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STRONG LINEARIZATIONS OF RATIONAL MATRICES∗

A. AMPARAN† , F. M. DOPICO‡ , S. MARCAIDA† , AND I. ZABALLA†

Abstract. This paper defines for the first time strong linearizations of arbitrary rational ma-
trices, studies in depth properties and characterizations of such linear matrix pencils, and develops
infinitely many examples of strong linearizations that can be explicitly and easily constructed from a
minimal state-space realization of the strictly proper part of the considered rational matrix and the
coefficients of the polynomial part. As a consequence, the results in this paper establish a rigorous
foundation for the numerical computation of the complete structure of zeros and poles, both finite
and at infinity, of any rational matrix by applying any well known backward stable algorithm for
generalized eigenvalue problems to any of the strong linearizations constructed in this work.

Key words. linearization, minimal polynomial system matrix, nonlinear eigenvalue problem,
rational matrix, strong block minimal bases linearization, strong linearization

AMS subject classifications. 65F15, 15A18, 15A22, 15A54, 93B18, 93B20, 93B60

1. Introduction. Given a nonsingular rational matrixG(λ) (i.e., a matrix whose
entries are rational functions) the rational eigenvalue problem (REP) is to find scalars
λ and nonzero vectors x satisfying G(λ)x = 0. The scalars λ and the vectors x are
called, respectively, eigenvalues and eigenvectors of the rational matrix G(λ). The
REP arises in many applications, either directly [30] or as approximation of other
nonlinear eigenvalue problems [18], and several approaches can be used to solve it.
Actually, in [30] a new method for solving numerically the REP is given based on the
fact that any rational matrix G(λ) can be uniquely written as the sum of a polynomial
matrix and a strictly proper one. The method consists in applying any well established
algorithm for computing the eigenvalues of a linear pencil [17] to a pencil constructed
out of a linearization of the polynomial part of G(λ) and a realization of its strictly
proper part, which preserves the finite zeros of G(λ). This method has been formalized
and generalized in [1] where a precise definition of linearization of a square rational
matrix is given.

The linearizations defined in [1] reflect the finite structure of rational matrices
but no evidence is given that they preserve also the infinite structure. The main goal
of the present paper is to provide a new definition of linearization of rational matrices
that both: preserves the finite as well as the infinite poles and zeros of the original
matrix and generalizes in a natural way the notion of strong linearization of matrix
polynomials. We emphasize that this goal will be achieved in the general context of
arbitrary rational matrices, i.e., square or rectangular, regular or singular, in contrast
to the references [1, 30] which only consider square matrices. In addition, infinitely
many of such linearizations will be explicitly constructed.

The definition of strong linearization is based on the following property of the
minimal polynomial system matrices of a rational matrix G(λ) established by Rosen-
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brock [28] (see Theorem 2.3): under very mild conditions if

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]

is a minimal polynomial system matrix giving rise to G(λ) (i.e., G(λ) = D(λ) +
C(λ)A(λ)−1B(λ)) then the finite poles and zeros of G(λ), counting with multiplicities,
are the finite zeros of A(λ) and P (λ), respectively, counting with multiplicities. With
this property in mind, a linear pencil L(λ) is said to be a linearization of G(λ) if it

is a minimal polynomial system matrix of a rational matrix Ĝ(λ) such that, for some

nonnegative integers s1, s2, Diag(Ĝ(λ), Is1) and Diag(G(λ), Is2) are equivalent via
unimodular polynomial matrices. This is Definition 3.2 which looks very much like the
standard definition of linearization of polynomial matrices [16, 22, 24, 10]. It can be
extended to preserve also the poles and zeros of G(λ) at infinity leading to the concept
of strong linearization (Definition 3.4). We will see that when G(λ) is polynomial
Definition 3.4 reduces to the definition of strong linearization of polynomial matrices.

Notions well-established in the theory of linear systems like polynomial system
matrices, realizations, Smith–McMillan forms (finite and at infinity), strict system
equivalence, and transfer function matrices play an important role in this paper.
They will be reviewed in Section 2. In contrast with [1], polynomial system matrices
of least order, or minimal, are relevant in our developments because the eigenvalues
of the REP G(λ)x = 0 are the finite zeros of G(λ) that are not finite poles, which
leads to look for linearizations that preserve the poles of G(λ) (with their partial
multiplicities) but that do not incorporate spurious ones. See item 2 of Remark 3.3.

The definitions of linearization, weak and strong, are formally given in Section 3
where, among other things, it is proved that for polynomial matrices these definitions
reduce to the usual ones. A spectral characterization of strong linearizations in the
spirit of [10, Thm. 4.1] is provided in Subsection 3.1.

In view of the definition of strong linearization, it is important to determine when
two polynomial system matrices give rise to rational matrices that are equivalent via
unimodular matrices and also equivalent at infinity. This motivates to introduce the
concepts of transfer system equivalence and of transfer system equivalence at infinity
in Section 4. For a given rational matrix G(λ), these equivalence relations give us
the precise amount of freedom to obtain strong linearizations out of any polynomial
system matrix whose transfer function matrix is G(λ). Moreover, these equivalence
relations allow us to obtain the practical characterization of strong linearization in
Corollary 4.12. This corollary is used in Section 5 for constructing explicitly infinitely
many strong linearizations of any rational matrix from any strong block minimal
bases linearization of its polynomial part [12, Def. 3.1] and any minimal state-space
realization of its strictly proper part. There exist infinitely many strong block minimal
bases linearizations of any matrix polynomial, including Frobenius companion forms,
all Fiedler linearizations [13, 6, 9] modulo permutations, and all block Kronecker
linearizations [12, Def. 5.1]. Thus, we construct in this way a very wide class of strong
linearizations of arbitrary rational matrices. Examples are provided in Subsection 5.3.
The main conclusion of this work and possible lines of future research are discussed
in Section 6.

We emphasize that, although the general definition and theory developed in this
work are new to the best of our knowledge, the idea of constructing pencils that contain
the complete finite and infinite structure of poles and zeros of rational matrices, as
well as their minimal indices, has been considered before in the literature. Some
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examples can be found, for instance, in the classical reference [32].

2. Preliminaries. In this section we review the basic notions of linear system
theory that we will use in the subsequent sections. Our basic references are [28, 21, 33].

Although for practical purposes the rational matrices of interest are those whose
elements have real or complex coefficients, the results in this paper are of algebraic
nature and apply for matrices with coefficients in arbitrary fields. Thus F will denote
any arbitrary field, F[λ] the ring of polynomials with coefficients in F and F(λ) the
field of rational functions, i.e., quotients of coprime polynomials of F[λ]. A rational

function r(λ) = n(λ)
d(λ) is said to be proper if deg(n(λ)) ≤ deg(d(λ)), where deg(·)

stands for degree. If deg(n(λ)) < deg(d(λ)) then r(λ) is called strictly proper. Let
F(λ)p×m be the set of p × m matrices with elements in F(λ). Any rational matrix
G(λ) ∈ F(λ)p×m can be written as

(1) G(λ) = D(λ) + C(λ)A(λ)−1B(λ),

for some nonsingular matrix polynomial A(λ) ∈ F[λ]n×n and matrix polynomials
B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n and D(λ) ∈ F[λ]p×m with n ≥ deg(detA(λ)) (see
[28]). The matrix polynomial

(2) P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]

is called a polynomial system matrix of (or giving rise to) G(λ). Then G(λ) is called
the transfer function matrix of P (λ) and deg(detA(λ)) is its order. When A(λ) is
a monic linear matrix polynomial, say A(λ) = λIn − A, B(λ) = B and C(λ) = C
are constant matrices, P (λ) is said to be a polynomial system matrix of G(λ) in
state-space form.

The integer n or the polynomial matrices of (1) are not uniquely determined
by G(λ). It turns out that different polynomial system matrices may exist with
different orders giving rise to the same transfer function matrix. For example, for
any nonsingular polynomial matrix Â(λ), the rational matrix (1) can be written as
follows:

G(λ) = D(λ) +
[
C(λ) 0

] [A(λ) 0

0 Â(λ)

]−1 [
B(λ)
0

]
.

A polynomial system matrix of G(λ) is said to have least order, or to be minimal,
if its order is the smallest integer for which matrix polynomials A(λ) (nonsingular,
with size n × n, n ≥ deg(detA(λ))), B(λ), C(λ) and D(λ) satisfying (1) exist. The
least order is uniquely determined by G(λ) and is denoted by ν(G(λ)). It is called
the least order of G(λ) ([28, Ch. 3, Sec. 5.1] or [33, Sec. 1.10]). Let us recall two
equivalent conditions that characterize when the polynomial system matrix in (2) has
least order:

(i) A(λ) and B(λ) are left coprime and A(λ) and C(λ) are right coprime.
(ii) (A,B) is controllable and (A,C) is observable assuming that P (λ) is in state-

space form.
The meaning of these conditions is well-known in the theory of linear control systems.
Only property (i) will be analyzed: Two polynomial matrices A(λ) ∈ F[λ]p×n, B(λ) ∈
F[λ]q×n are called right coprime if their only right common divisors are unimodular
matrices (polynomial matrices with nonzero constant determinant). That is to say,
if there exist Ā(λ) ∈ F[λ]p×n, B̄(λ) ∈ F[λ]q×n, X(λ) ∈ F[λ]n×n such that A(λ) =
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Ā(λ)X(λ) and B(λ) = B̄(λ)X(λ) then X(λ) is unimodular. On the other hand,
A(λ) ∈ F[λ]n×p, B(λ) ∈ F[λ]n×q are left coprime if their transposes A(λ)T and B(λ)T

are right coprime.
Any rational function matrix G(λ) ∈ F(λ)p×m can be uniquely written as

(3) G(λ) = D(λ) +Gsp(λ)

where D(λ) is a polynomial matrix and Gsp(λ) is a strictly proper rational matrix, i.e.,
the entries ofGsp(λ) are strictly proper rational functions. Now, it is a well-known fact
that any strictly proper rational matrix admits realizations (see, for example, [28, Ch.
3, Sec. 5.2] or [21, Sec. 6.4]). This means that for some positive integer n there exist
matrices A(λ) ∈ F[λ]n×n, B(λ) ∈ F[λ]n×m and C(λ) ∈ F[λ]p×n such that Gsp(λ) =

C(λ)A(λ)−1B(λ) and

[
A(λ) B(λ)
−C(λ) D(λ)

]
is a polynomial system matrix of G(λ). Fur-

thermore, any strictly proper rational matrix admits state-space realizations. There-
fore any rational matrix G(λ) can be written as G(λ) = D(λ)+C(λIn−A)

−1B where
D(λ) is polynomial and C(λIn − A)−1B is strictly proper. Moreover, the realization
may always be taken of least order (i.e., such that the corresponding polynomial sys-
tem matrix in state-space form is of least order). Such realizations are called minimal.

We will see in Theorem 2.3 that minimal polynomial system matrices convey
precise information about the finite poles and zeros of their transfer function matrices.
Before stating that theorem and analyzing its consequences, we revise some definitions
and related results. Recall (see, for example, [28, Ch. 3, Sec. 4] or [21, Sec. 6.5.2])
that any rational matrix is (finite) equivalent1 to its (finite) Smith–McMillan form.
That is to say, if G(λ) ∈ F(λ)p×m then there are unimodular matrices U(λ) ∈ F[λ]p×p

and V (λ) ∈ F[λ]m×m such that

(4) M(λ) = U(λ)G(λ)V (λ) = Diag

(
ǫ1(λ)

ψ1(λ)
, . . . ,

ǫr(λ)

ψr(λ)
, 0p−r,m−r

)

where r = rankG(λ), ǫ1(λ), . . . , ǫr(λ), ψ1(λ), . . . , ψr(λ) are nonzero monic polynomi-
als, ǫi(λ), ψi(λ) are coprime for all i = 1, . . . , r, and ǫ1(λ) | · · · | ǫr(λ) while ψr(λ) |

· · · | ψ1(λ), where | stands for divisibility. The irreducible fractions ǫ1(λ)
ψ1(λ)

, . . . , ǫr(λ)
ψr(λ)

are called the (finite) invariant rational functions of G(λ). In addition, ψ1(λ) is the
monic least common denominator of the entries in G(λ) and so, G(λ) is polynomial if
and only if ψ1(λ) = 1. In this case (i.e., if G(λ) is a polynomial matrix),M(λ) is called
the (finite) Smith normal form of G(λ) and the monic polynomials ǫ1(λ) | · · · | ǫr(λ)
are called the invariant polynomials of G(λ).

The (finite) poles of G(λ) are the roots in F (the algebraic closure of F) of ψ1(λ)
and its (finite) zeros are the roots in F of ǫr(λ). If λ0 ∈ F is a zero of G(λ) then,
for i = 1, . . . , r, we can write ǫi(λ) = (λ − λ0)

mi ǫ̂i(λ) with ǫ̂i(λ0) 6= 0 and mi ≥ 0.
The nonzero elements in (m1, . . . ,mr) are called the partial multiplicities of λ0 as
a zero of G(λ). The partial multiplicities of the poles of G(λ) are defined similarly.
Notice that although ǫi(λ) and ψi(λ) are coprime polynomials for all i = 1, . . . , r,
G(λ) may have zeros and poles at the same points. When G(λ) ∈ F[λ]p×m is a
polynomial matrix then ψi(λ) = 1 for i = 1, . . . , r and the polynomials (λ − λ0)

mi

1In this manuscript, two rational matrices G1(λ) and G2(λ) are said to be equivalent if there
exist two unimodular polynomial matrices U(λ) and V (λ) such that G1(λ) = U(λ)G2(λ)V (λ). Other
types of equivalence relations are often used in this paper, but in those cases the corresponding type
of equivalence will be always explicitly mentioned.
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with mi 6= 0 are the finite elementary divisors of G(λ) with respect to, or associated
to, λ0. For computing the partial multiplicities of the poles and zeros of G(λ) only the
numerators and denominators different from 1 in the Smith–McMillan form of G(λ)
must be taken into account. They will be called nontrivial invariant numerators and
denominators of G(λ), respectively. Similarly the nontrivial invariant polynomials of
a matrix polynomial are those different from 1.

For matrix polynomials, it is clear that the nontrivial invariant polynomials of
P (λ) and Diag(P (λ), Is) are the same. However, this fact is not true for the invari-
ant rational functions of a rational matrix G(λ) and Diag(G(λ), Is). In view of the
proposed definitions of linearization and strong linearization of a rational matrix (Sec-
tion 3), it is important to determine how the invariant rational functions of G(λ) and
Diag(G(λ), Is) are related. We answer this question in the following lemma.

Lemma 2.1. Let G(λ) ∈ F(λ)p×m be a rational matrix with Smith–McMillan form

Diag

(
ǫ1(λ)

ψ1(λ)
, . . . ,

ǫr(λ)

ψr(λ)
, 0p−r,m−r

)
∈ F(λ)p×m.

Then the Smith–McMillan form of Diag(G(λ), Is) is

(5) Diag

(
ǫ̃1(λ)

ψ̃1(λ)
, . . . ,

ǫ̃r+s(λ)

ψ̃r+s(λ)
, 0p−r,m−r

)

where
ǫ̃1(λ) = · · · = ǫ̃s(λ) = 1, ǫ̃s+i(λ) = ǫi(λ), i = 1, . . . , r,

ψ̃i(λ) = ψi(λ), i = 1, . . . , r, ψ̃r+1(λ) = · · · = ψ̃r+s(λ) = 1.

Proof. Observe that if s = 0 then there is nothing to prove. Moreover, if s > 0,
we only need to prove the result for s = 1 because the result for s > 1 follows from
the result for s = 1 applied to Diag(G(λ), Is−1) instead of G(λ). Note also that
from the divisibility relations of the Smith–McMillan form of G(λ) it follows that
ǫi(λ) and ψj(λ) are coprime if i < j and, so, (5) indeed defines a Smith–McMillan
form, i.e., the fractions in (5) are irreducible. Obvious unimodular transformations

allow to see that Diag(G(λ), 1) is equivalent to Diag
(
ǫ1(λ)
ψ1(λ)

, . . . , ǫr(λ)
ψr(λ)

, 1, 0p−r,m−r

)
=

Q(λ)
ψ1(λ)

with Q(λ) = Diag
(
ǫ1(λ), ǫ2(λ)

ψ1(λ)
ψ2(λ)

, . . . , ǫr(λ)
ψ1(λ)
ψr(λ)

, ψ1(λ), 0p−r,m−r

)
. Thus if

αi(λ) =
ψ1(λ)
ψi(λ)

for i = 1, . . . , r then

Q(λ) = Diag (ǫ1(λ), ǫ2(λ)α2(λ), . . . , ǫr(λ)αr(λ), ψ1(λ), 0p−r,m−r) .

Note that ǫ1(λ) | ǫ2(λ)α2(λ) | · · · | ǫr(λ)αr(λ) and

gcd (ǫj(λ)αj(λ), ψ1(λ)) = gcd(ǫj(λ)αj(λ), ψj(λ)αj(λ)) = αj(λ), j = 2, . . . , r,

where gcd stands for greatest common divisor. This implies that if for j = 2, . . . , r
Dj(λ) is the determinantal divisor of order j (i.e., the greatest common divisor of
all j× j minors) of Q(λ), then Dj(λ) = gcd(ǫ1(λ)ǫ2(λ)α2(λ) · · · ǫj−1(λ)αj−1(λ)ψ1(λ),
ǫ1(λ)ǫ2(λ)α2(λ) · · · ǫj(λ)αj(λ)). Thus

Dj(λ) = ǫ1(λ)ǫ2(λ)α2(λ) · · · ǫj−1(λ)αj−1(λ) gcd(ψ1(λ), ǫj(λ)αj(λ))
= ǫ1(λ)ǫ2(λ)α2(λ) · · · ǫj−1(λ)αj−1(λ)αj(λ),

as already seen above. In addition D1(λ) = gcd(ǫ1(λ), ψ1(λ)) = 1. Hence the in-

variant polynomials of Q(λ) are 1, ǫ1(λ)
(
ψ1(λ)
ψ2(λ)

)
, . . . , ǫr−1(λ)

(
ψ1(λ)
ψr(λ)

)
, ǫr(λ)ψ1(λ) .

The result follows by dividing these polynomials by ψ1(λ) .
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Example 2.2. Take G(λ) = Diag
(

λ
(λ−1)(λ−2) ,

λ2

λ−1

)
, which is in Smith–McMillan

form. According to Lemma 2.1, the Smith–McMillan form of Diag(G(λ), 1) is the

diagonal matrix Diag
(

1
(λ−1)(λ−2) ,

λ
λ−1 , λ

2
)
. This can also be easily computed via the

Smith normal form of the polynomial (λ− 1)(λ− 2)Diag(G(λ), 1).

In general, if two rational matrices of the same size have exactly the same non-
trivial numerators and denominators in their invariant rational functions, they are
not equivalent unless they have the same rank. In this sense, the null-spaces of these
matrices will play an important role. Let us denote Nℓ(G(λ)) and Nr(G(λ)) the left
and right null-spaces over F(λ) of G(λ), respectively, i.e., if G(λ) ∈ F(λ)p×m,

Nℓ(G(λ)) = {x(λ) ∈ F(λ)p×1 : x(λ)TG(λ) = 0},
Nr(G(λ)) = {x(λ) ∈ F(λ)m×1 : G(λ)x(λ) = 0}.

These sets are vector subspaces over the field of rational functions of F(λ)p and
F(λ)m, respectively. Recall the rank-nullity theorem: dimNℓ(G(λ)) = p− rankG(λ)
and dimNr(G(λ)) = m − rankG(λ). Notice that for G(λ) ∈ F(λ)p×m and T (λ) ∈
F(λ)(p+s)×(m+s), s ≥ 0, rankT (λ) = s + rankG(λ) if and only if dimNr(G(λ)) =
dimNr(T (λ)). Moreover, rankT (λ) = s + rankG(λ) if and only if dimNℓ(G(λ)) =
dimNℓ(T (λ)). In the sequel we will bear in mind that dimNr(G(λ)) = dimNr(T (λ))
and dimNℓ(G(λ)) = dimNℓ(T (λ)) are equivalent and, so, exchangeable conditions.

As announced, the finite poles and zeros of any rational matrix can be found
through any of its polynomial system matrices of least order. This follows from the
following result by Rosenbrock ([28, Ch. 3, Thm. 4.1]).

Theorem 2.3. Let G(λ) ∈ F(λ)p×m be a rational matrix of rank r and let

(6) P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m)

be a polynomial system matrix of least order whose transfer function matrix is G(λ)
such that n ≥ r = rankG(λ). Let the Smith–McMillan form of G(λ) be the matrix
M(λ) in (4). Then, the invariant polynomials of A(λ) are 1| · · · |1|ψr(λ)| · · · |ψ1(λ)
with at least n− r invariant polynomials equal to 1, and the invariant polynomials of
P (λ) are 1| · · · |1|ǫ1(λ)| · · · |ǫr(λ) with at least n invariant polynomials equal to 1.

A consequence of Theorem 2.3 is that the order of any polynomial system matrix
of least order giving rise to G(λ) is the degree of the polynomial ψ(λ) = ψ1(λ) · · ·ψr(λ)
(see [28, Ch. 3, Sec. 5.1]). Hence ν(G(λ)) = deg(ψ(λ)). Moreover,

(7) dimNr(G(λ)) = dimNr(P (λ)).

Also, the finite poles of G(λ) are the finite zeros of A(λ) and the finite zeros of G(λ) are
the finite zeros of P (λ) (counting in all cases the corresponding partial multiplicities).
In particular, if P (λ) is a minimal polynomial system matrix in state-space form and
D(λ) is a linear polynomial, then P (λ) is a linear pencil, its finite zeros are the finite
zeros of G(λ) and the finite zeros of A(λ) = λI −A are the finite poles of G(λ).

G(λ) may also have poles and zeros at infinity, which are the poles and zeros at
λ = 0 of G(1/λ) (see [21]). Let Fpr(λ) denote the ring of proper rational functions. Its
units are called biproper rational functions, that is, rational functions having the same
degree of numerator and denominator. Fpr(λ)

p×m denotes the set of p × m proper
matrices, i.e., matrices with entries in Fpr(λ). A biproper matrix is a square proper
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matrix whose determinant is a biproper rational function. Two rational matrices
G1(λ), G2(λ) ∈ F(λ)p×m are equivalent at infinity if there exist biproper matrices
B1(λ) ∈ Fpr(λ)

p×p, B2(λ) ∈ Fpr(λ)
m×m such that G2(λ) = B1(λ)G1(λ)B2(λ). Every

rational matrix G(λ) ∈ F(λ)p×m is equivalent at infinity to its Smith–McMillan form
at infinity

Diag

(
1

λq1
, . . . ,

1

λqr
, 0p−r,m−r

)
∈ F(λ)p×m

where r = rankG(λ) and q1 ≤ · · · ≤ qr are integers (see [4] or [33]). The rational
functions 1

λq1
, . . . , 1

λqr
are called the invariant rational functions at infinity of G(λ).

The integers q1, . . . , qr are called the invariant orders at infinity ofG(λ). The invariant
orders at infinity form a complete system of invariants for the equivalence at infinity
in F(λ)p×m and they determine the zeros and poles at infinity of G(λ) (see [4, Prop.
6.11]). Namely, if q1 ≤ · · · ≤ qk < 0 = qk+1 = · · · = qu−1 < qu ≤ · · · ≤ qr are the
invariant orders at infinity of G(λ) then G(λ) has r−u+1 zeros at infinity each one of
order qu, . . . , qr and k poles at infinity each one of order −q1, . . . ,−qk. The invariant
orders at infinity different from zero will be called nontrivial.

Notice that G(λ) is proper if and only if q1, . . . , qr are nonnegative integers, that
is, proper matrices do not have poles at infinity (they are analytic at ∞ when F = C).
However, non-constant polynomial matrices always have poles at infinity (they are
never analytic at∞ when F = C) and they may have zeros at infinity as well. Moreover
for any non strictly proper rational matrix −q1 is the degree of the polynomial part
of the matrix in the expression (3) ([4, 33]). The degree of a polynomial matrix is the
degree of the entries of highest degree.

In addition to finite elementary divisors, matrix polynomials may have elementary
divisors at infinity as well [16, p. 185]. The elementary divisors at infinity or infinite
elementary divisors of a matrix polynomial P (λ) are defined as follows: Consider
the reversal of P (λ), i.e., the matrix polynomial revP (λ) := λdP

(
1
λ

)
where d =

deg(P (λ)). This matrix polynomial may or may not have 0 as an eigenvalue. If
it has 0 as an eigenvalue then P (λ) is said to have ∞ as an eigenvalue or to have
eigenvalues at infinity. The infinite elementary divisors of P (λ) are the elementary
divisors associated to the eigenvalue 0 of the reversal of P (λ). Let q1, . . . , qr be the
invariant orders at infinity of the polynomial matrix P (λ) of degree d and rank r and
let λe1 , . . . , λer be its infinite elementary divisors (including possible exponents equal
to zero). Then (see [4]) d = deg(P (λ)) = −q1 and

(8) ei = qi − q1 = d+ qi, i = 1, . . . , r.

Similarly to the finite case, the zeros and poles at infinity of a rational matrix
G(λ) can be determined by its polynomial system matrices (2). However, while for
the finite case the minimality of the polynomial system matrix is required (Theorem
2.3), for the infinite case the matrices A(λ)−1B(λ) and C(λ)A(λ)−1 must both be
proper.

Lemma 2.4. Let G(λ) ∈ F(λ)p×m and let P (λ) =
[
A(λ)

−C(λ)
B(λ)
D(λ)

]
∈ F[λ](n+p)×(n+m)

be a polynomial system matrix of G(λ) such that both A(λ)−1B(λ) and C(λ)A(λ)−1

are proper rational matrices. Then P (λ) is equivalent at infinity to Diag(A(λ), G(λ)).

Proof. The desired result is obtained by pre and post multiplying P (λ) by the

biproper matrices
[

In
C(λ)A(λ)−1

0
Ip

]
and

[
In
0

−A(λ)−1B(λ)
Im

]
.

Corollary 2.5. Under the conditions of the previous lemma, if qA1 , . . . , q
A
n and

qG1 , . . . , q
G
r are the invariant orders at infinity of A(λ) and G(λ) respectively then
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the invariant orders at infinity of P (λ) are qP1 , . . . , q
P
n+r where (qPn+r, · · · , q

P
1 ) =

(qAn , · · · , q
A
1 ) ∪ (qGr , · · · , q

G
1 ).

In words, the invariant orders at infinity of P (λ) are the ordered reunion of the
invariant orders at infinity of A(λ) and of G(λ). This means that the invariant orders
at infinity of G(λ) are determined by those of P (λ) and A(λ). Therefore, the infinite
poles of G(λ) are determined by the infinite poles of P (λ) and A(λ) while the infinite
zeros of G(λ) are determined by the infinite zeros of P (λ) and A(λ).

3. Strong linearizations of rational matrices. Our aim in this section is to
provide a definition of strong linearization for any rational matrix. We want it to be
a natural extension of the usual definition for matrix polynomials (see [22, 24, 10]).
We will rely primarily on that of [22] although we use a different notation. Let Fλ(λ)
be the local ring of F[λ] at λ, that is, the ring of rational functions with denominators

prime with λ: Fλ(λ) =
{
p(λ)
q(λ) ∈ F(λ) : q(0) 6= 0

}
. A square matrix U(λ) is invertible

in Fλ(λ) if all its entries are in Fλ(λ) and both the numerator and denominator of its
determinant are prime with λ.

A strong linearization of a matrix polynomial P (λ) ∈ F[λ]p×m is any linear ma-
trix polynomial L(λ) ∈ F[λ]q×r such that there are integers s1, s2 ≥ 0, unimodular
matrices U(λ) ∈ F[λ](p+s1)×(p+s1), V (λ) ∈ F[λ](m+s1)×(m+s1) and invertible matri-
ces in Fλ(λ), E(λ) ∈ Fλ(λ)

(p+s1)×(p+s1) and F (λ) ∈ Fλ(λ)
(m+s1)×(m+s1) such that

s1 − s2 = q − p = r −m and

U(λ)Diag(P (λ), Is1)V (λ) = Diag(L(λ), Is2),(9)

E(λ)Diag(revP (λ), Is1)F (λ) = Diag(revL(λ), Is2).(10)

When only condition (9) is fulfilled L(λ) is a linearization of P (λ).

Remark 3.1. Note that, assuming that (9) holds, condition (10) is equivalent to

Ũ(λ)Diag(revP (λ), Is1)Ṽ (λ) = Diag(revL(λ), Is2) where Ũ(λ) and Ṽ (λ) are unimod-
ular matrices. This is a condition often used in the definition of strong linearizations of
matrix polynomials [10, 24]. We emphasize that such condition includes a high level of
redundancy while (10) does not, because unimodular matrices are very particular in-
stances of matrices invertible in Fλ(λ). The equivalence of these two conditions when
(9) holds is a consequence of the effect of Möbius transformations on the elementary
divisors of polynomial matrices [4, 25, 31].

Linearizations of matrix polynomials preserve the finite elementary divisors and
strong linearizations preserve both the finite and infinite elementary divisors. Our
definitions of linearization and strong linearization of a rational matrix follow a similar
pattern.

Definition 3.2. Let G(λ) ∈ F(λ)p×m. A linearization of G(λ) is a linear pencil

(11) L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+q)×(n+r),

with n ≥ 0, such that the following conditions hold:
(a) if n > 0 then det(A1λ+A0) 6= 0, and

(b) if Ĝ(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)
−1(B1λ+B0) then:

(i) L(λ) is a minimal polynomial system matrix of Ĝ(λ), and
(ii) there are nonnegative integers s1, s2 and unimodular matrices U(λ) ∈

F[λ](p+s1)×(p+s1) and V (λ) ∈ F[λ](m+s1)×(m+s1) such that s1 − s2 =

q − p = r −m and U(λ)Diag(G(λ), Is1)V (λ) = Diag(Ĝ(λ), Is2).
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Remark 3.3. 1. Definition 3.2 extends the usual definition of linearization
of matrix polynomials. In order to check this, assume for simplicity that
q ≥ p and r ≥ m. Let P (λ) ∈ F[λ]p×m with ǫ1(λ), . . . , ǫr(λ) as invariant
polynomials and let

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

be a linearization of P (λ) in the sense of Definition 3.2. Let Ĝ(λ) = (D1λ+
D0) + (C1λ+ C0)(A1λ+A0)

−1(B1λ+B0). Then
• Since ν(P (λ)) = 0, n ≥ deg(det(A1λ + A0)) = 0. This implies n = 0

(i.e., L(λ) = Ĝ(λ) = D1λ+D0) or A1λ+A0 is a unimodular matrix. In

both cases, Ĝ(λ) is a matrix polynomial.
• From Definition 3.2 (ii) and Lemma 2.1 the invariant polynomials of

Ĝ(λ) are 1, . . . , 1, ǫ1(λ), . . . , ǫr(λ) (with at least s invariant polynomials
equal to 1).

• From Definition 3.2 (i) and Theorem 2.3 the invariant polynomials of
L(λ) are 1, . . . , 1, ǫ1(λ), . . . , ǫr(λ) (with at least n+s invariant polynomi-
als equal to 1). Thus, there are U(λ) ∈ F[λ](n+p+s)×(n+p+s) and V (λ) ∈
F[λ](n+m+s)×(n+m+s), both unimodular, such that U(λ)L(λ)V (λ) =
Diag(P (λ), In+s).

2. The linearizations of Definition 5.3 of [1] are linearizations in the sense of
Definition 3.2 above if the linear polynomial system matrix in [1] is required
to be of least order (see [5]). One advantage of Definition 3.2 is that it can be
extended to preserve the invariant orders at infinity of the rational matrix.
This is our next task.

Recall (see Section 2) that the first invariant order at infinity of a rational matrix
is minus the degree of its polynomial part, if such part is not zero. Thus, if the matrix
is polynomial its first invariant order at infinity is minus its degree. Let L(λ) be a
strong linearization of a matrix polynomial P (λ). Let q1 and q̂1 be the first invariant
orders at infinity of P (λ) and L(λ) respectively. Condition (10) can be written as

(12) E(λ)Diag

(
λ−q1P

(
1

λ

)
, Is1

)
F (λ) = Diag

(
λ−q̂1L

(
1

λ

)
, Is2

)
.

This condition is equivalent, by [4, Lem. 6.9 and Prop. 6.10], to

(13) B1(λ)Diag (λq1P (λ) , Is1)B2(λ) = Diag
(
λq̂1L (λ) , Is2

)

where B1(λ) = E
(
1
λ

)
and B2(λ) = F

(
1
λ

)
are biproper matrices. Taking into account

these considerations, our definition for strong linearization of a rational matrix is the
following.

Definition 3.4. Let G(λ) ∈ F(λ)p×m. Let q1 be its first invariant order at infin-
ity and g = min(0, q1). Let n = ν(G(λ)). A strong linearization of G(λ) is a linear
polynomial matrix

(14) L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+q)×(n+r)

such that the following conditions hold:
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(a) if n > 0 then det(A1λ+A0) 6= 0, and

(b) if Ĝ(λ) = (D1λ +D0) + (C1λ + C0)(A1λ + A0)
−1(B1λ + B0), q̂1 is its first

invariant order at infinity and ĝ = min(0, q̂1) then:
(i) there are nonnegative integers s1, s2 and unimodular matrices U1(λ) ∈

F[λ](p+s1)×(p+s1) and U2(λ) ∈ F[λ](m+s1)×(m+s1) so that s1−s2 = q−p =
r −m and

U1(λ)Diag(G(λ), Is1)U2(λ) = Diag(Ĝ(λ), Is2), and

(ii) there are biproper matrices B1(λ) ∈ Fpr(λ)
(p+s1)×(p+s1) and B2(λ) ∈

Fpr(λ)
(m+s1)×(m+s1) such that

B1(λ)Diag(λgG(λ), Is1)B2(λ) = Diag(λĝĜ(λ), Is2).

The integer g = min(0, q1) in this definition can be interpreted as follows: g
is equal to 0 if and only if G(λ) is proper; otherwise g is minus the degree of the
polynomial part of G(λ).

Remark 3.5. 1. Strong linearizations of polynomial matrices are often de-
fined as those linearizations which also satisfy condition (10) (or its redundant
version via unimodular matrices). However, Definition 3.4 does not follow
that pattern because L(λ) is not explicitly required to be a linearization of
G(λ). This is however a consequence of that definition. In fact, since we

require n = ν(G(λ)), by Definition 3.4 (i) and Lemma 2.1, n = ν(Ĝ(λ)).

Therefore, L(λ) is a minimal polynomial system matrix of Ĝ(λ) and so L(λ)
is a linearization of G(λ). In summary, we can equivalently define a strong
linearization of a rational matrix as a linearization with n = ν(G(λ)) that
satisfies in addition condition (ii) in Definition 3.4. In our opinion, the self-
contained Definition 3.4 is more convenient.

2. Comparing Definitions 3.2 and 3.4 the requirement n = ν(G(λ)) might seem
rather restrictive. It has however the following explanation: If n = 0 then
G(λ) is a polynomial matrix and L(λ) = Ĝ(λ) = D1λ + D0. Thus, from
Definition 3.4 (i), L(λ) is a linearization of G(λ) in the classical sense of
matrix polynomials. Also, according to the first item of Remark 3.3, L(λ)
is a linearization of G(λ) in the sense of Definition 3.2. If, in addition, L(λ)
also satisfies condition (ii) then it is a strong linearization of G(λ) in the
usual sense of matrix polynomials. In fact, g = q1 = − deg(G(λ)), ĝ = q̂1 =

− deg(Ĝ(λ)), Ĝ(λ) = L(λ) and condition (ii) becomes (compare with (13))
B1(λ)Diag(λq1G(λ), Is1)B2(λ) = Diag(λq̂1L(λ), Is2). On the other hand, if

n > 0 then L(λ) is a minimal polynomial system matrix of Ĝ(λ). Therefore
n = deg(det(A1λ + A0)), which implies that A1 is invertible, and (A1λ +
A0)

−1(B1λ+B0) and (C1λ+C0)(A1λ+A0)
−1 are proper rational matrices. By

Corollary 2.5, the invariant orders at infinity of L(λ) are the ordered reunion

of those of A1λ+A0 and of Ĝ(λ). Since A1 is invertible, B(λ) = A1+λ
−1A0

is a biproper matrix and (A1λ+A0)B(λ)−1 = λIn meaning that the invariant
orders at infinity of A1λ+A0 are all equal to −1. This property and Definition
3.4 allows us to easily relate the invariant orders at infinity of G(λ) and the
infinite elementary divisors of its strong linearizations (see Theorem 3.10 and
its consequences).

3. As in the polynomial case (see (12) and (13)) condition (ii) of Definition 3.4
is equivalent to ([4, Sect. 6]):
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(ii’) there are invertible matrices in Fλ(λ), Ũ1(λ) ∈ Fλ(λ)
(p+s1)×(p+s1) and

Ũ2(λ) ∈ Fλ(λ)
(m+s1)×(m+s1) so that Ũ1(λ)Diag

(
1
λgG

(
1
λ

)
, Is1

)
Ũ2(λ) =

Diag
(

1
λĝ Ĝ

(
1
λ

)
, Is2

)
.

Notice that both 1
λgG

(
1
λ

)
and 1

λĝ Ĝ
(
1
λ

)
are matrices with elements in Fλ(λ).

4. The transfer function matrix Ĝ(λ) of L(λ) in (14) can be written as Ĝ(λ) =

(D1+C1A
−1
1 B1)λ+Ĝpr(λ), where Ĝpr(λ) is proper. Thus, D1+C1A

−1
1 B1 6= 0

if and only if ĝ = −1, and D1 + C1A
−1
1 B1 = 0 if and only if ĝ = 0.

Since strong linearizations of matrix polynomials have been extensively and deeply
analyzed, we will mainly focus on the case n = ν(G(λ)) > 0.

3.1. Spectral characterization of strong linearizations. In this section we
present a spectral characterization of strong linearizations of rational matrices. We
will see that such linear pencils preserve not only the finite but also the infinite
structure of the associated rational matrix.

In the definitions of linearization or strong linearization we can always take s1 = 0
or s2 = 0 according as p ≥ q and m ≥ r or q ≥ p and r ≥ m, respectively. In the rest
of the paper we will assume s := s1 ≥ 0 and s2 = 0.

Lemma 3.6. Let G(λ) ∈ F(λ)p×m. Let q1 be its first invariant order at infinity,
g = min(0, q1) and n = ν(G(λ)). Let

(15) L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

be a polynomial system matrix of Ĝ(λ), q̂1 be the first invariant order at infinity of

Ĝ(λ) and ĝ = min(0, q̂1). Then L(λ) is a strong linearization of G(λ) if and only if
the following three conditions hold:

(a) dimNr(G(λ)) = dimNr(Ĝ(λ)),

(b) G(λ) and Ĝ(λ) have the same nontrivial numerators and the same nontrivial
denominators in their (finite) Smith–McMillan forms, and

(c) λgG(λ) and λĝĜ(λ) have the same nontrivial invariant orders at infinity.

Proof. Notice that, by the rank-nullity theorem, condition (a) is equivalent to

rank Ĝ(λ) = s + rankG(λ). The necessity follows from the definition of strong lin-

earization and Lemma 2.1. For the sufficiency, let ǫ1(λ)
ψ1(λ)

,. . . , ǫr(λ)
ψr(λ)

be the invariant ra-

tional functions of G(λ) where r = rankG(λ). Assume that ǫt+1(λ)|ǫt+2(λ)| · · · |ǫr(λ)
and ψq(λ)|ψq−1(λ)| · · · |ψ1(λ) are the nontrivial invariant numerators and denomina-
tors, respectively, of G(λ). By hypothesis these polynomials are also the nontrivial

invariant numerators and denominators of Ĝ(λ). Then, the Smith–McMillan form

of this matrix is Diag
(
ǫ̃1(λ)

ψ̃1(λ)
, . . . , ǫ̃r+s(λ)

ψ̃r+s(λ)
, 0p−r,m−r

)
where ǫ̃1(λ) = · · · = ǫ̃s(λ) = 1,

ǫ̃s+i(λ) = ǫi(λ), i = 1, . . . , r, ψ̃i(λ) = ψi(λ), i = 1, . . . , r, ψ̃r+1(λ) = · · · = ψ̃r+s(λ) =

1. It follows from Lemma 2.1 that Ĝ(λ) and Diag(G(λ), Is) are equivalent. And
condition (b) of Definition 3.4 follows from (a) and (c). This completes the proof.

From now on we use symbol
ei
∼ for equivalence at infinity.

Lemma 3.7. Let G(λ) ∈ F(λ)p×m, let q1 be its first invariant order at infinity,
g = min(0, q1) and n = ν(G(λ)). Let L(λ) as in (15) be a strong linearization of G(λ).
If D1 + C1A

−1
1 B1 6= 0 then L(λ) is equivalent at infinity to Diag(λIn+s, λ

g+1G(λ));
otherwise, L(λ) is equivalent at infinity to Diag(λIn, Is, λ

gG(λ)).
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Proof. Let Ĝ(λ) be the transfer function matrix of L(λ). By Remark 3.5.2,

(16) L(λ)
ei
∼Diag(λIn, Ĝ(λ)).

Moreover, condition (ii) of Definition 3.4 is equivalent to λĝĜ(λ)
ei
∼Diag(λgG(λ), Is).

Now, if D1 + C1A
−1
1 B1 6= 0 then, by Remark 3.5.4, ĝ = −1 and so

Diag(λIn, Ĝ(λ))
ei
∼Diag(λIn+s, λ

g+1G(λ)).

However, if D1 + C1A
−1
1 B1 = 0 then, by Remark 3.5.4, ĝ = 0 and so

Diag(λIn, Ĝ(λ))
ei
∼Diag(λIn, Is, λ

gG(λ)).

Hence, by (16), in the first case L(λ) is equivalent at infinity to Diag(λIn+s, λ
g+1G(λ)),

while in the second case, L(λ) is equivalent at infinity to Diag(λIn, Is, λ
gG(λ)).

The following definitions are introduced with the purpose of stating concisely the
spectral characterization of strong linearizations proved in Theorem 3.10.

Definition 3.8. Let G(λ) ∈ F(λ)p×m and let L(λ) ∈ F[λ](n+(p+s))×(n+(m+s)) be
a linear polynomial system matrix as in (15). We will say that L(λ) preserves the finite
structure of poles and zeros of G(λ) if the following condition holds true: For all λ0 ∈
F, (λ−λ0)

w, with w > 0, appears in the prime factorization of exactly k denominators
(respectively numerators) ψi(λ) (respectively ǫi(λ)) in the (finite) Smith–McMillan
form of G(λ) if and only if A1λ+A0 (respectively L(λ)) has exactly k finite elementary
divisors equal to (λ− λ0)

w.

Definition 3.9. Let G(λ) ∈ F(λ)p×m with q1 as first invariant order at infinity
and g = min(0, q1). Let L(λ) ∈ F[λ](n+(p+s))×(n+(m+s)) be a linear polynomial system
matrix as in (15). We will say that L(λ) preserves the infinite structure of poles and
zeros of G(λ) if the following condition holds true: A1 is invertible if n > 0 and
for any nonzero integer u, u is an invariant order at infinity with multiplicity k of
λ−1L(λ) if and only if u is an invariant order at infinity with multiplicity k of λgG(λ)
if D1 + C1A

−1
1 B1 6= 0 or of Diag(λ−1Is, λ

g−1G(λ)) otherwise.

Observe that the matrices λ−1L(λ), λgG(λ) and Diag(λ−1Is, λ
g−1G(λ)) are all

proper and, in consequence, they do not have poles at infinity.
Definitions 3.8 and 3.9 can be stated together equivalently as: L(λ) preserves the

finite and infinite structures of poles and zeros of G(λ) if (and only if) the finite poles
of G(λ) are the finite zeros of A1λ+A0, with the same partial multiplicities, in both
matrices, the finite zeros of G(λ) are the finite zeros of L(λ), with the same partial
multiplicities, and the number and orders of the infinite zeros of λ−1L(λ) are the same
as the number and orders of the infinite zeros of λgG(λ) if D1 + C1A

−1
1 B1 6= 0 or of

Diag(λ−1Is, λ
g−1G(λ)) otherwise.

Theorem 3.10 (Spectral characterization of strong linearizations). Let G(λ) ∈
F(λ)p×m and n = ν(G(λ)). Let

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

be a minimal polynomial system matrix. Then L(λ) is a strong linearization of G(λ)
if and only if the following conditions hold:

(I) dimNr(G(λ)) = dimNr(L(λ)),
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(II) L(λ) preserves the finite structure of poles and zeros of G(λ), and
(III) L(λ) preserves the infinite structure of poles and zeros of G(λ).

Proof. Let Ĝ(λ) be the transfer function matrix of L(λ). By using Theorem 2.3,

dimNr(Ĝ(λ)) = dimNr(L(λ)) (see (7)) and L(λ) preserves the finite structure of

poles and zeros of Ĝ(λ). If L(λ) is a strong linearization of G(λ), then conditions (I)
and (II) follow from Lemma 3.6. Condition (III) is a direct consequence of Lemma
3.7. Conversely, conditions (I) and (II) and the minimality of L(λ) imply, by Theorem
2.3, conditions (a) and (b) of Lemma 3.6. Moreover, it follows from Remark 3.5.2

that L(λ) is equivalent at infinity to Diag(λIn, Ĝ(λ)). Therefore,

(17) λ−1L(λ)
ei
∼Diag(In, λ

−1Ĝ(λ)).

Now, conditions (I) and (III) imply (recall that (I) is equivalent to rankL(λ) =
n+ s+ rankG(λ))

(18) λ−1L(λ)
ei
∼

{
Diag(In+s, λ

gG(λ)), if D1 + C1A
−1
1 B1 6= 0

Diag(In, λ
−1Is, λ

g−1G(λ)), if D1 + C1A
−1
1 B1 = 0

.

Recall (Remark 3.5.4) that if D1 + C1A
−1
1 B1 6= 0 then ĝ = −1 and ĝ = 0 otherwise.

Thus, by (17) and (18),

λ−1Ĝ(λ)
ei
∼

{
Diag(Is, λ

gG(λ)), if D1 + C1A
−1
1 B1 6= 0

Diag(λ−1Is, λ
g−1G(λ)), if D1 + C1A

−1
1 B1 = 0

.

In any case condition (c) of Lemma 3.6 holds. By this lemma the result follows.

Remark 3.11. From the proof of Lemma 3.6, it can be seen that a matrix pencil
L(λ) as in (15) is a linearization of a rational matrix G(λ) if and only if conditions
(a) and (b) of that lemma hold. As a consequence, if L(λ) is minimal then a spectral
characterization for linearizations of rational matrices consists of conditions (I) and
(II) of the previous theorem.

Remark 3.12. As explained in Section 2 condition (I) in Theorem 3.10 is equiv-
alent to dimNℓ(G(λ)) = dimNℓ(L(λ)). Therefore condition (I) can be equivalently
stated as “G(λ) and L(λ) have the same number of left and the same number of right
minimal indices”, as it was done in [10, Thm. 4.1] for linearizations of polynomial
matrices. Analogously, condition (a) of Lemma 3.6 can be equivalently stated as

“G(λ) and Ĝ(λ) have the same number of left and the same number of right minimal
indices”.

Theorem 3.10 allows us to obtain the infinite structure of a rational matrix from
the elementary divisors at infinity of any of its strong linearizations in a very simple
form. Namely, let G(λ) be a p × m rational matrix of rank r, let q1 ≤ · · · ≤ qr
be its invariant orders at infinity and let L(λ) be a strong linearization of G(λ).
Define g = min(0, q1). By (I), rankL(λ) = n + s + r. Let λe1 , . . . , λen+s+r be the
infinite elementary divisors (including possible exponents equal to zero) of L(λ). Thus,
0 ≤ e1 ≤ · · · ≤ en+s+r. We want to get the invariant orders at infinity of G(λ) out
of e1, . . . , en+s+r. Recall that the degree of the polynomial part of G(λ) (if present)
is −q1. Suppose that the degree of L(λ) is d (d can only be equal to 1 or 0). By (8),
the invariant orders at infinity of L(λ) are ei − d, i = 1, . . . , n + s + r. We consider
three cases:
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• n ≥ 0 and D1 + C1A
−1
1 B1 6= 0. In this case d = 1 and, by Lemma 3.7, ei = 0

for i = 1, . . . , n+ s and en+s+1 − 1, . . . , en+s+r − 1 are the invariant orders at
infinity of λg+1G(λ). Thus, qi = en+s+i + g, 1 ≤ i ≤ r.

• n > 0 and D1 + C1A
−1
1 B1 = 0. Then d = 1 and, by Lemma 3.7, ei = 0 for

i = 1, . . . , n, en+i = 1 for i = 1, . . . , s, and en+s+1 − 1, . . . , en+s+r − 1 are the
invariant orders at infinity of λgG(λ). Thus, qi = en+s+i + g − 1, 1 ≤ i ≤ r.

• n = 0 and D1 = 0. In this case G(λ) is a matrix polynomial, L(λ) = Ĝ(λ) =
D0, Diag(G(λ), Is) is equivalent to D0 (i.e., all its invariant factors are equal
to 1) and Diag(λq1G(λ), Is) is equivalent at infinity to D0. Since the invariant
orders at infinity of D0 are 0, qi = q1 for i = 1, . . . , r.

4. Transfer system equivalence. We analyze deeper the relationship between
rational matrices and linearizations. Let us recall at this point the notion of strict
system equivalence (see [28, Ch. 2, Sec. 3.1]): Two polynomial system matrices

(19) P1(λ) =

[
A1(λ) B1(λ)
−C1(λ) D1(λ)

]
and P2(λ) =

[
A2(λ) B2(λ)
−C2(λ) D2(λ)

]

(Ai(λ) ∈ F[λ]n×n nonsingular, deg(detAi(λ)) ≤ n, Bi(λ) ∈ F[λ]n×m, Ci(λ) ∈ F[λ]p×n

and Di(λ) ∈ F[λ]p×m, i = 1, 2) are said to be strictly system equivalent if there exist
unimodular matrices U(λ), V (λ) ∈ F[λ]n×n and polynomial matrices X(λ) ∈ F[λ]p×n,
Y (λ) ∈ F[λ]n×m such that

(20)

[
U(λ) 0
X(λ) Ip

] [
A1(λ) B1(λ)
−C1(λ) D1(λ)

] [
V (λ) Y (λ)
0 Im

]
=

[
A2(λ) B2(λ)
−C2(λ) D2(λ)

]
.

An important feature of strict system equivalence is that any two strictly system
equivalent polynomial system matrices have the same order and give rise to the same
transfer function matrix ([28, Ch. 2, Thm. 3.1]). Bearing in mind Definition 3.2, we
are interested in characterizing when two polynomial system matrices have equivalent
transfer function matrices. This will give us the exact amount of freedom that we have
to construct new linearizations out of previous given ones. We extend the definition
of strict system equivalence in an obvious way to reach this goal.

Definition 4.1. Two polynomial system matrices P1(λ) and P2(λ) as in (19)
both of size (n+p)× (n+m) will be said to be transfer system equivalent if there exist
unimodular matrices U(λ), V (λ) ∈ F[λ]n×n, W (λ) ∈ F[λ]p×p, T (λ) ∈ F[λ]m×m and
polynomial matrices X(λ) ∈ F[λ]p×n, Y (λ) ∈ F[λ]n×m such that

(21)

[
U(λ) 0
X(λ) W (λ)

]
P1(λ)

[
V (λ) Y (λ)
0 T (λ)

]
= P2(λ).

Theorem 4.2. Let P1(λ) and P2(λ) be two (n+ p)× (n+m) polynomial system
matrices of least order. Then P1(λ) and P2(λ) are transfer system equivalent if and
only if their transfer function matrices are equivalent.

Proof. Let P1(λ) and P2(λ) be as in (19) and let G1(λ) and G2(λ) be their
transfer functions matrices. A straightforward computation shows that if (21) holds
then G2(λ) = W (λ)G1(λ)T (λ) and A2(λ) = U(λ)A1(λ)V (λ). Assume now that
G2(λ) =W (λ)G1(λ)T (λ) for some unimodular matrices W (λ) and T (λ). Then

D2(λ) + C2(λ)A2(λ)
−1B2(λ) = W (λ)(D1(λ) + C1(λ)A1(λ)

−1B1(λ))T (λ)
= W (λ)D1(λ)T (λ) +W (λ)C1(λ)A1(λ)

−1B1(λ)T (λ).
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We recall (see Section 2) that P1(λ) is of least order if and only if A1(λ) and
B1(λ) are left coprime and A1(λ) and C1(λ) are right coprime. Now since A1(λ) and
C1(λ) are right coprime, A1(λ) and W (λ)C1(λ) are also right coprime. In fact, if

X(λ) is a common right factor of A1(λ) and W (λ)C1(λ) then A1(λ) = Â1(λ)X(λ)

and W (λ)C1(λ) = Ĉ1(λ)X(λ), with Â1(λ) and Ĉ1(λ) both matrix polynomials. But

since W (λ) is unimodular, C1(λ) =W (λ)−1Ĉ1(λ)X(λ). Hence A1(λ) and C1(λ) have
also X(λ) as a right common factor. It must be a unimodular matrix because A1(λ)
and C1(λ) are right coprime. The proof that A1(λ) and B1(λ)T (λ) are left coprime is
similar. Now, we have two minimal polynomial system matrices of G2(λ): P2(λ) and

P̂1(λ) =
[

A1(λ)
−W (λ)C1(λ)

B1(λ)T (λ)
W (λ)D1(λ)T (λ)

]
. By ([28, Ch. 2, Thm. 3.1]) these two polynomial

system matrices are strictly system equivalent, that is,
[
U(λ)
X(λ)

0
Ip

]
P̂1(λ)

[
V (λ)

0
Y (λ)
Im

]
=

P2(λ) for some unimodular matrices U(λ) and V (λ) and matrix polynomials X(λ)

and Y (λ). Therefore
[
U(λ)
X(λ)

0
W (λ)

]
P1(λ)

[
V (λ)

0
Y (λ)
T (λ)

]
= P2(λ), and this means that P1(λ)

and P2(λ) are transfer system equivalent, as desired.

Theorem 4.2 allows us to obtain linearizations of rational matrices out of their
minimal polynomial system matrices by means of elementary operations. This will be
a consequence of Theorem 4.4 below. We will need the following technical result.

Lemma 4.3. Let P1(λ), P2(λ) ∈ F[λ](n+p)×(n+m) be polynomial system matrices.
If P1(λ) and P2(λ) are transfer system equivalent then P1(λ) is of least order if and
only if P2(λ) is of least order.

Proof. Let P1(λ) and P2(λ) be as in (19). According to [28, Thm. 6.1, Ch. 2] two
matrix polynomials R(λ) ∈ F[λ]m×n and S(λ) ∈ F[λ]m×p are left coprime if and only
if the Smith normal form of

[
R(λ) S(λ)

]
is
[
Im 0

]
. It is easy to prove (see [28, p.

55]) that if P1(λ) and P2(λ) are transfer system equivalent then
[
A1(λ) B1(λ)

]
and[

A2(λ) B2(λ)
]
have the same Smith normal form. Thus A1(λ) and B1(λ) are left

coprime if and only if A2(λ) and B2(λ) are left coprime.
It can be proved in a similar way that A1(λ) and C1(λ) are right coprime if and

only if A2(λ) and C2(λ) are right coprime.

Theorem 4.4. Let G(λ) ∈ F(λ)p×m and let

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
∈ F[λ](q+p)×(q+m)

be a polynomial system matrix of least order of G(λ). Let

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

such that n, s ≥ 0. Define P̂ (λ) = Diag(In−q, P (λ), Is) and L̂(λ) = L(λ) or P̂ (λ) =

Diag(P (λ), Is) and L̂(λ) = Diag(Iq−n, L(λ)) according as n ≥ q or q ≥ n. Then L(λ)

is a linearization of G(λ) if and only if P̂ (λ) and L̂(λ) are transfer system equivalent.

Proof. Let us assume q ≥ n. The proof in the other case is similar. Put B̂(λ) =[
B(λ) 0

]
∈ F[λ]q×(m+s), Ĉ(λ) =

[
C(λ)

0

]
∈ F[λ](p+s)×q and D̂(λ) = Diag(D(λ), Is) ∈

F[λ](p+s)×(m+s). Notice also that L̂(λ) =
[ λÂ1+Â0

−(λĈ1+Ĉ0)
λB̂1+B̂0

λD1+D0

]
with Â0 =

[
Iq−n

0
0
A0

]
,

Â1 =
[
0
0

0
A1

]
, and for i = 0, 1, B̂i =

[
0
Bi

]
, Ĉi =

[
0 Ci

]
. So P̂ (λ) = Diag(P (λ), Is) =

[ A(λ)

−Ĉ(λ)

B̂(λ)

D̂(λ)

]
is a polynomial system matrix of least order with Diag(G(λ), Is) as
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transfer function matrix and L(λ) and L̂(λ) have the same transfer function matrix,

Ĝ(λ) say.
Assume that L(λ) is a linearization of G(λ). This means that L(λ) is a minimal

polynomial system matrix of Ĝ(λ) and this matrix is equivalent to Diag(G(λ), Is).

Since det(λA1 + A0) = det(λÂ1 + Â0), L̂(λ) is also a minimal polynomial system

matrix of Ĝ(λ). Thus we have two minimal polynomial system matrices of the same

size, L̂(λ) and P̂ (λ), of least order with equivalent transfer functions matrices. By
Theorem 4.2 they are transfer system equivalent.

Conversely, assume that P̂ (λ) and L̂(λ) are transfer system equivalent and let

Ĝ(λ) be the transfer function matrix of L̂(λ) (and L(λ)). As P̂ (λ) is of least order,

it follows from Lemma 4.3 that L̂(λ) (and so L(λ)) are of least order. By Theorem

4.2, Ĝ(λ) and Diag(G(λ), Is) are equivalent. In conclusion, L(λ) is a minimal poly-

nomial system matrix of Ĝ(λ) and this matrix and Diag(G(λ), Is) are equivalent. By
definition, L(λ) is a linearization of G(λ).

4.1. Transfer system equivalence at infinity. In order to extend the notion
of transfer system equivalence to the infinity, it is more convenient for us to work with
rational matrices of the following form:

(22) R1(λ) =

[
E1(λ) F1(λ)
−J1(λ) K1(λ)

]
and R2(λ) =

[
E2(λ) F2(λ)
−J2(λ) K2(λ)

]

with Ei(λ) ∈ F(λ)n×n nonsingular, Fi(λ) ∈ F(λ)n×m, Ji(λ) ∈ F(λ)p×n, Ki(λ) ∈
F(λ)p×m, i = 1, 2. R1(λ) and R2(λ) are said to be in rational form in [28].

Definition 4.5. R1(λ) and R2(λ) as in (22) are said to be strictly system equiv-
alent at infinity if there exist biproper matrices B1(λ), B2(λ) ∈ Fpr(λ)

n×n and proper
matrices W (λ) ∈ Fpr(λ)

p×n, Z(λ) ∈ Fpr(λ)
n×m such that

(23)

[
B1(λ) 0
W (λ) Ip

]
R1(λ)

[
B2(λ) Z(λ)

0 Im

]
= R2(λ).

This is an equivalence relation since the inverse and product of the block trian-
gular biproper matrices in (23) are biproper matrices with the same block triangular
structures (including the identity blocks). Moreover, if two matrices are strictly sys-
tem equivalent at infinity then they are equivalent at infinity.

Let Gi(λ) = Ki(λ)+Ji(λ)Ei(λ)
−1Fi(λ) be the transfer function matrix of Ri(λ),

i = 1, 2. The next result can be proved straightforwardly.

Proposition 4.6. If R1(λ) and R2(λ) as in (22) are strictly system equivalent
at infinity then they give rise to the same transfer function matrix. Moreover, E1(λ)
and E2(λ) are equivalent at infinity.

Definition 4.7. R1(λ) and R2(λ) as in (22) will be said to be transfer sys-
tem equivalent at infinity if there exist biproper matrices B1(λ), B2(λ) ∈ Fpr(λ)

n×n,
B3(λ) ∈ Fpr(λ)

p×p, B4(λ) ∈ Fpr(λ)
m×m and proper matrices W (λ) ∈ Fpr(λ)

p×n,
Z(λ) ∈ Fpr(λ)

n×m such that

(24)

[
B1(λ) 0
W (λ) B3(λ)

]
R1(λ)

[
B2(λ) Z(λ)

0 B4(λ)

]
= R2(λ).

This is again an equivalence relation. Furthermore, if two matrices are transfer
system equivalent at infinity then they are equivalent at infinity as well.
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Proposition 4.8. If R1(λ) and R2(λ) as in (22) are transfer system equivalent
at infinity then their transfer function matrices are equivalent at infinity. Moreover,
E1(λ) and E2(λ) are equivalent at infinity.

Proof. If (24) holds, E2(λ) = B1(λ)E1(λ)B2(λ) and G2(λ) = B3(λ)G1(λ)B4(λ).

The converse of this result is not true in general, i.e., two matrices of the form (22)
that give rise to equivalent transfer function matrices at infinity are not necessarily
transfer system equivalent at infinity. However, it does hold true when Ji(λ)Ei(λ)

−1

and Ei(λ)
−1Fi(λ) are proper for i = 1, 2.

The proof of the following lemma is the same as that of Lemma 2.4.

Lemma 4.9. Let R(λ) =
[
E(λ)
−J(λ)

F (λ)
K(λ)

]
with J(λ)E(λ)−1 and E(λ)−1F (λ) proper.

Let G(λ) = K(λ) + J(λ)E(λ)−1F (λ). Then R(λ) and Diag(E(λ), G(λ)) are strictly
system equivalent at infinity.

Theorem 4.10. Let Ri(λ) and Gi(λ) be both as in the previous lemma with
Ji(λ)Ei(λ)

−1 and Ei(λ)
−1Fi(λ) proper, i = 1, 2.

1. R1(λ) and R2(λ) are strictly system equivalent at infinity if and only if E1(λ)
and E2(λ) are equivalent at infinity and G1(λ) = G2(λ).

2. R1(λ) and R2(λ) are transfer system equivalent at infinity if and only if E1(λ)
and E2(λ) are equivalent at infinity and G1(λ) and G2(λ) are equivalent at
infinity.

Proof. The necessity follows from Propositions 4.6 and 4.8. Suppose that E1(λ)
and E2(λ) are equivalent at infinity and G1(λ) = G2(λ). Then there exist biproper
matrices B1(λ), B2(λ) ∈ Fpr(λ)

n×n such that

Diag(B1(λ), Ip)Diag(E1(λ), G1(λ))Diag(B2(λ), Im) = Diag(E2(λ), G2(λ)).

This means that Diag(E1(λ), G1(λ)) and Diag(E2(λ), G2(λ)) are strictly system equiv-
alent at infinity. By Lemma 4.9, R1(λ) and R2(λ) are strictly system equivalent at in-
finity. Analogously, if E1(λ) and E2(λ) are equivalent at infinity and G1(λ) and G2(λ)
are equivalent at infinity, there exist biproper matrices B1(λ), B2(λ) ∈ Fpr(λ)

n×n,
B3(λ) ∈ Fpr(λ)

p×p, B4(λ) ∈ Fpr(λ)
m×m such that

Diag(B1(λ), B3(λ))Diag(E1(λ), G1(λ))Diag(B2(λ), B4(λ)) = Diag(E2(λ), G2(λ)).

Then Diag(E1(λ), G1(λ)) and Diag(E2(λ), G2(λ)) are transfer system equivalent at
infinity. By Lemma 4.9, since strictly implies transfer system equivalence at infinity,
R1(λ) and R2(λ) are transfer system equivalent at infinity.

If A11, A21 ∈ F
n×n are invertible and A10, A20 ∈ F

n×n then A11λ+A10 and A21λ+
A20 are equivalent at infinity (see Remark 3.5.2). The next result is a straightforward
consequence of Theorem 4.10.

Corollary 4.11. Let Ri(λ) =
[
Ai1λ+Ai0

−Ji(λ)
Fi(λ)
Ki(λ)

]
with Ai1 ∈ F

n×n invertible,

Ai0 ∈ F
n×n, Fi(λ) ∈ F(λ)n×m, Ji(λ) ∈ F(λ)p×n, Ki(λ) ∈ F(λ)p×m such that

Ji(λ)(Ai1λ + Ai0)
−1 and (Ai1λ + Ai0)

−1Fi(λ) are proper matrices, i = 1, 2. Let
Gi(λ) = Ki(λ) + Ji(λ)(Ai1λ+Ai0)

−1Fi(λ), i = 1, 2.
1. R1(λ) and R2(λ) are strictly system equivalent at infinity if and only if
G1(λ) = G2(λ).

2. R1(λ) and R2(λ) are transfer system equivalent at infinity if and only if G1(λ)
and G2(λ) are equivalent at infinity.
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The next corollary provides means to obtain strong linearizations of rational ma-
trices from their minimal polynomial system matrices by performing elementary trans-
formations that preserve both the transfer system equivalence and the transfer system
equivalence at infinity.

Corollary 4.12. Let G(λ) ∈ F(λ)p×m, let q1 be its first invariant order at in-
finity, g = min(0, q1) and n = ν(G(λ)). Let

P (λ) =

[
AP1λ+AP0 B(λ)

−C(λ) D(λ)

]
∈ F[λ](n+p)×(n+m)

be a polynomial system matrix of least order giving rise to G(λ). Let

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s)) (s ≥ 0)

with A1 invertible if n > 0. Let ĝ = −1 if D1 + C1A
−1
1 B1 6= 0 and ĝ = 0 otherwise.

(a) If C(λ)(AP1λ+AP0)
−1 and λg(AP1λ+AP0)

−1B(λ) are proper then L(λ) is
a strong linearization of G(λ) if and only if
(i) Diag(P (λ), Is) and L(λ) are transfer system equivalent, and

(ii)



AP1λ+AP0 λgB(λ) 0

−C(λ) λgD(λ) 0
0 0 Is


 and

[
A1λ+A0 λĝ(B1λ+B0)

−(C1λ+ C0) λĝ(D1λ+D0)

]

are transfer system equivalent at infinity.
(b) If λgC(λ)(AP1λ+AP0)

−1 and (AP1λ+AP0)
−1B(λ) are proper then L(λ) is

a strong linearization of G(λ) if and only if
(i) Diag(P (λ), Is) and L(λ) are transfer system equivalent, and

(ii)



AP1λ+AP0 B(λ) 0
−λgC(λ) λgD(λ) 0

0 0 Is


 and

[
A1λ+A0 B1λ+B0

−λĝ(C1λ+ C0) λĝ(D1λ+D0)

]

are transfer system equivalent at infinity.

Proof. We prove item (a). Item (b) is proved analogously. By Theorem 4.4, L(λ)

is a linearization of G(λ) if and only if condition (i) of (a) is satisfied. Let Ĝ(λ) be the

transfer function matrix of L(λ). We prove now that λĝĜ(λ) and Diag(λgG(λ), Is)
are equivalent at infinity if and only if condition (ii) of (a) holds true. Notice that

Diag(λgG(λ), Is) and λ
ĝĜ(λ) are the transfer function matrices of



AP1λ+AP0 λgB(λ) 0

−C(λ) λgD(λ) 0
0 0 Is


 and

[
A1λ+A0 λĝ(B1λ+B0)

−(C1λ+ C0) λĝ(D1λ+D0)

]
,

respectively. The result follows from Corollary 4.11, by taking into account that AP1

is invertible, since P (λ) is of least order and n = ν(G(λ)), and that (C1λ+C0)(A1λ+
A0)

−1 and λĝ(A1λ+A0)
−1(B1λ+B0) are proper, since A1 is invertible.

5. Construction of strong linearizations of rational matrices. We show
in this section that strong linearizations always exist for every rational matrix by
constructing explicitly infinitely many examples. These examples are obtained from
Algorithm 5.1 and the formal proof that they are indeed strong linearizations relies
on Corollary 4.12. Algorithm 5.1 is based on Corollary 5.1, whose proof is omitted
since it is an immediate consequence of Theorem 4.4 for q = n.
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Corollary 5.1. Let G(λ) ∈ F(λ)p×m and let

(25) P (λ) =

[
AP1λ+AP0 BP

−CP D(λ)

]
∈ F[λ](n+p)×(n+m)

be a minimal polynomial system matrix of G(λ) with AP1 nonsingular if n > 0. Let

(26) L(λ) =

[
AL1λ+AL0 BL

−CL D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

be a pencil with AL1 nonsingular if n > 0. If there exist constant nonsingular
matrices T, S ∈ F

n×n and unimodular matrices U(λ) ∈ F[λ](p+s)×(p+s), V (λ) ∈
F[λ](m+s)×(m+s) such that

(27)

[
T 0
0 U(λ)

]
L(λ)

[
S 0
0 V (λ)

]
= Diag(P (λ), Is) ,

then L(λ) is a linearization of G(λ).

Note that equation (27) is equivalent to the four equations

T (AL1λ+AL0)S = (AP1λ+AP0), U(λ) (D1λ+D0)V (λ) = Diag(D(λ), Is),

U(λ)CL S =

[
CP
0s×n

]
, T BL V (λ) =

[
BP 0n×s

]
,

which reveal that if (27) holds, then D1λ + D0 is a linearization of the polynomial
matrix D(λ) in the usual sense of matrix polynomials [24, 22, 10]. Thus, Corollary
5.1 suggests the symbolic Algorithm 5.1 for constructing linearizations in (essentially)
state-space form of G(λ).

Algorithm 5.1 Construct a linearization of a rational matrix

Given a minimal polynomial system matrix P (λ) in state-space form as in (25) of a
rational matrix G(λ), this algorithm constructs a linearization of G(λ) in state-space
form, when it ends.
Step 1. Choose any linearization D1λ+D0 of the polynomial matrix D(λ) together

with unimodular matrices U(λ), V (λ) such that U(λ) (D1λ + D0)V (λ) =
Diag(D(λ), Is). We emphasize that there are infinitely many choices available
in the literature for constructing linearizations of polynomial matrices (see,
for instance, [2, 6, 7, 8, 9, 12, 19, 24, 26] and the references therein).

Step 2. Construct U(λ)−1

[
CP
0s×n

]
and

[
BP 0n×s

]
V (λ)−1 and check whether these

matrices are constant matrices. If true, continue; if false, stop.
Step 3. Choose any pair of n× n constant nonsingular matrices T, S and define

(AL1λ+AL0) := T−1 (AP1λ+AP0)S
−1,

CL := U(λ)−1

[
CP
0s×n

]
S−1, and BL := T−1

[
BP 0n×s

]
V (λ)−1.

Step 4. The pencil L(λ) constructed as in (26) with all the pencils specified in Steps

1 and 3 is a linearization of G(λ) by Corollary 5.1.

The new class of strong linearizations of rational matrices constructed in this
section contains, as very particular cases, the Fiedler-like linearizations (modulo per-
mutations) introduced in [1] only for square rational matrices, and so the extension
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to rational matrices of the Frobenius companion pencils ([1, Prop. 3.7] and [30]). We
emphasize that the strong linearizations introduced in this section are much more
general than those in [1] from several important points of view: (1) they are strong
linearizations, while [1] does not guarantee that the structure at infinity of the original
rational matrix is preserved; (2) they are valid for rational matrices of arbitrary sizes,
while [1] only considers square rational matrices, as it also happens in [30]; and (3)
the class of linearizations presented here is much wider.

Algorithm 5.1 needs two ingredients: a minimal polynomial system matrix in
state-space form of the rational matrix G(λ) and a linearization of its polynomial
part D(λ) (see (3)) when deg(D(λ)) > 1, together with the unimodular matrices
that transform the linearization of D(λ) into Diag(D(λ), Is). As linearizations of
polynomial matrices, we use the recently introduced strong block minimal bases pencils
[12, Section 3], which include Fiedler-type linearizations, among many others, and
have already been used in some applications [23, 27]. Strong block minimal bases
linearizations of matrix polynomials and the related unimodular transformations are
revised in Section 5.1. Next, we focus on the construction of the starting minimal
polynomial system matrix in state-space form via the following two-step approach.

Let G(λ) ∈ F(λ)p×m be any rational matrix.
1. Compute the unique decomposition G(λ) = D(λ)+Gsp(λ) with D(λ) polyno-

mial andGsp(λ) strictly proper. In many applications [30], this decomposition
can be obtained (or guessed) without any computational effort.

2. Compute a least order state-space realization (A,B,C) of Gsp(λ), that is,
Gsp(λ) = C(λIn − A)−1B where n = ν(G(λ)) = ν(Gsp(λ)). A summary of
stable algorithms for constructing minimal state-space realizations for Gsp(λ)
can be found in [29]. In addition, in many applications [30], this realization
can be obtained (or guessed) without any computational effort.

The fact that (A,B,C) is a minimal realization is equivalent to the facts that
(A,B) is controllable and that (A,C) is observable [28]. That is to say:

rank
[
B AB · · · An−1B

]
= n, rank

[
CT (CA)T · · · (CAn−1)T

]T
= n.

Under these conditions

(28) P (λ) =

[
λIn −A B
−C D(λ)

]

is a polynomial system matrix in state-space form of least order n whose transfer
function matrix is G(λ). A key observation on (28) is that if D(λ) = 0 or deg(D(λ)) ≤
1, then P (λ) is itself a strong linearization of G(λ) according to Definition 3.4, since

Ĝ(λ) = G(λ) in that definition. Therefore, in Section 5.2 we assume deg(D(λ)) > 1.

5.1. Strong block minimal bases linearizations of polynomial matrices.

In this section we briefly review strong block minimal bases linearizations of poly-
nomial matrices and related unimodular transformations. More information can be
found in [12, Secs. 3, 4, 5] (we refer in this paper to the extended version of [12]
available as MIMS EPrint 2016.34). In addition, some results from [12] are refined
in order to use strong block minimal bases linearizations of polynomial matrices in
the construction of strong linearizations of rational matrices in Section 5.2. Classical
concepts on minimal bases of rational vector spaces are often used in this section.
For brevity, we do not review such concepts and refer the reader to the original pa-
per [14] or to [21, Ch. 6]. The summaries in [11, Sec. 2] and [12, Sec. 2] may be
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of interest since they use the nomenclature employed here. Briefly, we say that a
polynomial matrix with more columns than rows is a minimal basis when its rows
are a minimal basis of the rational subspace they span. Moreover, a minimal ba-
sis N(λ) ∈ F[λ]m×(m+m̂) is dual to another minimal basis K(λ) ∈ F[λ]m̂×(m+m̂) if
K(λ)N(λ)T = 0. The Kronecker product of two matrices, denoted A⊗ B, is used in
this section [20, Ch. 4].

The polynomial matrices (note that the zero entries of a matrix are often omitted)

(29) Lk(λ) :=




−1 λ
−1 λ

. . .
. . .

−1 λ


 ∈ F[λ]k×(k+1), and

(30) Λk(λ)
T :=

[
λk · · · λ 1

]
∈ F[λ]1×(k+1)

are important in this section. Note that Lk(λ) and Λk(λ)
T are a pair of dual minimal

bases, as well as Lk(λ) ⊗ It and Λk(λ)
T ⊗ It [12, Ex. 2.6]. With these matrices and

the last column of Ik+1, denoted by ek+1, we define the unimodular matrix

(31) Vk(λ) :=

[
Lk(λ)

eTk+1

]
∈ F[λ](k+1)×(k+1),

whose inverse is

(32) Vk(λ)
−1 =




−1 −λ −λ2 · · · −λk−1 λk

−1 −λ
. . .

... λk−1

−1
. . . −λ2

...
. . . −λ λ2

−1 λ
1




∈ F[λ](k+1)×(k+1).

Note that the last column of Vk(λ)
−1 is Λk(λ).

The next definition is taken from [12, Def. 3.1 and Thm. 3.3].

Definition 5.2. Let D(λ) ∈ F[λ]p×m be a polynomial matrix. A strong block
minimal bases pencil associated to D(λ) is a linear polynomial matrix with the follow-
ing structure

(33)
L(λ) =

[
M(λ) K2(λ)

T

K1(λ) 0

] }
p+p̂

} m̂

︸ ︷︷ ︸
m+m̂

︸ ︷︷ ︸
p̂

,

where K1(λ) ∈ F[λ]m̂×(m+m̂) (respectively K2(λ) ∈ F[λ]p̂×(p+p̂)) is a minimal basis
with all its row degrees equal to 1 and with the row degrees of a minimal basis N1(λ) ∈
F[λ]m×(m+m̂) (respectively N2(λ) ∈ F[λ]p×(p+p̂)) dual to K1(λ) (respectively K2(λ))
all equal, and such that

(34) D(λ) = N2(λ)M(λ)N1(λ)
T .

If, in addition, deg(D(λ)) = deg(N2(λ)) + deg(N1(λ)) + 1 then L(λ) is said to be a
strong block minimal bases pencil associated to D(λ) with sharp degree.
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The most important property of any strong block minimal bases pencil associated
to D(λ) with sharp degree is that it is a strong linearization of D(λ) [12, Thm. 3.3].

The sizes of the submatrices in (33) are related to the degrees of the dual minimal
bases N1(λ) and N2(λ) via [14, Cor. p. 503] as follows. Set

(35) ε := deg(N1(λ)) and η := deg(N2(λ)).

Since the row degrees of N1(λ) (respectively N2(λ)) are all equal, they must be all
equal to ε (respectively η) and [14, Cor. p. 503] implies

(36) m̂ = mε and p̂ = p η.

Definition 5.2 includes the “degenerate” cases m̂ = 0, when the second block
row in (33) is not present, or p̂ = 0, when the second block column in (33) is not
present. If m̂ = 0 (respectively p̂ = 0) then N1(λ) (respectively N2(λ)) is taken to
be a nonsingular constant matrix of size m×m (respectively p× p) and the simplest
choice is just N1(λ) = Im (respectively N2(λ) = Ip).

A remark on Definition 5.2 is that in [12, Thm. 3.3] the condition deg(D(λ)) =
deg(N2(λ))+deg(N1(λ))+1 defining the strong block minimal bases pencils with sharp
degree is not mentioned at all. The reason is that the reversal of D(λ) is defined in
[12] with respect to the “grade” deg(N2(λ)) + deg(N1(λ)) + 1, while here reversals of
polynomial matrices are defined in an intrinsic way with respect to the degree (recall
Section 2). We emphasize that deg(D(λ)) = deg(N2(λ)) + deg(N1(λ)) + 1 is used in
the proof of Theorem 5.11 and that this condition and (34) implies deg(M(λ)) = 1.

Strong block minimal bases linearizations of polynomial matrices are a very wide
set of linearizations which include different types of linearizations (see [12, Secs. 4 and
5], [23], [27]). In Example 5.3, we present a particular class of strong block minimal
bases linearizations introduced in [12, Sec. 5], which were called block Kronecker
linearizations. They correspond to particular choices of K1(λ) and K2(λ) in (33).

Example 5.3. Consider D(λ) = Dqλ
q + Dq−1λ

q−1 + · · · + D0 ∈ F[λ]p×m, with
q > 1 and Dq 6= 0, and the matrices in (29) and (30). Then, a block Kronecker
linearization of D(λ) is a pencil

(37)

L(λ) =

[
M(λ) Lη(λ)

T ⊗ Ip
Lε(λ)⊗ Im 0

] }
(η+1)p

} εm

︸ ︷︷ ︸
(ε+1)m

︸ ︷︷ ︸
ηp

,

such that D(λ) = (Λη(λ)
T ⊗ Ip)M(λ) (Λε(λ) ⊗ Im). Theorem 5.4 in [12] explains

how to construct all possible M(λ) that satisfy the previous equation (there are
infinitely many). Observe that in the notation of Definition 5.2, we are taking
N1(λ) = Λε(λ)

T ⊗ Im and N2(λ) = Λη(λ)
T ⊗ Ip. Particular examples of block

Kronecker linearizations of D(λ) are the first Frobenius companion form, which cor-
responds to M(λ) =

[
Dqλ+Dq−1 Dq−2 · · · D0

]
, ε = q − 1 and η = 0, and the

second Frobenius companion form, with M(λ) =
[
DT
q λ+DT

q−1 DT
q−2 · · · DT

0

]T
,

η = q − 1 and ε = 0. The block Kronecker linearizations corresponding to the re-
maining (permuted) Fiedler pencils are extremely easy to construct as is discussed in
[12, Thm. 4.5]. An interesting block Kronecker linearization for polynomial matrices
with odd degrees q = 2k + 1 is constructed by taking Lε(λ) = Lη(λ) = Lk(λ) and
M(λ) = Diag(D2k+1λ +D2k , D2k−1λ +D2k−2 , . . . , D1λ +D0). Such linearization
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is very simple and is symmetric or Hermitian if D(λ) is symmetric or Hermitian.
The condition Dq 6= 0 guarantees that (37) is a strong block minimal bases pencil
associated to D(λ) with sharp degree [12, Thm. 5.4].

Lemma 5.5 refines [12, Thm. 2.10] for dual minimal bases as those appearing in

Definition 5.2. The refinement comes from the fact that K̂1 and K̂2 in Lemma 5.5 are
constant matrices, a property not guaranteed in [12] and that is essential in Section
5.2. In order to prove Lemma 5.5 we need to prove first Lemma 5.4.

Lemma 5.4. For i = 1, 2, let Ki(λ) be a linear pencil as in Definition 5.2 and let
Ni(λ) be a minimal basis dual to Ki(λ). If Qi(λ) is another minimal basis dual to
Ki(λ), then there exists a nonsingular constant matrix Hi such that Qi(λ) = HiNi(λ).

Proof. The columns of Qi(λ)
T form a basis of the right null-space Nr(Ki(λ))

over F(λ) defined in Section 2 and the columns of Ni(λ)
T form another basis of

Nr(Ki(λ)). Therefore, there exists a nonsingular rational matrix Hi(λ) such that
Qi(λ) = Hi(λ)Ni(λ). Since Ni(λ) and Qi(λ) are both minimal bases, the row degrees
of Ni(λ) are all equal, the row degrees of Qi(λ) are all equal, and the row degrees of
Ni(λ) are equal to those of Qi(λ), we get that Hi(λ) must be a constant matrix [14].

Lemma 5.5. Let K1(λ) ∈ F[λ]m̂×(m+m̂) be a linear pencil as in Definition 5.2 and

N1(λ) ∈ F[λ]m×(m+m̂) be any of its minimal dual bases. Then there exist N̂1(λ) ∈

F[λ]m̂×(m+m̂) and a constant matrix K̂1 ∈ F
m×(m+m̂) such that

(a) U1(λ) =

[
K1(λ)

K̂1

]
∈ F[λ](m̂+m)×(m+m̂) is a unimodular polynomial matrix,

and
(b) U1(λ)

−1 =
[
N̂1(λ)

T N1(λ)
T
]
∈ F[λ](m+m̂)×(m̂+m).

An analogous result holds for K2(λ) ∈ F[λ]p̂×(p+p̂) as in Definition 5.2 just by replac-
ing 1 by 2, m̂ by p̂, and m by p.

Proof. We only prove the result forK1(λ). In the proof, the matrices in (29), (30),
(31) and (32) are frequently used. In addition, Vk(λ)

−1 is partitioned as Vk(λ)
−1 =[

Wk(λ) Λk(λ)
]
. We take ε = deg(N1(λ)) as in (35) and so m̂ = mε as in (36). Since

all the row degrees of K1(λ) = λK
(1)
1 +K

(0)
1 are equal to 1 and K1(λ) is a minimal

basis, K
(1)
1 has full row rank. This fact and [11, Thm. 2.4] implies that K1(λ) has

neither infinite nor finite eigenvalues and has no left minimal indices. Therefore the
Kronecker canonical form [15, Ch. XII] of K1(λ) has only right singular blocks of
size ε × (ε + 1) (because the row degrees of N1(λ) are all equal to ε), i.e., there
exist nonsingular constant matrices R ∈ F

mε×mε and S ∈ F
m(ε+1)×m(ε+1) such that

K1(λ) = R−1 (Im ⊗ Lε(λ))S
−1. Let eε+1 be the last column of Iε+1. Define the

constant matrix K̃1 := (Im ⊗ eTε+1)S
−1 and the linear polynomial matrix

Ũ1(λ) :=

[
K1(λ)

K̃1

]
=

[
R−1 0
0 Im

] [
Im ⊗ Lε(λ)
Im ⊗ eTε+1

]
S−1.

Observe that Ũ1(λ) is unimodular because via an obvious row permutation Π we get

Π

[
Im ⊗ Lε(λ)
Im ⊗ eTε+1

]
= Im ⊗

[
Lε(λ)
eTε+1

]
= Im ⊗ Vǫ(λ),

whose determinant is (det(Vǫ(λ)))
m and so it is constant. Observe also that Q1(λ) =

(Im ⊗ Λε(λ)
T )ST is a minimal basis dual to K1(λ) because it is a minimal basis by
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[11, Thm. 2.4] and K1(λ)Q1(λ)
T = 0. From Lemma 5.4, we know that N1(λ) =

H−T
1 Q1(λ) for some nonsingular constant matrix H1. With this matrix, we finally

define

U1(λ) :=

[
K1(λ)

K̂1

]
=

[
Imε 0
0 H1

]
Ũ1(λ),

which is unimodular since Ũ1(λ) is. Note that U1(λ)
−1 =

[
S(Im ⊗Wε(λ))R N1(λ)

T
]
,

since a direct multiplication proves that U1(λ)U1(λ)
−1 = Im(ε+1), taking into account

(31) and the partition Vk(λ)
−1 =

[
Wk(λ) Λk(λ)

]
.

Example 5.6. In the case of block Kronecker linearizations as in (37) (which
include the standard Frobenius companion forms), if we take N1(λ) = Λε(λ)

T ⊗ Im
and N2(λ) = Λη(λ)

T ⊗ Ip, then the constant matrices K̂1 and K̂2 in Lemma 5.5 can

be taken to be K̂1 = eTε+1 ⊗ Im and K̂2 = eTη+1 ⊗ Ip. This follows from (31) and (32).

Following the discussion of degenerate cases, if m̂ = 0 (respectively p̂ = 0) in

Lemma 5.5, then U1(λ) = K̂1 = N1(λ)
−T ∈ F

m×m (respectively U2(λ) = K̂2 =
N2(λ)

−T ∈ F
p×p) is any nonsingular constant matrix and the simplest choice is just

K̂1 = Im (respectively K̂2 = Ip).
Lemma 5.5 allows us to construct in Theorem 5.7 unimodular matrices U(λ)

and V (λ) that will be used in Section 5.2 to develop strong linearizations of rational
matrices. The proof of Theorem 5.7 is ommitted, since it is very similar to [12, Proofs
of Thm. 3.3 and Lem. 2.14] and proceeds via a direct matrix block product.

Theorem 5.7. Let L(λ) as in (33) be a strong block minimal bases pencil as-
sociated to D(λ) ∈ F[λ]p×m, let N1(λ) ∈ F[λ]m×(m+m̂) and N2(λ) ∈ F[λ]p×(p+p̂) be
minimal bases dual to K1(λ) and K2(λ), respectively, and for i = 1, 2, let

Ui(λ) =

[
Ki(λ)

K̂i

]
and Ui(λ)

−1 =
[
N̂i(λ)

T Ni(λ)
T
]

be unimodular matrices with K̂i a constant matrix and N̂i(λ) as in Lemma 5.5. There
are matrices X(λ) ∈ F[λ]p̂×m, Y (λ) ∈ F[λ]p×m̂ and Z(λ) ∈ F[λ]p̂×m̂ such that

V (λ) :=

[
N̂1(λ)

T N1(λ)
T 0

0 0 Ip̂

]


0 Im̂ 0
Im 0 0

−X(λ) 0 Ip̂


 ,

U(λ) :=



0 Ip −Y (λ)
0 0 Im̂
Ip̂ 0 −Z(λ)





N̂2(λ) 0
N2(λ) 0

0 Im̂




are unimodular matrices and

(38) U(λ)L(λ)V (λ) = Diag(D(λ), Im̂+p̂).

Remark 5.8. Note that Theorem 5.7 does not assume that L(λ) is a strong block
minimal bases pencil with sharp degree, which is important to obtain Corollary 5.9.

The goal of the rest of this subsection is to construct certain biproper matrices
related to strong block minimal bases pencils with sharp degree that will be used in
Section 5.2. We revise first some properties of the reversal of a strong block minimal
bases pencil associated to D(λ) with sharp degree as in Definition 5.2. This pencil is

revL(λ) =

[
revM(λ) revK2(λ)

T

revK1(λ) 0

]
,
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since deg(M(λ)) = 1 by the condition deg(D(λ)) = deg(N2(λ))+deg(N1(λ))+1. From
[12, Thm. 2.7 and Proof of Thm. 3.3], revL(λ) is a strong block minimal bases pencil
associated to revD(λ) = (revN2(λ)) (revM(λ)) (revN1(λ)

T ), but it is not guaranteed
that it has sharp degree. It is proved in [12, Thm. 2.7], that for i = 1, 2, revNi(λ) is
a minimal basis dual to revKi(λ) with deg(revNi(λ)) = deg(Ni(λ)), which allows us
to apply Theorem 5.7 to revL(λ) and revD(λ) and to obtain Corollary 5.9.

Corollary 5.9. Let L(λ) be a strong block minimal bases pencil associated to
D(λ) ∈ F[λ]p×m with sharp degree as in Definition 5.2 and let N1(λ) ∈ F[λ]m×(m+m̂)

and N2(λ) ∈ F[λ]p×(p+p̂) be minimal bases dual to K1(λ) and K2(λ), respectively.

Then there exist Ñ1(λ) ∈ F[λ]m̂×(m+m̂), Ñ2(λ) ∈ F[λ]p̂×(p+p̂), X̃(λ) ∈ F[λ]p̂×m,

Ỹ (λ) ∈ F[λ]p×m̂ and Z̃(λ) ∈ F[λ]p̂×m̂ such that

Ṽ (λ) :=

[
Ñ1(λ)

T revN1(λ)
T 0

0 0 Ip̂

]


0 Im̂ 0
Im 0 0

−X̃(λ) 0 Ip̂


 ,(39)

Ũ(λ) :=



0 Ip −Ỹ (λ)
0 0 Im̂
Ip̂ 0 −Z̃(λ)






Ñ2(λ) 0
revN2(λ) 0

0 Im̂


(40)

are unimodular matrices and Ũ(λ) (revL(λ)) Ṽ (λ) = Diag(revD(λ), Im̂+p̂). In addi-

tion, each of the factors defining Ṽ (λ) and Ũ(λ) is unimodular.

Combining Corollary 5.9 and [3, Lem. 4.1] we obtain the last result of this section.

Corollary 5.10. With the same assumptions and notation as in Corollary 5.9,
let Ṽ (λ) ∈ F[λ](m+m̂+p̂)×(m+m̂+p̂) and Ũ(λ) ∈ F[λ](p+m̂+p̂)×(p+m̂+p̂) be the unimodu-
lar matrices introduced in Corollary 5.9 and define from them the biproper matrices
Ṽ (1/λ) and Ũ(1/λ). Then

(41) Ũ(1/λ) (λ−1L(λ)) Ṽ (1/λ) = Diag(λ−qD(λ), Im̂+p̂),

where q = deg(D(λ)). Moreover, each of the factors defining Ṽ (1/λ) and Ũ(1/λ)
according to (39) and (40) is biproper and any submatrix of these factors is proper.

Proof. The properties of Ũ(1/λ), Ṽ (1/λ), their factors, and their submatrices
follow from [3, Lem. 4.1]. The equality (41) follows from the previous corollary by
replacing λ by 1/λ and taking into account that deg(L(λ)) = 1 since deg(M(λ)) = 1.

5.2. Strong block minimal bases linearizations of rational matrices. The
goal of this section is to state and prove Theorem 5.11, which is the main theorem of
this paper on the existence and explicit construction of strong linearizations of any
rational matrix G(λ). The constructed strong linearizations are presented in equation
(42) and the proof relies on Corollary 4.12. We emphasize that such linearizations
have been constructed via Algorithm 5.1 with input the minimal polynomial system
matrix of G(λ) in (28) and choosing in Step 1 any strong block minimal bases pencil
L(λ) as (33) associated to the polynomial part D(λ) of G(λ), the unimodular matrices
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U(λ) and V (λ) in Theorem 5.7, and taking s = m̂+ p̂. To check this, note that

V (λ)−1 =




0 Im 0
Im̂ 0 0
0 X(λ) Ip̂





K1(λ) 0

K̂1 0
0 Ip̂


 ,

U(λ)−1 =

[
K2(λ)

T K̂T
2 0

0 0 Im̂

]

0 Z(λ) Ip̂
Ip Y (λ) 0
0 Im̂ 0


 ,

which in Step 2 in Algorithm 5.1 yields

U(λ)−1




C
0m̂×n

0p̂×n


 =

[
K̂T

2 C
0m̂×n

]
,

[
B 0n×m̂ 0n×p̂

]
V (λ)−1 =

[
BK̂1 0n×p̂

]
.

Since these matrices are constant, Algorithm 5.1 does not stop. Then taking arbitrary
nonsingular matrices T and S in Step 3, the linearization in (42) is the output of
Algorithm 5.1, where X and Y in (42) are T−1 and S−1 respectively. These lineariza-
tions are called strong block minimal bases linearizations of rational matrices.

Theorem 5.11. Let G(λ) ∈ F(λ)p×m be a rational matrix, let G(λ) = D(λ) +
Gsp(λ) be its unique decomposition into its polynomial part D(λ) ∈ F[λ]p×m and
its strictly proper part Gsp(λ) ∈ F(λ)p×m, and let Gsp(λ) = C(λIn − A)−1B be a
minimal state-space realization of Gsp(λ), where n = ν(G(λ)) = ν(Gsp(λ)). Assume
that deg(D(λ)) > 1 and let

L(λ) =

[
M(λ) K2(λ)

T

K1(λ) 0

] }
p+p̂

} m̂

︸ ︷︷ ︸
m+m̂

︸ ︷︷ ︸
p̂

be a strong block minimal bases pencil associated to D(λ) with sharp degree, with
N1(λ) ∈ F[λ]m×(m+m̂) and N2(λ) ∈ F[λ]p×(p+p̂) minimal bases dual to K1(λ) and

K2(λ), respectively, such that D(λ) = N2(λ)M(λ)N1(λ)
T . Let K̂1 ∈ F

m×(m+m̂) and

K̂2 ∈ F
p×(p+p̂) be constant matrices such that, for i = 1, 2, the matrices

Ui(λ) =

[
Ki(λ)

K̂i

]
and Ui(λ)

−1 =
[
N̂i(λ)

T Ni(λ)
T
]

are unimodular. Then, for any nonsingular constant matrices X,Y ∈ F
n×n the linear

polynomial matrix

(42) L(λ) =



X(λIn −A)Y XBK̂1 0

− K̂T
2 CY M(λ) K2(λ)

T

0 K1(λ) 0




is a strong linearization of G(λ).

Remark 5.12. If L(λ) in Theorem 5.11 is a block Kronecker linearization of D(λ)

as in (37), Example 5.6 implies that XBK̂1 = eTε+1⊗XB =
[
0n×m · · · 0n×m XB

]

and K̂T
2 CY = eη+1⊗CY . Recall also that in the degenerate case m̂ = 0 (respectively

p̂ = 0) K̂1 ∈ F
m×m (respectively K̂2 ∈ F

p×p) can be any nonsingular matrix with
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Im (respectively Ip) as the simplest choice. There are infinitely many strong block
minimal bases pencils L(λ) associated to D(λ) with sharp degree and, so, infinitely
many strong linearizations of G(λ) inside the framework of Theorem 5.11. A subset of
these infinitely many can be constructed very easily in the case we restrict ourselves
to block Kronecker linearizations L(λ) of D(λ).

Proof of Theorem 5.11. The proof is based on Corollary 4.12. In this proof, we
adopt the notation in (35) for the degrees of N1(λ) and N2(λ) and q := deg(D(λ)) > 1.
Therefore, q = ε + η + 1 according to Definition 5.2. Note that this condition and
(34) imply that deg(M(λ)) = 1, therefore ĝ in Corollary 4.12 is in this case ĝ = −1
for L(λ) in (42), since in the notation of that corollary D1 6= 0, C1 = 0, and B1 = 0.
In addition, g in Corollary 4.12 is g = −q here. A key ingredient in this proof is
the minimal polynomial system matrix in state-space form P (λ) in (28) giving rise to
G(λ). Obviously, for this P (λ) the matrices C(λIn−A)−1 and λ−q(λIn−A)−1B are
both proper, and we are in the scenario of Corollary 4.12 in this respect.

According to Corollary 4.12, Theorem 5.11 is proved if

(43) L(λ) =




λIn −A BK̂1 0

− K̂T
2 C M(λ) K2(λ)

T

0 K1(λ) 0




is a strong linearization of G(λ). The reason is that

Diag(X, Ip+m̂+p̂) L(λ) Diag(Y, Im+m̂+p̂) = L(λ),

which means that L(λ) and L(λ) are transfer system equivalent, and that

Diag(X, Ip+m̂+p̂) (L(λ) Diag(In, λ
−1Im+m̂+p̂)) Diag(Y, Im+m̂+p̂)

= L(λ)Diag(In, λ
−1Im+m̂+p̂),

which means that L(λ)Diag(In, λ
−1Im+m̂+p̂) and L(λ)Diag(In, λ

−1Im+m̂+p̂) are trans-
fer system equivalent at infinity. Thus, in the rest of the proof we focus only on L(λ).

We prove first that L(λ) is transfer system equivalent to Diag(P (λ), Im̂+p̂), i.e.,
we prove first (i) of (a) in Corollary 4.12. To this purpose, the unimodular matrices
U(λ) and V (λ) in Theorem 5.7 and (38) are used to prove that the transfer system
equivalence Diag(In, U(λ))L(λ) Diag(In, V (λ)) = Diag(P (λ), Im̂+p̂) holds. This fol-

lows from a direct matrix multiplication taking into account that K̂1N̂1(λ)
T = 0,

K̂1N1(λ)
T = Im, K̂2N̂2(λ)

T = 0, K̂2N2(λ)
T = Ip.

Next, we prove that (ii) of (a) in Corollary 4.12 holds for L(λ) in (43) and P (λ)

in (28). The proof has two steps. The first one uses the biproper matrices Ũ(1/λ)

and Ṽ (1/λ) in Corollary 5.10 and the submatrices of their factors to define the proper
matrices

W(λ) :=



(λ−η − 1)Ip

0m̂×p

Ñ2(1/λ) K̂
T
2


C(λIn −A)−1,

Z(λ) := λ−1(λIn −A)−1B
[
(λ−q+1 − λ−ε)Im − K̂1 Ñ1(1/λ)

T 0m×p̂

]
.

We have first that (41) holds, K̂1 revN1(1/λ)
T = λ−εIm and revN2(1/λ)K̂

T
2 = λ−ηIp.

With this and q = ε+ η + 1, one can prove, after somewhat long but direct algebraic
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manipulations, the following transfer system equivalence transformation at infinity

[
In 0

W(λ) Ũ(1/λ)

]



λIn −A λ−1BK̂1 0

− K̂T
2 C λ−1M(λ) λ−1K2(λ)

T

0 λ−1K1(λ) 0



[
In Z(λ)

0 Ṽ (1/λ)

]

=




λIn −A λ−qB 0 0
−C λ−qD(λ) H23(λ) 0
0 0 Im̂ 0
0 H42(λ) H43(λ) Ip̂


 =: F (λ),

where H42(λ) = λ−(ε+1) Ñ2(1/λ)K̂
T
2 Gsp(λ), H23(λ) = λ−(η+1)Gsp(λ)K̂1Ñ1(1/λ)

T ,

and H43(λ) = λ−1 Ñ2(1/λ)K̂
T
2 Gsp(λ)K̂1Ñ1(1/λ)

T are strictly proper rational ma-
trices. The second step of our proof of (ii) of (a) in Corollary 4.12 consists of the
following transfer system equivalence transformation at infinity




In 0 0 0
0 Ip −H23(λ) 0
0 0 Im̂ 0
0 0 0 Ip̂


F (λ)




In 0 0 0
0 Im 0 0
0 0 Im̂ 0
0 −H42(λ) −H43(λ) Ip̂




=




λIn −A λ−qB 0 0
−C λ−qD(λ) 0 0
0 0 Im̂ 0
0 0 0 Ip̂


 ,

which completes the proof of Theorem 5.11.

5.3. Examples of strong linearizations of symmetric rational matrices.

In the following two examples we implement the schemes developed in this paper to
obtain strong linearizations for two symmetric rational matrices discussed in [30, Sec.
4.3 and 4.4] and that appear in applications. In addition, the corresponding strong
linearizations will preserve the symmetric structure of the problems.

Example 5.13. Vibration of a fluid-solid structure. Let G(λ) = A− λB +∑k
i=1

λ
λ−σi

Ei, with A and B n× n real nonzero symmetric positive semidefinite ma-

trices, σi > 0, and Ei = CiC
T
i , Ci ∈ R

n×ri and rankCi = ri, i = 1, . . . , k. First, we

separate the polynomial and strictly proper parts of G(λ): G(λ) = A+
∑k
i=1 CiC

T
i −

λB + Gsp(λ), where Gsp(λ) =
∑k
i=1

σi

λ−σi
CiC

T
i . The realization of Gsp(λ) proposed

in [30] is Gsp(λ) = C(λIr − Σ)−1ΣCT where Σ = Diag(σ1Ir1 , σ2Ir2 , . . . , σkIrk),
C =

[
C1 C2 · · · Ck

]
and r = r1 + · · · + rk. Without further assumptions on

the matrices Ci, we cannot conclude that this realization is minimal and so, some σi
may not be poles of G(λ). Henceforth the result about the number of eigenvalues of
G(λ) in a given interval (α, β) given at the end of Section 4.3 of [30] may not be cor-
rect. It turns out, however, that under very mild conditions the realization of Gsp(λ)
is controllable and observable. If, for example, rankC = r and we put H = ΣCT

then (Σ, H) is controllable, (Σ, C) is observable and Gsp(λ) = C(λIr − Σ)−1H is a
minimal realization of Gsp(λ). Hence, if rankC = r,

L1(λ) =

[
λIr − Σ ΣCT

−C A+ CCT − λB

]
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is a strong linearization of G(λ), according to the paragraph below (28). Moreover, if

L(λ) =

[
−Σ−1 0

0 In

]
L1(λ) =

[
−λΣ−1 + Ir −CT

−C −λB + (A+ CCT )

]

then L1(λ) and L(λ) are strictly system equivalent. Also,

[
λIr − Σ λ−1ΣCT

−C λ−1(A+ CCT − λB)

]
and

[
−λΣ−1 + Ir −λ−1CT

−C λ−1(−λB + (A+ CCT ))

]

are strictly system equivalent at infinity. Thus, by Corollary 4.12, L(λ) is also a strong
linearization of G(λ). L(λ) is a symmetric positive semidefinite (see Proposition 4.1
of [30]) strong linearization of G(λ). The eigenvalues (finite and at infinity) of G(λ)
can be computed via the generalized eigenvalue problem L(λ)z = 0.

Example 5.14. Damped vibration of a structure. Let G(λ) = λ2M +K −∑k
i=1

1
1+biλ

∆Gi where M and K are n× n real symmetric positive definite matrices,

bi > 0 and ∆Gi = LiL
T
i with Li ∈ R

n×ri and rankLi = ri, i = 1, . . . , k. The
goal of this example is to use Theorem 5.11 to construct a strong linearization of
G(λ) that preserves the symmetric structure of the problem. Let us define σi =

1
bi
.

Then, the decomposition of G(λ) into its polynomial and strictly proper parts is

G(λ) = λ2M +K + Gsp(λ), where Gsp(λ) = −
∑k
i=1

σi

λ+σi
LiL

T
i . Let us denote L =[

L1 L2 · · · Lk
]
, Σ = Diag(σ1Ir1 , σ2Ir2 , . . . , σkIrk), and assume that rankL =

r = r1+r2+ · · ·+rk. Again, if C = −L and B = ΣLT then Gsp(λ) = C(λIr+Σ)−1B

is a minimal state-space realization of Gsp(λ). In addition, L(λ) =
[
K
λM

λM
−M

]
is a

strong block minimal bases pencil associated to the polynomial part D(λ) = λ2M +
K with sharp degree. To check this, note that in the notation of Definition 5.2,
M(λ) =

[
K λM

]
, K1(λ) =

[
λM −M

]
, which is a minimal basis by [11, Thm.

2.4], N1(λ) =
[
In λIn

]
is a minimal bases dual to K1(λ) with all its row degrees

equal to 1, and p̂ = 0, which allows us to take N2(λ) = In. So, D(λ) =M(λ)N1(λ)
T

and deg(D(λ)) = deg(N2(λ)) + deg(N1(λ)) + 1. Now, the use of Theorem 5.11 to

construct strong linearizations of G(λ) requires to know K̂1, since K̂
T
2 can be taken to

be any nonsingular matrix, and in particular In. To this purpose, note that U1(λ) =[
λM
In

−M
0

]
and U1(λ)

−1 =
[

0
−M−1

In
λIn

]
are unimodular, which means that we can

choose K̂1 =
[
In 0

]
. With this information, we take X = Σ−1 and Y = Ir in (42)

to obtain, by Theorem 5.11, that

L2(λ) =



λΣ−1 + Ir LT 0

L K λM
0 λM −M




is a strong linearization of G(λ). In addition, L2(λ) preserves the symmetry of G(λ).

The linearizations constructed in this subsection preserve the finite and infinite
poles and zeros of the original rational matrices and also their symmetry. Preserving
the symmetry is not always possible, since [10, Sec. 7] shows that there exist real
symmetric polynomial matrices with even degree which do not have symmetric strong
linearizations. It remains as an open problem to determine whether non-polynomial
symmetric rational matrices have always symmetric strong linearizations or not.

6. Conclusions and future work. This paper presents for the first time a
definition and a theory of strong linearizations of arbitrary rational matrices, which
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generalize the existing ones of polynomial matrices. This theory includes a spectral
characterization of strong linearizations that shows that these pencils satisfy the ex-
pected properties. The concepts of transfer system equivalence and transfer system
equivalence at infinity are introduced and used to fully characterize the transforma-
tions that allow us to construct strong linearizations of rational matrices. With these
transformations, infinitely many explicit examples of strong linearizations of rational
matrices are obtained, which can be used to compute the whole set of finite and infinite
poles and zeros of any rational matrix via standard algorithms for linear pencils.

In the last years, many researchers have studied strong linearizations of polyno-
mial matrices since they are essential in the numerical solution of polynomial eigen-
value problems. Therefore, we expect that this paper will foster further research on
strong linearizations of rational matrices as, for instance, the study of the preservation
of structures, the comparison of the conditioning of the zeros in the linearizations and
in the rational matrix, the analysis of the backward errors introduced in the original
problem by a backward stable eigenvalue algorithm applied on the linearization, the
recovery of minimal indices and bases and eigenvectors, etc.
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mials, Linear Algebra Appl. 470 (2015), 120–184.
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