
HAL Id: inria-00099580
https://hal.archives-ouvertes.fr/inria-00099580v2

Submitted on 18 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Normalization of the Typed lambda_ws-calculus
René David, Bruno Guillaume

To cite this version:
René David, Bruno Guillaume. Strong Normalization of the Typed lambda_ws-calculus. Computer
Science Logic’03, Aug 2003, Vienna, Austria. pp.155-168. �inria-00099580v2�

https://hal.archives-ouvertes.fr/inria-00099580v2
https://hal.archives-ouvertes.fr

Strong Normalization of the Typed λws-calculus

R. David1 and B. Guillaume2

1 Université de Savoie, Campus Scientifique, F-73376 Le Bourget du Lac
david@univ-savoie.fr

2 LORIA / INRIA Lorraine, Campus Scientifique, F-54506 Vandœuvre-lès-Nancy
Bruno.Guillaume@loria.fr

Abstract. The λws-calculus is a λ-calculus with explicit substitutions
introduced in [4]. It satisfies the desired properties of such a calculus:
step by step simulation of β, confluence on terms with meta-variables and
preservation of the strong normalization. It was conjectured in [4] that
simply typed terms of λws are strongly normalizable. This was proved
in [7] by Di Cosmo & al. by using a translation of λws into the proof nets
of linear logic. We give here a direct and elementary proof of this result.
The strong normalization is also proved for terms typable with second
order types (the extension of Girard’s system F). This is a new result.

1 Introduction

Explicit substitutions provide an intermediate formalism which, by decomposing
the β rule of the λ-calculus into more atomic steps, gives a better understand-
ing of the execution models. The pioneer calculus with explicit substitutions,
λσ, was introduced by Curien & al. in [1] as a bridge between the classical
λ-calculus and concrete implementations of functional programming languages.
Since Melliès [6] has shown that this calculus does not preserve strong normal-
ization, even for typed terms, finding a system satisfying the following properties
became a challenge:

– step by step simulation of β,
– confluence on terms with meta-variables,
– strong normalization of the calculus of substitutions,
– preservation of strong normalization of the β-reduction.

During the last decade, various systems were presented in the literature but
none of them satisfied simultaneously the previous properties. λws, the calculus
we introduced in [4], has been the first satisfying all of them. In addition to
explicit substitutions, the terms of λws are decorated with “labels”. The typed
version of the calculus (also introduced in [4]) shows that there is a strong
link between the computational and the logical points of view: substitutions
correspond to cuts and labels to weakenings. The proof that any pure λ-term
which is β-strongly normalizable is still strongly normalizable in the λws-calculus
was highly technical and uses ad-hoc methods. We conjectured that the typed

terms are strongly normalizable (SN). Di Cosmo, Kesner and Polonovsky [7]
understood the relation between λws and linear logic and, by using a translation
of λws into proof nets, they proved this conjecture. We give here a direct and
arithmetical proof of SN for simply typed terms. This proof is based on the one
for the (usual) λ-calculus due to the first author [2, 3]. We also prove, by using
the standard notion of reducibility candidates, that terms typable with second
order types (the extension of Girard’s system F) are strongly normalizable. This
result is new.

The general idea of the proofs is the following. We first give a simple charac-
terization of strongly normalizing terms (theorem 3). This result, which is only
concerned with the untyped calculus, is interesting by itself and may be used to
prove other results on λws. It can be seen as a kind of standardization result. The-
orem 3 mainly consists of commutation results. Note that permutation of rules
is also the main ingredient in the proof of [7]. Then, for S, we use this char-
acterization to prove, by a tricky induction, a substitution lemma (theorem 6)
from which the result follows immediately. For F , we use this characterization
to prove that if a term is typed then it belongs to the interpretation of its type.

The paper is organized as follows. Section 2 gives the main notations. In
section 3 we introduce some useful notions and we prove the key technical result.
It is used in section 4 to prove SN for simply typed terms and in section 5 for
second order types.

2 The λws-calculus

2.1 The untyped calculus

We define here a variant of λws which is equivalent to the one in [4]: 〈k〉 is no more
primitive but becomes the abbreviation of 〈〉 . . . 〈〉, k many times and n is coded
by 〈n〉0. Since the strong normalization of both formulations are equivalent (see
proposition 1 below) and the proof is a bit simpler for the new one, we introduce
here this calculus.

Definition 1. The set of terms of λws is defined by the following grammar:

T = 0 | λT | (T T) | 〈〉T | [i/T, j]T where i, j ∈ N.

and the reduction rules of the λws-calculus are given in fig.1.

Remark 1. – The “logical” meaning of 〈〉 and [i/u, j]t is given by the typing
rules. The “algorithmic” meaning is, intuitively, the following: 〈k〉t means
that each de Bruijn index in t is increased by k (as a consequence, there is
no variable with de Brujin indices less than k in t) and [i/u, j]t represents
the term t in which the variable indexed by i is substituted by u with a
re-indexing commanded by j.

– It is clear that the version of λws presented here is a restriction of the one in
[4]. For self completeness the terms and the rules of this calculus are given in
the appendix. The translation φ from the latter to the present one is given
by: φ(t) is obtained from t by replacing n by 〈n〉0 and then 〈k〉 by 〈〉 . . . 〈〉,
k many times. In particular, 〈0〉 is empty.

b (〈k〉λt u) −→ [0/u, k]t

l [i/u, j]λt −→ λ[i + 1/u, j]t

a [i/u, j](t v) −→ (([i/u, j]t) ([i/u, j]v))

e1 [0/u, j]〈〉t −→ 〈j〉t

e2 [i/u, j]〈〉t −→ 〈〉[i − 1/u, j]t i > 0

n1 [i/u, j]0 −→ 0 i > 0

n2 [0/u, j]0 −→ u

c1 [i/u, j][k/v, l]t −→ [k/[i − k/u, j]v, j + l − 1]t k ≤ i < k + l

c2 [i/u, j][k/v, l]t −→ [k/[i − k/u, j]v, l][i − l + 1/u, j]t k + l ≤ i

Fig. 1. Reduction rules of λws

– Note that, in this variant, the reduction rules become a bit simpler and some
of them (m and n3 in the original calculus) even disappear. Also note that
rules b1 and b2 give a unique rule b which is in fact a family of rules since
〈k〉 represents a family of symbols.

Proposition 1. If t → t′ then φ(t) →+ φ(t′). In particular, the strong normal-
ization of both versions of λws are equivalent.

Proof. Straightforward. ⊓⊔

2.2 The typed calculus

Definition 2. Let V be a set of type variables.

– The set S of simple types is defined by: S ::= V | S → S
– The set F of second-order types is defined by: F ::= V | F → F | ∀V.F

Definition 3. – A basis Γ is an (ordered) list of types. The length of Γ is
denoted by ‖Γ‖.

– The typing rules for F are the given in fig.2. Note that the first element (on
the left) of Γ corresponds to the variable with de Bruijn index 0. For S, just
forget ∀i and ∀e.

Proposition 2. Both systems have subject reduction: if Γ ⊢ t : A and t → u,
then Γ ⊢ u : A.

Proof. We have to check that, for each rule, the typing is preserved after reduc-
tion. We give below the example of rule b. The proof is detailed in [5] for the
original version of the calculus.

The typing of the b-redex (〈k〉λt u) is given on the left and the typing of
its reduct [0/u, k]t is given on the right. We assume that ‖Γ‖ = k and the last
element of Γ is C.

A, Γ ⊢ 0 : A
(Ax)

Γ ⊢ t : A

B, Γ ⊢ 〈〉t : A
(Weak)

A, Γ ⊢ t : B

Γ ⊢ λt : A → B
(→i)

Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ (t u) : B
(→e)

Γ, A, Φ ⊢ t : B ∆, Φ ⊢ u : A

Γ, ∆, Φ ⊢ [i/u, j]t : B
(Cut) where i = ‖Γ‖ and j = ‖∆‖

Γ ⊢ t : A

Γ ⊢ t : ∀α.A
(∀i) if α 6∈ Γ

Γ ⊢ t : ∀α.A

Γ ⊢ t : A{α := B}
(∀e)

Fig. 2. Typing rules of the λws-calculus

A, ∆ ⊢ t : B
(→i)

∆ ⊢ λt : A → B
(Weak)

C, ∆ ⊢ 〈〉λt : A → B
(Weak)

...
(Weak)

Γ, ∆ ⊢ 〈k〉λt : A → B Γ, ∆ ⊢ u : A
(→e)

Γ, ∆ ⊢ (〈k〉λt u) : B

A, ∆ ⊢ t : B Γ, ∆ ⊢ u : A
(Cut)

Γ, ∆ ⊢ [0/u, k]t : B

⊓⊔

3 Characterization of strongly normalizable terms

This section gives a characterization (Theorem 3) of strongly normalizable terms.
This is the key of the proof of the strong normalization for both systems. We
first need some definitions.

3.1 Some definitions

Definition 4. The set S of substitutions and the set Σ are defined by the fol-
lowing grammars:

S ::= ∅ | [i/T, j]S Σ ::= ∅ | 〈〉Σ | [i/T, j]Σ

Definition 5. Some particular contexts are defined by the following grammars
where ∗ denotes a hole and, if H is a context, H[t] denotes the term obtained by
replacing ∗ by t in H.

Ci ::= ∗ | ΣCi | λCi Ce ::= ∗ | ΣCe | (Ce T) C ::= Ci[Ce]

Note that these contexts have a unique hole at the leftmost position. The el-
ements of C (resp. Ci, Ce) are called head contexts (resp. i-contexts, e-contexts).
Elements of T (resp. S, Σ, C) will be denoted by t, u, v, w (resp. by s, by σ, by
H,K).

Notation 1 1. We denote by → the least congruence on T ∪C containing the
rules of fig.1. As usual, t →∗ t′ (resp. t →+ t′) means that t reduces to t′ by
some steps (resp. at least one step) of reduction.

2. The set of strongly normalizable terms (i.e. such that every sequence of →
reductions is finite) is denoted by SN .

Lemma 1 (and notation). Every term in T can uniquely be written as H[0]
or H[(σλu v)] where H is an head context. The head of t (denoted by hd(t)) is:

hd(H[0]) = H hd(H[(σλu v)]) = H[(σ ∗ v)]

Proof. Straightforward. ⊓⊔

Notation 2 Say t →r t′ if t → t′ with the following restrictions: use only
the rules a, e, c and only in hd(t) either at the top level or, recursively, for
[i/u, j] in hd(t), only in hd(u). The rule l is also permitted but only in Hi

where hd(t) = Hi[He] with Hi ∈ Ci and He ∈ Ce.

Example 1.

[0/b, 0](λ[0/c, 0]1 [0/d, 1]0) →∗
r

([0/b, 0]λ[0/c, 0]1 [0/[0/b, 0]d, 1]0)

[0/a, 0]λ(b c) →∗
r

λ([1/a, 0]b [1/a, 0]c)

[0/[0/a, 0]λc, 0]b 6→∗
r

[0/λ[1/a, 0]c, 0]b

(λ[0/a, 0]〈〉b c) 6→∗
r

(λb c)

Lemma 2 (and notation). The reduction →r is locally confluent and thus
is confluent for terms such that hd(t) ∈ SN . The r-normal form of t will be
denoted by r(t).

Proof. Straightforward. ⊓⊔

Remark 2. The r-reduction is actually strongly normalizing for every term and
thus confluent. This follows immediately from the strong normalization of the
calculus of substitution (i.e. all the rules except b) which is proved in [4]. We
have stated the previous lemma in this way to keep this paper self contained,
i.e. our proof does not need this result. Thus, in the rest of the paper, when we
use r(t) or the confluence of r we have to check that hd(t) ∈ SN . We will not
mention this since this is always straightforward.

Definition 6. 1. Let H be an head context. Let R(H) ⊂ T , L(H) ∈ Ci and, if
H ∈ Ci, I(H) ∈ T be defined by the following rules:

– R(∗) = ∅, R(λH) = λR(H), R(σH) = σR(H) and R((H t)) = R(H) ∪
{t}.

– L(∗) = ∗, L(λH) = λL(H), L(σH) = σL(H) and L((H t)) = L(H).
– I(∗) = 0, I(H[λ∗]) = I(H[〈〉∗]) = I(H) and I(H[[i/u, j]∗]) = H[〈i〉u].

2. An head context is pure if L(H) has no substitutions.
3. Let t be a term in T . The set arg(t) ⊂ T is defined by:

– arg(H[0]) = R(H) ∪ {I(L(H))}
– arg(H[(σλu v)]) = R(H[(∗ v)]) ∪ L(H)[σλu]

Remark 3. In the previous definition, the equation R(λH) = λR(H) actually
means, since R(H) is a set of terms, R(λH) = {λt / t ∈ R(H)} and similarly
for R(σH) = σR(H).

Example 2.

arg([4/0, j](〈2〉λ3 0)) = {[4/0, j]〈2〉λ3, [4/0, j]0}

arg([2/0, j][0/v, 2]〈〉0) = {[2/0, j]v}

Lemma 3. – Let t = H[0]. Then r(t) can be uniquely written as K[s0] where
K is pure.

– Let t = H[(σλu v)]. Then r(t) can be uniquely written as K[(〈k〉sλu v1)]
where K is pure.

Proof. Straightforward. ⊓⊔

Definition 7. Let s ∈ S be a substitution, we define s+ ∈ S and s↓ ∈ T as
follows:

– s+ is defined by: ∅+ = ∅ and ([i/u, j]s)+ = [i + 1/u, j]s+.
– s↓ is defined by: ∅↓ = 0 and (s[i/u, j])↓ = su if i = 0 and s↓ otherwise.

Definition 8. Let t be a term in T . The head reduct of t (denoted as hred(t))
is defined as follows:

– If t = H[0] and r(t) = K[s0] then hred(t) = K[s↓].
– If t = H[(σλu v)] and r(t) = K[(〈k〉sλu v1)] then hred(t) = K[[0/v1, k]s+u].

Example 3. With terms as in the previous example, we have:

hred([4/0, j](〈2〉λ3 0)) = [0/[4/0, j]0, 2][3/0, j]3

hred([2/0, j][0/v, 2]〈〉0) = 2

Theorem 3. Let t ∈ T be such that arg(t) ⊂ SN .

1. Assume t →∗
r

t′ and t′ ∈ SN . Then t ∈ SN .
2. Assume hred(t) ∈ SN . Then t ∈ SN .

3.2 Proof of theorem 3

We first need some notations and lemmas.

Notation 4 1. If t ∈ SN , η(t) is the length of the longest reduction starting
from t and η0(t) is the maximum number of b or n steps in a reduction
starting from t.

2. The complexity of a term t (denoted by cxty(t)) is defined by: cxty(∗) =
cxty(0) = 0, cxty(λt) = cxty(〈〉t) = cxty(t) + 1, cxty((t t′)) = cxty(t) +
cxty(t′) + 1 and finally cxty([i/t′, j]t) = cxty(t) + cxty(t′) + i + 1.

Note that the unusual definition of cxty([i/t′, j]t) is due to the fact that
cxty(〈k〉) = k. It ensures that cxty([i/u, j]) > cxty(〈i〉u) and thus, except for
t = 0, cxty(u) < cxty(t) for any u ∈ arg(t).

Lemma 4. Let H be an head context, u be a term and w ∈ arg(H[u]). Then,

– either w ∈ R(H),
– or w = L(H)[v] for some v ∈ arg(u),
– or H is not an i-context, u = σλu′ and w = L(H)[u].

Proof. Straightforward. ⊓⊔

Lemma 5. Let H ∈ C be pure.

1. If t = H[u] ∈ SN and s ∈ SN , then H[[0/u, j]s+0] ∈ SN .
2. If t = H[[0/v, k]s+u] ∈ SN , then H[(〈k〉sλu v)] ∈ SN .

Proof. By induction on η(t) + η(s+0) for (1) and η(t) + cxty(s) for (2). ⊓⊔

Lemma 6. Let K be an head context. Assume that

– either k ≥ i + j and w = [i/[k − i/v, l]u, j][k − j + 1/v, l]K →∗
r

w1 =
K1[[0/[k − i/v, l]u, j]s+

1 ∗]
– or i ≤ k < i + j and w = [i/[k − i/v, l]u, k + j − 1]K →∗

r
w1 = K1[[0/[k −

i/v, l]u, j]s+

1 ∗].

Then, there is an head context K2 such that [i/u, j]K →∗
r

K2[[0/u, j2]s
+

2 ∗] and
[k/v, l]K2[[0/u, j2]s

+

2 ∗] →
∗
r

w1.

Proof. By induction on the length of the reduction w →∗
r

w1. ⊓⊔

Lemma 7. Assume w = [i/u, j]K1[[k/v′, l]K2] →∗
r

w1 = K3[[0/u, j]s+∗] and
v → v′. Then, [i/u, j]K1[[k/v, l]K2] →

∗
r

K4[[0/u, j]s+

1 ∗] →
∗ K3[[0/u, j]s+∗] for

some K4, s1.

Proof. By induction on the length of the reduction w →∗
r

w1. ⊓⊔

Lemma 8. 1. Assume t = H[(σλu v)] →∗ t0 = H0[(〈k0〉λu0 v0)]. Then, there
is a term t1 = H1[(〈k1〉s1λu v1)] such that t →∗

r
t1 →∗ t0.

2. Assume t = H[0] →∗ t0 = H0[[0/u0, j0]s
+

0 0]. Then, H can be written
as K[[i/u, j]K0] such that [i/u, j]K0 →∗

r
K ′

1 = K1[[0/u, j]s+∗] and t1 =
K[K ′

1][0] →∗ t0.

Proof. First note that we should be a bit more precise in the terms of the lemma:
we implicitly assume that the potential b-redex (resp. n-redex) at the end of the
left branch of t is not reduced during the reduction t →∗ t0. The lemma is proved
by induction on the length of the reduction t →∗ t0. We give some details only
for (2). They are similar and simpler for (1).

The result is clear for t = t0. Assume t →+ t0. By the induction hypothesis,
H → H1 = K[[i/u, j]K0] for some K,u,K0 such that [i/u, j]K0 →∗

r
K ′

1 =
K1[[0/u, j]s+∗] and t1 = K[K ′

1][0] →∗ t0. H can be written as K3[[i/u1, j1]K2]

– if K3 → K or u1 → u the result is trivial,

– if K2 = (∗ v) and K = K3[(∗ [i/u, j]v)] the result is trivial,

– if [i/u, j]K2 →r [i/u, j]K0 the result is trivial,

– if K2 → K0 but the reduction is not an r-reduction, the result follows from
lemma 7,

– if K3 = K[[k/v, l]∗] and, either [i/u, j] = [i/[k − i/v, l]u1, j1] and K0 =
[k − j1 + 1/v, l]K2], or [i/u, j] = [i/[k − i/v, l]u1, l + j1 − 1]] and K0 = K2,
the result follows from lemma 6. ⊓⊔

Lemma 9. 1. Assume t1 = H1[(σ1λu1 v1)] →
∗ t0 = H0[(〈k0〉λu0 v0)]. Then,

H1[[0/v1, k1]s
+

1 u1] →
∗ H0[[0/v0, k0]u0] where r(σ1) = 〈k1〉s1.

2. Assume t1 = H1[[0/u1, j1]s
+

1 0] →∗ t0 = H0[[0/u0, j0]s
+

0 0]. Then, H1[u1] →
∗

H0[u0].

Proof. By induction on the length of the reduction t1 →∗ t0. Look at the first
reduction. Note that there is no simple relation between the original and the
resulting reduction sequence and, in particular, the latter may be longer than
the original. ⊓⊔

Lemma 10. 1. Assume H[(σλu v)] →∗
r

t0. Then t0 has the form H0[(σ0λu v0)]
and H[[0/v, k]s+u] →∗

r
H0[[0/v0, k0]s

+

0 u] where r(σ) = 〈k〉s and r(σ0) =
〈k0〉s0.

2. Assume H0[0/u, j]s+

0 0 →∗
r

t0. Then t0 has the form H1[[0/u1, j1]s
+

1 0] where
H0 →∗

r
H1[s2∗] for some s2 such that s2[0/u, j]s+

0 →∗
r

[0/u1, j1]s
+

1 .

Proof. Straightforward. ⊓⊔

Lemma 11. Let K be an i-context. Then, K ∈ SN iff I(K) ∈ SN and, in this
case, η0(I(K)) ≤ η0(K).

Proof. This follows immediately from the following result. Let K be an i-context,
then: K[[i/u, j]∗] ∈ SN ⇔ K[〈i〉u] ∈ SN and, in this case, η0(K[〈i〉u]) ≤
η0(K[[i/u, j]∗]).

⇒ Prove, by induction on (η(t), cxty(K)) that if t = K[s[i/u, j]∗] ∈ SN then
K[d(s, i)u] ∈ SN where d(s, i) is the result of moving down s through 〈i〉. It
is enough to prove that, if K[d(s, i)u] → t′ then t′ ∈ SN . This is done by a
straightforward case analysis.

⇐ This is proved by showing that to any sequence of reductions of t′ = K[〈i〉u]
corresponds a sequence of reductions of t with the same b or n steps. Define
for s ∈ S, δ(s) ∈ Z by: δ(∅) = 0 and δ([k/v, l]s) = δ(s) + l − 1.
We show that, to a term of the form K ′[〈i′〉u′] coming from t′ corresponds,
for some s such that δ(s) < i′, the term K ′[s[i′ − δ(s)/u′, l]∗] coming from
t. This is done by a straightforward case analysis. For example, if t′ →∗

K ′[[k/v, l]〈i′〉u′] → K ′[〈l+ i′−1〉u′] then t →∗ K ′[[k/v, l]s[i′−δ(s)/u′, l]∗] =
K ′[s′[i′ − δ(s′)/u′, l]∗] where s′ = [k/v, l]s.
It is important to note that the result on η0 would not be true with η. This is
essentially because [k/v, l] can always go through 〈i〉 whereas [k/v, l] cannot
move down in [i/u, j] if k < i. ⊓⊔

Lemma 12. Let t ∈ T be such that arg(t) ⊂ SN and t 6∈ SN . Then,

1. If t = H[(σλu v)], there is a term t1 = H1[(〈k1〉s1λu v1)] such that t →∗
r

t1
and H1[[0/v1, k1]s

+

1 u] 6∈ SN .
2. If t = H[0] there is a term t1 = K[K1[[0/u, j]s+

1 0]] such that t →∗
r

t1, t can
be written as K[[i/u, j]K0][0] and K[K1][u] 6∈ SN .

Proof. 1. Since arg(t) ⊂ SN , the potential b-redex must be reduced in an infi-
nite reduction of t and thus such a reduction looks like: t →∗ H0[(〈k0〉λu0 v0)]
→ H0[[0/v0, k0]u0] →... and the result follows from lemmas 8 and 9.

2. Since arg(t) ⊂ SN and thus, by lemma 11, H ∈ SN , an infinite reduction
of t looks like: t →∗ H0[[0/u0, j0]s

+

0 0] → H0[u0] →... and the result follows
from lemma 8 and 9. ⊓⊔

Proof of theorem 3

1. By induction on (η0(t
′), cxty(t)). Note that the proof is by contradiction. We

tried to find a constructive proof but we have been unable to find a correct
one.

– Assume first t = H[(σλu v)] and t 6∈ SN . By lemma 12, let t →∗
r

t0 = H0[(〈k0〉s0λu v0)] be such that t1 = H0[[0/v0, k0]s
+

0 u] 6∈ SN . By
the confluence of →∗

r
, let t′0 be such that t′ →∗

r
t′0 and t0 →∗

r
t′0. By

lemma 10 with the reduction t0 →∗
r

t′0, t′0 = H ′[(σ′λu v′)]. Let t′1 =
H ′[[0/v′, k′]s′

+
u] where r(σ′) = 〈k′〉s′. Then η0(t

′
1) < η0(t

′) and, by
lemma 10, t1 →∗

r
t′1. It is thus enough to show that arg(t1) ⊂ SN to get

a contradiction from the induction hypothesis.
Let w1 ∈ arg(t1). By lemma 4, either w1 ∈ arg(t0) and the result is
trivial or w1 = L(H0)[[0/v0, k0]s

+

0 w] for some w ∈ arg(u) or H is not an
i-context and w1 = L(H0)[[0/v0, k0]s

+

0 u].
Since the second case is similar, we consider only the first one. Let
a = L(H)[(σλw v)] and a′ = L(H ′)[(σ′λw v′)]. Then, a →∗

r
a′ and

η0(a
′) ≤ η0(t

′) (use lemma 11 for the difficult case, i.e. when u = K[0]
and w = I(L(K))). If it is not the case that H is an i-context and
u = 0, then cxty(a) < cxty(t) and, by the induction hypothesis, a ∈ SN
and the result follows since a →∗ w1. Otherwise, the result is triv-
ial since it is easily seen (by induction on (η(H), cxty(H))) that, if
t = H[(σλ0 v)] (where H is an i-context), r(σ) = 〈k〉s and arg(t) ⊂ SN ,
then H[[0/v, k]s+0] ∈ SN .

– Assume t = H[0] and t 6∈ SN . By lemma 12, let t = K[[i/u, j]K0][0] →∗
r

t0 = K[H0][[0/u, j]s+

0 0] be such that t1 = K[H0][u] 6∈ SN . By the
confluence of →∗

r
, let t′0 be such that t′ →∗

r
t′0 and t0 →∗

r
t′0. By lemma 10

with the reduction t0 →∗
r

t′0, t′0 = H ′[[0/u′, j′]s′
+
0] where K[H0] →∗

r

H ′[s1∗] for some s1 such that s1[0/u, j]s+

0 →∗
r

[0/u′, j′]s′
+
. Let t′1 =

H ′[u′]. Then η0(t
′
1) < η0(t

′) and, by lemma 10, t1 →∗
r

t′1. It is thus
enough to show that arg(t1) ⊂ SN to get a contradiction from the
induction hypothesis.
Let w1 ∈ arg(t1). By lemma 4 either w1 ∈ arg(t0) and the result is trivial
or w1 = L(K[H0])[w] for some w ∈ arg(u) or H is not an i-context and
w1 = L(K[H0])[u].
Since the second case is similar, we consider only the first one. Let a =
L(K[[i/w, j]K0])[0]. Since s1u →∗

r
u′, it is easy to find w′ such that

s1w →∗
r

w′ and, letting a′ = L(H ′)[[0/w′, j′]s′
+
0], a →∗

r
a′ and η0(a

′) ≤
η0(t

′) (use lemma 11 for the difficult case, i.e. when u = K[0] and w =
I(L(K))). Since cxty(a) < cxty(t) (except if H is an i-context and u = 0
but in this case again the result is trivial), by the induction hypothesis,
a ∈ SN and the result follows since a →∗ w1.

2. This follows immediately from (1) and lemma 5. ⊓⊔

4 Strong normalization for S

Theorem 5 below has first been proved in [7] by Di Cosmo & al. It is of course
a trivial consequence of theorem 7 of section 5. However, the proof presented
below is interesting in itself because it is purely arithmetical whereas the one of
section 5 is not.

Theorem 5. Typed terms of T are strongly normalizing.

Proof. By induction on cxty(t). The cases t = 0, t = λt′ and t = 〈〉t′ are
immediate. The case t = [i/u, j]t′ follows immediately from theorem 6 below.
The remaining case is t = (u v). By the induction hypothesis, u and (0 〈1〉v) are
in SN . Thus, by theorem 6, [0/u, 0](0 〈1〉v) ∈ SN and since [0/u, 0](0 〈1〉v) →∗ t
it follows that t ∈ SN . ⊓⊔

Theorem 6. Assume u, t ∈ T ∩ SN . Then [i/u, j]t ∈ SN .

Proof. We prove the following. Let u ∈ T ∩ SN . Then,
(1) If t′ ∈ T ∩ SN , then [i/u, j]t′ ∈ SN .

(2) If H ∈ C ∩ SN is pure, then H[u] ∈ SN .

This is done by simultaneous induction on (type(u), η0(v), cxty(v), η0(u)) where
type(u) is the number of → in the type of u and v = t′ for (1) (resp. v = H for
(2)). The induction hypothesis will be denoted by IH.

1. t = [i/u, j]t′. The fact that arg(t) ⊂ SN follows immediately from the IH.
By theorem 3, it is thus enough to show that hred(t) ∈ SN .

(a) If t′ = H[(σλv1 v2)]: since η0(hred(t′)) < η0(t
′), it follows from the IH

that [i/u, j]hred(t′) ∈ SN and the result follows since [i/u, j]hred(t′) →∗

hred(t).

(b) If t′ = H[0]: let r(t′) = K[s0].

• If s↓ 6= 0: since η0(hred(t′)) < η0(t
′), it follows from the IH that

[i/u, j]hred(t′) ∈ SN and the result follows since [i/u, j]hred(t′) →∗

hred(t).
• Otherwise, let r(t) = K ′[s′0]. If s′↓ = 0 the result is trivial. Otherwise

s′↓ = u′ for some u′ such that u →∗
r

u′ and thus t1 = hred(t) =
K ′[u′]. If K ′ is an i-context the result is trivial. Otherwise K ′ =
H ′[(〈k〉∗ t0)]. Then t1 = H ′[(〈k〉u′ t0)]. It is clear that arg(t1) ⊂ SN .
It is thus enough to show that hred(t1) ∈ SN .

∗ If u′ = 〈k′〉λu′
0 and thus hred(t1) = H ′[w] where w = [0/t0, k +

k′]u′
0. Since type(t0) < type(u), by the IH, w ∈ SN . By the IH,

H ′[w] ∈ SN since type(w) < type(u). Note that, here, we use
(2).

∗ Else hred(t1) = H ′[(〈k〉hred(u′) t0)] = hred([i/hred(u′), j]t′).
If u′ →+ hred(u′), the result follows from the IH. Otherwise,
the result is trivial.

2. t = H[u]. If H is a i-context, the result is immediate. Otherwise, H =
H ′[(〈k〉∗ t′)]. It is clear that arg(t) ⊂ SN . It remains to prove that hred(t) ∈
SN .

(a) If u = σλu′: then hred(t) = r(H ′)[[0/t′, k + k′]s+u′] where r(σ) = 〈k′〉s.
Since u ∈ SN , s+u′ ∈ SN . By the IH since type(t′) < type(u), [0/t′, k+
k′]s+u′ ∈ SN . Finally hred(t) ∈ SN since type([0/t′, k + k′]s+u′) <
type(u).

(b) Otherwise hred(t) = H[hred(u)]. If u →+ hred(u) the result follows
from the IH and otherwise the result is trivial. ⊓⊔

Remark 4. We need (2) in the proof of (1) for the following reason: we cannot
always find H ′ and i, j such that [i/v, 0]H ′[〈j〉0] →∗ H[v]. By choosing i large
enough and j conveniently it is not difficult to get [i/v, 0]H[〈j〉0] →∗ H[〈j〉v]
but we do not know how to get rid of 〈j〉. This is rather strange since, in the
λ-calculus, this corresponds to the trivial fact that (u v) can be written as
(x v)[x := u] where x is a fresh variable.

5 Strong normalization for F

The proof uses the same lines as the one for the (ordinary) λ-calculus. We first
define the candidates of reducibility and show some of their properties. Then,
we define the interpretation of a type and we show that if t has type A then t
belongs to the interpretation of A.

Definition 9. 1. If X and Y are subsets of T , X → Y denotes the set of t
such that, for all u ∈ X, (t u) ∈ Y .

2. The set C of candidates of reducibility is the smallest set which contains SN
and is closed by → and intersection.

3. N0 is the set of terms of the form (0 u1...un) where ui ∈ SN for each i.

Lemma 13. Assume C ∈ C. Then, N0 ⊂ C ⊂ SN .

Proof. By induction on C. ⊓⊔

Definition 10. An interpretation I is a function from V to C. I is extended to
F by: |α|I = I(α), |A → B|I = |A|I → |B|I and |∀α.A|I =

⋂
C∈C |A|I{α:=C}

(where J = I{α := C} is such that J(α) = C and J(β) = I(β) for β 6= α).

Definition 11. – Let u0, . . . , un−1 be a sequence of terms. We denote by [i/u]
the substitution [i/u0, 0][i + 1/u1, 0] . . . [i + n − 1/un−1, 0].

– For Γ = A0, ..., An−1, u ∈ |Γ |I means that ui ∈ |Ai|I for all i.
– A substitution s is regular if it is of the form [i/u] and ui ∈ SN for each i.

Lemma 14. Let w be a sequence of terms in SN , s ∈ S be regular and C ∈ C.
Assume either t′ →∗

r
t or t′ = [0/t, j]s+0 or t′ = (sλu v) and t = [0/v, 0]s+u. If

(t w) ∈ C, then (t′ w) ∈ C.

Proof. By induction on C. The case C = SN follows immediately from theo-
rem 3. The other cases are straightforward. ⊓⊔

Lemma 15. |A{α := B}|I = |A|I{α:=|B|I} and thus |A|I{α:=B} = |A|I if α 6∈ A.

Proof. Straightforward. ⊓⊔

Lemma 16. Let I be an interpretation. Assume Γ ⊢ t : B and u ∈ |Γ |I then
[0/u]t ∈ |B|I .

Proof. By induction on Γ ⊢ t : B. For simplicity, we write |A| instead of |A|I .
Assume u ∈ |Γ | and look at the last rule used in the typing derivation:

– rule Ax:

A,Γ ⊢ 0 : A

Let v ∈ |A|. By lemma 13, v,u ∈ SN and the result follows from lemma 14.

– rule →i:
A,Γ ⊢ t : B

Γ ⊢ λt : A → B

Let v ∈ |A| and w = ([0/u]λt v). By the IH, [0/v, 0][1/u]t ∈ |B| and the
result follows from lemma 14.

– rule →e:
Γ ⊢ t : A → B Γ ⊢ v : A

Γ ⊢ (t v) : B

By the IH, [0/u]t ∈ |A → B| and [0/u]v ∈ |A|. Thus ([0/u]t [0/u]v) ∈ |B|
and the result follows from lemma 14.

– rule Weak:
Γ ⊢ t : A

B,Γ ⊢ 〈〉t : A

Let v ∈ |B|. By the IH [0/u]t ∈ |A| and the result follows from lemma 14.
– rule Cut:

Γ,A,Φ ⊢ t : B ∆,Φ ⊢ v : A

Γ,∆,Φ ⊢ [i/v, j]t : B
where i = ‖Γ‖ and j = ‖∆‖

Let u1 ∈ |∆|, u2 ∈ |Φ| and w′ = [0,u][i/u1][i+ j/u2][i/v, j]t. By the IH (on
the second premise), [0/u1][j/u2]v ∈ |A|. By the IH (on the first premise),
w = [0/u][i/[0/u1][j/u2]v, 0][i + 1/u2]t ∈ |B|. Since w′ →∗

r
w, The result

follows from lemma 14.
– rule ∀i:

Γ ⊢ t : A

Γ ⊢ t : ∀α.A
if α 6∈ Γ

Let C ∈ C. Since α 6∈ Γ , by lemma 15, u ∈ |Γ |I{α:=C} and thus, by the IH,
[0/u]t ∈ |A|I{α:=C}. It follows that [0/u]t ∈ |∀α.A|I .

– rule ∀e:
Γ ⊢ t : ∀α.A

Γ ⊢ t : A{α := B}

By the IH, [0/u]t ∈ |∀α.A|I and thus [0/u]t ∈ |A|I{α:=|B|I} = |A{α := B}|I
(by lemma 15). ⊓⊔

Theorem 7. Every typed term is strongly normalizing.

Proof. Assume Γ ⊢ t : B. By lemma 13, 0 ∈ |Γ | and thus, by lemma 16,
[0/0]t ∈ |B|. By lemma 13, [0/0]t ∈ SN and thus, since SN is closed by sub-
terms, t ∈ SN . ⊓⊔

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal

of Functional Programming, 1(4):375–416, 1991.
2. R. David. A short proof of the strong normalization of the simply typed λ-calculus.

available: www.lama.univ-savoie.fr/˜david.

3. R. David. Normalization without reducibility. Annals of Pure and Applied Logic,
107:121–130, 2001.

4. R. David and B. Guillaume. A λ-calculus with explicit weakening and explicit
substitution. Mathematical Structures for Computer Science, 11:169–206, 2001.

5. B. Guillaume. Un calcul de substitutions avec étiquettes. Phd thesis, Université de
Savoie, 1999. available: http://www.loria.fr/˜guillaum/publications/Gui99.ps.gz.

6. P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. Pro-

ceedings of Typed Lambda Calculi and Applications 95 in Lecture Notes in Computer

Science, 902:328–334, 1995.
7. D. Kesner R. Di Cosmo and E. Polonovsky. Proof nets and explicit subsitutions. In

Fossacs’2000 and LNCS, 1784 : 63-81, 2000.

6 Appendix

The set of terms and the reduction rules of the original calculus of [4] are:

Terms

T = n | λT | (T T) | 〈k〉T | [i/T, j]T where n, k, i, j ∈ N.

Rules

b1 (λt u) −→ [0/u, 0]t

b2 (〈k〉λt u) −→ [0/u, k]t

l [i/u, j]λt −→ λ[i + 1/u, j]t

a [i/u, j](t v) −→ (([i/u, j]t) ([i/u, j]v))

e1 [i/u, j]〈k〉t −→ 〈j + k − 1〉t i < k

e2 [i/u, j]〈k〉t −→ 〈k〉[i − 1/u, j]t k ≤ i

n1 [i/u, j]n −→ n n < i

n2 [i/u, j]n −→ 〈i〉u n = i

n3 [i/u, j]n −→ n + j − 1 i < n

c1 [i/u, j][k/v, l]t −→ [k/[i − k/u, j]v, j + l − 1]t k ≤ i < k + l

c2 [i/u, j][k/v, l]t −→ [k/[i − k/u, j]v, l][i − l + 1/u, j]t k + l ≤ i

m 〈i〉〈j〉t −→ 〈i + j〉t

