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To understand the turbulent generation of large-scale magnetic fields and to 

advance beyond purely kinematic approaches to the dynamo effect like that 

introduced by Steenbeck, Krause & Radler (1966)’ a new nonlinear theory is 
developed for three-dimensional, homogeneous, isotropic, incompressible MHD 
turbulence with helicity, i.e. not statistically invariant under plane reflexions. 

For this, techniques introduced for ordinary turbulence in recent years by 

Kraichnan ( 1 9 7 1 ~ ~ ) ’  Orszag (1970, 1976) and others are generalized to MHD; in 

particular we make use of the eddy-damped quasi-normal Markovian approxi- 

mation. The resulting closed equations for the evolution of the kinetic and 

magnetic energy and helicity spectra are studied both theoretically and numeric- 

ally in situations with high Reynolds number and unit magnetic Prandtl number. 
Interactions between widely separated scales are much more important than 

for non-magnetic turbulence. Large-scale magnetic energy brings to equi- 
partition small-scale kinetic and magnetic excitation (energy or helicity) by the 

‘AlfvBn effect ’; the small-scale ‘residual’ helicity, which is the difference between 

a purely kinetic and a purely magnetic helical term, induces growth of large- 

scale magnetic energy and helicity by the ‘helicity effect’. In  the absence of 

helicity an inertial range occurs with a cascade of energy to small scales; to 

lowest order it is a - power law with equipartition of kinetic and magnetic 

energy spectra as in Kraichnan (1965) but there are - 2 corrections (and possibly 

higher ones) leading to a slight excess of magnetic energy. When kinetic energy 
is continuously injected, an initial seed of magnetic field willgrow to approximate 

equipartition, at least in the small scales. If in addition kinetic helicity is injected, 

an inverse cascade of magnetic helicity is obtained leading to the appearance of 

magnetic energy and helicity in ever-increasing scales (in fact, limited by the 

size of the system). This inverse cascade, predicted by Frisch et aZ. (1975), 

results from a competition between the helicity and Alfvh effects and yields an 

inertial range with approximately - 1 and - 2 power laws for magnetic energy 

and helicity. When kinetic helicity is injected a t  the scale Zinj and the rate k (per 

unit mass), the time of build-up of magnetic energy with scale L 9 Zinl is 

t % L( prp;nj)-k 
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1. Introduction 
Motivations 

Turbulence and magnetic fields (M-fields) are a common feature of many 

celestial bodies. M-fields are very often observed on the largest available scales 

whereas turbulence, a t  least the most energetic part of it, is more frequently 
confined to smaller scales. In  the last decade, several attempts have been made to 

explain large-scale M-field generation (or regeneration) as a consequence of the 

probable lack of reflexional symmetry of small-scale turbulence in situations 

involving rotation and stratification (Parker 1955; Steenbeck et al. 1966; Moffatt 
1970a, b; see also review paper of Moffatt 1973). The lack of reflexional symmetry 

is measured by the kinetic helicity &(v . (V A v))  of the small-scale turbulent 

velocity field ( V-field). The destabilization of large-scale M-fields by kinetic 

helicity (V-helicity), the ‘helicity or a effect’, is now fairly well understood on 

the basis of the linear equation of advection of the M-fie1d:t 

I (a/at - hV2) b = - (V . V )  b + ( b  . V) V, 
V . b  = 0. 

The growth of the large-scale M-field raises the question of its back-reaction on 

the V-field through the Lorentz force term of the momentum equation for an 

incompressible fluid: 

(1.2) I ( a / a t -  vV2) v = - (v. V) V +  ( b . V )  b - V p  +f,  

v . v  = 0. 

In  a strongly turbulent medium the search for a saturation mechanism which 

will prevent indefinite growth requires a theory of helical magnetohydrodynamic 
(MHD) turbulence which takes into account all nonlinear interactions and their 

conserved quantities such as total (kinetic plus magnetic) energy, magnetic 
helicity (M-helicity) and cross-helicity. In  Frisch et al. (1975), henceforth 

referred to as I ,  some of the consequences of the conservation of M-helicity 

&(a. b) (a = vector potential of M-field b) were worked out; the analysis of 

helical MHD absolute equilibrium ensembles has led to the conjecture that an 

‘inverse’ cascade of M-helicity from small to large scales exists when helicity 

is injected a t  small scales. Absolute equilibrium, which, by definition, has all 

dissipation removed and allows only a finite wavenumber band, may be useful 

in predicting the direction of cascades (LBorat 1975, 3 2.7) but is certainly very 

far from true turbulence, which, even in the stationary case, is essentially a 

non-equilibrium situation. 

Tools 

A reasonably accurate quantitative theory of non-magnetic turbulence is a 

prerequisite for a serious theory of MHD turbulence. From this standpoint, we 

t All the notation is taken from Frisch et al. (1975). Notice that the V -  and M-ener-7 
and helicity spectra previously denoted by E K ( ~ ) ,  Hx(k) ,   EM(^) and HM(k), are now denoted 

by EL, HE, E f  and H f .  The corresponding injection spectra are denoted by F;, p;, F f  

and gf and their integrals, the rates of injection, by d‘, ZM, d‘ and EM. 
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believe that the closely related test-field model (TFM) of Kraichnan (1971 a; cf. 

also Sulem, Lesieur & Frisch 1975) and the eddy-damped quasi-normal Mar- 

kovian (EDQNM) approximation of Orszag (1970, 1976) represent a break- 

through for homogeneous isotropic turbulence. It may be useful to recall some 

of the results obtained so far. Both theories give a -#  inertial range for three- 

dimensional turbulence and the TFM gives a Kolmogorov constant in excellent 
agreement with measurements (Kraichnan 1971 b).  In  the two-dimensional case, 

a - 3  inertial range is obtained which is also well supported experimentally 
(Kraichnan 1971b; Pouquet et al. 1975). Their application to the two- and 

three-dimensional error-growth problem is important not only for weather 

prediction but also far the understanding of the stochastic nature of turbulence 

itself (Lorenz 1969; Leith 1971; Leith & Kraichnan 1972). Moreover, the theories 

have been tested against direct numerical simulation of the Navier-Stokes 

equations; no serious discrepancies in single-time moments have been found at 

the highest Reynolds number which can be reached on present computers (Orszag 

& Patterson 1972; Herring et al. 1974). As a noteworthy practical feature, these 
theories lead to a set of integro-differential equations for the spectra which are 

easily integrated numerically even a t  huge Reynolds numbers (Pouquet et al. 
1975; Andre & Lesieur 1975). 

Scope 

The general framework of the present investigation is now defined. Homo- 

geneous, isotropic, helical MHD turbulence is assumed, i.e. we consider random 

solutions of (1 .1)  and (1.2) which are statistically invariant under translations and 

rotations, but not under plane reflexions. The M-field is taken to be statistically 
invariant under sign reversal (b-t- b) a t  the initial time; the equations of 

motion then imply that it remains so and that the cross-helicity ( V -  and M-field 

correlations) is permanently zero. Since our main interest is in the generation 

of M-fields from vanishingly small seed fields, this is no serious restriction. The 

viscosity v and the magnetic diffusivity h can take arbitrary values in the general 

formalism but most of the theory is then worked out for cases where the Reynolds 

number is large and the magnetic Prandtl number vlh is unity. The investigation 

of the small scales of MHD turbulence, where helicity is not particularly 

important but where the influence of the magnetic Prandtl number is strongly 

felt, is beyond- the scope of this paper (cf. also Kraichnan & Nagarajan 1967). 

The most serious restriction from the standpoint of the physicist who tries to 

understand stellar or planetary M-fields is the assumption of homogeneity and 
isotropy. However, since the physics of strong helical MHD turbulence are 

almost completely unexplored, it may be wise first to analyse in detail the 

simplest case. Using a method as free as presently possible from ad hoc pheno- 

menological assumptions, we have tried to understand the basic mechanism for 
the growth of large-scale M-fields; this aspect may be more important than the 

attempt made a t  the end of 8 6 to evaluate the time of regeneration of the solar 
magnetic field. 

In the last section, the reader will find a summary of the paper. If interested 
only in the applications of the spectral equations he may skip their derivation in 

5 2. In 5 3, the effects of non-local interactions are studied in detail; § 4, on the - 4 
21-2 
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inertial range, may be read independently; $95 and 6 deal with the inverse 

cascade of M-helicity and the nonlinear turbulent dynamo. For the under- 

standing of the general formalism a reasonable familiarity with the theory of 

homogeneous turbulence as outlined, for example, in Orszag (1976) is helpful. 

Knowledge of a t  least the first section of I is also assumed to avoid repetition of 

definitions. Finally, the reader may find a version with more introductory 

material in LBorat (1975). 

2. The spectral equations of helical MHD turbulence 

Eddy-damped quasi-normal Markovian approximation 

Our aim is to construct a modified eddy-damped quasi-normal Markovian 

(EDQNM) approximation for MHD helical turbulence. For a detailed exposition 

of the usual EDQNM theory, the reader is referred to Orszag (1970, 1976; cf. 

also Sulem et al. 1975). The essential steps may be outlined as follows. Let the 

Navier-Stokes or the MHD equations be written symbolically as 

duldt = UU, 

where u stands for the unknown functions (v or v and b) and where uu represents 
all the nonlinear terms. This very contracted notation is used only to bring out 

quadratic nonlinearity. The linear (dissipative) and forcing terms have been 

dropped since they pose no particular closure problem and can easily be re- 

introduced a t  the end. Assuming that the first moment (u) is zero, we obtain for 

the second and third moments (still in symbolic form) 

d(uu)/dt  = (UUU), d(uuu)/dt  = (UUUU). (2.1), (2.2) 

The quasi-normal approximation replaces (uuuu) by its Gaussian value, which 

is a sum of products of second-order moments. This approximation suffers from 

well-known defects which can be cured by the introduction of a suitable linear 

relaxation operator p of triple correlations (a procedure called eddy damping) 

on the right-hand side of (2.2) and by ‘Markovianization’. One finally obtains a 

closed equation for simultaneous second-order moments 

d ( W  u(t)) ldt  = W )  (4) u(t)) (W u(t))7 (2.3) 

where the triad-relaxation time 8(t)  (here an operator) is defined as 

O ( t )  = /: d7 exp { - / :p(s)  ds) . 

Notice that for short times 8(t) = t + O(t2) and for the stationary case 

(p = constant) 8 = p-l .  

The eddy-damping operator p may be obtained either from a phenomenological 

study or from the analysis of an auxiliary problem as in the TFM of Kraichnan 

(1971a).  An important task will be to find the appropriate eddy-damping 
operator for MHD turbulence. 
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The realizability (e.g. the positivity of energy spectra) of the EDQNM equa- 
tions (2.3) is ensured by the existence of a stochastic model (Kraichnan 1 9 7 1 ~ ;  

Frisch, Lesieur & Brissaud 1974). 

The general EDQNM equations can now be given explicitly in operator form. 

Let the basic Navier-Stokes or MHD equations be written as 

du(t)/dt  = L(u(t), u(t)) +L0u( t )  + f ( t ) ;  (2 .5)  

L( . , . )  collects all the quadratic terms, Lo stands for the linear dissipative terms 

and f ( t ) ,  the forcing, is a white noise in time with second-order moments given by 

( f ( t )  Q f ( t ' ) )  = - t '),  (2.6) 

where P is a prescribed forcing tensor. With these assumptions the EDQNM 
approximation reads 

I n 1  m 
d(uQu) /d t  = ~ ~ { L ( u , u ) @ L ( u , u )  +L(L(u,u),u)Qu 

m 
+ u 0 L(u, L(u, u))] + (Lo U Q U )  + (uOLo u) + F ,  (2.7) 

where u-factors belonging to the same moments have been linked together. When 
the triad-relaxation time 8 is just a constant, one recovers the Markovian random 

coupling (MRC) equations of Prisch et al. (1974). 

Eddy-damping rates for M H D  

We turn now to the problem of the turbulent MHD equations. As explained in 

the introduction we shall assume homogeneity, isotropy and no cross-correlations 

between the V-field and M-field (in particular no cross-helicity). The EDQNM 

approximation will lead to a set of four integro-differential equations for the 
V- and &!-energy and helicity spectra, denoted by EK, E f ,  HE and H F .  Their 

derivation requires (i) the determination of the triad-relaxation time 8, involving 

the eddy-damping operator p, and (ii) the determination of the explicit form 

of the right-hand side of (2.7) with homogeneity and isotropy taken into account. 

The second step is well defined but requires very extensive algebra although i t  

is basically the same as in the case of non-magnetic non-helical turbulence, which 

is described in detail in Leslie (1973). 

As for non-magnetic homogeneous turbulence, the eddy-damping operator is 

diagonal in the Fourier representation and must be calculated for each triad of 
wavenumbers (k, p ,  q ) ;  one takes as usual 

pkpq = pk +pp +pq, (2.8) 

where the pk's are called eddy-damping rates. The form (2.8) implies complete 

symmetry of p k p q ,  and hence of 8kpq,  the triad-relaxation time, with respect to 

k, p ,  q; this in turn ensures the conservation of all quadratic invariants. We have 

chosen the following expression for the eddy-damping rate: 



326 A .  Pouquet, U .  Frisch and J .  Liorat 

The first term pf corresponds to the self-distortion or nonlinear scrambling of 

the flow, the second term pf to the effect of Alfv6n waves and the third p$' to 

viscous and Joule dissipation. 

In the absence of an M-field the self-distortion term pf represents the rate a t  

which scales of wavenumber k are being distorted by larger scales. The simplified 

form pf N (k3EL)4 used by Orszag (1970) is inappropriate for initial-value 

problems, as noticed by Pouquet et al. (1975). The numerical constant C, can 

be adjusted to yield agreement with the Kolmogorov constant CKol determined 
either experimentally or from the TFM. F o r  CKol = 1.4 the correct value is 

C, = 0.36; this value also gives a skewness factor of 0.39 in excellent agreement 

with experimental results (see, for example, Batchelor 1953, figure 6.3) for 

Reynolds numbers based on the Taylor microscale of the order of thirty (Andr6 

& Lesieur 1976). Since we assumed uncorrelated V -  and M-fields (no cross- 

helicity) we have, in the MHD case, simply added a magnetic contribution to ,ug. 
The essential new term is the AlfvBn eddy-damping rate p$. It is known that 

a large-scale random M-field of r.m.s. value b, relaxes triple correlationst with 

wavenumbers - k in a time - (kb,)-l, which is the time for an Alfvhn wave of 

speed b, to travel a distance - k-l (Kraichnan 1965; Orszag & Kruskal 1968). If 
one linearizes the MHD equations around the large-scale random M-field, the 

decorrelation may be understood as due to v + b and v - b travelling as Alfv6n 

waves in opposite directions. For a Gaussian large-scale M-field an explicit 

calculation then yields C, = 1/43. We have used 

instead of b, because only scales larger than k-l contribute to the Alfvhn relaxa- 

tion. It is easily checked that omission of the ,u$' term would deeply effect the 
dynamics of M H D  turbulence; indeed, in an inertial range with EE z E f  - k-n 

the self-distortion rate behaves like kt(3-4 and the Alfvhn rate like b, k; if n > 1, 

the AlfvBn rate dominates a t  large wavenumbers. 

In  the non-magnetic case the dissipative contribution pg is vk2. Our choice of 

(v + A )  k2 may appear questionable since it seems more appropriate to take only 

vk2 if ,uk is used in the relaxation of a purely kinetic triple correlation as is done by 

Nagarajan (1971). However, ,ug will become important only in the dissipation 
range and we know that small-scale V-  and M-excitations are strongly coupled 

by AlfvBn waves. 

Remark (2.1). The reader familiar with the test-field model (TFM) of Kraichnan 

(1971 a; see also Sulem et al. 1975) may believe that it gives, a t  least in principle, 

a procedure by which all eddy-damping rates may be unambiguously determined. 

A distinctive feature of the TFM in the non-magnetic case is the removal of 
spurious interactions with large-scale V-fields in order to ensure Galilean 

invariance. In  the magnetic case, interactions with large-scale M-fields should 

not be removed if Alfv6n eddy damping is to be kept: otherwise a -Q instead of 

a - 3 inertial range will be obtained (see 3 4). With this in mind, a magnetic 

t More precisely, those triple correlations responsible for nonlinear transfer I 
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A, is n subset of the p ,  q plane such that k ,  p and q can form a triangle 

b,,, = pk-l(zy+Z3), j k , ,  = pk-'z(1-2') 

C k D 9  = pk-'z( 1 - y2), e k g a  = x( 1 - 2 2 )  

bg = 1 - y', f k , ,  = z-xy-Zzy2 

8 k p u ( t )  = ~ l - e x p ( - p k , u ~ ) } / ~ k ~ ~ ~  pkzw=pk+ps+pu, 
p k =  ( V + h ) k 2 + C , (  ~ q 2 ( E , V + E f ) d q ) L + ( l / y 3 ) k ( 2  k E f d q ) *  

0 

C, = 0-36 gives Kolmogorov constant of 1.4 in absence of magnetic field 

TABLE 2. Eddy-relaxation time and geometric coefficients 
appearing in the spectral equations. 

version of the TFM can probably be constructed but would lead to a rather 

dramatic increase in algebraic complexity, particularly in the helical case. So 
mainly for the sake of simplicity, we decided to use the simpler, phenomeno- 

logically based, EDQNM. It may be interesting to point out that the new 

qualitative results obtained in this paper, like the existence of the magnetic 
helicity effect and of the inverse cascade of magnetic helicity, are practically 

insensitive to the precise form of the eddy-damping rate as long as S,,, remains 
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positive and completely symmetrical to ensure realizability and energy and 

helicity conservation. 

Explicit form of the spectral equations 

In  table 1 the reader will find the spectral equations of helical MHD turbulence. 

The notation is defined in table 2. The functionsF%, p!, F F  and pfareprescribed 

injection spectra of V-energy, V-helicity, M-energy and M-helicity which must 

satisfy the realizability conditions (cf. equations (14) and (15) of I) 

Ipzl G kF:, lppl G F f / k .  (2.10) 

Ak denotes the domain of the p )  q plane such that k, p and q can be the lengths of 

the sides of a triangle, the cosines of the interior angles being x, y and z. The 

simplified form of the triad-relaxation time 6)kpq(t) ,  taken from Leith (1971) and 

Leith & Kraichnan (1972), is chosen to agree with (2.4) both for short times and 

in the stationary case without requiring integration over past spectra. 

In  the helical non-magnetic case, the spectral equations are the same as in 

Andre & Lesieur (1976). In the absence of helicity the equations reduce, except 
in the form of the triad-relaxation time, to the MHD spectral equations of 

Nagarajan (1971), which in turn are just a Markovian version of Kraichnan’s 

(1958) direct-interaction-approximation (DIA) equations. In  particular, the 

geometrical coefficients b,,, ckpq,  h,, and j,,, are the same as in Kraichnan & 
Nagarajan (1967). In  Nagarajan (1971) a different choice of the triad-relaxation 

time S,,, is made; this choice is not symmetrical in k, p and q, so that energy 

conservation does not hold; furthermore the non-local contribution to the eddy- 
damping rate is there taken to be wok (where o,, is a r.m.5. velocity) instead of 

b,k; this leads to spurious effects of large-scale V-energy on small-scale M -  
excitation. 

Conservation properties 

The spectral equations have the same conservation properties as the original 

MHD equations: conservation of total energy and of M-helicity. These con- 

servation laws can be formulated in two different ways. One formulation puts 

the viscosity v and magnetic diffusivity h equal to zero and then writes, a t  least 

formally (see following remark), 

(2.11) 

The derivation requires interchanging integration variables and makes use of 

the complete symmetry of OkP, and some trigonometric identities which can be 

found in the appendix. The other formulation of conservation is to keep v and A 
and to show that the transfer of total energy and of magnetic helicity integrates 

to zero (transfer is defined as the contribution of the nonlinear terms to the right- 

hand side of the spectral equations). 

Remark (2.2). For the interchange of certain integrals required in the proof 

of conservation, sufficiently fast decrease a t  large wavenumbers of the spectra is 
required. This smoothness property of the solution of the non-dissipative spectral 

equations, if it holds initially, can be shown to persist for a finite time as in the 
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non-magnetic non-helical case (Lesieur 1973; Lesieur & Sulem 1976). After this 
time, which is of the order of the inverse of the r.m.s. initial vorticity, singularities 

may appear in the spectral equations and presumably also in the true MHD 
equations. For positive v and h smoothness persists forever (Bardos et al. 1976). 

Another important property of the spectral equations is the existence of 

absolute-equilibrium solutions which are the same as for the original MHD 
equations (cf. I, equations (30)-(32) with q5 = 0).  For this, v, h and injection 

spectra must be taken as zero and the spectra restricted to a finite spectral band 
(kmin, kmax). Checking the spectral equations for conservation and for absolute- 

equilibrium solutions constitutes a particularly severe test of the accuracy of 

the algebra. 

Numerical integration 

The spectral equations given in table 1 are well suited for numerical integration 

with standard techniques described, for example, in Leith & Kraichnan (1972). 

Reynolds numbers and, more generally, ratios of maximum to minimum wave- 
number much higher than for direct numerical simulations (Pouquet & Patterson 

1976) can be reached. Particular attention must, however, be paid to the following 

point: the numerical technique is based on a logarithmic subdivision of the 
k axis of the form k ,  N 2LIF; as noticed by Leith & Kraichnan (1972) and Pouquet 

et al. (1975), this has the consequence that all ‘non-local’ interactions will be 

cut off by the method of integration when they involve non-isosceles triads of 

wavenumbers ( k ,  p ,  q) such that the ratio of smallest to middle wavenumber is 

less than a = 21v- 1. This is particularly unacceptable in MHD turbulence 

because, as we shall see in the following sections, the physically most interesting 

interactions responsible for the Alfvdn and helicity effects are highly non-local. 
This difficulty can be overcome by using, for example, the refined mesh technique 

of Leith & Kraichnan (1972). We choose an alternative method, first introduced 

by Pouquet et al. (1975): direct numerical calculation of the transfer terms by 

the standard technique is done only for local interactions with wavenumber 

ratios larger than a;  the non-local contributions to transfer are expanded in 

powers of the wavenumber ratio and truncated in such a way as to satisfy the 

various conservation relations while keeping the most interesting physical effects. 

The resulting rather simple expressions which will be found in the next section 

are then calculated numerically together with the local terms. 

3. Non-local interactions : AlfvCn and helicity effects 

The complete spectral equations of MHD helical turbulence given in table 1 

have a rather complicated integro-differential structure which prevents easy 

theoretical investigation. In  this section, we shall concentrate on non-local effects 

corresponding to situations where, in the interacting triad (k, p ,  q),  one of the 

following two conditions is fulfilled: 

( i ) q < k - p  or p < k - q ,  

(ii) k < p - q. 
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If we associate the wavenumber k with typical scales N k-l, then (i) and (ii) 

correspond to the case where very large or very small scales are acting on the 

scale k-1. Non-local effects are known to be important in two-dimensional 

non-magnetic turbulence (Kraichnan 1971 b ;  Pouquet et al. 1975). The import- 

ance for magnetic non-helical three-dimensional turbulence of type (i) effects was 

recognized by Kraichnan (1965), who noticed that, in the presence of large-scale 

M-energy, Alfv6n waves can bring small-scale 8-  and M-energy to equipartition 
and relax triple correlations in a time which may be shorter than the local eddy- 

turnover time.? In  helical magnetic turbulence, type (ii) non-local effects are to 

be expected in view of the results of Steenbeck et al. (1966) and Moffatt (1970u, b )  

concerning the destabilization of large-scale M-fields by small-scale helicity ; 

this is the helicity effect, also called the a-effect. 

We shall denote by (aEz/at),,, the contributions to the derivative of the 

V-energy spectrum arising from dissipation, forcing, and those nonlinear inter- 

actions involving triads ( k ,  p ,  q)  for which the ratio of smallest to middle wave- 

number is less than a, where a is a small expansion parameter; similarly, we have 

(aEf/at),,,, etc. The non-local contributions are denoted by (aEE/at),,,, and 

separated into ( aE,V/at)NE and (aE,V/at),, the respective contributions of type 
(i) and type (ii); LS and 88 stand for large-scale and small-scale. We then 

systematically expand the transfer terms in powers of a and look for contribu- 

tions of order zero and one (only first-order eddy-diffusivity contributions 

remain in the non-magnetic case). If, for example, q < p N k we write the 
integrals in polar co-ordinates using as variables q and the angle (9, k) and use 

the expansions of p ,  the volume element and the geometric coefficients given in 

the appendix; the eddy-damping rate ,up is expanded in Taylor series near k but, 

eventually, this gives no contribution to order one; notice that pGa is not expanded 

but kept as it stands because its order in a is not known. 

After expansion, we obtain 

7 The eddy-turnover time for an eddy of scale 1 and wavenumber k = I - I  is defined as 

l/vZ, where 

is the V-energy per unit mass in scales smaller than 1. In  non-magnetic turbulence, the 
eddy-turnover time is also the time in which a sizable fraction of the energy in scales N 1 
is transferred to smaller scales. 
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The vertical line separates LS contributions (on the left) from SS contributions. 

The transport coefficients appearing in (3.1)-(3.4) are given by 

u? = u;-ap, (3.51 

(3.7) 

The r’s have the dimensions of velocity. Because of the realizability constraint 

IHyI 6 E f / q  (cf. equation (15) of I) we have 

lrkl 6 ark. (3.10) 

We propose to call a:, ug and up kinetic, magnetic and residual torsality because 
they involve the torsion of V-  and M-field lines. These very important transport 

coefficients, which have the dimensions of velocity, characterize the helicity or a 

effect. vg, VF and vf will be called kinetic, magnetic and residual eddy diffusi- 

vities. Notice that VF is not positive-definite and vanishes at equipartition of 

V -  and M-energy spectra. The a’s like helicities, are pseudo-scalars, whereas the 

v’s are scalars. 

T h e  Alfve‘n effect 

The lowest-order terms involving interactions with large scales are (a superscript 
A stands for AlfvBn) 

(aEK/at)& = - kr,(EK -EF),  (3.11) 

( a ~ ~ / a t ) g ,  = kr,(Eg - EF) ,  (3.12) 

(aHE/at)& = - kI’,(H$ - k2HF), (3.13) 

( a ~ ~ / a t ) g ,  = ( r k / k )  ( ~ g  - PHF). (3.14) 

When the Alfvkn contribution ,u;& to the eddy-damping rate pk dominates the 

self-distortion and dissipation terms, it is easily checked that rk as given by 

(3.9) is essentially b,, the r.m.s. M-field, which is also the typical group velocity 
of AlfvBn waves. From (3.11)-(3.14) we find that under the action of random 

Alfvkn waves the V-  and M-energy spectra relax to equipartition in a time of 
the order of (kb,)-l,  as predicted by Kraichnan (1965). Similarly, the helicity 

spectra relax to ‘equipartition’, which is now understood as 

H [  = k2HF, (3.15) 

the factor k2 appearing because of the different dimensions of V -  and M-helicity. 

Equivalently we can say that ‘residual energy’ E f  = EL - EfZl and ‘residual 

helicity’ H f  = HZ - k2HF relax to zero. We call this the ‘Alfvkn effect’. The 

N 



332 A .  Pouquet, U. Frisch and J .  Gorat  

Yk terms in (3.1)-(3.4) are simply first-order corrections to the Alfvdn effect 
involving the helicity of large-scale M-fields. 

The kinetic and magnetic helicity effects 

The lowest-order terms involving interactions with small-scale V -  or M-helicity 

are (a superscript H stands for helicity) 

(aE,V/at)& = 0, (aH,V/at)HSS = 0, (3.16) 

(aEp/at)H, = at k2HF; (aHf/a t )H,  = a t  EF.  (3.17) 

Notice that the residual torsality a? is expressed in terms of the residual helicity 

HE = Hg - kzHF of the small scales by 

(3.18) 

When a% is prescribed, (3.17) are easily integrated, yielding exponentially growing 
and decaying M-energy and M-helicity with a rate of growth (or decay) k(af1. 

We may conclude that small-scale residual helicity destabilizes large-scale 

M-energy and M-helicity. This is reminiscent of the ‘helicity or a effect’ of 
Steenbeck et al. (1966) and Moffatt (1970a, b ;  see also Kraichnan 1976) with, 

however, an important change: both V-  and M-helicities produce a destabilizing 

effect and it is the difference as measured by the residual helicity which is the 

true motor of the instability. 

Phenomenology of M-helicity effect 

Since the existence of an M-helicity effect does not seem to have been recognized 
earlier,t it  is interesting to propose for it a simple phenomenological derivation. 

We assume the following situation at time to: no velocity field, a small-scale 

turbulent M-field b with M-helicity and a strong almost static large-scale 

random M-field B (when viewed from the small scales, B may be treated as 

uniform). Near to, the Lorentz force term will be the dominant one in the 

momentum equation: 
avlat = B . vb. (3.19) 

Integrating with zero initial conditions on v we obtain 

ft 

(3.20) 

For an infinitely conducting medium we have the Ohm’s law 

E(t )  = - V A  ( b + B ) .  (3.21) 

Assuming ( b )  = 0, using (3.20) and (3.21) and averaging over the small-scale 

randomness (operation denoted ( .)ss) we obtain 

(E)sS = It  (b(t) A B . Vb(7))SSdT. (3.22) 

7 The magnetic gyrotropy effect introduced by Vainshtein (1972) and Vainshtein & 
Zeldovich (1972) is distinct from the magnetic helicity effect discussed here [see remark (5 .  l)] 

t, 
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Assuming isotropy this reduces to 

(E>88 = Q7@. (V A b))88 B ,  (3.23) 

where 7 is a typical coherence time of the small-scale M-turbulence. The co- 

efficient 7(b. (V A b))s8 is essentially the magnetic torsality a? defined by (3.5) 

for k = 0. When (3.23) is used in the induction equation aB/at = - V A  E and 

averaging is performed also over the large scales, the well-known helicity-effect 

equation results: 
a(Byat  = - afv A ( B ) .  (3.24) 

This equation, when integrated for a Fourier mode of wavenumber k, gives a 

rate of growth of the mean M-field of klarl. If the large-scale M-field has zero 

mean, as assumed in this paper, a similar growth will be found for the large-scale 

M-energy. The above argument can also be given a purely geometric form in 

terms of twisting of M-field lines as is done for the ordinary (kinetic) helicity 

effect (Steenbeck et al. 1966). Notice that V-helicity will lead to (3.24) with 

- a? replaced by -I- ap. 

The expression for the kinetic torsality 

Our expression (3.6) for the kinetic torsality resembles the one first given by 

Steenbeck et al. (1966) : 
aV = - ~ 7 ( V . V A V ) .  (3.25) 

If most of the kinetic helicity is in small scales with a typical eddy-damping 

time pq = 7-1, then the two expressions are identical. However, our expression 

of the kinetic torsality aK may be substantially smaller than that of Steenbeck 

et al. because the eddy-damping rate pq includes the Alfv6n term 

(cf. 3 2). As the large-scale M-energy grows, the kinetic torsality will be reduced. 

It is often considered that such a reduction is required to obtain a saturation 

mechanism (cf. review paper of Moffatt 1973); however, as we shall see in the 

next section, this probably is not the most effective saturation mechanism. 

Another expression of the kinetic torsality is given by Moffatt (1970a) for 

the limiting case of low turbulent magnetic Reynolds number: 

av = - (2/3h) / q-2Hrdq. (3.26) 
0 

Our expression (3.6) will reduce to (3.26) only if most of the V-helicity is confined 

to the Joule dissipation range, where pq N hq2. In  strong MHD turbulence with 

reasonably high magnetic Reynolds number, the eddy-damping rate a t  helicity- 

containing wavenumbers is more likely to be independent of both viscosity and 

magnetic diffusivity; in this case, the difficulties of the limit A+ 0 discussed by 

Moffatt (1974) do not arise. 
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Kinetic and magnetic eddy diffusivities 

In  the non-local equations (3.1)-(3.4) the terms involving the v’s, which are all 

of first order, describe the diffusive action of small-scale turbulence on large 

scales. It is interesting to note that magnetic diffusivity is present only in the 

equations for kinetic quantities. This result may be recovered in an elementary 

way: let there be given initially a t  to a uniform current J imbedded in small-scale 

M-turbulence. To lowest order, we have for the small-scale velocity 

av/at = J A b - V p  = - ( J . V ) a ,  (3.27) 

where a is the vector potential. Integrating and using Ohm’s law, we obtain 

E(t) = [ ( J .  V )  a(T) A b ( t ) ]  d7. StI (3.28) 

It is easily checked that this electric field is irrotational and thus does not con- 

tribute to the induction term, so that the M-field is unaffected. 

Numerical treatment of non-local interactions 

It is known that conservation of total energy and of M-helicity holds not only 

for the complete nonlinear interaction but also ‘in detail’ for each triad of 

interacting wavenumbers (cf. I). The question therefore arises whether con- 

servation is satisfied to each order of the non-local expansion. It may be checked 

in (3.4) that M-helicity is not conserved by the zeroth-order Alfvhn and helicity 

terms separately. However, after combination, we obtain (Nloc stands for all 

non-local terms) 
(aHjpt),,,, = (rk/k) (H,V - PHF) + ap~y,  (3.29) 

which integrates to zero over the wavenumber k and also gives zero after sum- 

mation over all terms involving a given triad (k, p ,  q)  (detaiIed conservation). 

Similar conservation takes place to first order. The situation is different for total 

energy conservation: the zeroth-order Alfv6n terms give conservation but the 

zeroth-order helicity terms must be combined with the first-order Alfv6n terms 

(involving Fk) to ensure conservation. Therefore, if we want a numerical approxi- 

mation of the non-local interactions based on the expansions (3.1)-(3.4) and 

which has all the desired conservation properties, we cannot keep only the zeroth- 

order terms which are physically the most important ones. The lowest-order 
conservation-consistent system of non-local equations which we have used for 

numerical purposes retains all the terms in (3.1)-(3.4) with the exception of the 

eddy-diffusivity terms and the helical corrections to the Alfv6n effect in the rate 

of change of the kinetic and magnetic helicities. This system is integrated 

numerically together with the local contributions to the full spectral equations 

of table 1 (cf. 9 2 ) .  We have taken three points per octave ( F  = 3), giving a = 0.26 

for the expansion parameter. 
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4. The -8 inertial range of non-helical MHD turbulence 

The non-helical problem has already been considered by Kraichnan (1965), 

Kraichnan & Nagarajan (1967), Nagarajan (1971)’ Orszag (1975) and others. 

The existence for strong MHD turbulence of a - # inertial range with equi- 

partition of V -  and M-energy predicted by Kraichnan (1965) on the basis of 

phenomenological arguments has never been demonstrated either theoretically 

or numerically. This question will now be investigated on the basis of the 

EDQNM spectral equations given in table 1 with all the helical terms removed. 
Let us consider fully developed stationary MHD turbulence maintained by 

forcing near the wavenumber kE with an injection rate e of total (kinetic plus 

magnetic) energy. Most of the energy will then be in the energy range. We 

assume the existence of some inertial range of the form 

with n, and n, greater than one to ensure finite total energy. It is then easily 

checked that, for large enough k, the eddy-damping rate ,uk reduces to the Alfvhn 

contribution 

At this point we make a brief digression to recall Kraichnan’s (1965) pheno- 

menological argument. Since the triad-relaxation time OkPn for wavenumbers 

triads N k is now - (kb0)-l, the energy transfer rate e is expected to be inversely 

proportional to b,. Dimensional analysis then gives an unambiguous expression 

for 8 in terms of b,, k and Ek = EK = EF: 

B - b,-l k3(Ek)2, 

whence Ek = C(cb,)*k-g, (4.3) 

where C is a dimensionless constant. We show now that this argument can be 
made rigorous. For this, we define the energy flux as the rate of transfer of total 

energy through the wavenumber K by (cf. Kraichnan 1959) 

where (slat),,,, means the contribution from the nonlinear (transfer) terms, 

excluding dissipation and forcing. In  order to have an inertial range, we must 

ensure the constancy of the energy flux over a wavenumber range k, < k < kD, 
where kD is a dissipation wavenumber, which can be arbitrarily large. Using 

(4.1) and (4.2) in (4.4) we find that the constancy of IIIp requires as a necessary 

condition nV = n, = #. It remains to investigate the convergence of the integrals. 

Using the expression for the geometric coefficients given in the appendix, we find 

that the energy flux diverges like 

(‘M - ‘ V )  joK q-’ dq, 

the divergence being removed when C, = C,, i.e. a t  equipartition. 
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FIGURE I. The - 8 inertial range of non-helical MHD turbulence. No helicity. V-energy 

injection spectrum F[ = QFk, where Fk = Ck4 exp ( - 2k2) C chosen to give Fk dk = 1 . 

Initial conditions: EL = 0, E f  = 1O-*Fk. Minimum and maximum wavenumbers: 2-5 and 
F4. Magnetic Prandtl number unity, v = h = V- and M-energy spectra represented 
at  t = 12 (large-eddy-turnover time of order unity). Notice the slight excess of M-energy 
in the inertial range. 

( !o* 1 

The constancy of the flux of total energy is not sufficient by itself to ensure 
the existence of a stationary inertial range. Indeed, it only implies zero transfer 

of the total energy, leaving open the possibility of transfer from V- to M-energy 

or vice versa. In  fact, if (4.1) and (4.2) (with CM = C, and n, = nM = 4) are used 

in the expression for the V- and M-transfer functions, given in table 1, it  is 

found that M-transfer is positive and hence V-transfer is negative. To obtain 

identically zero transfer we must correct the equipartition - Q range by higher- 

order terms. We found that the first correction follows a - 2 power law with an 

excess of M-energy ; higher-order corrections have not been investigated. Notice 

that, in spite of the corrections, the relative excess of M-energy 
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FIGURE 2. Growth to equipartition of seed of M-energy. No helicity. Only V-energy injection 
3'r =Fk (defined in figure 1). Initial conditions: EL(0) = 0 and E f ( 0 )  = lO-*F,. Minimum 
and maximum wavenumbers: 2-5 and 2'. Magnetic Prandtl number unity, v = h = sk. 
Evolution of V -  and M-energy spectra. 

As an illustration of our analysis we have integrated numerically the non- 

helical spectral equations. To specify the data we introduce the forcing function 

Fk = Ck4 exp ( - 2k2), (4 .5)  

where C is chosen such that Fk integrates to unity. With this choice the forcing 

wavenumber is IC, = 1. Only V-energy is injected with a forcing spectrum 
Pz = Fk. The magnetic Prandtl number is unity, h = v = minimum and 

maximum wavenumbers are 2-3 and 2l4; the initial conditions are zero for EZ 
and 10-SFk for EF. After a few large-eddy turnover times (here of order unity), a 

stationary state is reached in the small scales, displayed in figure 1, which 

exhibits clearly a - 8 inertial range with a slight excess of M-energy. 
Many more aspects of non-helical MHD turbulence may be investigated with 

the EDQNM spectral equations. These include, for example, the question of 
dependence on the magnetic Prandtl number, which is of great importance in 

astrophysical applications. Since the main purpose of this paper is to study 
helical turbulence, we shall leave out such problems. 

22 F L M  77 
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t t 

FIGURE 3. Evolution of meanV - and M-energies. E i ( 0 )  = 2.8 F,. Conditions same as in 
figure 2. The behaviour for times of the order of the large-eddy-turnover time is shown with 
a dilated time scale on the left. 

Let us now briefly consider a question which is of importance in the dynamo 
problem: does an initial seed of magnetic energy grow to equipartition at large 

wavenumbers, a possibility first discussed by Batchelor (1950)? This problem 
is considered in Kraichnan & Nagarajan (1967) in its linear version (turbulent 

V-field prescribed). It is argued there that growth is not automatically expected 

since the rate of stretching of field lines is of the same order as the rate of turbulent 

dissipation (magnetic excitation being carried along the cascade to the dis- 

sipative sink at high wavenumbers). We have investigated this problem numeri- 

cally with the full nonlinear spectral equations (non-helical). The results are 

displayed in figure 2, which shows the evolution of the V- and M-spectra. Only 

V-energy is injected using Fg = F,, where Fk is defined in (4.5). The initial spectra 

are EL(0) = 0 and Ei)l(O) = 10-3Fk. The magnetic Prandtl number is unity, 
v = h = z&. Notice the growth of the M-energy, first at the highest wave- 

numbers, where equipartition is obtained; the bottom of the equipartition range 
then moves to smaller wavenumbers in a way reminiscent of the inverse cascade 

of errors in the predictability problem of ordinary turbulence (Leith & Kraichnan 

1972). Approximate equipartition is obtained at small scales in a few eddy- 

turnover times. On the large scales more time is needed to reach stationarity; 

this is seen in figure 3, which shows, under the same conditions as figure 2, the 

evolution of the total V -  and M-energies, which reach, after about fifty large- 
eddy turnover times, saturation values of 2.4 and 1.5. It must finally be empha- 

sized that, if the Reynolds number is very large, the growth of the M-field cannot 

be correctly analysed solely with the linear Ohm’s law even when the mean 
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M-energy is only a small fraction of the mean V-energy. The reason is that the 

M-energy, however small, will give rise to Alfvh waves (not describable in 

terms of the Ohm’s law) on sufficiently small scales, which then will rapidly bring 

V- and M-excitation to equipartition. Of course, if b, goes to zero, the Reynolds 

number above which the linear treatment becomes invalid goes to infinity. 

5. The inverse cascade of magnetic helicity 

It was conjectured in I that the presence of M-helicity introduces a very 

important novel feature into three-dimensional MHD turbulence, namely the 

existence of an inverse cascade of M-helicity from small to large scales; thus 

far only two-dimensional non-magnetic turbulence was known to possess an 

inverse cascade. 

Initial transfer 

Let us consider the simplest helical initial-value problem with no forcing. 

We take 

(5.1) 

where the initial energy spectrum Fk is given. [ measures the relative &I-helicity 

at the initial time. We assume that most of the initial energy lies near the wave- 

number k, (if Fk is given by (4.5), k, = 1). The question is: is there initially any 

transfer of magnetic energy to small wavenumbers k < k, ? If the initial con- 

ditions are taken to be Gaussian, the initial triple correlations and the initial 

time derivatives of the spectra vanish. Let us then evaluate the second derivative 
of the M-energy spectrum at time t = 0 for wavenumbers k < k,. Using (3.2) 

and (3.9) and the fact that Bkpp(t) = t + O(t2) [cf. (2.4)] we obtain 

I EE(0) = EF(0) = Fk, 

H;eV(O) = 0, HP(0) = <Fk/k, 

where most of the integral comes from q N k,. Since the right-hand side of ( 5 . 2 )  

is clearly positive, we see that the presence of M-helicity induces an initial transfer 

of M-energy to small wavenumbers, however small the relative amount of 
M-helicity <. It must be stressed that, when Gaussian initial conditions are used, 

the full MHD equations and the EDQNM approximation agree to O(t3); there- 

fore (5.2) holds also for the full MHD equations. The initial positive transfer of 

M-energy at small wavenumbers is indeed observed in the direct numerical 

simulations of Pouquet & Patterson (1976).t 

Numerical integration 

To discover whether inverse transfer is a permanent feature of helical MHD 
turbulence, it is necessary to inject M-helicity, say near k,, and see whether 

t In the non-helical case, the corresponding initial-value problem leads to  a negative 
second derivative of the M-energy spectrum for small wavenumbers stemming from the 

eddy-diffusivity term in (3.2). 

22-2 
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FIGURE 4. The inverse cascade of M-helicity. Injection of V -  and M-energy and M-helicity 
(maximal): FF = B’F = 7$f = hFk (Fk defined in figure i) ,  Pp = 0. Initial conditions: zero. 

Minimum and maximum wavenumbers: 2” and Z4. Magnetio Prandtl number unity, 
Et = h = >I;. Evolution of M-helicity spectrum for times large compared with the eddy- 
turnover time at the injection wavenumber. 

an inverse cascade builds up. This is easily done numerically using the spectral 

equations. The energy injection spectra are taken to be as in the non-helical 
case of $4: 

where Fk is defined by (4.5). The helicity injection spectra are 

F[ = F f  = 0.5Fk, 

pg = 0, $2 = 0.5Fk/k. (5.3) 

This choice corresponds to the maximal injection rate of M-helicity (maximality 

is not required but saves computer time). The initial conditions are zero; the 

minimum and maximum wavenumbers are 2-6 and 24. The magnetic Prandtl 

number is unity: v = h = &. In  figure 4 the M-helicity spectrum 1;s plotted at 

different times large compared with the eddy-turnover time at the injection 
wavenumber, the latter being of order unity. As time progresses, more and more 

M-helieity is transferred to small wavenumbers. For a fixed wavenumber 
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FIGURE 5. Variation of M-energy spectrum in the inverse 
cascade. Same conditions as in figure 4. 

k (kmin  < k < kE),  H f ( t )  converges to a quasi-stationary spectrum which 
follows approximately a - 2 law. For fixed t ,  HF achieves its maximum at a 

wavenumber kl( t )  N t-l. The M-energy spectrum is displayed in figure 5. It 
has the same overall features as the M-helicity spectrum and follows approxi- 

mately a - 1 law. The V-enere spectrum at t = 200 is displayed together with 

the M-energy spectrum in figure 6. Approximate equipartition is obtained except 

at the smallest wavenumbers. Similar results hold for V- and M-helicities. The 
variation of the total M-helicity and energy are plotted in figure 7 together with 

the total injected helicity and energy; notice that M-helicity increases almost 
linearly with a slope slightly less than the injected helicity, an indication that 

most of the injected M-helicity is transferred to small wavenumbers rather than 

being dissipated. This is in contrast with the total mean M-energy, which 
increases much more slowly and may (possibly) saturate; still, the M-energy 

reaches a t  t = 200 a value more than twice the equipartition value attained in a 
similar non-helical run. Computer CPU time up to t = 200 was about 20 min on a 
CDC 7600. 
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FIGURE 6. V -  and M-energy spectra in the inverse cascade at 
t = 200. Same conditions as in figure 4. 

16 

The inverse cascade as a competition between Alfve'n and helicity effects 

The physics of the inverse cascade of M-helicity can be readily understood in 

terms of the two basic non-local effects introduced in $3. The residual (kinetic 

minus magnetic) helicity in the energy range, say k N k,, coming from the 
M-helicity injection, produces, by the helicity effect, a growth of both M-energy 

and ill-helicity in smaller wavenumbers, say k N +kE; the growing M-energy 

near gkE tends by the Alfvh effect to reduce the residual helicity near k, 
whereas the growing M-helicity near &kE destabilizes smaller wavenumbers, say 

k N * I C E ,  and so on. The appearance of V-energy and helicity also in the small 

wavenumbers can be explained by the action of the Lorentz force. Notice that, 

by the above mechanism, saturation of the spectra a t  a given wavenumber is 

obtained but not overall saturation since the inverse cascade may proceed to 

ever-smaller wavenumbers. 

Remark (5.1) (concerning the saturation mechanism of Vainshtein & Zeldo- 
vich). Another saturation mechanism which should prevent indefinite growth of 

large-scale 41-fields is invoked by Vainshtein (1927) and Vainshtein & Zeldovich 
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FIGURE 7 .  Mean M-energy and helicity in the inverse cascade. Same conditions as in 
figure 4. Dotted and dashed lines are total injected M-energy and helicity. 

(1972). In  our language their argument may be analysed as follows. Let there be 

given initially small-scale positive V-helicity H g  > 0 and (implicitly) no M -  

helicity; then ap will be negative and by (3.17) the large-scale M-helicity will 

grow, at a rate Iclafl, to large negative values, whence the helical correction 

coefficient to the Alfv6n effect F k  given by (3.9) will be negative and because of 

(3.3) small-scale V-helicity will be increased. Now, the conclusion of Vainshtein 
& Zeldovich is that, under the same conditions, small-scale V-helicity is reduced 

as needed for saturation. The ‘negative’ V-helicity so generated is what they 

call ‘magnetic gyrotropy’. Even if the effect had the sign claimed, i t  would still 
be much smaller than the saturation effect resulting from the simultaneous 

consideration of V- and M-helicity described in 3 5. 

The - 2 inertial range of M-helicity 

Let us apply a simple dimensional argument of the Kolmogorov type to the 
inverse cascade of M-helicity. Denoting by Eg the absolute value of the rate of 

transfer of M-helicity in the inverse cascade (which may differ from the injection 

rate Ev if some M-helicity is lost through dissipation), we assert that E f  and 
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H p  are functions solely of EE and k, to obtain (with dimensionless constants C, 
and C,) 

which is in reasonable agreement with our numerical results for the quasi- 

stationary spectra. This type of reasoning must however be used with great 

care since it is known that the result may be altered by non-local effects: in the 

non-helical case of 8 4, naive dimensional reasoning would have produced a - 
instead of a - + inertial range. A deductive theory of the inertial-range spectra 

starting from the fundamental MHD equations is ruled out in the present state 
of turbulence theory. However, such questions can usually be answered com- 

pletely within the framework of spectral equations as was done for the - #  
non-helical inertial range. For helical turbulence, the idea would be to introduce 

power-law spectra into the analytic expressions for the M-helicity flux nf, 
defined as in (4.4) with Hpinstead of EL + EF; then one imposes 

lim i=@f = - EE, 

which expresses the (asymptotic) constancy of M-helicity flux. We have found 

that this constancy cannot be achieved if the inertial-range exponents differ 
from those given by (5.4). However, with this choice, flf still has a logarithmic 

dependence on k. This is reminiscent of what happens in the enstrophy inertial 

range of two-dimensional non-magnetic turbulence (Kraichnan 197 1 b ) .  In  the 

two-dimensional case, the log dependence originates from non-local effects and 

can be eliminated by a suitable log correction to the spectrum itself. We have 
tried a similar procedure in the present case but have encountered certain 

difficulties which have not been overcome. Whether or not there is a log correction 

in the M-energy and the M-helicity spectra may seem an academic question 
which is certainly beyond direct numerical and experimental verification. 

However, connected with this, there are some important unsettled questions. 

(i) For a - 1  quasi-stationary M-energy spectrum, the mean M-energy 
diverges logarithmically a t  k = 0; a log correction may possibly imply a satura- 

tion of the mean M-energy. 

(ii) Will exact equipartition of energies and helicities be achieved in the 

quasi-stationary solution? This question is connected with the previous one, 

since the more M-energy present in the small wavenumbers, the more V -  and 
M-excitations will be coupled by the Alfv6n effect. 

Remark (5.2). A possibility which cannot be ruled out is that the eddy-damping 

rate given by (2.9), which has a positive Alfvkn contribution, should also have a 

negative helicity contribution to account for the destabilization of large-scale 

triple correlations by small-scale helicity. This can however make the total 

eddy-damping rate negative, a situation which probably no Markovian theory 

such as the EDQNM or the TFM can meet. The direct-interaction approximation 

(Kraichnan 1958, 1959), in spite of its statistical Galilean non-invariance, may 

possibly be more adequate. 

k+O 
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6. The nonlinear turbulent dynamo 

We come now to the fundamental question of this work: can large-scale 

31-fields be generated by turbulence? We already know from $ 4  that in the 

non-helical case an initial seed of M-energy will grow to equipartition values at 

small scales in a few local eddy-turnover times. We also know from $5  that, if 

magnetic helicity is injected, large-scale M-energy will appear as a consequence 

of the inverse cascade. But what happens if we make the more realistic assump- 

tion that only kinetic helicity is being injected, along with V-energy? Since 

V-helicity is not conserved in MHD by the nonlinear interactions a cascade 

(direct or inverse) of V-helicity is not expected. Nevertheless, we shall see that 

an inverse cascade of M-helicity still takes place in spite of the absence of 

injection of M-helicity. This may be understood as follows. 

Let us consider a purely kinetic turbulence maintained by V-energy and 

positive V-helicity injection near a wavenumber k,; this is the non-magnetic 

helical case considered by Brissaud et al. (1973) and Andre & Lesieur (1976). 

Now let us introduce an initial weak seed of M-field a t  time to. After a few local 

eddy-turnover times, the M-energy in high wavenumbers will have grown to 
equipartition values with V-energy and we then have a truly MHD situation. 

The M-energy interacting with V-helicity will then generate M-helicity through 

the term TpM of the spectral equation (cf. table 1); it  may be checked that this 

M-helicity is positive a t  large wavenumbers and negative at small wavenumbers. 

First the generated spectrum will integrate to zero since the nonlinear interactions 

conserve total M-helicity; however, the positive M-helicity a t  large wave- 

numbers will be removed by dissipation, which acts like a source of negative 

M-helicity. This negative M-helicity will now cascade to small wavenumbers, 
following the scheme described in the previous section. Calling 3' the (positive) 

injection rate of V-helicity and I?iY the resulting (negative) rate of transfer of 
M-helicity to small wavenumbers, a dimensional argument indicates that 

(6.1) 
= -ZVk-2  * ,  

where k, is a typical wavenumber for generation of M-helicity. Since most of 

the excitation is in the energy range, we expect to have 

k, w k,. (6-2) 

The above ideas are now checked numerically. For this, the injection spectra 

are 

where Fk is given as usual by (4.5); notice that the choice of %; corresponds to 

maximal V-helicity injection (cf. I). The V-helicity injection rate is EV = 0.532. 

The initial conditions are 

EL(0) = Fk, HF(0) = 0, EF(0)  = O.lFk, H f ( 0 )  = 0. 

Except for short times, the value of EL(0) is irrelevant because of the injection 

of energy; the same holds for E f ( 0 )  as long as it  is not identically zero. The 
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FIGURE 8. M-energy spectrum in the turbulent dynamo. Injection of_only V-energy and 
helicity (maximal): FL = PL/k = +Fa. (Fk defined in figure l ) ,  F f  = Ff = 0. Initial con- 
ditions(seedofM-energy):EL(O) = Fk,HL(0)  = O , E f ( O ) =  O.lFkandHf(0) = 0.Minimum 
andmaximum wavenumbers: 2" and 24. Magnetic Prandtlnumber unity, Y = h = &. Notice 
the build-up of large scale M-energy. 
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FIGURE 9. M-helicity spectrum in the turbulent dynamo. Same conditions as in figure 8. 

The M-helicity spectrum is positive to the right of the vertical line and negative to the left. 
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t 

FIGURE 10. Mean V -  and M-energies and helicities in the turbulent dynamo. Same con- 
ditions as in figure 8. Notice the saturation of V-energy and helicity, but not of M-energy, 
and the linear growth of M-helicity. 

minimum and maximum wavenumbers are 24 and Z4. The magnetic Prandtl 

number is unity: v = h = &. The eddy-turnover time a t  the injection wave- 

number is of order unity and the full helical equations have been integrated up 
to t = 240. The M-energy and helicity spectra a t  t = 120 and t = 240 are shown 

in figures 8 and 9. The appearance of large-scale M-energy and helicity is parti- 

cularly conspicuous although the - 1 inertial range of M-energy and, even more, 

the - 2 inertial range of M-helicity are not very well defined. The evolution of 

the mean M- and V-energies and helicities is shown in figure 10. Notice that 

V-energy and helicity remain practically constant after a few large-eddy turn- 
over times whereas M-helicity, which starts from zero, has an asymptotically 

linear growth with a rate P = - 0.065, corresponding to k, = 2.9kE in (6.2); 

M-energy exceeds V-energy for t 2 30 and grows approximately like t f .  Up to 

t = 30 the yield of the dynamo, defined as mean M-energy divided by the total 

injected V-energy, is of the order of 7 yo. 
It may be of interest to estimate the order of magnitude of the time required 

to build-up large-scale M-energy at a given scale L when V-helicity is injected 
at a rate E"V per unit mass and a t  a scale I,,,. For this, we take for the inertial range 

of M-helicity the form (5.4) with the order-one numerical constant C, dropped. 

Let this range extend from K = L-l to kinj = l ~ ; ,  then the total M-helicity 
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The time required to inject this M-helicity is 

In  view of (6.1) and (6.2) we obtain 

t(L, Zini) M L( [ P[  zkj)-*. (6.5) 

It is seen that this time is proportional to the large scale. Equation (6.5) has 

been found to be in good agreement with our numericaI results. Notice that the 

kinetic helicity effect of the linear dynamo theory already gives a build-up time 

proportional to the large scale when the kinetic torsality can be considered as 

prescribed. The point is, however, that in the nonlinear case the growth of 
large-scale M-fields does not result directly from the destabilization by the 

kinetic helicity injected a t  small wavenumbers, but is obtained by a cascade 

which poses no saturation problem. 

If this result is to be appIied to a realistic problem, homogeneity and isotropy 

must be given up but (6.5) is probably still valid as an order of magnitude. The 

simplest mechanism which will generate V-helicity is the combination of an 

overall rotation SZ and a gradient of turbulent V-energy (v2)  with typical scale 

Zgrad (LBorat 1975). The local V-helicity injection rate is then found to be of 

the order of 

\PI M sl{vZ)z;:& (6.6) 

t ,  M L(n{v2)1&, (6.7) 

Using (6.6) in (6.5) we obtain for the build-up time t ,  

It must be stressed that dissipation-range quantities such as viscosity and 

magnetic difisivity do not appear in this relation. 

As an illustration, we consider the time necessary to regenerate the global 

solar magnetic field starting from zero. We take Igrad and I,,, equal to a typical 

height scale (a few hundred kilometres); we take velocities of the order of 1 km/s; 
the large scale L is the radius of the sun. The build-up time is found from (6.7) 

to be of the order of one year. 

7. Summary and discussion 

This work confirms the importance of helicity both in its kinetic and in its 

magnetic form for the generation of large-scale magnetic fieIds by turbulence. 

We recall that in I investigation of the absolute equilibrium of MHD turbulence 

suggested the possibility of an inverse cascade of M-helicity to small wave- 

numbers, analogous in certain respects to the inverse cascade of energy in two- 

dimensional non-magnetic turbulence (Kraichnan 1967; Pouquet et al. 1975). 

The homogeneous isotropic helical MHD turbulence problem has been investi- 

gated using a modification of the eddy-damped quasi-normal Markovian 
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(EDQPU’M) approximation (Orszag 1970, 1976). In  the MHD case, the eddy- 

damping rate includes a contribution from Alfvhn waves. A set of four coupled 

integro-differential equations has been obtainedin 3 2 for the kinetic and magnetic 

energy and helicity spectra. The cross-helicity spectrum (corresponding to the 

invariant H, = &/v. b d3r) has been taken identically zero, because if it  is zero 

initially it remains so and we are mainly interested in the generation of magnetic 
fields starting from an infinitesimal seed field. 

In 3 3, non-local interactions involving triads of wavenumbers (k, p ,  q)  with 

k << p - q or q < k N p were found to be very important in magnetic turbulence; 
outstbanding effects are as follows. 

(i) The Alfve‘n efect. Relaxation to zero of the residual energy EF = EL- E f  
and residual helicity H f  = HL - k2HF in a time of the order of the period of 

Alfvhn waves produced by large-scale magnetic fields, 

(ii) The kinetic and magnetic helicity efects. It is found that small-scale helicity 

destabilizes large-scale magnetic energy and helicity . However, it is not the 

kinetic helicity alone which acts, as in the Steenbeck et al. (1966) theory, but the 
residual helicity. The rate of growth involves the ‘ torsality’ a% = a; - a?. The 

expression for the kinetic torsality a; reduces to that given by Moffatt (1970a) 

when most of the helicity is confined to the dissipation range. 

The question of possible energy and helicity cascades and their direction has 

been considered both theoretically and numerically in situations with large 

Reynolds number and unit magnetic Prandtl number. In  the magnetic non- 

helical case Kraichnan’s (1965) phenomenological theory predicts a - Q inertial 

range where V- and M-energy are in equipartition at each wavenumber and 

cascade to large wavenumbers. We have indeed obtained in 5 4 a - Q equi- 
partition inertial range but there are - 2 corrections (and possibly higher ones) 

leading to an excess of M-energy. The same excess of M-energy is also found in 
the direct numerical simulations at much lower Reynolds numbers of Pouquet 
& Patterson (1976). 

In  the magnetic helical case, we have first considered in $ 5  the case when 

M-helicity is injected into the energy range. An inverse cascade of M-helicity 

is obtained which carries M-helicity, M-energy and appreciable amounts of 
V-helicity and V-energy to ever-larger scales. The total M-helicity grows linearly 

with time; the mean M-energy has a slower growth and may possibly saturate. 
In  this inverse cascade, M-energy and helicity spectra follow approximately - 1 

and - 2 power laws. The inverse cascade proceeds as follows: the residual helicity 

in the energy range, say k N kE, coming from the M-helicity injection produces a 

growth by the helicity effect of both M-energy and M-helicity in smaller wave- 

numbers, say k - Bk,. The increasing M-energy near $kE tends by the Alfv6n 

effect to reduce the residual helicity near k, whereas the M-helicity near 4kE 
destabilizes smaller wavenumbers, say k - $kE and so on. 

The existence for the full nonlinear MHD equations of an inverse cascade of 

M-helicity with a clearly displayed quasi-stationary inertial range (see figure 4) 

is a much stronger property than the already recognized existence of inverse 

transfer of energy by the (kinetic) helicity effect, which is a consequence only 

of t’he linear Ohm’s law (Roberts 1971). 
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The cascade mechanism, a competition between the helicity and Alfvhn effects 

leading to an indefinite cascade, is quite different from that envisaged by several 

authors who were looking for a nonlinear saturation mechanism which would 

halt the growth of the M-field. Moffatt (1970a, b,  1972) considers a system with 

inertial helicity waves where dissipation plays an essential role in ordei not to 

obtain zero residual helicity (what Moffatt calls cancellation of the helicity effect 

by non-dissipative Alfvhn waves); the largest growth rate is obtained for a 

preferred wavenumber, in contrast to our case, where the growth of M-excitation 

proceeds step by step until either injection stops or the largest scale available 

in the medium is a.ttained. As for the saturation mechanism considered by 

Vainshtein (1972) and Vainshtein & Zeldovich (1972),  we refer the reader to 
remark (5.1).  

In  $ 6  we have obtained a truly nonlinear turbulent dynamo which needs only 

V-energy and helicity injection plus a seed of M-field. Again an indefinite 

cascade of M-helicity takes place and the time required to generate N-fields of 
a given scale L is found to be proportional to L. 

Finally, it  remains to ask how relevant the present EDQNM homogeneous 

isotropic theory may be to (i) the original MHD equations ( 1 .  I )  and (1 .2 )  and 

(ii) real flows encountered in nature, particularly in astrophysical situations. 

For the first question, there is strong evidence from direct numerical simulation 

of the MHD equations (Pouquet & Patterson 1976) that our results on inverse 

transfer of M-helicity and energy are not spurious effects introduced by the 

EDQNM approximation. In  this direct numerical simulation of decaying helical 

MHD turbulence, which uses a modified Orszag-Patterson (1972) scheme with 

323 Fourier modes, the transfer of M-energy to small wavenumbers is found to 

be persistently positive when M-helicity is present, whereas it is negative in the 
non-helical case. 

The second question raises problems such as: what happens if one includes 
anisotropy, inhomogeneity, rotation, boundary conditions, compressibility, etc. ‘1 

Compressibility generally destroys the V-helicity invariant in the non-magnetic 

case but it does not destroy the M-helicity invariant, which requires only Ohm’s 

law. Since the basic ingredient of the inverse cascade is the conservation of the 

M-helicity, the build-up of large-scale fields by an inverse cascade mechanism 

is not ruled out in compressible media. Anisotropies, inhomogeneities, rotation 

and boundary conditions can, in principle, be dealt with by the EDQNM method, 

although the exact expression for the eddy-damping rate is somewhat uncertain 
and a more complete theory like the generalized TFM (Kraichnan 1972) would 

in principle be preferable. However, the algebraic and numerical work implied 

is so formidable that this must be ruled out. Anyhow, i t  is likely that in weakly 

anisotropic and inhomogeneous situations the overall feature of MHD turbulence 

will not be upset, in particular the - $ non-helical inertial range and the expres- 

sion (6.5) for the build-up time of large-scale fields. To cope with rotation, 
boundary conditions and non-prescribed systematic velocity fields, the simplest 

procedure may be a parametrization of the small-scale turbulence like that done, 

for example, by Malkus & Proctor (1975) .  However, certain precautions are 

required: turbulent eddy diffiisivities must be used and i t  is not legitimate to 
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assume a given torsality a since Alfvkn waves propagating in the large-scale field 

B, (random or deterministic) will relax the residual torsality to zero in a time 
N IB,I-l. 

We are grateful to J. C. AndrB, J. Herring and R. Kraichnan for helpful 

advice. We also thank for its generous hospitality the National Centre for 

Atmospheric Research, where most of the numerical calculations were done on 
a CDC 6600/7600. 

Appendix 
Geometric coeficients 

Let a, p and y be the angles opposite to the sides k, p and q of a triangle, and let 

x, y and z be their cosines. The geometric coefficients appearing in the spectral 

equations are 

hkpq bkpq = = (P/k) (p/k) (xy ( 2 + x Y )  + 23), = 1-Y2, j k p q  ckpq = = (p/k)z(1-x2), @/k)z(1-y2)?] (A 1) 

(A 2) ekpq = x( 1 - 22), fkpq = z - xy - 2zy2. 

Coefficients (A 1) are identical to those of Kraichnan & Nagarajan (1967). They 

can all be written solely in terms of bkpg and ckPq: 

hkpq = 'kpq + (p2/q2) ckqp, j k p p  = (PYk2) cpkq, 

ekpq = (P/q) cpqk, f k p q  = (k/P) Ckpq- (kP/q2) 'kqp. 

Other useful relatioiis are (see also Kraichnan & Nagarajan 1967) 

Expansions for non-local interactions 

Calculations are more easily carried out in polar co-ordinates with integration 

variables (q, ,8) or (p, y )  instead of the bipolar co-ordinates (p, 4). The volume 

element must be changed according to 

dp dq = (kq/p) sin p dp dq = (kp/q) sin y dy dp . (A 6) 

In  obtaining the non-local contributions to the transfer, frequent use is made 

of the following formulae, for which three cases must be distinguished. 
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z( 1 - y2) dp d q  = k{ - cos /3 sin3 /3 + kq-l sin5 /3 - kq-1 sin3/3 cos2 /3 

( z  +xy)dpdq = k{kq-1sin3/3+O(k2q-2)}dqd/3, 

z( 1 - x2)  dp dq = k{ - k2q-2 sin3 /3 cos /3 + O(k3q-3)} dq d p ,  

+ O(k2q-2)} dq dP, 

x(1 -z2)dpdq = k{sin3/3+ 3kq-1~in3/3cos/3+0(k~q-~)}dqd,O,  

(z-xy-2zy2)dpdq = k{-2co~/3sin~/3+kq-~sin~/3(1 -4cos2/3) 

+ O(k2q-2)} dq dp .  

( b )  p <  k =  q 
q = k(1 -p,k-lc0~y+O(p2k-2)}, 

x = - cos y +pk-l sin2 y + O(p2k-2), 

y = 1 - $p2k-2 sin2 y + O ( P ~ ~ - ~ ) ,  z = cosy,  

dp dq = p{sin y + p k l  sin y cosy + O(p2k-2)} dp dy ,  

(xy  + z3)  dp dq = p{ - cosy sin3 y +pk-l sin6 y + 0 ( ~ ~ k - ~ ) }  dp dy ,  

z( 1 - y2) dp dq = p{p2k-= sin3 y cos y + O ( P ~ ~ - ~ ) }  dp dy,  

( z  + xy )  dp dq = p{pk-l sin3 y +- O(P~TC-~)} dp dy,  

z( 1 - x2) dp dq = p{cos y sin3 y + 3pk-l sin3 y cos2 y + O(p2k-2)} dp dy, 

x(  1 - z2)  dp dq = p{ - cosy sin3 y +pk-l(sin4 y - sin3 y cos2 y )  

( z  - xy  - 2zy2) dp dq = p{ -pk-l sin3 y + O(p2k-2)) dp dy.  

+ O(p~k-”} dP dy,  

(4 q 4  k = p  
p = k{ 1 - qk-l cos /3 + O(q2k-2)}, 

x = -cos/3+qk-1sin2~+O(q2k-2) ,  y = cosp, 

z = 1 - Qq2k2sin2/3+ O(q2k-2), 

dpdq = q{s in /3+qk-1s in~cos~+O(q2k-2)}dqd/3 ,  

(xy+z3)dpdq = q { s i n 3 ~ + 2 q k - 1 s i n 3 ~ c o s ~ + O ( q 2 k - 2 ) } d q d ~ ,  

z( 1 - y2) dp dq = q(sin3 /3 + qk-l sin3 cos /3 + O( q2k-2)} dq d p ,  

( z  +xy)dpdq = q ( ~ i n ~ p + 2 q k - l s i n ~ / 3 ~ 0 ~ / 3 + O ( q ~ k - ~ ) ) d q d / 3 ,  

z( 1 - x2) dp dq = q{sin3p + 3qk-1 sin3@ cos /3 + O(q2k-2)} dq d/3, 

x( 1 - z2) dp dq = q{ - q2k-2 sin3 p cos /3 + O(q3 k-3)) dq d p ,  

( z  - xy  - 2zy2) dp dq = q{sin3p + O ( q 2 k 2 ) }  dq dp. 
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