric ρi satisfies the property (P2)
and the set I is finite. The proof is complete.

We conclude this article with the proof of Theorem 1.1.

Proof of Theorem 1.1 (for Poisson point processes). Consider the limiting behavior
of βk(Qn|M◦

i
, rn). Define

fi(x) = κ(φi(x))Dφi
(x)1Ci(x).

Since Dφi
(x) is a continuous function on the compact set C̄i, it follows from the

assumption on κ that
∫

Vi
fi(x)

jdx < +∞ for all j ∈ N. Let Pn = φ−1(Qn|M◦

i
). Then

Pn becomes a Poisson point process on Vi with intensity function nfi. It is clear that

βk(Qn|M◦

i
, rn) = βk(Pn, rn, ρi),

where recall that ρi(x, y) = ‖φi(x) − φi(y)‖, x, y ∈ Vi. Thus, by Theorem 2.1 for
Poisson point processes, as n → ∞ with n1/mrn → r,

βk(Qn|M◦

i
, rn)

n
→
∫

Vi

β̂
(m)
k

(

f(x)

Dφi
(x)

, r

)

Dφi
(x)dx =

∫

M◦

i

β̂
(m)
k (κ(z), r) dz a.s.

By Lemma 2.2,

∣

∣

∣

∣

∣

βk(Qn, rn)

n
−
∑

i∈I

βk(Qn|M◦

i
, rn)

n

∣

∣

∣

∣

∣

≤
k+1
∑

j=k

(

Sj(Qn, rn)

n
−
∑

i∈I

Sj(Qn|M◦

i
, rn)

n

)

.

Let n → ∞ with n1/mrn → r. Then from the strong law (21), the left hand side of
the above inequality converges to zero almost surely. Moreover, since I is finite,

∑

i∈I

βk(Qn|M◦

i
, rn)

n
→
∑

i∈I

∫

M◦

i

β̂
(m)
k (κ(z), r)dz =

∫

M
β̂
(m)
k (κ(z), r)dz a.s.

This completes the proof of Theorem 1.1.
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