
Front. Math. China
DOI 10.1007/s11464-015-0482-y

Strong law of large numbers for

supercritical superprocesses under

second moment condition

Zhen-Qing CHEN1, Yan-Xia REN2, Renming SONG3, Rui ZHANG4

1 Department of Mathematics, University of Washington, Seattle, WA 98195, USA
2 LMAM School of Mathematical Sciences & Center for Statistical Science,

Peking University, Beijing 100871, China
3 Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
4 LMAM School of Mathematical Sciences, Peking University, Beijing 100871, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Abstract Consider a supercritical superprocess X = {Xt, t > 0} on a locally
compact separable metric space (E,m). Suppose that the spatial motion of X is
a Hunt process satisfying certain conditions and that the branching mechanism
is of the form

ψ(x, λ) = −a(x)λ+ b(x)λ2 +

∫

(0,+∞)
(e−λy − 1 + λy)n(x,dy), x ∈ E, λ > 0,

where a ∈ Bb(E), b ∈ B
+
b (E), and n is a kernel from E to (0,+∞)

satisfying supx∈E

∫ +∞
0 y2n(x,dy) < +∞. Put Ttf(x) = Pδx

〈f,Xt〉. Suppose
that the semigroup {Tt; t > 0} is compact. Let λ0 be the eigenvalue of the
(possibly non-symmetric) generator L of {Tt} that has the largest real part
among all the eigenvalues of L, which is known to be real-valued. Let φ0

and φ̂0 be the eigenfunctions of L and L̂ (the dual of L) associated with λ0,
respectively. Assume λ0 > 0. Under some conditions on the spatial motion
and the φ0-transform of the semigroup {Tt}, we prove that for a large class of
suitable functions f,

lim
t→+∞

e−λ0t〈f,Xt〉 = W∞

∫

E
φ̂0(y)f(y)m(dy), Pµ-a.s.,

for any finite initial measure µ on E with compact support, where W∞ is
the martingale limit defined by W∞ := limt→+∞ e−λ0t〈φ0, Xt〉. Moreover, the
exceptional set in the above limit does not depend on the initial measure µ and
the function f.
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1 Introduction

Recently, there have been quite a few papers on law of large numbers for
superdiffusions. In [11,13,14], some weak laws of large numbers (convergence
in law or in probability) were established. The strong law of large numbers for
superprocesses was first studied in [7] followed by [10,20,22,31]. The continuity
of the sample paths of the spatial motions played an important role in all the
papers mentioned above except [7,20]. It is more difficult to establish strong
law of large numbers for superprocesses with discontinuous spatial motions. For
a good survey on recent developments in laws of large numbers for branching
Markov processes and superprocesses, see [10]. In the papers mentioned above,
either the spatial motion is assumed to be a diffusion, or the spatial motion is
assumed to be a symmetric Hunt process. In [7], where the spatial motion is a
symmetric Hunt process, a condition on the smallness at ‘infinity’ of the linear
term in the branching mechanism of the superprocess has to be assumed. The
purpose of this paper is to give a different setup under which the strong law of
large numbers for superprocesses holds. The setup of this paper complements
the previous setups. In particular, the spatial motion may be discontinuous
and non-symmetric. We will give some examples that satisfy the conditions of
this paper.

Papers [7,10,22] dealt with strong law of large numbers for superprocesses
with spatially dependent branching mechanism. The main ideas of the
arguments of [7,10,22] are similar and consist of two steps. The first step is
to prove an almost sure limit result along discrete times, and the second step
is to prove that the result is true for continuous times. An essential difficulty
comes from the second step. [22] gave a method for the transition from lattice
times to continuous times based on resolvent operator and approximation
of the indicator function of an open subset of E by resolvent functions. The
reason that this approximation works for superdiffusions is that the sample
paths of the spatial motion are continuous. [10] also used this idea to show that
indicator functions can be approximated by resolvent functions. For general
superprocesses with spatial motions which might be discontinuous, [7] is the
first paper to establish a strong law of large numbers under a second moment
condition. The paper [7] managed to overcome the difficulty of transition from
discrete times to continuous times with a highly non-trivial application of the
martingale formulation of superprocesses. However, the assumptions of [7] are
restrictive in two aspects: the spatial motion is assumed to be symmetric and
the linear term of the branching mechanism is assumed to satisfy a Kato class
condition at ‘infinity’.

Papers [20,31] studied strong law of large numbers for super-Brownian
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motions and super-α-stable processes with spatially independent branching
mechanism, respectively. The key ingredients in the argument of [20,31] are
Fourier analysis and stochastic analysis, and the conditions in [20,31] are quite
different from those of [7,22]. The mean semigroup of the superprocess is
assumed to have a spectral gap in [7,22], while the mean semigroups of the
superprocesses of [20,31] have continuous spectra. In this paper, we assume
that the spatial motion has a dual with respect to a certain measure and that
the branching mechanism satisfies a second moment condition. Under the
conditions of this paper, the mean semigroup of the superprocess
automatically has a spectral gap.

1.1 Spatial process

Our assumptions on the underlying spatial process are similar to those in [25].
In this subsection, we lay out the assumptions on the spatial process.

Suppose that (E,m) is a locally compact separable metric space and m is
a σ-finite Borel measure on E with full support. Let E∂ = E ∪ {∂} be the one-
point compactification of E. Every function f on E is automatically extended
to E∂ by setting f(∂) = 0. We will assume that ξ = {ξt,Πx} is a Hunt process
on E and ζ := inf{t > 0: ξt = ∂} is the lifetime of ξ. The transition semigroup
of ξ will be denoted by {Pt, t > 0}. We will always assume that there exists a
family of strictly positive continuous functions {p(t, x, y), t > 0} on E×E such
that

Ptf(x) =

∫

E
p(t, x, y)f(y)m(dy).

Define

at(x) :=

∫

E
p2(t, x, y)m(dy), ât(x) :=

∫

E
p2(t, y, x)m(dy). (1.1)

In this paper, we make the following assumption.

Assumption 1.1 (a) For all t > 0 and x ∈ E,
∫
E p(t, y, x)m(dy) 6 1.

(b) For any t > 0, at and ât are continuous L1(E;m)-integrable functions.

(c) There exists t0 > 0 such that at0 , ât0 ∈ L2(E;m).

By the Chapman-Kolmogorov equation and the Cauchy-Schwarz inequality,

p(t+ s, x, y) =

∫

E
p(t, x, z)p(s, z, y)m(dz) 6 (at(x))

1/2(âs(y))
1/2. (1.2)

Therefore,

at+s(x) 6 at(x)

∫

E
âs(y)m(dy), ât+s(x) 6 ât(x)

∫

E
as(y)m(dy).

Thus, under condition (b), condition (c) above is equivalent to

(c′) there exists t0 > 0 such that for all t > t0, at, ât ∈ L2(E;m).
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Under Assumption 1.1 (a), for every t > 0, both Pt and the operator P̂t

defined by

P̂tf(x) =

∫

E
p(t, y, x)f(y)m(dy)

are contraction operators in Lp(E;m) for every p ∈ [1,+∞], and they are dual
to each other. Assumption 1.1 (b) implies that each Pt is a Hilbert-Schmidt
operator in L2(E;m) and thus is compact. Hence, Pt has discrete spectrum.

1.2 Superprocesses

In this subsection, we introduce the superprocesses. Let Bb(E) (resp. B
+
b (E))

be the family of bounded (resp. nonnegative bounded) Borel functions on E.
Denote by 〈·, ·〉m the inner product in L2(E;m).

The superprocess X = {Xt, t > 0} is determined by three objects: a spatial
motion ξ = {ξt,Πx} on E satisfying the assumptions of the previous subsection,
a branching rate function β(x) on E which is a nonnegative bounded Borel
function, and a branching mechanism ψ of the form

ψ(x, λ) = −a(x)λ+ b(x)λ2 +

∫

(0,+∞)
(e−λy − 1 + λy)n(x,dy), x ∈ E, λ > 0,

(1.3)
where a ∈ Bb(E), b ∈ B

+
b (E), and n is a kernel from E to (0,+∞) satisfying

sup
x∈E

∫ +∞

0
y2n(x,dy) < +∞. (1.4)

Let MF (E) be the space of finite measures on E, equipped with the weak
convergence topology. As usual,

〈f, µ〉 :=

∫
f(x)µ(dx), ‖µ‖ := 〈1, µ〉.

By [21, Theorem 5.12], there is a Borel right process X = {Ω,G ,Gt, Xt,Pµ}
taking values in MF (E), called superprocess, such that for every f ∈ B

+
b (E)

and µ ∈ MF (E),

− log Pµ(e−〈f,Xt〉) = 〈uf (·, t), µ〉, (1.5)

where uf (x, t) is the unique positive solution to the equation

uf (x, t) + Πx

∫ t

0
ψ(ξs, uf (ξs, t− s))β(ξs)ds = Πxf(ξt), (1.6)

where ψ(∂, λ) = 0, λ > 0. Here, (G ,Gt)t>0 are augmented, (Gt, t > 0) is
right continuous and X satisfies the Markov property with respect to (Gt, t >

0). Moreover, such a superprocess X has a Hunt realization in MF (E), see
[21, Theorem 5.12]. In this paper, the superprocess we deal with always takes
such a Hunt realization.
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Define

α(x) := β(x)a(x), A(x) := β(x)

(
2b(x) +

∫ +∞

0
y2n(x,dy)

)
. (1.7)

By our assumptions, α(x) ∈ Bb(E) and A(x) ∈ B
+
b (E). Thus, there exists

K > 0 such that
sup
x∈E

(|α(x)| +A(x)) 6 K. (1.8)

For any f ∈ Bb(E) and (t, x) ∈ (0,+∞) ×E, define

Ttf(x) := Πx

[
e
∫ t

0
α(ξs)dsf(ξt)

]
. (1.9)

It is well known that

Ttf(x) = Pδx
〈f,Xt〉, ∀x ∈ E.

It is known that (see, e.g., [25] and [27, Lemma 2.1]) {Tt, t > 0} is a strongly
continuous semigroup on L2(E;m) and there exists a function q(t, x, y) on
(0,+∞) ×E ×E which is continuous in (x, y) for each t > 0 such that

e−Ktp(t, x, y) 6 q(t, x, y) 6 eKtp(t, x, y), (t, x, y) ∈ (0,+∞) ×E ×E, (1.10)

and that for any bounded Borel function f on E and (t, x) ∈ (0,+∞) ×E,

Ttf(x) =

∫

E
q(t, x, y)f(y)m(dy).

It follows immediately that, for any f ∈ Lp(E,m) with p > 1,

‖Ttf‖p 6 eKt‖Ptf‖p 6 eKt‖f‖p. (1.11)

Define

bt(x) :=

∫

E
q2(t, x, y)m(dy), b̂t(x) :=

∫

E
q2(t, y, x)m(dy). (1.12)

Then bt and b̂t enjoy the following properties.

(i) For any t > 0, we have bt, b̂t ∈ L1(E;m). Moreover, bt(x) and b̂t(x) are
continuous in x ∈ E.

(ii) There exists t0 > 0 such that for all t > t0, bt, b̂t ∈ L2(E;m).

Let {T̂t, t > 0} be the adjoint semigroup of {Tt, t > 0} on L2(E,m) defined
by

T̂tg(x) =

∫

E
q(t, y, x)g(y)m(dy).

It is easy to see T̂t is the dual operator of Tt in L2(E;m). It follows that

{T̂t, t > 0} is also strongly continuous in L2(E,m). Since q(t, ·, y) and at are
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continuous, by (1.2) and (1.10), using the dominated convergence theorem, we

get that for any t > 0 and f ∈ L2(E;m), Ttf and T̂tf are continuous.

It follows from (i) above that, for any t > 0, Tt and T̂t are compact operators

in L2(E;m). Let L and L̂ be the infinitesimal generators of the semigroups {Tt}
and {T̂t} in L2(E;m), respectively. Let σ(L) and σ(L̂) be the spectra of L and

L̂, respectively. It follows from [23, Theorem 2.2.4, Corollary 2.3.7] that both

σ(L) and σ(L̂) consist of eigenvalues, and that σ(L) and σ(L̂) have the same
number, say N, of eigenvalues. Let

I =

{
{0, 1, 2, . . . , N − 1}, N < +∞,

{0, 1, 2, . . .}, otherwise.

For a complex number a, we use Re(a) to denote its real part. Define

λ0 := supRe(σ(L)) = supRe(σ(L̂)).

By Jentzsch’s theorem ([29, Theorem V.6.6]), λ0 is an eigenvalue of multiplicity

1 for both L and L̂; see [8, Theorem 7.1] and its proof for details. Assume

that φ0 and φ̂0 are eigenfunctions of L and L̂, respectively, associated with λ0.

Functions φ0 and φ̂0 can be chosen to be continuous strictly positive and satisfy

‖φ0‖2 = 1, 〈φ0, φ̂0〉m = 1.

We list the eigenvalues of {λk, k ∈ I} of L in an order so that

λ0 > Re(λ1) > Re(λ2) > · · · .

Then {λk, k ∈ I} are the eigenvalues of L̂. For convenience, we define, for any
positive integer not in I,

λk = λk = −∞.

For t > 0,
Ttφ0(x) = eλ0tφ0(x),

and thus,

φ0(x) 6 e−λ0tb
1/2
t (x). (1.13)

Similarly, we have

T̂tφ̂0(x) = eλ0tφ̂0(x), φ̂0(x) 6 e−λ0t‖φ̂0‖2 b̂
1/2
t (x).

Therefore, by Assumption 1.1 (c),

φ0 ∈ L2(E;m) ∩ L4(E;m).

In this paper, we always assume that the superprocess X is supercritical, that
is, λ0 > 0. Define

Wt := e−λ0t〈φ0, Xt〉.
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By the Markov property of X, {Wt, t > 0} is a nonnegative martingale with
respect to {Gt, t > 0}, and thus,

W∞ := lim
t→+∞

Wt

exists. Under our assumptions, Wt is a L2-bounded martingale, and thus, W∞

is non-degenerate, that is,

Pµ(W∞ > 0) > 0.

1.3 Main results

In this subsection, we state our main results. In the remainder of this
paper, whenever we talk about an initial configuration µ ∈ MF (E), we always
implicitly assume that it has compact support.

For q > max{K,λ0} and f ∈ Lp(E;m) with p > 1, define

Uqf(x) :=





∫ +∞

0
e−qsTsf(x)ds,

∫ +∞

0
e−qsTs|f |(x)ds < +∞,

0, otherwise.

Note that for p > 1, by (1.11),

(∫

E

(∫ +∞

0
e−qsTs|f |(x)ds

)p

m(dx)

)1/p

6

∫ +∞

0
e−qs‖Ts(|f |)‖pds

6

∫ +∞

0
e−qseKsds‖f‖p

< +∞, (1.14)

which implies ∫ +∞

0
e−qsTs|f |(x)ds ∈ Lp(E;m),

and thus, ∫ +∞

0
e−qsTs|f |(x)ds < +∞, m-a.e.

Consequently, Uqf ∈ Lp(E;m). In Lemma 2.2 below, we will show that if
f ∈ L2(E,m) ∩ L4(E,m), then 〈Uqf,Xt〉 is well defined.

Theorem 1.2 Assume that Assumption 1.1 holds. If g = Uqf for some

f ∈ L2(E,m) ∩ L4(E;m) and q > max{K,λ0}, then for any µ ∈ MF (E),
as t→ +∞,

e−λ0t〈g,Xt〉 → 〈g, φ̂0〉mW∞, Pµ-a.s. (1.15)

For any f > 0, define

T φ0

t f(x) =
e−λ0t

φ0(x)
Πx

[
exp

(∫ t

0
α(ξs)ds

)
(fφ0)(ξt)

]
. (1.16)
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Let C0(E; R) denote the family of real-valued continuous functions f on E
with the property that limx→∂ f(x) = 0.

We will also make the following assumption in this paper.

Assumption 1.3 The semigroup {T φ0

t , t > 0} has the following properties:
for any f ∈ C0(E; R),

lim
t→0

‖T φ0

t f − f‖∞ = 0. (1.17)

The following theorem is the main result of this paper.

Theorem 1.4 Under Assumptions 1.1 and 1.3, there exists Ω0 ⊂ Ω of

probability one (that is, Pµ(Ω0) = 1 for every µ ∈ MF (E)) such that, for

every ω ∈ Ω0 and for every bounded Borel function f on E satisfying

(a) |f | 6 cφ0 for some c > 0,

(b) the set of discontinuous points of f has zero m-measure,

we have

lim
t→+∞

e−λ0t〈f,Xt〉(ω) = W∞(ω)

∫

E
φ̂0(y)f(y)m(dy). (1.18)

Assumption 1.3 will be used to extend the test functions from resolvent
functions g = Uqf with f ∈ L2(E,m) ∩ L4(E;m) to functions of the form
g = fφ0 with f ∈ C0(E; R). We will give some examples in Section 4 to show
that Assumptions 1.1 and 1.3 are satisfied by many interesting superprocesses
including super Ornstein-Uhlenbeck processes (both inward and outward) and
superprocesses with discontinuous spatial motions.

Remark 1.5 (1) Compared with [7], our spatial motion can be nonsymmetric
and we do not assume that α(x) = β(x)a(x) is in the Kato class K∞(ξ). The
latter would require α be small at +∞ in some sense (see [7] for the definition
of K∞(ξ)). In [7], a compact embedding condition (see [7, 2.4]) is also assumed
to ensure that the generator of the semigroup {Tt, t > 0} has a spectral gap. In
this paper, we assume instead Assumption 1.1, which implies that the generator
of {Tt, t > 0} has discrete spectrum.

(2) Compared with [22] where the spatial motion is a diffusion, our spatial
motion may be discontinuous. The setup of [22] and the setup of the present
paper are also different in the following ways. In [22], the semigroup of the
spatial motion is assumed to be intrinsic ultracontractive. This condition
is pretty strong and it excludes some interesting examples including the OU
processes. In this paper, we assume Assumption 1.1 instead, which is weaker
than the intrinsic ultracontractive property and is enough to ensure that, for
resolvent functions g, the limit limt→+∞ e−λ0t〈g,Xt〉 exists almost surely. In
[22], the branching mechanism is assumed to satisfy an L logL condition, while
in this paper, we assume that the branching mechanism satisfies a second
moment condition.
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2 Preliminaries

2.1 Moment estimates

By [25, Lemma 2.2] with k = 1, for any t1 > 0 and a < −Re(λ1), there exists
a constant c = c(a, t1) > 0 such that for all (t, x, y) ∈ (2t1,+∞) ×E ×E,

|q(t, x, y) − eλ0tφ0(x)φ̂0(y)| 6 ce−atb
1/2
t1 (x)̂b

1/2
t1 (y). (2.1)

Multiplying both sides by e−λ0t, we get that for all (t, x, y) ∈ (2t1,+∞)×E×E,

|e−λ0tq(t, x, y) − φ0(x)φ̂0(y)| 6 ce−(a+λ0)tb
1/2
t1 (x)̂b

1/2
t1 (y).

Note that a < −Re(λ1) is equivalent to

a+ λ0 < λ0 − Re(λ1).

Thus, for any ã ∈ (0, λ0 − Re(λ1)) and t1 > 0, there exists c1 = c1(ã, t1) > 0
such that for all (t, x, y) ∈ (2t1,+∞) ×E ×E,

|e−λ0tq(t, x, y) − φ0(x)φ̂0(y)| 6 c1e
−ãtb

1/2
t1

(x)̂b
1/2
t1

(y). (2.2)

Thus, for f ∈ L2(E;m), and for all (t, x) ∈ (2t1,+∞) ×E, we have

|e−λ0tTtf(x) − φ0(x)〈f, φ̂0〉m| 6 c1‖b̂1/2
t1 ‖2 ‖f‖2e

−ãtb
1/2
t1 (x),

which implies that there exists c2 = c2(ã, t1) > 0 such that for all (t, x) ∈
(2t1,+∞) ×E,

|e−λ0tTtf(x) − φ0(x)〈f, φ̂0〉m| 6 c2‖f‖2e
−ãtb

1/2
t1 (x). (2.3)

Hence, by (1.13) and the fact that ã > 0, we have

e−λ0t|Ttf(x)| 6 φ0(x)|〈f, φ̂0〉m| + c2‖f‖2e
−ãtb

1/2
t1 (x)

6 (e−λ0t1‖φ̂0‖2 + c2)‖f‖2b
1/2
t1 (x).

Thus, there exists c3 = c3(ã, t1) > 0 such that for all (t, x) ∈ (2t1,+∞) ×E,

|Ttf(x)| 6 c3‖f‖2e
λ0tb

1/2
t1 (x). (2.4)

We now recall the second moment formula for the superprocess {Xt, t > 0}
(see, for example, [24]): for f ∈ L2(E;m) ∩ L4(E;m) and µ ∈ MF (E), for any
t > 0, we have

Varµ〈f,Xt〉 = 〈Varδ·〈f,Xt〉, µ〉 =

∫

E

∫ t

0
Ts[A(Tt−sf)2](x)dsµ(dx), (2.5)
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where Varµ stands for the variance under Pµ and A(x) is the function defined
in (1.7). Moreover, for f ∈ L2(E;m) ∩ L4(E;m),

Varδx
〈f,Xt〉 6 eKtTt(f

2)(x) ∈ L2(E;m). (2.6)

In the following lemma, we give a useful estimate on the second moment of
X. If we choose the constant ã ∈ (0, λ0 −Re(λ1)) small enough, we can get the
next lemma by [25, Lemma 2.5]. Here, we give a direct proof.

Lemma 2.1 Suppose that Assumption 1.1 holds. For any ã ∈ (0, (λ0 −
Re(λ1)) ∧ (λ0/2)) and f ∈ L2(E;m) ∩ L4(E;m) with 〈f, φ̂0〉m = 0, there exists

c4 = c4(t0, ã, f) > 0 such that

sup
t>10t0

e2(−λ0+ã)t
Varδx

〈f,Xt〉 6 c4b
1/2
t0

(x). (2.7)

Proof In the following proof, we use c = c(t0, ã, f) to denote a constant whose
value may change from one appearance to another. Recall that

Varδx
〈f,Xt〉 =

( ∫ 2t0

0
+

∫ t−2t0

2t0

+

∫ t

t−2t0

)
Ts[A(Tt−sf)2](x)ds.

In the following, we will deal with the above three parts separately.

(i) For t > 10t0 and s < 2t0, using (2.3) with t1 = 4t0 and noticing that

〈f, φ̂0〉m = 0, we get

|Tt−sf(x)| 6 ce(λ0−ã)(t−s)b
1/2
4t0

(x).

Thus, ∫ 2t0

0
Ts[A(Tt−sf)2](x)ds 6 ce2(λ0−ã)t

∫ 2t0

0
Ts[b4t0 ](x)ds.

If we can prove that

∫ 2t0

0
Ts[b4t0 ](x)ds 6 cb

1/2
t0 (x), (2.8)

then we will get

∫ 2t0

0
Ts[A(Tt−sf)2](x)ds 6 ce2(λ0−ã)tb

1/2
t0 (x). (2.9)

Now, we prove (2.8). By Fubini’s theorem and Hölder’s inequality, we get

at+s(x) =

∫

E
p(t+ s, x, y)

∫

E
p(t, x, z)p(s, z, y)m(dz)m(dy)

=

∫

E
p(t, x, z)

∫

E
p(t+ s, x, y)p(s, z, y)m(dy)m(dz)

6 a
1/2
t+s(x)

∫

E
p(t, x, z)a1/2

s (z)m(dz),
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which implies

at+s(x) 6

(∫

E
p(t, x, z)a1/2

s (z)m(dz)

)2

6

∫

E
p(t, x, z)as(z)m(dz). (2.10)

By (2.10), we get

b4t0(x) 6 e8Kt0a4t0(x) 6 e10Kt0T2t0(a2t0)(x).

Thus, by Assumption 1.1 (c′) and (2.4), we have

∫ 2t0

0
Ts(b4t0)(x)ds 6 e10Kt0

∫ 2t0

0
Ts+2t0(a2t0)(x)ds

6 c

∫ 2t0

0
eλ0(s+2t0)dsb

1/2
t0 (x)

6 cb
1/2
t0

(x). (2.11)

Therefore, (2.8) holds.

(ii) For t > 10t0 and s ∈ (2t0, t− 2t0), by (2.3), (2.4), and Assumption 1.1
(c′),

Ts[A(Tt−sf)2](x) 6 ce2(λ0−ã)(t−s)Ts(bt0)(x) 6 ce2(λ0−ã)(t−s)eλ0sb
1/2
t0 (x).

Thus, using the fact λ0 − 2ã > 0,

∫ t−2t0

2t0

Ts[A(Tt−sf)2](x)ds 6 ce2(λ0−ã)t

∫ t−2t0

2t0

e−(λ0−2ã)sdsb
1/2
t0 (x)

6 ce2(λ0−ã)tb
1/2
t0 (x). (2.12)

(iii) For t > 10t0 and s > t− 2t0, since

|Tt−sf(x)|2 6 eK(t−s)Tt−s(f
2)(x),

we have
Ts[A(Tt−sf)2](x) 6 KeK(t−s)Tt(f

2)(x)

6 Ke2t0Kc3e
λ0tb

1/2
t0 (x)

6 Ke2t0Kc3e
2(λ0−ã)tb

1/2
t0 (x),

where, in the last equality, we use the fact λ0 − 2ã > 0. Thus,

∫ t

t−2t0

Ts[A(Tt−sf)2](x)ds 6 ce2(λ0−ã)tb
1/2
t0 (x). (2.13)

Combining (2.9), (2.12), and (2.13), we get (2.7). �
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2.2 Martingale measure for superprocesses

In this subsection, we recall the associated martingale measure for the
superprocess X. For more details, see, for instance, [21, Chapter 7]. The
martingale measure for superprocesses is a very useful tool in the proof of
our main theorems.

For our superprocess X, there exists a worthy (Gt)-martingale measure

{Mt(B) = M(t, B); t > 0, B ∈ B(E)}

with covariation measure

ν(ds,dx,dy) := ds

∫

E
A(z)δz(dx)δz(dy)Xs(dz)

such that for t > 0 and f ∈ L2(E;m) ∩ L4(E;m), we have, Pµ-a.s.,

〈f,Xt〉 = 〈Ttf, µ〉 +

∫ t

0

∫

E
Tt−sf(z)M(ds,dz). (2.14)

For any u > 0 and 0 6 t 6 u, we define

M
(u)
t :=

∫ t

0

∫

E
Tu−sf(x)M(ds,dx).

Then, for any µ ∈ MF (E), {M (u)
t , 0 6 t 6 u} is a cadlag square-integrable

martingale under Pµ with

〈Mu〉t =

∫ t

0
〈A(Tu−sf)2, Xs〉ds. (2.15)

Here, cadlag means ‘right continuous having left limits’. Note that

Pµ(M (u)
u )2 = Pµ〈Mu〉u = Varµ〈f,Xu〉. (2.16)

In the remainder of this paper, we will always assume that q > max{K,λ0}.
Lemma 2.2 Assume that Assumption 1.1 holds. If f ∈ L2(E;m)∩L4(E;m),
then for any µ ∈ MF (E),

Pµ (〈Uq|f |, Xt〉 < +∞ for t > 0) = Pµ (〈Uqf,Xt〉 is finite for t > 0) = 1.

Moreover, Pµ-a.s., 〈Uqf,Xt〉 is cadlag on [0,+∞), and for all t > 0,

〈Uqf,Xt〉 = 〈Tt(Uqf), µ〉 + eqt

∫ +∞

t
e−quM

(u)
t du. (2.17)

Proof When the spatial motion ξ is symmetric, this lemma has been
established in [26, Lemmas 2.4, 2.5]. The proof for the non-symmetric case
is almost the same. For reader’s convenience, we include a proof here. We can
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check that the argument in the proof of [26, Lemma 2.4] works without the
assumption that ξ is m-symmetric, so 〈Uqf,Xt〉 is right continuous on [0,+∞),
Pµ-a.s.

For f ∈ L2(E;m) ∩ L4(E;m),

Uqf ∈ L2(E;m) ∩ L4(E;m).

By (2.14), for t > 0 and µ ∈ MF (E), we have, Pµ-a.s.,

〈Uqf,Xt〉 = 〈Tt(Uqf), µ〉 +

∫ t

0

∫

E
Tt−s(Uqf)(z)M(ds,dz)

= 〈Tt(Uqf), µ〉 +

∫ t

0

∫

E

∫ +∞

0
e−quTu+t−sf(z)duM(ds,dz)

= 〈Tt(Uqf), µ〉 + eqt

∫ t

0

∫

E

∫ +∞

t
e−quTu−sf(z)duM(ds,dz)

= 〈Tt(Uqf), µ〉 + eqt

∫ +∞

t
e−qudu

∫ t

0

∫

E
Tu−sf(z)M(ds,dz)

=: Jf
1 (t) + eqtJf

2 (t), (2.18)

where the fourth equality follows from the stochastic Fubini’s theorem for
martingale measures (see, for instance, [21, Theorem 7.24]). Thus, for t > 0
and µ ∈ MF (E),

Pµ(〈Uqf,Xt〉 = Jf
1 (t) + eqtJf

2 (t)) = 1. (2.19)

Then, in light of (2.19), to prove (2.17), it suffices to prove that J f
1 (t) and Jf

2 (t)

are all cadlag in (0,+∞), Pµ-a.s. For Jf
1 (t), by Fubini’s theorem, for t > 0,

Jf
1 (t) = eqt

∫ +∞

t
e−qs〈Tsf, µ〉ds.

Thus, it is easy to see that J f
1 (t) is continuous in t ∈ (0,+∞). Now, we consider

Jf
2 (t). We claim that, for any t1 > 0,

Pµ(Jf
2 (t) is cadlag in [t1,+∞)) = 1. (2.20)

By the definition of J f
2 , for t > t1,

Jf
2 (t) =

∫ +∞

t1

e−quM
(u)
t 1t<udu.

Since t 7→M
(u)
t 1t<u is right continuous, by the dominated convergence theorem,

to prove (2.20), it suffices to show that

Pµ

(∫ +∞

t1

e−qu sup
t>t1

(|M (u)
t |1t<u)du < +∞

)
= 1. (2.21)
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By the Lp-maximum inequality and (2.16), we have

Pµ

(∫ +∞

t1

e−qu sup
t>t1

(|M (u)
t |1t<u)du

)

6 2

∫ +∞

t1

e−qu

√
Pµ|M (u)

u |2 du

= 2

∫ +∞

t1

e−qu

√∫

E
Varδx

〈f,Xu〉µ(dx) du. (2.22)

By (2.6) and (2.4), for u > t1, we have
∫

E
Varδx

〈f,Xu〉µ(dx) 6 eKu

∫

E
Tu(f2)(x)µ(dx)

6 ceKueλ0u

∫

E
b
1/2
t1/2(x)µ(dx),

where c = c(t1, ã, f) is a positive constant and bt(x) is the function defined in
(1.12). Since x 7→ bt1/2(x) is continuous and µ has compact support, we have

∫

E
b
1/2
t1/2(x)µ(dx) < +∞.

Thus, by (2.22), we have

Pµ

(∫ +∞

t1

e−qu sup
t>t1

(|M (u)
t |1t<u)du

)

6 2
√
c

∫ +∞

t1

e−que(K+λ0)u/2du

√∫

E
b
1/2
t1/2

(x)µ(dx)

< +∞.

Now, (2.21) follows immediately. Since t1 > 0 is arbitrary, we have

Pµ(Jf
2 (t) is cadlag in (0,+∞)) = 1.

The proof is now complete. �

3 Strong law of large numbers

In this section, we give the proofs of Theorems 1.2 and 1.4. We start with a
lemma.

Lemma 3.1 Suppose that Assumption 1.1 holds and f ∈ L2(E;m)∩L4(E;m)

with 〈f, φ̂0〉m = 0. Then for any µ ∈ MF (E) and ã ∈ (0, (λ0−Re(λ1))∧(λ0/2)),

sup
n>10t0

e(−λ0+ã)n
Pµ

(
sup

n6t6n+1
|〈Uqf,Xt〉|

)
< +∞. (3.1)
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Proof In this proof, we always assume that n > 10t0 and c is a positive
constant whose value does not depend on n and may change from one
appearance to another. Define

Jf
1 (t) := 〈TtUqf, µ〉, Jf

2 (t) :=

∫ +∞

t
e−quM

(u)
t du.

By (2.17), for any t > 0,

Pµ

(
sup

n6t6n+1
|〈Uqf,Xt〉|

)
6 sup

n6t6n+1
|Jf

1 (t)| + eq(n+1)
Pµ

(
sup

n6t6n+1
|Jf

2 (t)|
)
.

First, we consider J f
1 (t). Since 〈Uqf, φ̂0〉m = 0, by (2.3), we have

|TtUqf |(x) 6 ce(λ0−ã)tb
1/2
t0 (x).

Thus, for n > 10t0,

sup
n6t6n+1

|Jf
1 (t)| 6 sup

n6t6n+1
〈|TtUqf |, µ〉

6 c sup
n6t6n+1

e(λ0−ã)t〈b1/2
t0 , µ〉

6 ce(λ0−ã)n. (3.2)

Next, we deal with J f
2 (t). For t ∈ [n, n+ 1],

Jf
2 (t) =

∫ +∞

t
e−quM

(u)
t du =

∫ +∞

n
e−quM

(u)
t 1t<udu.

Thus, for n > 10t0,

Pµ

(
sup

n6t6n+1
|Jf

2 (t)|
)

6

∫ +∞

n
e−qu

Pµ

(
sup

n6t6n+1
(|M (u)

t |1t<u)
)
du

6 2

∫ +∞

n
e−qu

√
Pµ(M

(u)
u )2 du

6 2

√
c〈b1/2

t0 , µ〉
∫ +∞

n
e−que(λ0−ã)udu

6 c(q − λ0 + ã)−1e−(q−λ0+ã)n,

where the third equality follows from (2.15), (2.16), and (2.7). It follows that
for n > 10t0,

eq(n+1)
Pµ

(
sup

n6t6n+1
Jf

2 (t)
)

6 ce(λ0−ã)n. (3.3)

Combining (3.2) and (3.3), this yields (3.1). The proof is now complete. �
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Proof of Theorem 1.2 Put

f̃ = f − 〈f, φ̂0〉mφ0.

Note that

Uqφ0(x) =

∫ +∞

0
e−qtTtφ0(x)dt =

∫ +∞

0
e−qteλ0tdtφ0(x) = (q − λ0)

−1φ0(x)

and

〈Uqf, φ̂0〉m =

∫ +∞

0
e−qt〈Ttf, φ̂0〉mdt

=

∫ +∞

0
e−qteλ0tdt〈f, φ̂0〉m

= (q − λ0)
−1〈f, φ̂0〉m. (3.4)

Thus,

Uqf(x) = 〈f, φ̂0〉mUqφ0(x) + Uq(f̃)(x) = 〈Uqf, φ̂0〉mφ0(x) + Uq(f̃)(x).

Hence, to prove (1.15), we only need to show that

e−λ0t〈Uq(f̃), Xt〉 → 0, Pµ-a.s. (3.5)

Let
Mn := sup

n6t6n+1
e−λ0t|〈Uq(f̃), Xt〉|.

By (3.1), there is a constant c > 0 so that

PµMn 6 ce−ãn, ∀n > 10t0.

We conclude by the Borel-Cantelli lemma that Mn → 0, as n → +∞, Pµ-a.s.,
from which, (3.5) follows immediately. The proof is now complete. �

For any f > 0 and q > max{K,λ0}, define

Uφ0

q f(x) =

∫ +∞

0
e−qtT φ0

t f(x)dt, x ∈ E,

where T φ0

t is defined in (1.16). It is easy to see that

φ0(x)U
φ0

q f(x) = Uq+λ0
(φ0f).

Proposition 3.2 Suppose that Assumptions 1.1 and 1.3 hold. For any 0 6

f ∈ C0(E; R) and µ ∈ MF (E),

lim
t→+∞

e−λ0t〈φ0f,Xt〉 = 〈fφ0, φ̂0〉mW∞, Pµ-a.s. (3.6)
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Proof By Theorem 1.2,

lim
t→+∞

e−λ0t〈φ0U
φ0

q f,Xt〉 = lim
t→+∞

e−λ0t〈Uq+λ0
(φ0f), Xt〉

= 〈Uq+λ0
(φ0f), φ̂0〉mW∞, Pµ-a.s.

According to (3.4),

〈Uq+λ0
(φ0f), φ̂0〉m =

1

q
〈φ0f, φ̂0〉m.

Therefore, for any q > max{K,λ0},

lim
t→+∞

e−λ0t〈φ0qU
φ0

q f,Xt〉 = 〈fφ0, φ̂0〉mW∞, Pµ-a.s. (3.7)

Choose a sequence qk > max{K,λ0} so that limk→+∞ qk = +∞. Put

Ω∗ :=
⋂

k>1

{
lim

t→+∞
e−λ0t〈φ0qkU

φ0

qk
f,Xt(ω)〉 = 〈fφ0, φ̂0〉mW∞(ω)

}

⋂{
lim

t→+∞
Wt(ω) = W∞(ω)

}
.

Then Pµ(Ω∗) = 1. Note that, for any ω ∈ Ω∗,

|e−λ0t〈φ0qkU
φ0

qk
f,Xt(ω)〉 − e−λ0t〈φ0f,Xt(ω)〉|

6 e−λ0t〈φ0|qkUφ0

qk
f − f |, Xt(ω)〉

6 ‖qkUφ0

qk
f − f‖∞e−λ0t〈φ0, Xt(ω)〉,

where ‖ · ‖∞ is the L∞ norm. Letting t→ +∞, we obtain that

lim sup
t→+∞

|e−λ0t〈φ0qkU
φ0

qk
f,Xt(ω)〉 − e−λ0t〈φ0f,Xt〉| 6 ‖qkUφ0

qk
f − f‖∞W∞(ω).

(3.8)
By Assumption 1.3,

lim
k→+∞

‖qkUφ0

qk
f − f‖∞ = 0.

Thus, (3.8) implies that, for ω ∈ Ω∗,

lim
k→+∞

lim sup
t→+∞

|e−λ0t〈φ0qkU
φ0

qk
f,Xt(ω)〉 − e−λ0t〈φ0f,Xt(ω)〉| = 0. (3.9)

Now, combining (3.7) and (3.9), we get (3.6). �

Proof of Theorem 1.4 Note that E∂ is a compact separable metric space.
According to [30, Exercise 9.1.16 (iii)], Cb(E∂ ; R), the space of bounded
continuous R-valued functions f on E, is separable. Therefore, C0(E; R) is also
a separable space. Let {fn, n > 1} be a countable dense subset of C0(E; R).
Define Ω0 to be the intersection of the following two events:

{
ω ∈ Ω: lim

t→+∞
Wt(ω) = W∞(ω)

}
,



18 Zhen-Qing CHEN et al.

⋂

k>1

{
ω ∈ Ω: lim

t→+∞
e−λ0t〈fkφ0, Xt〉(ω) = W∞(ω)

∫

E
fk(y)φ0(y)φ̂0(y)m(dy)

}
.

By Proposition 3.2, Pµ(Ω0) = 1 for any µ ∈ MF (E).
We first consider (1.18) on {W∞ > 0}. For each ω ∈ Ω0 ∩ {W∞ > 0} and

t > 0, we define two probability measures νt and ν on E, respectively, by

νt(F )(ω) =
e−λ0t〈1Fφ0, Xt〉(ω)

Wt(ω)
,

ν(F ) =

∫

F
φ0(y)φ̂0(y)m(dy), F ∈ B(E).

Note that the measure νt is well defined for every t > 0, and νt and ν are
probability measures. By the definition of Ω0, we know that νt converges weakly
to ν as t → +∞. Since φ0 is strictly positive and continuous on E, if f is a
function on E such that |f | 6 cφ0 for some c > 0 and that the discontinuity
set of f has zero m-measure (equivalently, zero ν-measure), then g := f/φ0 is
a bounded function with the same set of discontinuity. We thus have

lim
t→+∞

∫

E
g(x)νt(dx) =

∫

E
g(x)ν(dx),

which is equivalent to

lim
t→+∞

e−λ0t〈f,Xt〉(ω) = W∞(ω)

∫

E
φ̂0(y)f(y)m(dy), ω ∈ Ω0 ∩ {W∞(φ) > 0}.

If |f | 6 cφ0 for some positive constant c > 0, (1.18) holds automatically on
{W∞ = 0}. This completes the proof of the theorem. �

4 Examples

In this section, we give some examples. The main purpose is to illustrate the
diverse situations where the main result of this paper can be applied. We will
not try to give the most general examples possible.

Example 4.1 (Super inward Ornstein-Uhlenbeck processes) Let d > 1, E =
R

d. Suppose that the spatial motion ξ = {ξt,Πx} is an Ornstein-Uhlenbeck
(OU) process on R

d with infinitesimal generator

L =
1

2
σ2∆ − cx · ∇ on R

d,

where σ, c > 0. Without loss of generality, we assume σ = 1. Let

ϕ(x) :=
( c
π

)d/2
e−c|x|2 , m(dx) = ϕ(x)dx.
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Then ξ is symmetric with respect to the probability measure m(dx). Suppose
that the branching rate function β(x) = β is a positive constant, and the
branching mechanism ψ is given by

ψ(x, λ) = −λ+b(x)λ2+

∫

(0,+∞)
(e−λy−1+λy)n(x,dy), x ∈ R

d, λ > 0, (4.1)

where b ∈ B
+
b (Rd) and n is a kernel from R

d to (0,+∞) satisfying

sup
x∈Rd

∫ +∞

0
y2n(x,dy) < +∞.

Then for the corresponding superprocess,

Ttf(x) = eβtΠx [f(ξt)] = eβtPtf(x).

It is easy to see that λ0 = β, φ0 = φ̂0 = 1 and then T φ0

t = Pt.
It is well known that, for any x ∈ R

d, under Πx, ξt is of Gaussian distribution
with mean xe−ct and variance σ2

t , where

σ2
t :=

1 − e−2ct

2c
.

The transition density of ξt with respect to the probability measure m(dx) on
R

d is given by

p(t, x, y) :=
( 1

2cσ2
t

)d/2
exp

(
c|y|2 − |y − xe−ct|2

2σ2
t

)
.

Note that

p(t, x, x) =
(2πσ2

t )
−d/2 exp(−c 1−e−ct

1+e−ct |x|2)
ϕ(x)

.

Thus, we have

a(t) = p(2t, x, x) ∈ L1(Rd;m), ∀ t > 0,

and there is some t0 > 0 so that a(t) ∈ L2(Rd;m) for t > t0. Hence, Assumption
1.1 holds for ξ.

For any f ∈ C0(R
d; R), we have

Ptf(x) =

∫

Rd

p(t, x, y)f(y)m(dy) =

∫

Rd

(2π)−d/2 exp
(
− |y|2

2

)
f(σty+ xe−ct)dy.

Using the dominated convergence theorem, one can easily check that Ptf ∈
C0(R

d; R). Suppose that f is a continuous function with compact support. Let
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M0 > 0 so that f(x) = 0 for |x| > M0. For any M > 0,

|Ptf(x) − f(x)| =
∣∣∣
∫

Rd

(2π)−d/2 exp
(
− |y|2

2

)
[f(σty + xe−ct) − f(x)]dy

∣∣∣

6

∫

Rd

(2π)−d/2 exp
(
− |y|2

2

)
|f(σty + xe−ct) − f(x)|dy

6

∫

|y|6M
(2π)−d/2 exp

(
− |y|2

2

)
|f(σty + xe−ct) − f(x)|dy

+ 2‖f‖∞
∫

|y|>M
(2π)−d/2 exp

(
− |y|2

2

)
dy

=: I + II.

For any ε > 0, we choose M > 0 such that II 6 ε/2. For part I, we claim that,
for any ε > 0, there exists δ, for t 6 δ,

sup
|y|6M

sup
x∈Rd

|f(σty + xe−ct) − f(x)| 6
ε

2
.

Therefore, I < ε/2, and then ‖Ptf − f‖∞ → 0 as t→ 0.
Now, we prove the claim. Note that

|f(σty + xe−ct) − f(x)| 6 |f(σty + xe−ct) − f(xe−ct)| + |f(xe−ct) − f(x)|.

Since f is uniformly continuous on R
d, there is a constant δ0 > 0 such that

|f(y) − f(x)| 6 ε/4 for any x, y satisfying |x− y| 6 δ0. Since σt → 0 as t→ 0,
there exists δ1 > 0 such that, for t < δ1, |σt| 6 δ0/M, and then

sup
|y|6M

sup
x∈Rd

|f(σty + xe−ct) − f(xe−ct)| 6
ε

4
.

Choose δ2, such that for t 6 δ2, ect − 1 6 δ0/M0. Then , for t 6 δ2,

|f(xe−ct) − f(x)| 6 |f(xe−ct) − f(x)|1|x|6M0ect 6
ε

4
,

where, in the second inequality, we use the fact that

|xe−ct − x| = |x|(1 − e−ct) 6 M0(e
ct − 1) 6 δ0.

Then, choosing δ = δ1 ∧ δ2, we prove the claim.
For general f ∈ C0(R

d; R), there exist continuous functions fn with compact
support such that ‖fn − f‖∞ → 0 as n→ +∞. Then

‖Ptf − f‖∞ 6 ‖Ptf − Ptfn‖∞ + ‖Ptfn − fn‖∞ + ‖fn − f‖∞
6 ‖Ptfn − fn‖∞ + 2‖fn − f‖∞.
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Letting t→ 0 and then n→ +∞, we get that ‖Ptf − f‖∞ → 0 as t→ 0. Since

T φ0

t = Pt, Assumption 1.3 is satisfied. Therefore, for the superprocess in this
example, all our assumptions are satisfied.

Example 4.1 covers [10, Examples 4.1, 4.6]. For variable α(x) = β(x)a(x),
see Example 4.9.

Example 4.2 (Super outward Ornstein-Uhlenbeck processes) Let d > 1, E =
R

d. Suppose that the spatial motion ξ = {ξt,Πx} is an OU process on R
d with

infinitesimal generator

L =
1

2
σ2∆ + cx · ∇ on R

d,

where σ, c > 0. Without loss of generality, we assume σ = 1. Under Πx, ξt is of
Gaussian distribution with mean xect and variance (e2ct − 1)/(2c).

Let

ϕ̃(x) :=
( c
π

)−d/2
ec|x|2 , m(dx) = ϕ̃(x)dx.

Then ξ is symmetric with respect to the σ-finite measure m(dx). As in Example
4.1, we suppose that the branching rate function β(x) = β is a positive constant,
and the branching mechanism ψ is given by (4.1). Then for the corresponding
superprocess,

Ttf(x) = eβtΠx [f(ξt)] = eβtPtf(x).

The generator of {Tt : t > 0} is L + β.
The transition density of ξ with respect to the measure m is

p(t, x, y) =
( 1

e2ct − 1

)d/2
exp

(
− c

1 − e−2ct
(|y|2 + |x|2 − 2x · ye−ct)

)
.

Thus,

at(x) = p(2t, x, x) =
( 1

e4ct − 1

)d/2
exp

(
− 2c|x|2

1 + e−2ct

)
.

It is obvious that at ∈ L1(Rd;m)∩L2(Rd;m). Thus, Assumption 1.1 is satisfied.
Suppose β(x) = β ∈ (cd,+∞).

The operator L + cd is the formal adjoint of the inward OU process with
infinitesimal generator 1

2 σ
2∆− cx ·∇ on R

d. Since ϕ(x) defined in Example 4.1

is the invariant density of 1
2 σ

2∆ − cx · ∇ on R
d,

(L + cd)ϕ = 0.

Thus, we have
(L + β)ϕ = (β − cd)ϕ.

Since ϕ ∈ L2(Rd,m) and ϕ is strictly positive everywhere, we know that

φ0 = φ̂0 = ϕ, λ0 = β − cd.
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Thus,

T φ0

t f(x) =
ecdtPt(fϕ)(x)

ϕ(x)
= P̃tf(x),

where P̃t is the semigroup of the inward OU-process with infinitesimal generator

1

2
∆ − cx · ∇ on R

d.

From the discussion in Example 4.1, we see that Assumption 1.3 is satisfied.
Thus, when β(x) = β ∈ (cd,+∞), the superprocess of this example satisfies all
our assumptions.

Example 4.2 covers [10, Example 4.2].

Example 4.3 Suppose that η = {ηt,Πx} is an m-symmetric Hunt process
on E and that η has a transition density p̃(t, x, y) with respect to m. Suppose
also that p̃ is strictly positive, continuous, and satisfies Assumption 1.1. Let
{P̃t, t > 0} be the transition semigroup of η on L2(E;m). Since, for each

t > 0, P̃t is compact, the infinitesimal generator L̃ of {P̃t, t > 0} has discrete
spectrum:

0 > λ̃0 > λ̃1 > · · · .
Denote the corresponding normalized eigenfunctions by {φ̃k; k > 0}, with

‖φ̃k‖L2(E;m) = 1, ∀ k > 0.

We can choose φ̃0 so that it is strictly positive and continuous. By the spectral

representation, we can express p̃(t, x, y) by
∑+∞

k=0 eλ̃ktφ̃k(x)φ̃k(y). It follows that
p̃(t, x, x) is decreasing in t > 0; see [9, Section 2]. Define

P̃ φ̃0

t f := e−λ̃0t P̃t(fφ̃0)(x)

φ̃0(x)
.

Assume that P̃ φ̃0

t satisfies Assumption 1.3.
Let St be a subordinator, independent of η, with drift b > 0. Then St > bt.

Let φ be the Laplace exponent of S, that is,

E(e−θSt) = e−tφ(θ), θ > 0.

Suppose that α(x) = α is a constant function and satisfies α > φ(−λ̃0). We
put ξt := ηSt . Let Pt be the semigroup of ξ, and let p(t, x, y) be the transition
density of ξ with respect to m. Then

p(t, x, y) = Ep̃(St, x, y).

Since t→ p̃(t, x, x) is a decreasing function, we have

p(2t, x, x) = Ep̃(S2t, x, x) 6 p̃(2bt, x, x),
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which implies that η satisfies Assumption 1.1. Note that Tt = eαtPt, and

Ptφ̃0(x) = E(P̃Stφ̃0(x)) = Eeλ̃0Stφ̃0(x) = e−tφ(−λ̃0)φ̃0(x).

Thus,

λ0 = α− φ(−λ̃0) > 0, φ0 = φ̃0.

Then

T φ0

t f(x) = etφ(−λ̃0)Pt(fφ0)(x)

φ0(x)
= etφ(−λ̃0)

E

[ P̃St(fφ0)(x)

φ0(x)

]
.

Thus, we have

|T φ0

t f(x) − f(x)| 6 etφ(−λ̃0)
E

∣∣∣ P̃St(fφ0)(x)

φ0(x)
− eλ̃0Stf(x)

∣∣∣

6 ebtλ̃0etφ(−λ̃0)
E[‖P̃ φ̃0

St
f − f‖∞].

Since

‖P̃ φ̃0

St
f − f‖∞ → 0, t→ 0,

and

‖P̃ φ̃0

St
f − f‖∞ 6 2‖f‖∞,

using the dominated convergence theorem, we get

lim
t→0

‖T φ0

t f − f‖∞ = 0.

Thus, the superprocess of this example satisfies all our assumptions.
In particular, this example is applicable when η is the outward Ornstein-

Uhlenbeck process or inward Ornstein-Uhlenbeck process dealt with in
Examples 4.1 and 4.2.

The next two examples give the cases when α is not a constant function.

Example 4.4 (Pure jump subordinate Brownian motion) Suppose that S =
{St, t > 0} is a drift-free subordinator. The Laplace exponent φ of S can be
written in the form

φ(λ) =

∫ +∞

0
(1 − e−λt)u(dt), (4.2)

where u is a measure on (0,+∞) satisfying

∫ +∞

0
(1 ∧ t)u(dt) < +∞.

The measure u is the Lévy measure of the subordinator (or of φ). In this
example, we will assume that φ is a complete Bernstein function, that is, the
measure u has a completely monotone density, which we also denote by u.
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Let W = {Wt, t > 0} be a Brownian motion in R
d independent of the

subordinator S. The subordinate Brownian motion Y = {Yt, t > 0} is defined by
Yt := WSt , which is a rotationally symmetric Lévy process with Lévy exponent
φ(|ξ|2) (see [28, Theorem 30.1]). It is known that the Lévy measure of the
process Y has a density given by x→ j(|x|), where

j(r) :=

∫ +∞

0
(4πt)−d/2e−r2/(4t)u(t)dt, r > 0. (4.3)

Note that the function r 7→ j(r) is continuous and decreasing on (0,+∞).
Suppose that φ satisfies the following growth condition at infinity.

(A) There exist constants δ1, δ2 ∈ (0, 1), a1 ∈ (0, 1), a2 ∈ (1,+∞), and
R0 > 0 such that

a1λ
δ1φ(r) 6 φ(λr) 6 a2λ

δ2φ(r), λ > 1, r > R0.

See [3] for examples of a large class of symmetric Lévy processes satisfying
condition (A).

Suppose that D is a bounded C1,1 open set with characteristics (R0,Λ), and
let ξ be the subprocess of Y killed upon leaving D. It is known that ξ is a Feller
process with strong Feller property in D. Moveover, by [3, Corollary 1.6], ξ has
a jointly continuous transition density function pD(t, x, y) with respect to the
Lebesgue measure on D so that for every T > 0, there exist

c1 = c1(R0,Λ, T, d, φ) > 1, c2 = c2(R0,Λ, T, d, φ) > 0,

such that for 0 < t 6 T, x, y ∈ D,

c−1
1

(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2(
Φ−1(t)−d ∧ tj(|x − y|)

)

6 pD(t, x, y)

6 c2

(
1 ∧ Φ(δD(x))

t

)1/2(
1 ∧ Φ(δD(y))

t

)1/2(
Φ−1(t)−d ∧ tj

(c2|x− y|
4

))
.(4.4)

Here, Φ(r) := 1/φ(r−2), j is the function defined in (4.3), and δD(x) is the
Euclidean distance between x and ∂D. Since pD(t, x, y) is symmetric,

at(x) = pD(2t, x, x) 6 c2Φ
−1(2t)−d.

Thus, Assumption 1.1 is satisfied.
Suppose that the branching rate function β and the branching mechanism

satisfy the assumptions of Section 1.2, and that the corresponding superprocess
X is supercritical. The corresponding semigroup {Tt : t > 0} has a continuous
density q(t, x, y) satisfying the same two-sided estimates (4.4) with possibly
different c1 > 1 and c2. Since

φ0(x) = eλ0tTtφ0(x),
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by (4.4), there exists c3 > 1 such that

c−1
3 Φ1/2(δD(x)) < φ0(x) < c3Φ

1/2(δD(x)).

We now show that Assumption 1.3 holds. Suppose f ∈ C0(D). For any given
ε > 0, there exists δ > 0 so that |f(x)− f(y)| < ε whenever |x− y| < δ. Hence,
by the display above and (4.4), for small t > 0,

sup
x∈D

|T φ0

t f(x) − f(x)|

= sup
x∈D

e−λ0t|Πx[e
∫ t

0
α(ξs)dsφ0(ξt)(f(ξt) − f(ξ0))]|

φ0(x)

6 ε+ sup
x∈D

e−λ0t|Πx[e
∫ t

0
α(ξs)dsφ0(ξt)|f(ξt) − f(ξ0)|; |ξt − ξ0| > δ]|

φ0(x)

6 ε+ sup
x∈D

c
e(−λ0+‖α‖∞)t‖φ0‖∞ ‖f‖∞Πx(|ξt − ξ0| > δ)

φ0(x)

6 ε+ sup
x∈D

c
Φ1/2(δD(x))t−1/2

∫
y∈D : |y−x|>δ tj(c2|y − x|/4)dy
Φ1/2(δD(x))

6 ε+ c
√
t

∫

|z|>c2δ/4
(1 ∧ |z|2)j(|z|)dz. (4.5)

It follows that

lim
t→0

‖T φ0

t f − f‖∞ = 0

and Assumption 1.3 is satisfied.

Example 4.5 (Subordinate Brownian motion with Gaussian component)
Suppose that S = {St, t > 0} is a subordinator with drift b > 0. The Laplace
exponent φ of S can be written in the form

φ(λ) = bλ+

∫ +∞

0
(1 − e−λt)u(dt), (4.6)

where u is a measure on (0,+∞) satisfying

∫ +∞

0
(1 ∧ t)u(dt) < +∞.

Without loss of generality, we assume that b = 1. In this example, we will
assume that φ is a complete Bernstein function and that the Lévy density u(t)
of S satisfies the following growth condition near zero: for any M > 0, there
exists c = c(M) > 1 such that

u(r) 6 cu(2r), r ∈ (0,M). (4.7)
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Let W = {Wt, t > 0} be a Brownian motion in R
d independent of the

subordinator S. The subordinate Brownian motion Y = {Yt, t > 0} is
defined by Yt := WSt, which is a rotationally symmetric Lévy process with
Lévy exponent φ(|ξ|2). It is known that the Lévy measure of the process Y has
a density j(|x|) given by (4.3).

For any open set D ⊂ R
d and positive constants c1 and c2, we define

hD,c1,c2(t, x, y)

:=
(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
(t−d/2e−c1|x−y|2/t + t−d/2 ∧ tj(c2|x− y|)). (4.8)

Suppose that D is a bounded C1,1 open set with characteristics (R0,Λ), and
let ξ be the subprocess of Y killed upon leaving D. It is known that ξ is a Hunt
process symmetric with respect to the Lebesgue measure on D and that ξ has
a strictly positive continuous transition density pD(t, x, y) with respect to the
Lebesgue measure on D. We assume the following upper bound condition on
the transition density function p̃(t, |x|) of Y : for any T > 0, there exist Cj > 1,
j = 1, 2, 3, such that for all (t, r) ∈ (0, T ] × [0, diam(D)],

p̃(t, r) 6 C1

(
t−d/2e−r2/C2t + t−d/2 ∧ tj

( r

C3

))
. (4.9)

It was established in [6] that the above estimate holds for a large class of
symmetric diffusion processes with jumps with D = R

d. Using Meyer’s method
of removing and adding jumps, it can be shown that (4.9) is true for a larger
class of symmetric Markov processes, including subordinate Brownian motions
with Gaussian components under some additional condition. See the paragraph
containing (1.12) in [5] for more information.

The following is proved in [5, Theorem 1].

(i) For every T > 0, there exist

c1 = c1(R0,Λ0, λ0, T, ψ, d) > 0, c2 = c2(R0,Λ0, λ0, d) > 0,

such that for all (t, x, y) ∈ (0, T ] ×D ×D,

pD(t, x, y) > c1hD,c2,1(t, x, y). (4.10)

(ii) If D satisfies (4.9), then for every T > 0, there exists

c3 = c3(R0,Λ0, T, d, ψ,C1, C2, C3, d) > 1

such that for all (t, x, y) ∈ (0, T ] ×D ×D,

pD(t, x, y) 6 c3hD,C4,C5
(t, x, y), (4.11)

where
C4 = (16C2)

−1, C5 = (8 ∨ 4C3)
−1.
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Let E = D, and let m be the Lebesgue measure on D. Since pD(t, x, y) is
symmetric, we have

at(x) = pD(2t, x, x) 6 ct−d/2.

Thus, Assumption 1.1 is satisfied.
Suppose that the branching rate function β and the branching mechanism

satisfy the assumptions of Section 1.2, and that the corresponding superprocess
X is supercritical. Using the above two-sided heat kernel estimate for ξ, we can
establish in a similar way as in Example 4.4 that Assumption 1.3 also holds.

Remark 4.6 In fact, in Examples 4.4 and 4.5, ξ does not need to be a
subordinate Brownian motion killed upon leaving D. All we need are the heat
kernel estimates like (4.4) or (4.10)-(4.11). For example, suppose that Y D is the
subprocess of some subordinate Brownian motion Y killed upon leave D that
has property (4.4) or (4.10)-(4.11). Let ξ be a Markov process obtained from
Y D though a Feynman-Kac transform with bounded potential function. Then
ξ enjoys property (4.4) or (4.10)-(4.11). For other examples of processes that
satisfy two-sided bounds similar to (4.4), including censored stable processes in
C1,1 open sets and their local and non-local Feynman-Kac transforms, see [4].
Our main results are applicable to these processes as well.

In all the examples above, the spatial motion ξ is symmetric. Now, we give
two examples where the spatial motion ξ is not symmetric.

Example 4.7 Suppose d > 3 and that ν = (ν1, ν2, . . . , νd), where each νj is
a signed measure on R

d such that

lim
r→0

sup
x∈Rd

∫

B(x,r)

|νj |(dy)
|x− y|d−1

= 0.

Let ξ(1) = {ξ(1)
t , t > 0} be a Brownian motion with drift ν in R

d, see [1].
Suppose that D is a bounded domain in R

d. Let M > 0 so that B(0,M/2) ⊃ D.
Put B = B(0,M). Let GB be the Green function of ξ(1) in B and define

H(x) :=

∫

B
GB(y, x)dy.

Then H is a strictly positive continuous function on B. Let ξ be the process
obtained by killing ξ(1) upon exiting D. ξ is a Hunt process and it has a strictly
positive continuous transition density p̃(t, x, y) with respect to the Lebesgue
measure on D. Let E = D, and let m be the measure defined by

m(dx) = H(x)dx.

It follows from [16,17] that ξ has a dual process with respect tom. The transition
density of ξ with respect to m is given by

p(t, x, y) =
p̃(t, x, y)

H(y)
.
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Suppose further that D is C1,1. Then it follows from [15, Theorem 4.6] that
there exist c1 > 1 and c2 > c3 > 0 such that for all (t, x, y) ∈ (0, 1] ×D ×D,

c−1
1 t−d/2

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
exp

(
− c2|x− y|2

t

)

6 p̃(t, x, y)

6 c1t
−d/2

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
exp

(
− c3|x− y|2

t

)
.

It follows from the display above and the semigroup property that, for any
t > 0, p̃(t, x, y) is bounded. By [17, (2.6)], there exists c4 > 1 such that

c−1
4 δB(x) < H(x) < c4δB(x).

So for x ∈ D, c 6 H(x) 6 C, where c, C > 0. Thus, p(t, x, y) is also bounded in
D and m is a finite measure. Thus, Assumption 1.1 is satisfied.

Suppose that the branching rate function β and the branching mechanism
satisfy the assumptions of Section 1.2, and that the corresponding superprocess
X is supercritical. Using the above two-sided heat kernel estimate for ξ, we can
establish in a similar way as in Example 4.4 that Assumption 1.3 also holds.

Example 4.8 Suppose d > 2, α ∈ (1, 2), and that ν = (ν1, ν2, . . . , νd), where
each νj is a signed measure on R

d such that

lim
r→0

sup
x∈Rd

∫

B(x,r)

|νj |(dy)
|x− y|d−α+1

= 0.

Let ξ(2) = {ξ(2)
t , t > 0} be an α-stable process with drift ν in R

d, see [18].
Suppose that D is a bounded open set in R

d and suppose that M > 0 is such
that D ⊂ B(0,M/2). Put B = B(0,M). Let GB be the Green function of ξ(2)

in B and define

H(x) :=

∫

B
GB(y, x)dy.

Then H is a strictly positive continuous function on B. Let ξ be the process
obtained by killing ξ(2) upon exiting D. ξ is a Hunt process and it has a strictly
positive continuous transition density p̃(t, x, y) with respect to the Lebesgue
measure on D. Let E = D, and let m be the measure defined by

m(dx) = H(x)dx.

It follows from [2, Section 5] and [18] that ξ has a dual process with respect to
m. The transition density of ξ with respect to m is given by

p(t, x, y) =
p̃(t, x, y)

H(y)
.
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By [2, Corollary 1.4] and [19], we can check that

c−1
0 δ

α/2
B (x) < H(x) < c0δ

α/2
B (x),

where c0 > 1. Thus, for x ∈ D, c 6 H(x) 6 C for some c, C > 0.
Suppose further that D is C1,1. Then it follows from [2, Theorem 1.3] and

[19] that there exists c1 > 1 such that for all (t, x, y) ∈ (0, 1] ×D ×D,

c−1
1

(
1 ∧ δ

α/2
D (x)√

t

)(
1 ∧ δ

α/2
D (y)√

t

)(
t−d/α ∧ t

|x− y|d+α

)

6 p̃(t, x, y)

6 c1

(
1 ∧ δ

α/2
D (x)√

t

)(
1 ∧ δ

α/2
D (y)√

t

)(
t−d/α ∧ t

|x− y|d+α

)
.

It follows from the display above and the semigroup property that, for any
t > 0, p̃(t, x, y) is bounded. Since H is bounded between two positive constants,
Assumption 1.1 is satisfied.

Suppose that the branching rate function β and the branching mechanism
satisfy the assumptions of Section 1.2, and that the corresponding superprocess
X is supercritical. Using the above two-sided heat kernel estimate for ξ, we can
establish in a similar way as in Example 4.4 that Assumption 1.3 also holds.

In the following example, our main result does not apply directly. However,
we could apply our main result after a transform.

Example 4.9 Suppose that the spatial motion ξ = {ξt,Πx} is an OU-process
on R

d with infinitesimal generator

L =
1

2
σ2∆ − cx · ∇ on R

d,

where σ, c > 0. Without loss of generality, we assume σ = 1. Let

ϕ(x) :=
( c
π

)d/2
e−c|x|2 , m(dx) = ϕ(x)dx.

Then (ξ,Πx) is symmetric with respect to the probability measure m(dx).
Let

a(x) = c1|x|2 + c2, c1, c2 > 0,

and let P a
t be the Feynman-Kac semigroup:

P a
t f(x) := Πx[e

∫ t

0
a(ξs)dsf(ξt)].

Suppose c >
√

2c1 and write

υ =
1

2
(c−

√
c2 − 2c1 ).
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Let

λc := inf{λ ∈ R : there exists u > 0 such that (L + a− λ)u = 0 in R
d}

be the generalized principal eigenvalue. Let h denote the corresponding ground
state, i.e., h > 0 such that

(L + a− λc)h = 0.

As was indicated in [12],

λc = c2 + dυ > 0, h(x) =
(c− 2υ

c

)d/2
exp{υ|x|2}.

Note that
h = e−λctP a

t h

on R
d. Let Πh

x be defined as in (1.16) with φ0 replaced by h. The transformed
process (ξ,Πh

x) is also an OU-process with infinitesimal generator

1

2
∆ − (c− 2v)x · ∇ on R

d.

Let
ψ(x, z) = −a(x)z + b(x)z2,

where b ∈ Cη(Rd), b(x) > 0 for all x ∈ R
d. A superprocess X with spacial

motion ξ, branching rate β(x) = 1, and branching mechanism ψ, can be defined
by

X =
1

h
Xh,

whereXh is the superprocess with spacial motion (ξ,Πh
x), branching rate β(x) =

1, and branching mechanism

ψh(x, z) = −λcz + h(x)b(x)z2.

Assume that hb is bounded in R
d. Then, for Xh, we have

mh(dx) =
(c− 2υ

π

)d/2
e−(c−2υ)|x|2dx, λh

0 = λc, φh
0 = 1.

From the discussion in Example 4.1, we see that Assumptions 1.1 and 1.3 are
satisfied for the superprocess Xh. Then, there exists Ω0 ⊂ Ω of probability one
(that is, Pµ(Ω0) = 1 for every µ ∈ MF (Rd)) such that, for every ω ∈ Ω0 and
for every bounded Borel measurable function f > 0 on R

d with f/h 6 c for
some c > 0 and that the set of discontinuous points of f has zero m-measure,
we have

lim
t→+∞

e−λh
0
t
〈f
h
,Xh

t

〉
(ω) = W∞(ω)

∫

Rd

(f
h

)
(y)mh(dy)

= W∞(ω)
( c
π

)d/2
∫

Rd

f(y)e(υ−c)|y|2dy, (4.12)
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where W∞(ω) is the limit of the martingale

Wt := e−λct〈1, Xh
t 〉 = e−λct〈h,Xt〉

as t→ +∞. We rewrite (4.12) to get the limit result on X :

lim
t→+∞

e−λct〈f,Xt〉(ω) = W∞(ω)

∫

Rd

( c
π

)d/2
e(υ−c)|y|2f(y)dy

= W∞(ω)

∫

Rd

φ̃0(y)f(y)dy, (4.13)

where

φ̃0 =
( c
π

)d/2
e(υ−c)|y|2 .

Since h is bounded from below, in the weak topology,

e−λctXt →W∞(ω)φ̃0(x)dx, Pµ-a.s.,

for any µ ∈ MF (Rd). This example covers [10, Example 4.7].
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28. Sato K -I. Lévy Processes and Infinitely Divisible Distribution. Cambridge: Cambridge
University Press, 1999

29. Schaefer H H. Banach Lattices and Positive Operators. New York: Springer, 1974

30. Stroock D W. Probability Theory. An Analytic View. 2nd ed. Cambridge: Cambridge
University Press, 2011

31. Wang L. An almost sure limit theorem for super-Brownian motion. J Theoret Probab,
2010, 23: 401–416


