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Abstract. We describe the resulting phenomenology of string theory/supergravity models with strong
moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict
universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity
mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which
like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino
masses (30-1000 TeV). We compute the low energy spectrum as a function of m3/2. We see that the Higgs
masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of
chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark
matter (wino-like).
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1 Introduction

One of the goals of this paper is to discuss an interesting
interplay between string theory models with moduli stabi-
lization, inflationary cosmology, phenomenological models
of supergravity and the mass of the Higgs boson. Usually
string theory is associated with an energy scale which is
many orders of magnitude higher than the energies acces-
sible at the LHC. This would make it extremely difficult
to test various consequences of string theory. However,
models of moduli stabilization in string theory such as
KKLT [1] allows one to investigate string phenomenology,
as well as string cosmology, from a new perspective. As we

will see, that while string theory models with strongly sta-
bilized moduli, provide natural solutions to several cosmo-
logical problems, they lead to a clear separation in scales
in which the effects of string moduli can be tested in low
energy experiments.

One of the results found in the simplest versions of
the KKLT construction indicates that the mass of the
volume modulus, which describes the “rigidity” of com-
pactification, is of the same order of magnitude as the
gravitino mass [2, 3]. If one then makes the standard as-
sumption that the gravitino mass is in the TeV range or
below it, KKLT constructions bring the scale of supersym-
metry breaking in string theory, as well as the masses of
some of the the string theory moduli, down to the LHC
energy range. This fact has an interesting phenomenologi-
cal implication: Supersymmetry breaking in the standard
model may be directly affected by details of the KKLT
construction. Depending on one’s point of view, this may
be good news, if one tries to study properties of string
theory compactification at LHC, or bad news, if one at-
tempts to make predictions independent of the intricacies
of string theory.

More importantly, this softness of string theory com-
pactification in the simplest versions of the KKLT scenario
leads to a specific cosmological problem: vacuum desta-
bilization and decompactification of space if the Hubble
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constant during inflation was greater than the gravitino
mass [2]. The requirement H ≤ O(1) TeV is extremely
restrictive; it would eliminate most (though not all) of the
presently existing models of inflation. Moreover, a light
volume modulus would lead to a novel version of the cos-
mological moduli problem, which has plagued supergrav-
ity cosmology for more than three decades [4]. In addition,
one would still need to solve the cosmological gravitino
problem, which is another long-standing problem of su-
pergravity cosmology [5, 6].

A possible solution to the problem of vacuum desta-
bilization was proposed back in 2004, in the same paper
where the existence of this problem was expounded [2].
This solution is realized by adding an extra term to the
superpotential of the KKLT scenario, as in the well-known
racetrack potential. In this construction, the volume mod-
ulus mass can be made arbitrarily large, the barrier stabi-
lizing the stringy vacuum can be made arbitrarily high, for
any value of the gravitino mass, and the problem of the
cosmological vacuum destabilization disappears. To dis-
tinguish this model from the original version of the KKLT
scenario, we will refer to it as the KL model.

It has often been remarked that the KL model is very
fine-tuned. However, a more detailed investigation of this
issue in [3, 7] has demonstrated that the degree of fine-
tuning of the parameters of this model is exactly the same
as in the standard Polonyi model, or in the original version
of the KKLT scenario: It is determined only by the pos-
tulated smallness of the gravitino mass. More specifically,
in the KKLT model, the constant term in the superpoten-
tial, W0, must be tuned small. In the KL model, we need
approximately the same small number added to a number
of O(1) in the superpotential. Recently, a set of super-
gravity inflationary models incorporating the KL scenario
was proposed, which are very simple and nevertheless are
general enough to describe any set of observational pa-
rameters ns and r to be determined by the Planck satel-
lite [7–10]. The KL mechanism of vacuum stabilization
can be used also in models of chaotic inflation in string
theory as proposed in [11].

An interesting feature of this class of inflationary mod-
els is a controllably small value of the reheating tempera-
ture. The gravitino problem may be resolved by a suitably
low reheat temperature or as we will see a large gravitino
mass which is imposed by the resulting supersymmetric
sparticle spectrum. As for the cosmological moduli prob-
lem, supersymmetry breaking is an unavoidable part of
the KKLT and KL scenario, which is related to the mech-
anism of uplifting (see next section). As we shall see, if
this mechanism is realized through F -term uplifting, no
light Polonyi fields are required. This addresses the cos-
mological moduli problem in the KL scenario, where all
moduli can be superheavy.

These advantages of the KL scenario prompted an in-
vestigation of its consequences for particle phenomenol-
ogy [3,7]. The results of this investigation appeared to be
much more general than initially expected and apply to

the KL model, as well as any other version of the KKLT
scenario with strong modulus stabilization.

Because of the strong modulus stabilization, the KL
scenario leads to some very specific predictions for su-
persymmetry breaking and particle phenomenology: It
describes a certain version of split supersymmetry with
anomaly mediation [3,7]. Moreover, this prediction is sta-
ble with respect to various modifications of the KL model:
The same type of supersymmetry breaking and the same
pattern of particle masses appears in any version of the
KKLT scenario with strong moduli stabilization, which
makes the theory cosmologically consistent [3]. A more
precise formulation and explanation of this statement is
contained in Section 2, where we give a brief review of the
KKLT and KL models.

Moreover, heavy scalars as predicted here are phe-
nomenologically interesting for many reasons. Indeed, it
is well known that heavy squarks can greatly improve the
constraints coming from SUSY flavor and CP violating in-
teractions. In addition, from a theoretical point of view,
it is more likely that scalars have heavier masses than
fermions, as fermions can be protected from large radia-
tive corrections whereas scalar particles are generally not
protected.

In this paper, we continue an investigation of the low-
energy phenomenology of the KL model, as well as all
other versions of the KKLT scenario with strong moduli
stabilization. After a brief review of moduli stabilization
and uplifts in Section 2 and establishing the sources of soft
supersymmetry breaking masses in Section 3, we describe
the procedure for consistently including radiative elec-
troweak symmetry breaking in this theory. Because mod-
els with strong moduli stabilization require heavy scalars
(as in split supersymmetry [12]) with relatively light gaug-
ino masses (as in models with anomaly mediation [13])
there are difficulties in constructing a UV completion for
this anomalously split supersymmetric model with the
boundary conditions imposed by supergravity. These prob-
lems and possible solutions will be discussed in Section 4.
In Section 5, we describe the sparticle mass spectrum in
this theory as a function of gravitino mass. For obvious
reasons, we concentrate on the predictions for the Higgs
mass in such models. As we will see, to generate a chargino
mass of at least 104 GeV (to be consistent with the LEP
bound [14]) we need a gravitino mass m3/2 & 30 TeV.
At this value, the Higgs mass is ≃ 125 GeV, and rises
slowly to ∼ 130 GeV whenm3/2 ∼ 1000 TeV. In Section 6,
we consider other phenomenological aspects of the model
such as the role of 1 TeV gluinos and their detectabilility
at the LHC. We also describe the prospect for dark mat-
ter in these models, as well as dark matter detection. Our
conclusions are given in Section 7.
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2 Moduli stabilization and uplifting: a brief

review

2.1 KKLT versus KL

The KKLT (KL) sector consists of a single chiral field: the
modulus ρ. We will denote SM fields collectively as φ. The
scalar potential for uncharged chiral superfields in N = 1
supergravity is [15]

V = eK
(
Kab̄DaWDbW − 3|W |2

)
, (1)

where as usual we defined DaW = ∂aW +KaW . We de-
fine a Kähler potential with a no-scale [16] structure in the
moduli sector and kinetic terms in the matter sector de-
pending in some unspecified way on the modulus ρ. This
can be written as

K = −3 log(ρ+ρ̄)+hji (ρ, ρ̄)φ
iφ̄j+K(Si, S̄i)+∆K(φi, φ̄i)+· · · ,

(2)
where · · · denote terms of higher-order in matter fields φ,
irrelevant for our purposes. In a type IIB string theory
setup orientifolded by Ω′ = Ω I6(−1)FL , where I6 denotes
parity in the six internal dimensions and (−1)FL is the
left-handed fermion number [17], with D7 and D3 branes,
the function h(ρ, ρ̄) is a constant if matter fields originate

from D7-D7 sector, it is given by hji (ρ, ρ̄) = δji /(ρ + ρ̄)
for fields in the D3-D3 sector and has specific form for
fields living at the intersection of various branes. We will
discuss the fields Si which are associated with F -term up-
lifting below and we specify ∆K in section 4 in connection
with the Giudice-Masiero mechanism [18]. The important
assumption in what follows is that the uplift fields Si have
a separable Kähler potential, that can be justified, for ex-
ample, if the uplift fields arise as D7-D7 states. Indeed,
we will be assuming that the Si are not directly coupled
to matter through either the Kähler potential, the super-
potential, or gauge kinetic function. In each case we will
assume the superpotential is separable in the uplift fields

W =W (ρ) +WF (S
i) + g(φi, ρ) , (3)

where W (ρ) is either the KKLT or KL superpotential,
WF is the superpotential associated with uplifting and
g(φi, ρ) is the superpotential for the Standard Model, with
g(0, ρ) = 0 . The possible ρ dependence of the matter
superpotential g is highly restricted by axionic symme-
tries and by the origin of matter fields (it is typically an
exponential or a modular form of various weight). Pro-
vided that the vev’s of matter fields are very small com-
pared to the Planck scale, the results of the present paper
are largely insensitive to the explicit form of the function
h(ρ, ρ̄) and the ρ dependence of g(φi, ρ).

The superpotential of the KKLT model is

WKKLT =W0 +Ae−aρ . (4)

where W0 and a > 0 are constants. In this theory, there
is a supersymmetry preserving AdS minimum found by

setting DρW = 0. It occurs at Im ρ = 0, and at a certain
value σ0 of the volume modulus σ = Re ρ.

After the uplifting to the (nearly Minkowski) dS vac-
uum state, the gravitino mass becomes

m3/2 ≈
√
|VAdS|/3 ≈ aA

3(2σ0)1/2
e−aσ0 . (5)

Furthermore, after uplifting

DρW =
3
√
2

a
√
σ0

m3/2 . (6)

The conditions of applicability of the KKLT construc-
tions are aσ0 > 1 and σ0 ≫ 1. If one takes aσ0 ≫ 1,
the gravitino mass becomes exponentially small. To have
m3/2 in the TeV range in the KKLT scenario, one should
take aσ0 ∼ 30.

The mass of the volume modulus σ in the minimum,
as well as the mass of its imaginary (axionic) component,
is given by mσ = 2aσ0m3/2 [3]. For aσ0 ∼ 30, one finds
mσ ∼ 60m3/2. As a result, the mass of the volume modu-
lus is somewhat greater than the gravitino mass, but not
by much. This means that the volume stabilization in the
KKLT scenario describing light gravitinos is very soft; the
mass of the volume modulus in this scenario is many or-
ders of magnitude below the string scale or the Planck
scale. It is this softness of the vacuum stabilization that
leads to the catastrophic decompactification of extra di-
mensions during inflation with H & m3/2 [2, 3].

The simplest way to avoid this problem is to strongly
stabilize the vacuum by making mσ greater than m3/2 by
many orders of magnitude. This was achieved in the KL
scenario by using the racetrack superpotential

WKL =W0 +Ae−aρ −Be−bρ . (7)

In contrast to the KKLT case, the new degree of freedom
offered by Be−bρ allows the new model to have a super-
symmetric Minkowski solution. Indeed, for the particular
choice of W0,

W0 = −A
(
aA

bB

) a
b−a

+B

(
aA

bB

) b
b−a

, (8)

the potential of the field σ has a supersymmetric minimum
with WKL(σ0) = 0, DρWKL(σ0) = 0, and V (σ0) = 0.

One may add an additional constant ∆ (either positive
or negative) to the superpotential (7). This will shift the
minimum of the potential down to the AdS minimum with

VAdS = −3m2
3/2 = − 3∆2

8σ3
0

[3, 7], after which one may use

uplifting (as in KKLT) to make the cosmological constant

as small as ∼ 10−120. Thus one has m2
3/2 = ∆2

8σ3
0

≪ 1,

which is the only weak-scale fine-tuning required in the
KL model. Interestingly, exactly the same level of fine-
tuning of the parameter W0 is required in the simplest
version of the KKLT scenario. This is the standard price
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for the desire to protect the Higgs mass by the smallness
of supersymmetry breaking.

Finally, we turn to uplifting in the theory. Before we
make the minuscule addition ∆ to the KL superpotential,
supersymmetry is unbroken, the gravitino mass vanishes,
but the volume modulus mass is arbitrarily large, depend-
ing on the choice of the parameters A, a, B and b. This
mass is virtually unchanged after adding ∆ and uplifting.
Thus, one achieves the desired strong vacuum stabilization
and removes the cosmological constraint H . m3/2. But
this strong vacuum stabilization has an interesting impli-
cation for the resulting low-energy phenomenology: Just
as in the KKLT scenario, DρW (ρ) = 0 in the supersym-
metric AdS minimum prior to uplifting in the KL model.
However, in the simplest version of the KKLT scenario the
value of the field ρ does shift slightly during uplifting, and
DρW (ρ) becomes (approximately) as large as W , as seen
in Eq. (6). In contrast, strong vacuum stabilization keeps
moduli practically unchanged during the uplifting. As a
result, after the uplifting in the KL scenario, and in any
other version of the KKLT scenario with strong vacuum
stabilization, one has W = ∆ and |DρW (ρ)| ≪ |∆|, m3/2.

In particular, in the KL model with an uplifting term
∼ σ−2, which appears in the models with uplifting due to
anti-D3 branes in warped space, one has [3]

DρW = 6
√
2σ0

m3/2

mσ
m3/2 . (9)

On the other hand, one can show that in the F-term up-
lifting models to be studied below, the uplifting term is
proportional to σ−3, and the result slightly changes,

DρW = 9
√
2σ0

m3/2

mσ
m3/2 . (10)

What is most important for us is that in both cases one
has DρW (ρ) ≪W , DρW (ρ) ≪ m3/2, under the condition
of strong vacuum stabilization mσ ≫ m3/2, which ensures
vacuum stability during high energy inflation. Thus, inde-
pendently of the particular choice of the stabilizing super-
potential W (ρ), one can simply take DρW (ρ) = 0 at the
minimum of the potential, before and after the uplifting.
And this means, as one can easily check, that in all models
of such type one has, at the minimum of the potential,

|W | = |∆| = (2σ0)
3/2m3/2 (11)

and

Wρ =
3∆

2σ0
. (12)

2.2 F-term uplifting examples

In the discussion above, we assumed uplifting as an effect
arising solely from string theory, for example, through the
energy of anti-D3 branes placed in a highly warped throat.
In the KL model when coupled to matter, the suppressed
F -term given in equation (9) leads to extremely small

values for gaugino masses and tri-linear supersymmetry
breaking A-terms which are proportional to DρW . In [3],
the coupling of matter to the uplifting term was neglected
and it was assumed that soft scalar masses remained equal
to the gravitino mass. However, as can be seen from the
analysis in Ref. [19], there is a cancelation which leaves
only a tiny scalar mass also of orderm2

3/2/MP . The result-

ing spectrum would then be dominated purely by anomaly
mediation, and suffer from known phenomenological prob-
lems [20, 21].

However, it is in fact relatively simple to recover the
result given in [3], by using F -term uplifting [22–25] in-
stead of antibranes. In fact this possibility is quite generic
and can be done in various ways, as we now describe in
two explicit examples. The main idea is to use a SUSY
breaking sector for uplifting, preferably with a dynamical
scale leading to a small mass parameter M << 1, which
breaks SUSY in the rigid limit MP → ∞. All masses in
this sector will be determined, at the tree and one-loop
level, by the dynamical scale and are much larger than
the gravitino mass. Whereas in the rigid limit the uplift
sector is decoupled from the KL sector, supergravity inter-
actions couple the two sectors. However, in strong moduli
stabilization models like KL, provided the KL modulus
mass and masses of uplifted fields are much larger than
gravitino mass, supergravity interactions only change the
original KL and uplift sector minima in a very tiny way.
As a result, the vacuum structure is essentially unchanged
and the modulus sector contribution to SUSY breaking is
completely negligible, as will be seen in what follows.

This implies that in the models with strong stabiliza-
tion, there is a certain decoupling of string theory mod-
uli from the standard model phenomenology. While this
could seem almost obvious on general grounds, it is not
the case in the simplest versions of the KKLT scenario.
Optimistically, this means that investigation of the low
energy phenomenology may provide us with a possibil-
ity to test various mechanisms of moduli stabilization in
string theory.

Furthermore, in what follows we will be considering
models of strong stabilization for all moduli, including the
F -term uplifting fields Si. Just as strong stabilization of
the volume modulus ρ was advantageous for cosmology
and inflation, strongly stabilized uplifting fields, provides
a simple mechanism to avoid cosmological problems asso-
ciated with these moduli. While we do not enter into the
details of the cosmology of the these moduli, we take the
premise that all moduli are strongly stabilized.

2.2.1 F-term uplifting with a non-minimal Polonyi
field

We begin with a very simple example based on a non-
minimal version of the Polonyi model, known as O’KKLT
[24, 26]. The O’KKLT model for F -term uplifting is real-
ized with the following definitions of K(S, S̄) and WF (S)
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used in eqs. (2) and (3) for a single Polonyi-like field S.
We take

K(S, S̄) = SS̄ − (SS̄)2

Λ2
, (13)

where we assume that Λ≪ 1 (in Planck units). As we will
see, the second term in (13) provides strong stabilization
for the field S. For the superpotential, we can take simply,

WF (S) =M2S , (14)

as in the Polonyi model, but without an additional con-
stant which is necessary for the fine-tuning of the vanish-
ingly small value of the cosmological constant. This con-
stant is already provided by the KKLT/KL superpoten-
tial.

In the original O’KKLT model, it was assumed that

the term − (SS̄)2

Λ2 appears after integrating out some heavy
degrees of freedom in the O’Raifeartaigh model. A con-
sistency of this assumption required careful investigation
[24]. However, assuming that this interpretation of the

term− (SS̄)2

Λ2 is available, one can simply consider this term
as a part of a modified Polonyi model (13), (14) without
further discussion of its origin [24, 26].

The simplest way to understand the main idea of this
scenario is to consider it in the context of the KL model,
or any other strongly stabilized model of that type. In this
case, the position of the AdS minimum of the potential is
strongly fixed. Therefore it is not affected by adding the
Polonyi field to the theory. In order to find the value of
the Polonyi field and its superpotential, it is sufficient to
calculate the values of the superpotential W (ρ) of the KL
model and its derivativeWρ(ρ) at the minimum of the KL
potential ignoring the Polonyi fields. The results of these
calculations are given in (11) and (12). These results are
then used in the calculation of the F-term potential of the
field S.

Alternatively, one may wish to abandon any connec-
tion to string theory and simply consider the supersym-
metry breaking sector of the Polonyi field S with strong
stabilization provided by the Kähler potential and super-
potential given by Eqs. (13) and (superpol). For the super-
potential, however, we must add back the constant term.
For small Λ, we have strong stabilization and the mass
of S can be large, as discussed below and its expectation
value close to 0. So long as we continue to assume that
the gauge kinetic function does not linearly depend on
S, the phenomenological results discussed below will be
unchanged.

These calculations, for strongly stabilized theories, show
that the field S uplifts the AdS minimum to the nearly
Minkowski minimum for

M4 = 3∆2 = 24σ3
0m

2
3/2 , (15)

which determines the choice of the parameter M in (14).

The field S at the minimum of its potential is real, and
its value is given by

〈S〉 =
√
3Λ2

6
. (16)

The mass squared of the field S in both directions (real
and imaginary) is given by

m2
S =

3∆2

2σ3
0Λ

2
=

12m2
3/2

Λ2
≫ m2

3/2 , (17)

so it too is strongly stabilized. This is quite important.
Indeed, the cosmological moduli problem appears because
in the minimal Polonyi field model, the mass of the Polonyi
field S is of the same order as the gravitino mass, which
was supposed to be in the range of 1 TeV or below. In our
model, m2

S ≫ m2
3/2 and the field is constrained to lie close

to its minimum near S = 0 (for small Λ). Moreover, as
we will soon see, in the models of this class one typically
has m3/2 ≫ 1 TeV. Therefore for sufficiently large m3/2

and sufficiently small Λ≪ 1, the cosmological moduli and
gravitino problems will disappear.

Strong stabilization of the field S is important in an-
other respect as well. Since the field S is strongly sta-
bilized, we can repeat the same procedure that we used
before, and calculate the soft breaking terms in the stan-
dard model. The only additional parameters that we need
for these calculations are the values of WF and W ′

F at
the minimum of the potential for the field S, ignoring the
standard model fields:

WF =
|∆|Λ2

2
(18)

and

∂SWF =
√
3 |∆| . (19)

As a result,

W = W (ρ) +WF = ∆+
∆Λ2

2
≃ ∆ ,

DSW = ∂SWF +KS (W (ρ) +WF )

=
√
3|∆|+

√
3

6
Λ2(1 +

1

2
Λ2)|∆| ≃

√
3|∆|. (20)

Finally, we should note that in the context of this
model, one can attribute the supersymmetry breaking pa-
rameter ∆ either to the KL model, as we did earlier, or
to the Polonyi model, by adding it to the superpotential
(14). Alternatively, one may add ∆KL to the KL super-
potential (8) and ∆P to the Polonyi superpotential (14).
The final results and the standard model phenomenology
will depend only on the sum of these two parameters,
∆ = ∆KL +∆P. This is another way to see that the de-
gree of fine-tuning required in the KL model is exactly the
same as in the Polonyi model.
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2.2.2 F-term uplift with a dynamical ISS sector

As a second example, we display here another F -term up-
lifting [23, 27] via the ISS mechanism [28], which leads to
a qualitatively similar result to the one in the previous
section. The difference is that in the present example the
corresponding mass scale M has a dynamical origin, that
naturally explain its smallness. The model is defined by

W = WKL(ρ) + WF (χ
i) ,

K = −3 ln(ρ+ ρ̄) + |q|2 + |q̃|2 + |S|2 . (21)

In (21), χi denotes collectively the fields qai , q̃
j̄
a, S

i
j̄
of the

ISS model [28], where i, j̄ = 1 · · ·Nf are flavor indices and
a, b = 1 · · ·N are color indices. Moreover, in (21)

WF (χ
i) = h Tr q̃ S q − h M2 TrS , (22)

and WKL is given in Eq. (7). As explained in [28], the

sector qai , q̃
j̄
a has a perturbative description in the free

magnetic range Nf > 3N . SUSY is broken in (22) by

the “rank condition”, i.e. F-terms of meson fields (FS)
j
i =

hq̃jaq
a
i −M2δji cannot be set simultaneously to zero.

As is transparent in (21), the KL and the ISS sectors
are only coupled through gravitational interactions. In the
type II orientifold setup, if the ISS gauge group comes
from D3 branes, the dynamical scale in the electric theory
and therefore also the mass parameterM in the magnetic
theory superpotential (22) depend on the dilaton S, which
we assume is already stabilized by NS-NS and RR three-
form fluxes [17]. As in the O’KKLT model, this decoupling
between the uplift field(s) and modulus ρ is instrumental
in getting the uplift of the vacuum energy.

At the global supersymmetry level and before gauging
the color symmetry, the ISS model has a global symmetry
G = SU(N) × SU(Nf)L × SU(Nf )R × U(1)B × U(1)′ ×
U(1)R, broken explicitly to SU(N)×SU(Nf)V ×U(1)B×
U(1)R by the mass parameterM . In the supergravity em-
bedding (22), the R-symmetry U(1)R is explicitly broken.
We consider here only the ungauged theory for simplicity,
in which the SU(N) is part of the global symmetry group.
For the effects of the gauging, see e.g. [23] in the related
context of the KKLT uplift. At the global supersymmetry
level, the metastable ISS vacuum is

S0 = 0 , q0 = q̃T0 =

(
MIN
0

)
, (23)

where IN is the N × N identity matrix and M ≪ Λm,
where Λm ≤ MP denotes the mass scale associated with
the Landau pole for the gauge coupling in the magnetic
theory. The first question to address is the vacuum struc-
ture of the model. In order to answer this question, we
start from the supergravity scalar potential (1). By using
(21)-(22), we find

V =
eχ̄īχ

i

(ρ+ ρ̄)3

{
(ρ+ ρ̄)2

3

∣∣DρW
∣∣2

+
∑

i

∣∣∂iW + χ̄īW
∣∣2 − 3|W |2

}
. (24)

SinceM ≪MP , the vev’s in the ISS model are well be-
low the Planck scale. Then an illuminating way of rewrit-
ing the scalar potential (24) is to expand it in powers of
the fields χi/MP , in which case it reads1

V =
1

(ρ+ ρ̄)3
VISS(χ

i, χ̄ī) + VKL(ρ, ρ̄) +
χ̄īχ

i

M2
P

V1(ρ, ρ̄)

+
1

M3
P

[
WISS(χ

i) V2(ρ, ρ̄) + χi∂iWISS V3(ρ, ρ̄) + h.c.
]

+ · · · , (25)

where by comparing (25) with (24) we can check that V1 ∼
m2

3/2M
2
P , and V2, V3 ∼ m3/2M

3
P . The contribution to the

vacuum energy from the ISS sector, in the global limit, is
〈VISS〉 = (Nf−N) h2 M4. Since we are interested in 30−
1000 TeV scale gravitino masses, it is clear that the first
two terms in the rhs of (25), VISS and VKL, are the leading
terms. Consequently, there should be a vacuum very close
to an uplift KL vacuum 〈ρ〉 = ρ0 and the ISS vacuum
〈χi〉 = χi

0. The cosmological constant at the lowest order
is given by

Λ = VKL(ρ0, ρ̄0) +
(Nf −N)h2M4

(ρ0 + ρ̄0)3
, (26)

which shows that the ISS sector plays indeed the role of
un uplifting sector of the KL model. In the zeroth order
approximation and in the large volume limit σ0 ≫ 1, we
find that the condition of zero cosmological constant Λ = 0
implies roughly

3 |W |2 ∼ h2 (Nf −N) M4 . (27)

If we want to have a gravitino mass in the 30− 1000 TeV
range, we need small values of M ∼ (10−5 − 10−6)MP .
Since M in the ISS model has a dynamical origin, this
is natural. Moreover, the metastable ISS vacuum has a
significantly large lifetime exactly in this limit. Therefore,
the claimed value of the gravitino mass is natural in our
model and compatible with the uplift of the cosmological
constant.

In the rigid MP → ∞ limit, the ISS fields have masses of
order

tree− level m0 ∼ |hM | ,

one− loop m1 ∼ |h2M |
4π

. (28)

Of course the goldstone bosons of the broken global sym-
metries are massless for the time being. It is easy to re-
move these massless states by breaking the global sym-
metry from the very beginning by having several mass
parameters, M2TrS →∑

iM
2
i S

i
i . Notice that supergrav-

ity corrections give tree-level masses to the pseudo-moduli

1 In most of the formulae of this letter, MP = 1. In some
formulae, however, we keep explicitly MP .
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fields of the ISS model. As explained in more general terms
in [28], these corrections are subleading with respect to
masses arising from the one-loop Coleman-Weinberg ef-
fective potential in the global supersymmetric limit. This
can be explicitly checked starting from the supergravity
scalar potential (24) and expanding in small fluctuations
around the vacuum (23) to the quadratic order.

Similarly to the previous O’KKLT example, there is no
moduli problem in the present setup: both the ρ modulus
and the ISS fields are much heavier than the gravitino
mass.

3 Soft masses for matter fields

While the particular form of the KL superpotential was
instrumental in our analysis, the relation DρW (ρ) ≪ W ,
which we use in this section for computing soft terms for
matter fields has a much more general validity. It follows
directly from our requirement of strong vacuum stabiliza-
tion, which solves the problem of decompactification dur-
ing inflation with H & m3/2, as well as the cosmological
moduli problem.

An additional assumption we will make in what follows
is that there is no direct coupling in the Kähler potential,
superpotential and gauge kinetic function between matter
fields and the uplift fields. The absence of linear couplings
to the SUSY breaking uplift fields in the gauge kinetic
function and superpotential for matter fields can be ar-
gued at various levels:
- At the level of symmetries in the second uplift exam-
ple based on ISS model, the meson fields Sj

i there trans-
form under chiral symmetries SU(Nf)L × SU(Nf)R, bro-
ken only by mass terms. It is expected that couplings to
MSSM fields respect chiral symmetries of the uplift sector,
therefore linear couplings to S should be absent.
- The uplift Polonyi or ISS sector does break SUSY in the
rigid limit in the absence of additional couplings to mat-
ter and moduli fields. When these additional couplings
are present, supersymmetry tends to be restored, espe-
cially for those couplings which break the R-symmetry
of the uplift sector. It is possible that the vacuum we
are discussing will still be a local miminum with a very
long lifetime, however the absence of new couplings helps
in avoiding new supersymmetric minima (this argument,
however, does not pertain to the gauge kinetic function).
- From a string theory viewpoint, the linear terms in su-
perpotentials present in both of our examples do not arise
at tree-level in string perturbation theory. They can arise
nonperturbatively by D-brane instanton effects. In this
case S is actually a field charged under an “anomalous”
U(1)X . This U(1)X is broken close to the string scale
by field-dependent Fayet-Iliopoulos terms, depending on
some modulus field called T in what follows. The axionic
field in the T multiplet is shifted nonlinearly under U(1)X ,
T → T + i δGS α, where α is the gauge transformation pa-
rameter, and is eaten up by the U(1)X gauge field. At
the perturbative level, couplings of S are very restricted

by the U(1)X symmetry. The gauge kinetic function hA
must clearly be invariant, and therefore S cannot appear
there perturbatively. Instantonic effects are proportional
to the D-instanton action Sinst = e−2πT , which has a spe-
cific U(1)X charge. Linear terms in S can arise nonper-
turbatively in hA and W via the gauge invariant combi-
nation e−2aTS, where the U(1)X charge of e−2aT com-
pensates that of S [29]. In our uplift examples, it would
mean that S couplings in hA and the S-dependence of
Yukawas are suppressed by the mass parameter M2 ∼
e−2aT . For example hA = h0A(1 + βAe

−2aTS) or yijk =
y0ijk(1+cijke

−2aTS). However, the “anomalous” symmetry
does not forbid couplings in the Kähler potential, which
we have argued against earlier.

Under the assumptions above we now show that strong
moduli stabilization with any F-term uplifts leads to small
A-terms which are dominated by anomaly contributions.
As we will see, this fact alone forces one to large scalar
masses and hence a large gravitino mass. This is accept-
able if the symmetry preventing a linear coupling of S to
matter is operative, and hence we are restricted to small
gaugino masses also dominated by anomaly contributions.
Couplings in the Kähler potential of the type S†Sφ†φ, on
the other hand, are invariant under all symmetries and,
if present, they can change scalar masses in what follows.
We will comment on their possible effects below.

Soft terms for matter fields generated in supergravity
in the limit MP → ∞ with fixed gravitino mass m3/2

[30] have a nice geometrical structure. For F-term SUSY
breaking, they are given by [31]

m2
ij̄ = m2

3/2 (Gij̄ −Rij̄αβ̄G
αGβ̄ ) ,

(B µ)ij = m2
3/2 (2∇iGj +Gα∇i∇jGα) ,

(A y)ijk = m2
3/2 (3∇i∇jGk +Gα∇i∇j∇kGα) ,

µij = m3/2 ∇iGj ,

ma
1/2 =

1

2
(Re hA)

−1m3/2 ∂αhA Gα , (29)

where G = K + ln |W |2, yijk are Yukawa couplings, hA
are the gauge kinetic functions and ∇i denotes Kähler
covariant derivatives

∇iGj = ∂iGj − Γ k
ijGk , (30)

where Γ k
ij = Gkl̄∂iGjl̄ is the Kähler connection. Greek

indices α, β in (29) refer to SUSY breaking fields S and
ρ, latin indices refer to matter fields, whereas Rij̄αβ̄ is the
Riemann tensor of the Kähler space spanned by chiral (su-
per)fields. In our models with strong moduli stabilization
and decoupling between uplift fields and matter fields, the
curvature terms in the scalar masses of matter fields are
negligible and we find to great accuracy

m2
0 = m2

3/2 , (31)

where the gravitino mass is given by

m2
3/2 = eG =

1

8σ3
0

|W (ρ) +WF (S)|2 , (32)
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and fixes the universal mass scale for scalars. For the
O’KKLT model described above, so long as Λ2 ≪ 1, the
dominant contribution to the gravitino mass comes from
W (ρ) = ∆ at the minimum (see eq. (11)). The trilinear
terms are given by

(Ay)ijk = eKKαβ̄DβW (Kα +∇α)Wijk , (33)

whereWijk = ∂i∂j∂kg, where g(φ
i, ρ) is the superpotential

for matter fields (3). In our case, more explicitly they equal

(Ay)ijk = eK
[
Kρρ̄DρW (Kρ +∇ρ) +KSS̄DSWKS

]
Wijk ,

(34)
where we used, according to the arguments given above,
our hypothesis that Yukawas depend very weakly on S.
For bilinears B-terms, keeping also Giudice-Masiero like
terms, we find

(Bµ)ij = eKKαβ̄DβW (Kα +∇α)Wij −m3/2e
K/2Wij +

m2
3/2(2 +Gα∇α)Kij −m2

3/2Γ
α
ij(2Gα +GβGαβ) . (35)

Notice that in our case, since DρW and KS ∼ S̄ are very
small, we find negligibly small A-terms. More precisely,
we find that the dominant contribution to A0 is given by
S̄D̄S̄W̄ so that at the tree-level one finds that the A-terms
are given by

A0 ≃ − 1

(2σ0)3/2
|∆|Λ2

2
=

1

2
m3/2Λ

2 (36)

and are extremely small if Λ ≪ 1. This expression for
A0 is valid so long as m3/2/mσ ≪ Λ2 ≪ 1. For Λ2 ≪
m3/2/mσ ≪ 1 the parameterA0 is proportional tom

2
3/2/mσ,

so in both cases A0 ≪ m3/2. Thus we are driven to small
values of A0 as a direct consequence of strong stabiliza-
tion. On the other hand, the µ and Bµ parameters in the
Higgs sector are given by

µ = m3/2G12 = eK/2W12 +m3/2K12 = µ0 +m3/2K12 ,

Bµ = (A0 −m3/2)µ0 + 2m2
3/2K12 . (37)

where W12 = ∂H1
∂H2

W , K12 = ∂H1
∂H2

K, and µ0 =
eK/2W12 is the µ-term in the absence of Giudice-Masiero
terms. By combining eqs. (37), we find

B = (A0 −m3/2)
µ0

µ
+

2m2
3/2

µ
K12 , (38)

that will be used in the next section for phenomenology.
If K12 = 0, we get µ = µ0 and B = A0 −m3/2, which is
just the familiar mSUGRA relation B0 = A0 −m0.

For a suitable choice of gauge kinetic functions hαβ =
h(ρ)δαβ , one generates universal gaugino masses

m1/2 =

√
2σ0
6

DρW (ρ) ∂ρ lnReh , (39)

where, according to our decoupling hypothesis, we have
assumed that h does not explicitly depend on S 2. In con-
trast to the universal scalar masses which are equal to
the gravitino mass, m1/2 is proportional to DρW and is
suppressed by m3/2/mσ.

As a result, we obtain models resembling those medi-
ated by anomalies [13], where the dominant contributions
to gaugino masses and A-terms arise from loop corrections
and give [19]

ma
1/2 =

bag
2
a

16π2

FC

C0
(40)

and

Aijk = −γi + γj + γk
16π2

FC

C0
. (41)

Here ba = 11, 1,−3 for a = 1, 2, 3 are the one-loop beta
function coefficients, γi are the anomalous dimensions of
the matter fields yi and

FC

C0
= −1

3
eK/2Kαβ̄KαD̄β̄W̄ +m3/2 ≃ m3/2 (42)

is related to the conformal compensator and equals to very
high accuracy m3/2 in the models we consider.

Because of the loop suppression factor in Eq. (40), we
are forced to relatively large (O(10-1000) TeV) gravitino
masses in order to have acceptably large gaugino masses3

Thus, the sparticle spectrum consists of relatively light
gauginos whose masses are determined from anomaly me-
diation and large soft scalar masses fixed by the gravitino
mass yielding a spectrum reminiscent of split supersym-
metry [12]. The problem of tachyonic scalars normally as-
sociated with anomaly mediated models is absent here.

In what follows, we will examine the phenomenolog-
ical consequences of the above model. In particular, we
will see that it is difficult to construct consistent models
if one wants to maintain the possibility of radiative elec-
troweak symmetry breaking. If the input supersymmetry
breaking scale is chosen to be the GUT scale (i.e. the scale
at which gauge coupling unification occurs), one can not
choose arbitrarily large universal scalar masses and insist
on a well defined electroweak symmetry breaking vacuum
(i.e., µ2 > 0). This difficulty can be alleviated in at least
two ways:
- increasing the supersymmetry breaking scale, Min >
MGUT . This is the case that we study in detail in the
next section.
- Allow for direct couplings between the uplift field(s) S
and the Higgs in the Kahler potential, by terms of the

type S†SH†
iHi. In this case, Higgs soft scalar masses ac-

quire additional corrections proportional to |FS |2, where
2 If we allow a coupling of the form hA = h0

A(1+βAe
−2aTS),

we would find a suppression m1/2 ∝ m2

3/2/MP .
3 A posteriori, we know that for very small A0/m0 the re-

quirement for relatively large Higgs masses would lead us to
the same conclusion regarding large scalar masses, which to
control the relic density would also require anomaly mediation
for gaugino masses.
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FS = eK/2KSS̄DSW . They are no longer equal to the
other scalar masses and are not necessarily degenerate
anymore. These boundary conditions for scalar masses
then resemble those assumed in non-universal Higgs mass
models. This problem can be traced directly back to our
assumption of strong moduli stabilization and small A-
terms. With large A-terms, there is no difficulty in ob-
taining electroweak vacuum solutions with large m0 and
µ2 > 0.

Another challenge presented in these types of models
stems from the mSUGRA relation between B0 and A0.
Unlike CMSSM models [32,33], this relation forces one to
solve for tanβ for a given choice of m1/2,m0, and A0. In
the present context, we expect no solutions as there is in
effect only a single free parameter, namelym3/2. However,
an interesting extension of minimal supergravity is one
where terms proportional H1H2 are added to the Kähler
potential as in the Giudice-Masiero mechanism [18]. By
introducing a non-minimal coupling to the Kähler poten-
tial, one can effectively fix tanβ. If in addition, we take
Min > MGUT , we can in fact formulate a consistent phe-
nomenological model.

In the next section we briefly review the GM exten-
sion to mSUGRA and the consequences of taking Min >
MGUT . As a result, we are forced to consider a specific
GUT and here for simplicity, we take minimal SU(5) as a
concrete example. In section 5, we present the main results
of the paper which include the low energy spectrum as a
function of the gravitino mass. In particular, this amounts
to the gaugino and Higgs masses as all of the other super-
symmetric scalars are very heavy. Other phenomenologi-
cal aspects of the models such as gluino production at the
LHC and the direct and indirect detection of dark matter
are discussed in section 6.

4 GM Supergravity and Super-GUT

phenomenology

As described above, the KL phenomenological model has
one free parameter,m3/2, which when extended to include
a Giudice-Masiero term, has two free parameters, which
we take to be m3/2 and tanβ. This is to be compared
with mSUGRA models which have 3 free parameters or
CMSSM models with 4 free parameters. In the present
context, the gaugino masses, scalar masses, and A-terms
are all determined by the gravitino mass. The alternative
of coupling the uplift fields S directly to the Higgs sector,
in order to obtain non-universal Higgs masses which are
different from the gravitino mass, mentioned in the previ-
ous section, will not be pursued here for simplicity. On the
other hand, direct couplings of uplift fields to squarks and

sleptons λijS
†Sφiφ†j in the Kahler potential would gener-

ically lead to flavor dependence and therefore to FCNC
effects. Even for 30− 50 TeV scalar masses, which will be
our typical values in what follows, FCNC effects require
some degree of degeneracy. This is actually the main phe-

nomenological reason we are imposing no direct couplings
between uplift fields and matter fields in our paper.

From Eq. (31), we expect scalar mass universality at
some renormalization scale, Min. In the CMSSM, this
scale is usually associated with the GUT scale4. If so, these
masses are run down to low energy using standard renor-
malization group evolution. In contrast to the CMSSM,
the gravity mediated part of gaugino masses and A-terms
in the KL model are extremely small and their dominant
contributions are determined by anomalies at any scale
using Eqs. (40) and (41). In the CMSSM, µ and B are
solved for in terms of mZ and tanβ:

µ2 =
m2

1 −m2
2 tan

2 β + 1
2m

2
Z
(1− tan2 β) +∆

(1)
µ

tan2 β − 1 +∆
(2)
µ

,

Bµ = −1

2
(m2

1 +m2
2 + 2µ2) sin 2β +∆B , (43)

where ∆B and ∆
(1,2)
µ are loop corrections [34–36], and

m1,2 are the Higgs soft masses (here evaluated at the weak
scale). In mSUGRA models, however, B can not be de-
termined independently as it must respect its boundary
condition B0 = A0 −m0 at Min. Instead, one must solve
for tanβ (and µ) using the electroweak symmetry break-
ing conditions [37, 38]. In this sense, the KL models we
are describing are more reminiscent of mSUGRA than the
CMSSM.

There are, however, two immediate potential problems
with the framework as described: 1) There is no guaran-
tee that reasonable solutions for tanβ exist while requiring
B0 = A0−m0 atMin. Indeed it is known [37,38] that only
a limited portion of parameter space (defined by m0,m1/2

and A0) possesses solutions for tanβ. 2) There is no guar-
antee that solutions with µ2 > 0 exist when m0 is very
large. This of course is a well known issue present in the
CMSSM. For fixed m1/2 and A0, there is an upper limit

to m0 for which there are solutions to (43) with µ2 > 0
known as the focus point or hyperbolic branch [39]. This
upper limit is also present in mSUGRA models as well,
particularly when A0/m0 is small (as it is the case un-
der consideration). As we now describe, neither problem
is critical and there are known and relatively simple solu-
tions to both.

To tackle the problem of tanβ, consider a Giudice-
Masiero (GM) -like contribution to K of the form [18],

∆K = cHH1H2 + h.c. , (44)

where cH (equal to K12 in the previous section) is a con-
stant, and H1,2 are the usual MSSM Higgs doublets. The
presence of ∆K affects the boundary conditions for both
µ and the B term at the supersymmetry breaking input
scale, Min. The µ term is shifted as seen in Eq. (37) to

µ0 + cHm0 . (45)

4 The GUT scale, MGUT , is defined as the scale where SU(2)
and U(1) gauge couplings unify and is approximately 1.5 ×

1016 GeV.
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However, since we solve for µ at the weak scale, its UV
value is fixed by the low energy boundary condition. In
contrast, the boundary condition on µB shifts from µ0B0

to

µ0B0 + 2cHm
2
0 . (46)

We can add the GM term to better connect the solution of
the minimization conditions to a supergravity boundary
condition at Min. Indeed, by allowing cH 6= 0, we can fix
tanβ and derive µ and Bµ at the weak scale. By running
our derived values of B(MW ) and µ(MW ) up to the GUT
scale, we can write

Bµ(MGUT ) = (A0 −m0)µ0(MGUT ) + 2cHm
2
0 , (47)

which is precisely eq. (37) of the previous section. Strictly
speaking, (47) is valid at tree-level in SUGRA and does
not include anomaly contributions. However, the latter
are small compared to tree-level values of m0, B and µ,
so (47) is an excellent approximation. In what follows, we
use Eq. (47) to derive the necessary value of cH .

Of course, one must still check, whether the solution
for cH is reasonable (i.e., perturbative). In [38], it was in-
deed shown that over much of the mSUGRA parameter
space cH . O(1). For fixed tanβ and A0/m0, cH is rea-
sonably small for most choices ofm1/2 andm0. Exceptions
lying in the region where m1/2 ≫ m0 and the lightest su-
persymmetric particle (LSP) is the gravitino. When A0

is large, these offending regions are further compressed to
small m0. Thus by allowing non-zero cH , we can always
satisfy the mSUGRA boundary condition for B0 and check
a posteriori that cH is small.

As noted above, in the CMSSM and mSUGRA, there
is generally an upper limit to m0 for fixed m1/2, A0, and

tanβ determined by µ2 = 0 in Eq. (43). While it is com-
mon to assume that the input supersymmetry breaking
scale is equal to the GUT scale, it is quite plausible that
Min may be either below [40] (as in models with mirage
mediation [19,27,41]) or above [38,42–46] the GUT scale.
Increasing Min increases the renormalization of the soft
masses which tends in turn to increase the splittings be-
tween the physical sparticle masses [44]. As a consequence,
the focus-point solution for µ2 = 0 often moves out to very
large values of m0. This feature of super-GUT models is
essential for KL model described here. Note that while the
introduction of Min adds a free parameter to the model,
as we will see, our results are very insensitive to the choice
ofMin. For consistency with the KL paradigm, we should
also only consider values of Min < mσ.

To realize Min > MGUT , we need to work in the con-
text of a specific GUT. Here, we use the particle content
and the renormalization-group equations (RGEs) of min-
imal SU(5) [44, 47], primarily for simplicity: for a recent
review of this sample model and its compatibility with ex-
periment, see [48]. As this specific super-GUT extension
of the CMSSM was studied extensively in Refs. [42, 49],
we refer the reader there for details of the model.

The model is defined by the superpotential

W5 = µΣ Tr Σ̂2 +
1

6
λ′ Tr Σ̂3 + µHĤ1Ĥ2 + λĤ1Σ̂Ĥ2

+(h10)ij ψ̂iψ̂jĤ2 + (h
5
)ij ψ̂iφ̂jĤ1 , (48)

where φ̂i (ψ̂i) correspond to the 5 (10) representations of

superfields, Σ̂(24), Ĥ1(5) and Ĥ2(5) represent the Higgs
adjoint and five-plets. Here i, j = 1..3 are generation in-
dices and we suppress the SU(5) index structure for brevity.
There are now two µ-parameters, µH and µΣ , as well as
two new couplings, λ and λ′. Results are mainly sensitive
to λ and the ratio of the two couplings. In what follows,
we will fix λ′ = 0.1.

To generalize the GM solution for the B0 boundary
condition, we write

∆K = cHH1H2 +
1

2
cΣ TrΣ2 + h.c. , (49)

where H1,2 are scalar components of the Higgs five-plets
and Σ is the scalar component of the adjoint Higgs. Thus
in principle, we have two extra parameters which can be
adjusted to relate the CMSSM and supergravity boundary
conditions for Min > MGUT . Nevertheless, these parame-
ters have virtually no effect on the sparticle mass spectrum
other than allowing us to fix tanβ in a consistent manner.

For Min > MGUT , scalar mass universality is defined
in terms of the scalar components of the Higgses and mat-
ter fields in the 5 and 10 representations. At the GUT
scale, these must be matched to their Standard Model
counterparts. More importantly is the matching of the µ
and B-terms from SU(5) to Standard Model parameters.
These have been discussed extensively in Ref. [38,50] and
we do not repeat that analysis here.

There is one aspect of the matching of soft terms at
MGUT that is specific to the present model. Dominant
contributions to gaugino masses and A-terms are provided
by the conformal anomaly (40,41), with beta functions and
anomalous dimensions computed with the spectrum at the
given energy scale E. For the MSSM for example, gaugino
masses at scale E are given by

ma
1/2(E) =

bag
2
a(E)

16π2

FC

C0
. (50)

AboveMGUT , on the other hand, we have a unified (SU(5)
in our case) theory, with a unified gauge coupling gGUT

and a unified beta function bGUT . The unified gaugino
mass is then given by

mGUT
1/2 (E) =

bGUT g
2
GUT (E)

16π2

FC

C0
(51)

and its value has to be taken into account for the running
of soft terms between Min and MGUT . However, there is
no matching at MGUT between (50) and (51). The mis-
match is to be interpreted as a threshold effect, due to the
decoupling of heavy GUT particles at MGUT . The argu-
ment is completely similar for the A-terms.
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The additional running between Min and MGUT in
CMSSM-like models is very efficient at raising the up-
per limit on m0 [38, 42, 43, 45] provided the Higgs cou-
pling λ is sufficiently large. In mSUGRA-like models, how-
ever, we are still faced with the difficulty of satisfying the
B0 boundary condition and the GM parameters must be
added. As shown in [38], for Min & 1017 GeV, and fixed
tanβ, A0, m0, and m1/2, values of cH are only small when

λ is small5. At large λ (needed to raise the upper limit on
m0), values of cH are of order 10 or larger. However, as
also shown in [38], it is often possible to regulate cH , by
choosing cΣ 6= 0 (yet still reasonably small). Thus, it is
possible in the context of a superGUT version of the KL
framework, to obtain a consistent sparticle spectrum.

Let us now summarize the ingredients of the phenomeno-
logical model we are considering. We begin with a no-scale
type Kähler potential for the moduli with a racetrack su-
perpotential as in the KL model. Uplifting is accomplished
with an extra heavy Polonyi-like field. Unlike the KKLT
model, here the moduli are superheavy, while the grav-
itino remains relatively light. Scalar mass universality is
input at a renormalization scale Min, with m0 = m3/2 at
that scale. Gravity mediation supplies vanishingly small
gaugino masses of order m2

3/2/mσ and A-terms of order

Λ2m3/2 ≪ m3/2, and thus these quantities receive their
dominant contribution from anomalies. As a result, we
have m1/2/m0 ≪ 1 as well as A0/m0 ≪ 1, and choose
Min > MGUT to allow solutions to the EWSB equations
with µ2 > 0. In addition, we introduce GM parameters,
cH , and cΣ so that tanβ can be held fixed and still sat-
isfy the boundary condition for B0. We will see that for
cΣ & −1, we can obtain cH close to 0. We expect that
the alternative road we mentioned, of imposing boundary
conditions at Min = MGUT, and changing Higgs scalar
masses via direct couplings of uplift fields to the Higgs
sector, will lead to a similar phenomenology.

5 Low-energy spectra

We next describe the resulting sparticle spectrum and the
predicted low energy phenomenology we expect from the
KL motivated class of models. As should be clear from the
preceding discussion, below the superheavy scale (GUT
fields and moduli), there are sparticles with masses of or-
der m3/2, and those with much lighter masses as deter-
mined from anomalies.

Because of the boundary condition m0 = m3/2, all of
the scalar partners of the matter fields have mass close
to m3/2. For example, let us take m3/2 = 32 TeV, with

tanβ = 25, Min = 5 × 1017 GeV, and λ = 1.35. By
choosing cΣ ≃ −0.85, we can obtain cH = 0 for this
point. Not surprisingly, all of the first and second genera-
tion sfermions have masses close to m3/2. The lighter stau

5 Note that the upper limit on m0 can be raised significantly
for small λ and large A0/m0. Of course in the KL models
discussed here, A0/m0 is very small.

lepton has a mass of 29.6 TeV, and the lighter stop and
sbottom quarks have masses of 24.2 and 26.9 TeV. All of
which are past the current (and future) reach of the LHC.
The Higgs soft masses run considerably and both mass-
squared are negative with |m2|1/2 = 10.9 and 25.1 TeV.
The µ parameter from Eq. (43) is also very large (20.4
TeV) unlike the assumption made in many models of split
supersymmetry. As a result, the pair of Higgsinos and the
Higgs-like chargino have large masses (22.0 TeV). Sim-
ilarly, the heavy Higgs scalar and pseudo-scalar have a
mass of 20 TeV. These results are not very sensitive to
any of the assumed input parameters and to a first ap-
proximation are all close to m3/2. The full spectrum for
this point and other test points are given in Table 1.

In contrast, the gauginos and one (wino-like) chargino
remain relatively light. Their masses are dominated by
the anomaly contributions given in Eq. 40. For the spe-
cific choice of parameters adopted above, we have a nearly
degenerate neutral and charged pair of winos at 107 GeV
(the neutral wino is the LSP) and a 314 GeV bino. The
gluino mass is 1.0 TeV. Note that as we use two-loop ex-
pressions for the running of gaugino masses, our results
differ slightly from the approximate values given in Eq.
(50).

As we saw, the supersymmetry breaking scalar masses
at the weak scale are MSUSY ≃ m3/2 ∼ 10 − 1000 TeV,
while the gauginos are significantly lighter. Such heavy
scalars lead to important quantum corrections in the Higgs
sector. These are enhanced by large logarithms of the type
log(Mweak/MSUSY ). In fact, most of the public codes as-
sume MSUSY less than a few TeV, otherwise the compu-
tations become unreliable. Thus in the computation of the
light CP-even Higgs boson mass, mh, we follow the proce-
dure described in Refs. [51,52] and we add in the contribu-
tions due to sbottoms-induced corrections, though these
are small in the models considered. The Higgs mass is
effectively given by its quartic coupling

m2
h = 2v2λH(Q) , (52)

where v is the Higgs vacuum expectation value and we
evaluate the quartic coupling at Q = mt. The tree-level
quartic coupling is simply

λH =
1

4
(
3

5
g21 + g22) cos

2 2β (53)

at the scale where heavier higgs fields decouple. The masses
of the heavy CP-even and CP-odd Higgs bosons are of
order MSUSY and thus can be reliably computed by con-
ventional techniques.

The heavy scalars decouple at approximately the scale,
which we take to be MSUSY =

√
mt̃1

mt̃2
, and the low-

energy theory contains only SM fermions, gauginos, and
one SM-like higgs doublet. Thus, in the effective theory be-
lowMSUSY , in addition to the regular SM gauge, Yukawa
and Higgs quartic couplings, we have Yukawa-like Higgs-
higgsino-gaugino couplings. Since SUSY is broken below
MSUSY those Yukawa-like couplings are no longer equal
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Fig. 1. The gaugino and chargino masses and the µ-term as
a function of the gravitino mass, m3/2. Here we have chosen,
tan β = 25, Min = 5× 1017 GeV, λ = 1.35.

to corresponding gauge couplings and also renormalize dif-
ferently. We perform RGE evolution of all effective-theory
couplings at the 2-loop level and take into account 1-loop
threshold effects, thus obtaining the Higgs mass, mh at
full next-to-leading order accuracy.

The sparticle spectra for a few values ofm3/2 are given
in Table 1. The (light) fields have masses which scale with
the gravitino mass. In Fig. 1, we show the resulting masses
of the three gauginos, chargino (degenerate with the wino-
like gaugino) and Higgs mass as a function of m3/2. For
reference, we also plot µ. For this example, we have cho-
sen the same input parameters discussed above, namely
tanβ = 25, Min = 5 × 1017 GeV, and λ = 1.35. In ad-
dition, here and in all subsequent figures, we have taken
λ′ = 0.1 and cΣ = −0.85. For the range of m3/2 shown,
cH can be made to vanish for cΣ = −0.85 - −0.91. We
emphasize that these parameters do not affect the mass
spectrum, but allow us to take fixed tanβ. As one can see
the ratio between the gaugino masses is relatively fixed
as one might expect from the anomaly conditions. Any
deviations from this are a result of two loop effects. No-
tice that on this vertical scale, the Higgs mass is nearly
constant.

Note that the LEP bound on the chargino mass of 104
GeV, provides a direct lower limit tom3/2 in these models.
As can be seen from Fig. 1, this chargino mass limit implies
m3/2 & 31 TeV. The Higgs mass at this value of m3/2 is
125.3 GeV (at tanβ = 25). Thus, the limit on the chargino
mass directly implies a lower limit on the Higgs mass of
roughly 125 GeV in amazing agreement with the recent
discovery claimed at the LHC [53]. Furthermore, at the
lower bound on m3/2, the gluino mass is 970 GeV close to
the current lower bound from the LHC [54].
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Fig. 2. The Higgs mass as a function of the gravitino mass,
m3/2. Here we have chosen, several combinations of tan β,
Min, and λ as indicated on the figure.

Because, the gaugino and chargino spectrum is deter-
mined by anomalies, it is almost completely independent
of the choice of the parameters chosen in Fig 1. We have
explicitly verified that for several choices of tanβ and λ,
and a range of input scales, Min, up to the Planck scale,
differences in the mass spectra are negligible.

The exception is the Higgs mass which we show sep-
arately in Figs. 2 and 3. In Fig. 2, we show the Higgs
mass as a function of m3/2 for several sets of input pa-
rameters. In addition to our base model with tanβ = 25,
Min = 5 × 1017 GeV, λ = 1.35, we vary each of these
to show the behavior of the Higgs mass as a function of
m3/2. For the most part, we see that they are largely in-
sensitive to the choice of input parameters and all yield
masses between 125 GeV (when m3/2 > 30 TeV so that

mχ+ > 104 GeV) and ∼ 130 GeV 6 Indeed the Higgs mass
determination allows one to set an upper limit on the split
susy scale [52, 55] or m3/2 in the present context.

In Fig. 3, we show the Higgs mass as a function of
tanβ. For tanβ & 10, the Higgs mass is relatively insen-
sitive to tanβ and decreases for smaller values of tanβ.
Several of the curves are cut off at low tanβ when the
chargino mass falls below the LEP limit. We see again that
the results are also insensitive to the particular choice of
model for m3/2 = 32 TeV, but increases with m3/2 as we
saw in Fig. 2.

Note that the curves in Fig. 3 terminate at large tanβ
when solutions to the electroweak symmetry breaking con-
ditions can no longer be obtained. This is due to the effect
of the bottom (and to a lesser degree, tau) Yukawa cou-
pling on the RGE evolution of Higgs mass parameters. At

6 We note that there is at least a 2-3 GeV uncertainty in the
Higgs mass calculation, so that we can not out of hand exclude
results with Higgs masses at 130 GeV.
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parameter 1 2 3 4 5
m3/2 [TeV] 32 50 100 500 1000
mg̃ [TeV] 1.0 1.5 2.7 11.1 20.8
mχ̃1

[GeV] 107 168 338 1705 3423
mχ̃2

[GeV] 314 495 1000 5130 10400
mχ̃3

[TeV] 22.0 34.9 70.7 367 745
mχ̃4

[TeV] 22.0 34.9 70.7 367 745
m

χ+

1

[GeV] 107 168 338 1705 3420

m
χ+
2

[TeV] 22.0 34.9 70.7 367 745

mt̃1
[TeV] 24.2 38.0 77.2 397 803

mt̃2
[TeV] 26.8 42.1 84.6 428 860

mb̃1
[TeV] 26.9 42.1 84.7 428 860

mb̃2
[TeV] 30.6 47.9 96.0 483 969

mq̃L [TeV] 31.4 49.2 98.5 494 990
mũR

[TeV] 31.5 49.3 98.7 495 990
md̃R

[TeV] 31.6 49.4 98.9 496 992

mτ̃1 [TeV] 29.6 46.2 92.3 459 917
mτ̃2 [TeV] 31.2 48.7 97.5 488 978
mν̃τ [TeV] 31.2 48.7 97.5 488 978
mẽL [TeV] 31.9 49.8 99.6 498 996
mẽR [TeV] 32.0 50.0 100 500 1000
mν̃L [TeV] 31.9 49.8 99.6 498 996
mh [GeV] 125 127 128 132 133
µ [TeV] 20.4 32.3 65.0 333 673
mA [TeV] 19.5 30.6 58.4 262 494

Ωχ̃h
2 0.0003 0.0008 0.0030 0.067 0.26

σSI(χ1p)× 1014 [pb] 4.74 1.81 0.44 0.02 0.003
σSD(χ1p)× 1012 [pb] 6.78 0.94 0.04 0.0008 0.001

Table 1. Input parameters and resulting masses and rates for benchmark points with Min = 5× 1017 GeV, λ = 1.35, λ′ = 0.1,
cΣ = −0.85, tan β = 25, µ > 0 and mt = 173.1 GeV.
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Fig. 3. The Higgs mass as a function of tanβ. We have cho-
sen, several combinations of m3/2, Min, and λ as indicated on
the figure.

these values of tanβ, the bottom Yukawa coupling is large
and comparable in magnitude to the top Yukawa coupling.
Since Yukawa terms tend to decrease scalar masses, m2

1 at

the weak scale is driven to smaller and even to negative
values. At some point it becomes impossible to find solu-
tions to Eqs. (43). A similar decrease in m2

1 is found when
both Min and m3/2 become sufficiently large [42], as can
be seen from the behaviour of the orange curve in Fig. 2
that terminates at m3/2 ≃ 60 TeV.

6 Other phenomenological aspects

6.1 Gluinos

Multi-TeV scalars have severe consequences for the low
energy spectra and LHC discovery prospects. It seems ob-
vious that except for a hypothetical SLHC extension, the
scalar sector of constructions such as the one described
above is unreachable at the LHC. Nevertheless, the gaug-
ino spectrum is relatively light (reduced by a loop factor
generated by anomaly mediation) and a 1 TeV gluino can
still be detectable. However, the classical 2-body decay
mode g̃ → q̃q is kinematically forbidden. The dominant
decay modes become:

1) The three-body decay g̃ → qq̃∗ → qqχ̃0
1 (through the

exchange of a virtual squark q̃∗) with a 2 jet plus missing
ET signature.
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2) The 2-body decay modes g̃ → gχ̃0
1 generated by squark-

quark loop diagrams.

There have been several analyses of gluino decay in split
supersymmetry [56,57]. These showed that as long as the
scalar masses are below ∼ 104 TeV, the lifetime of the
gluino is too short to be detected. Since the two body
decays occur primarily via the Higgsino component of the
neutralino [58], these will be highly suppressed in the mod-
els under consideration with µ ≫ ma

1/2 and a negligible

Higgsino component in the either of the two light neutrali-
nos. While there is a gaugino component to the 2-body
decay, it cancels in the limit of degenerate squark masses
due to the tracelessness of the diagonal generators of the
electroweak gauge group. Since in our scenario, squarks
are of order 10-1000TeV and close in mass, the 2-body
loop decay is always negligible.

The three body gluino decay rate to winos can be writ-
ten as [57]

Γ (g̃ → qq̄χ̃) ≈ 9

4

g23g
2
2

768π3

m5
g̃

m4
q̃

. (54)

Assuming that we are sufficiently far from thresholds (which
we are in the cases under consideration), the above expres-
sion is a reasonable approximation. Numerically, however,
the decay rates for m3/2 < 1000 TeV are sufficiently short
so as to make the displaced vertices in gluino decays un-
observable at the LHC. For the benchmark points above,
the decay rates range from 5.3× 10−11 − 2.1× 10−10 TeV
for m3/2 = 32 − 1000 TeV. This corresponds to a decay
length of 3.7 – 0.9 nm, respectively. These lengths are far
below the LHC resolution of order 10 µm.

Nevertheless, gluinos can be observed at the LHC since
their pair production cross section is above the fb level for
mg̃ . 1.8 TeV [59]. Gluinos can be searched for using the
usual multi-jet plus missing energy analysis. It was shown
that the gluino-wino mass difference can be determined
from the endpoint of the di-jet invariant mass distribu-
tion with the accuracy of 5% [60]. Additional information
about the gluino mass can be obtained from the measure-
ments of the total gluino production cross section [59] or
from the effective mass Meff distribution [61].

6.2 Charginos

A related possibility for accelerator detection is through
the observation of charged tracks of winos, as was sug-
gested for AMSB-type gauginos [62]. When µ is much
larger than M2, the lighter chargino χ̃±

1 is mostly wino
and is only slightly heavier than the wino-like LSP. The
chargino decay rate depends strongly on the χ̃±

1 − χ̃0
1 mass

splitting: if the splitting is larger than the mass of the
charged pion, the dominant decay is χ̃±

1 → χ̃0 + π±. The
rate of this decay is quite slow and the chargino lifetime
is of order 10−10s. The resultant pion is very soft and one
will only see the charged track stub, i.e. an abruptly ter-
minating charged track, from χ̃+

1 . That track stub is only
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Fig. 4. The LSP (neutral wino) relic density, Ωχh
2, as a func-

tion of the gravitino mass, m3/2. Here we have chosen, several
combinations of tan β, Min, and λ as indicated on the figure.

a few centimeters long for the roughly 200 MeV mass gap
we have, so it will be difficult to observe at LHC. However,
it has been argued that the track stubs could be observed
in a specific mono-jet searches, provided that wino pairs
are produced in the association with a hard jet that will
serve as a trigger [62, 63].

6.3 Dark Matter

Since the only ‘light’ sparticles in the spectrum are the
neutral gauginos and charged wino, and since these sparti-
cle masses are fixed by anomalies, it is easy to see that the
LSP is a wino. As a consequence, the relic density of LSPs
is in general relatively small. The neutral and charged
winos are nearly degenerate and the annihilations and co-
annihilation cross sections to W+W− are large. Thus for
our reference point at m3/2 = 32 TeV and tanβ = 25, the

relic density of winos is Ωχh
2 = 2.8× 10−4, far below the

density ascertained by the cosmic microwave background
anisotropy spectrum [64]. In Fig. 4, we show the wino
relic density as a function of m3/2. As one can see, for
values of m3/2 near the lower bound of 30 TeV, the relic
density is far too small to account for the dark matter
density inferred from the CMB. There are two noticeable
dips at m3/2 = 12− 13 TeV, which occur in all cases con-
sidered. These are due to the strong co-annihilation be-
tween the nearly degenerate neutral and charged winos.
The first dip occurs because of the s-channel W -exchange
in neutral and charged winos when mχ ≃ mχ̃± ≃ mW /2,
whilst the second dip occurs at slightly higher m3/2 be-
cause of s-channel Z-exchange in chargino annihilation
when mχ ≃ mχ̃± ≃ mZ/2. Of course, these chargino
masses are well below the LEP bound and the value of
m3/2 where the dips occur is excluded.
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We must therefore, address the question of dark matter
in the context of this class of phenomenological models.
Three possibilities are relatively straightforward:

1) The dark matter is something else other than a wino
(e.g. an axion). This is a rather obvious possibility. While
supersymmetric dark matter is an attractive possibility,
it is not unique and axions present us with another well
motivated candidate. Originally it was assumed that ax-
ions give a proper contribution to dark matter only if their
mass is O(10−5) eV [65]. However, later it was found that
if the PQ symmetry was broken during inflation, and the
Hubble constant during the last stage of inflation is suffi-
ciently small, which is necessary to suppress isocurvature
axion perturbations, then anthropic considerations lead
to a desirable axionic contribution to dark energy for a
broad range of axion masses ma ≪ 10−5 eV [66]. One
may also consider models with many light axion fields,
the axiverse [67].

2) LSPs are created non-thermally via gravitino or
moduli decay. In principle, moduli decay to gravitinos
which subsequently decay to neutralinos can be quite dan-
gerous, as their late decays may often overproduce LSPs
leaving one with a relic density in excess of the WMAP
determination. In our case, the modulus of concern is the
Polonyi-like field S. However, because of the structure of
the Kähler potential in Eq. (13), we expect the field S,
to be pinned to the origin during inflation, when its mass
is large (H2/Λ [7, 9, 10]) and subsequent oscillations to
the final minimum of S will have an amplitude no larger
than Λ2, thus greatly suppressing the energy density in
its oscillations. For Λ < 10−3 − 10−4, these oscillations
and decays become harmless. Furthermore, if the adia-
batic relaxation mechanism in the models with small Λ
is operative [69], then the amplitude of oscillations is ex-
ponentially suppressed, and therefore the contribution of
the decay products of the Polonyi field to the LSP relic
density is exponentially small. Thus, strong moduli sta-
bilization may play an additional important role in this
context. While the complete evolution of these moduli in
the context of inflation is interesting for further study, here
we will assume that because of the suppression in mod-
uli oscillations, they will not contribute significantly to the
relic density of dark matter. On the other hand, since sup-
pression of the LSP production as a result of the Polonyi
field decay is sensitive to the choice of Λ, one might find
such values of this parameter where this effect may lead
to a significant increase of the dark matter density.

Instead of moduli decay, we focus on the well known
fact that gravitinos are produced during reheating after
inflation [70–73]. The calculation of Ref. [73] yields

nG̃

nγ
= 1.2×10−11

(
1 +

m2
g̃

12m2
3/2

)
×
(

TR
1010 GeV

)
, (55)

where TR is the reheating temperature achieved at the end
of the inflationary epoch.

Since mg̃ ≪ m3/2 in the models considered here, we
can ignore the middle term in Eq. (55), which can be

rewritten as

Ω3/2h
2 ≃ 0.4(

m3/2

TeV
)(

TR
1010GeV

) . (56)

Then the relic density of winos is given simply by

Ωχh
2 =

mχ

m3/2
Ω3/2h

2 = 0.4(
mχ

TeV
)(

TR
1010GeV

) . (57)

Thus for a wino mass of about 100 GeV, and a reheat
temperature of TR = 3× 1010 GeV, we obtain the correct
dark matter relic density.

Typically, reheating temperatures as largeO(1010) GeV
are excluded from big bang nucleosynthesis (BBN) [6, 70,
72–75]. These limits are obtained from the effects of grav-
itino decay on the background of light elements produced
during or after BBN. The gravitino decay rate can be writ-
ten as

Γ3/2 =
m3

3/2

4π
, (58)

for example, for a decay to a gluon and gluino, correspond-
ing to a lifetime

τ3/2 ≃ 3× 104s

(
1TeV

m3/2

)3

. (59)

Clearly, for gravitino masses of order 100 GeV, the life-
time is of order 108 s and can affect the light element
abundances. However, for gravitino masses in excess of 30
TeV, the lifetime is of order 1 s and thus gravitinos decay
before BBN and there is practically no limit on the reheat
temperature. A problem appears only if gravitinos may
decay to LSPs, which may give an additional contribution
to dark matter. But this is exactly what we want.

While the reheat temperature may not be constrained
by BBN, reheating after inflation in KL-type models re-
quires some attention. In Ref. [7], an examination of pos-
sible inflaton decay channels in KL supergravity showed
that reheating is in general suppressed as in the cases of
no-scale supergravity [76] or racetrack inflation [77]. How-
ever a decay channel to gauge bosons is possible if the
gauge kinetic term, hαβ has a non-trivial coupling to the
inflaton φ. Expanding hαβ in terms of φ, we can write

hαβ =
(
h(ρ) + dφφ

)
δαβ . (60)

As written, h is a function of the moduli (normally in-
cluded for the generation of gaugino masses - though these
are greatly suppressed in the present context) and the in-
flaton, φ. The coupling dφ is a constant. This coupling was
shown to lead to a reheating temperature of order

TR ∼ dφ × 109 GeV . (61)

formφ = 6×10−6 in Planck units. Thus barring other pos-
sible enhancements, we would require dφ & 10 to achieve
reheating large enough to obtain the correct relic density
of neutralinos after gravitino decay.
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Fig. 5. Direct detection processes for the neutralino-nucleon
elastic scattering.

A similar situation appears if the inflaton field is a
pseudo scalar coupled to vectors as dφφFF̃ . Such mod-
els, with dφ ∼ 102 and large reheating temperature, were
recently considered in [78] as a potential source of non-
Gaussian inflationary perturbations.

3) We increase m3/2 sufficiently (to & 500 TeV) to
get the right relic density. As is clearly seen in Fig. 4,
for suitable m3/2 ≃ 650 TeV, we can obtain the WMAP

density of Ωχh
2 ≃ 0.11. Of course at this value of m3/2,

we obtain mh ≃ 128.5 GeV slightly in excess of the recent
LHC measurement. However, as we noted earlier, there is
certainly some uncertainty in the calculated value of mh

and so we can not entirely exclude this possibility.

6.4 Direct and indirect detection of dark matter

A wino–like dark matter candidate has several features
which makes its direct detection modes, through the mea-
surement of its scattering off a nucleus, difficult to observe.
Indeed the two main scattering modes are the t-channel
Higgs exchange (h or H) and the s- and t-channel squark
exchange (see Fig.5). The t–channel SM Higgs exchange
is strongly suppressed due to the coupling of the LSP to
the Higgs boson. Indeed, this coupling is proportional to
the product of the Higgsino and gaugino components of
the neutralino. With such a heavy Higgsino (≃ 20 − 30
TeV), the lightest neutralino (wino) has a very small hig-
gsino component (much less than 1 %), thus reducing the
effective χ̃0

1 χ̃
0
1 qq̄ coupling. Processes with heavy Higgs ex-

change or squark exchange (Fig.5), are both also strongly
suppressed with such a heavy scalar spectrum (≃ 30 TeV),
giving a reduction by a factor 103 to 104 compared to typ-
ical WIMP interactions on nucleon. This is clearly illus-
trated in Fig. 7 where a typical cross section for a 100 GeV
neutralino (m3/2 ≃ 30 TeV) is 10−14 pb whereas classical

WIMP interaction should lie between 10−8 to 10−12 pb.
This result is relatively independent of tanβ or Min as
the arguments developed above are quite general. For ref-
erence, the anticipated reach of a XENON 1 ton detector
is about a few ×10−11 pb [79] and is shown by the black
curve.

On the other hand, it is well known that a neutralino with
a dominant wino component has a large s-wave annihila-
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Fig. 6. Main neutralino annihilation channel for indirect de-
tection constraint imposed by FERMI.
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Fig. 7. The spin independent elastic cross section, σχp , as a
function of the gravitino mass, m3/2. Also shown is the pro-
jected limit for a XENON-1 ton detector [79].

tion cross section, which implies possibilities for indirect
signals. The main annihilation channel is the t-channel
exchange of the chargino (see Fig. 6). In the anomaly me-
diation scenario, the mass degeneracy between χ̃0

1 and χ̃+
1

together with the relatively strong SU(2) coupling gener-
ates a high rate of W+W− final states (around 80 %).
However, such final states are strongly constrained by
the recent analysis of dwarf galaxies by the FERMI tele-
scope [80]. Due to the lower limit on the chargino mass
from LEP constraint, this is also the lower limit for the
lightest neutralino as they are nearly degenerate. For the
benchmark point m3/2 = 32 TeV giving mχ̃0

1
= 107 GeV,

we obtained 〈σv〉 = 3.5×10−7GeV−2 ≃ 4×10−24cm−2s−1

which corresponds to the derived 95% CL upper limit of
FERMI [80] in the case of W+W− final state. Moreover,
as the dependence of the fluxes on the mass is proportional
to 1/m2

χ, and the limit of FERMI is even less constraining
for heavier DM masses, we can safely conclude that the
combined LEP/FERMI data do not affect the parameter
space considered.
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7 Conclusions

The Polonyi, or more generally, the moduli problem [4] has
been a persistent problem for supergravity models put in
a cosmological context. These problems were compounded
in KKLT models of moduli stabilization as they place a
severe requirement on the Hubble parameter during infla-
tion, H . m3/2, in order to avoid destabilization of the
volume modulus. The mass of the volume modulus is rel-
atively small, so even if one manages to avoid the volume
modulus destabilization and the resulting decompactifi-
cation, one may encounter a version of the cosmological
moduli problem related to this field. Furthermore, if F -
term supersymmetry breaking is used to uplift the AdS
supersymmetric vacuum in KKLT, one may have a classic
Polonyi problem in addition to the cosmological problems
associated with the string theory moduli. Depending on
its mass, the gravitino may also present a plethora of prob-
lems.

On the other hand, a relatively simple modification of
the KKLT superpotential allows for strong moduli stabi-
lization. In the particular example of a racetrack super-
potential, as in the KL model, the volume modulus may
be very heavy (i.e., GUT scale or above), thus removing
not only the cosmological problem involving the density
of moduli, but also the problem of vacuum destabilization
for H & m3/2. In the KL model, the constraint H ≤ m3/2

does not apply, inflation is possible even in the simplest
models of chaotic inflation where the Hubble constant may
be extremely large, exceeding 1013 GeV [7,8]. However, as
we already noted, uplifting in the KL model based only
on anti-D3 branes in warped space leads to pure anomaly
mediation, which is problematic from the point of view of
phenomenology. Therefore, we were led to extended ver-
sions of the KL model involving F -term uplifting.

In section 2, we have given two explicit examples of
F -term uplifting which generate scalar masses equal to
the gravitino mass. Relying once more on strong moduli
stabilization, the fields associated with uplifting do not
suffer from the Polonyi problem. In the first example, we
used a non-minimal form for the Kähler potential for the
Polonyi-like field S [24]. The mass of S was found to be
much larger than the gravitino mass which is sufficient for
avoiding the Polonyi problem. A second example based on
the ISS mechanism [28] was shown to give qualitatively
similar results.

The main result of strong moduli stabilization with a
decoupled uplift sector is the generation of scalar masses
equal to the gravitino mass, while gaugino masses and
supersymmetry breaking trilinear terms are heavily sup-
pressed by either the F -term of the modulus proportional
to DρW ∝ m2

3/2/mσ ≪ m3/2 or the vev of the Polonyi

like field 〈S〉 ≃ Λ2 ≪ 1 [24]. The resulting smallness of
the A-terms necessitates a large gravitino mass to obtain
a reasonably large Higgs mass as is now required. Thus we
find a low energy spectrum built from very few parame-
ters, reminiscent of split supersymmetry [12]. Arguments
for the decoupling of the uplift sector, which is important

in obtaining these results, were discussed in Sections 2 and
3.

However, given the theoretical framework for moduli
stabilization described above, producing a viable low en-
ergy spectrum consistent with radiative electroweak sym-
metry breaking requires sensible supersymmetry breaking
input parameters at some UV scale. Indeed, split super-
symmetry models with universal scalar masses at the UV
input scale put severe restrictions on the universal scalar
mass, if these are input at the GUT scale as is commonly
assumed in the CMSSM or mSUGRA models. While one
could impose non-universality in the Higgs sector with
non-minimal couplings between S and the Higgs multi-
plets, we have assumed that this non-universality is not
present in the simple models based on KL supergravity
with O’KKLT uplifting. Instead, we have shown [38] that
large scalar masses are in fact consistent with radiative
electroweak symmetry breaking if the UV input scale for
supersymmetry breaking is input above the GUT scale.
In this case, the extra running between Min and MGUT

generates sufficient non-universality for the low energy
minimization conditions to be satisfied. Finally, to satisfy
the boundary condition given by Eq. (38), we include a
Giudice-Masiero like contribution to the Kähler potential.

On the phenomenological side, the Higgs mass deter-
mination of ≃ 125 GeV may indicate significant splitting
in the stop sector (through a large A-term) or a high mass
scale of supersymmetry. Supergravity models with strong
modulus stabilization choose the latter. As we have seen
the only “light” supersymmetric particles in the theory are
the charged and neutral gauginos. Indeed the LEP lower
limit on the chargino mass coincides with a Higgs mass
& 125 GeV for m3/2 & 30 TeV. While gaugino masses and
A-terms are generated predominantly through anomaly
mediation, the scalar sector of the theory resembles that
of split supersymmetry. However, unlike most split-SUSY
models in the literature, the µ-term derived here through
radiative EWSB is of order the gravitino mass rather than
the gaugino mass. Furthermore, the requirement of radia-
tive EWSB in split SUSY models is indicative of a super-
symmetry breaking input scale above the GUT scale or of
direct couplings of uplift fields to the Higgs sector. The
model described above, which followed the first option,
demonstrates that a UV completion of split SUSY models
is not only possible but is phenomenologically viable.

We have seen that despite the added complexity in-
volved even in choosing minimal SU(5) as a GUT, the low
energy spectrum and in particular, the Higgs mass is rel-
atively insensitive to the choice of SU(5) couplings or the
supersymmetry breaking input scale. While there is some
sensitivity to tanβ, the predominant sensitivity of the low
energy spectrum lies with m3/2. The large value of m3/2

required now guarantees not only the absence of cosmo-
logical moduli problems (due to strong stabilization), but
also the absence of any gravitino problem as well, as the
massive gravitino decays well before nucleosynthesis.

While our starting point was the strong stabilization
of moduli with appropriate F -term uplifting, our result-
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ing spectrum and phenomenological consequences resem-
ble the recent models of pure gravity mediation [81]. For a
related analysis based on M-theory compactifications, see
Ref. [82]. Here, however, we have followed the full renor-
malization group evolution of masses and couplings from
the supersymmetry breaking input scale,Min, to the elec-
troweak scale insuring consistent electroweak symmetry
breaking. An important difference between our approach
and that of [82] is our emphasis on the strongly stabilized
versions of string theory/supergravity, which provides a
simple solution of the problem of moduli destabilization
during inflation, as well as of the cosmological moduli
problem after inflation. This approach led us directly to
the phenomenological models described above.

There are several consequences of the derived sparti-
cle spectrum. Because squarks are heavy, gluino decay is
suppressed. However, given the ranges of gravitino masses
considered here, the gluino decay length still lies below the
LHC resolution. Because gaugino masses are determined
by anomaly contributions, the LSP is the wino and at the
minimal value m3/2 ∼ 30 TeV the relic density of winos is
far too small to make up the dark matter. This may indi-
cate that the gravitino mass is larger (m3/2 ≃ 650 TeV)
in which case, the wino mass is above 2 TeV and annihi-
lations produce the desired WMAP relic density (in this
case, there is a one-to-one correlation between the relic
density and the gravitino mass); the reheat temperature
after inflation is sufficiently large so as to produce a suffi-
cient density of gravitinos which decay to winos and sup-
ply the correct relic density (in this case, there is a one-
to-one correlation between the relic density and the in-
flationary reheat temperature); or simply, something else
makes up the dark matter (e.g., an axion).

In the case that the wino is the dark matter, we have
seen that the elastic scattering cross section on nucleons
is far below the projected limit of a XENON 1T detec-
tor [79]. In contrast, the expected signal for gamma-rays
from wino annihilation in the halo is close to the current
FERMI limit when the gravitino mass is close to its lower
limit.

In summary, we have argued that models of strong
moduli stabilization lead to a very specific low energy
spectrum and resulting phenomenology. The spectrum re-
sembles that of split supersymmetry with scalars in the
mass range 30 – 1000 TeV. Smaller masses result in an ex-
cessively light chargino, while higher masses result both in
an excessive wino relic density and excessive Higgs masses.
Thus from the assumptions of strong moduli stabiliza-
tion and decoupling of the uplift sector, upon applying
the LEP limit on chargino masses, we are immediately
led to a lower bound of roughly 125 GeV for the Higgs
mass and a lower bound of roughly 1 TeV for the gluino
mass. Furthermore, the upper limit on the gravitino mass
from the limit on the wino relic density also corresponds
to roughly the current upper limit on the Higgs mass at
the LHC. Thus, there exists a narrow window where all
current experimental results are satisfied. While direct de-
tection of wino dark matter will be difficult in this model,

detecting gamma rays from wino annihilations may indi-
cate the realization of models of this type.
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