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STRONG ORDER OF CONVERGENCE OF A FULLY DISCRETE
APPROXIMATION OF A LINEAR STOCHASTIC VOLTERRA
TYPE EVOLUTION EQUATION

MIHALY KOVACS AND JACQUES PRINTEMS

ABSTRACT. In this paper we investigate a discrete approximation in time and
in space of a Hilbert space valued stochastic process {u(t)}¢¢[o,1) satisfying a
stochastic linear evolution equation with a positive-type memory term driven
by an additive Gaussian noise. The equation can be written in an abstract
form as

du + (/0 b(t — s)Au(s) ds) dt =dwe, t € (0,T]; u(0)=up € H,

where W@ is a Q-Wiener process on H = L?(D) and where the main example
of b we consider is given by

b(t) =t?~1/r(B), 0<pB<1.

We let A be an unbounded linear self-adjoint positive operator on H and we
further assume that there exist o > 0 such that A~ has finite trace and that

Q is bounded from H into D(A") for some real k with a — ﬁ <k <a.

The discretization is achieved via an implicit Euler scheme and a Laplace
transform convolution quadrature in time (parameter At = T'/n), and a stan-
dard continuous finite element method in space (parameter h). Let uy 5 be
the discrete solution at T' = nAt. We show that

(Ellun n — w(T)[2)"? = O + AtY),

forany vy < (1 —(8+1)(a—k))/2 andugﬁfaJrﬁ.

1. INTRODUCTION

Let D be a bounded domain in R?, d € N, and let u be a real-valued stochastic
process solution of the equation formally written as

(1.1) w —/0 b(t — s)Au(xz,s)ds = E(x,t), (2,t) € D x (0,T],

together with the initial condition u(z,0) = ug(x), x € D, and boundary condition
u|op = 0. Here, f is a zero mean real-valued Gaussian noise and the time kernel
b is assumed to be real-valued and of positive type; i.e., that for any 7" > 0, the
kernel b belongs to L' (0, T) and for any continuous function f on [0, 7] the following
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2326 MIHALY KOVACS AND JACQUES PRINTEMS
inequality holds:

T t
(1.2) /O/Ob(t—s)f(s)f(t)dsdtzo.

The deterministic version of such problems can be used to model viscoelasticity
or heat conduction in materials with memory (see [13] for references). When b is
smooth, these equations exhibit a hyperbolic behaviour, whereas if b has a weak
singularity at ¢t = 0 (for example, a Riesz potential), they exhibit certain parabolic
features. In particular, when

(1.3) b(t) =t°~H/T(B), 0<pB <1,

the homogeneous deterministic equation has a smoothing property which corre-
spond to the inequality

(1.4) ™ () || zrzemy < Ct~FFI= g 12y,

where |r| < 1ifm > 1 and where 0 <r < 1if m = 0, but with no further smoothing
in the spacial variables (see e.g. [13, Theorem 5.5]). The framework of this paper
allows for slightly more general kernels but with similar smoothing effects and, in
particular, they are of positive type. Hence, together with the positivity of the
operator —A, the deterministic equation will remain parabolic in character.

Next we introduce an abstract framework to describe the noise and equation (1))
more precisely. Let Q be a self-adjoint, nonnegative linear operator on H := L?(D)
and W@ a Wiener process in H with covariance operator @ (or, simply, Q-Wiener
process). We set A = —A, D(A) = H?*(D) N H(D) and H = L?*(D). Then
A can be seen as an unbounded linear operator on H with domain D(A). For
b given in ([3)) and under reasonable assumptions on 9D, our main assumption
concerning @ in (LI is that A®Q defines a bounded operator on L?(D) with
d/2—-1/(B+1) <k <d/2.

If we write u(t) = u(-,t), considered as an H-valued stochastic process, then
(I can be rewritten in the abstract It6 form as

(1.5) du(t) + (/Ot b(t — s)Au(s) ds) dt = dWe(t), te (0,7,

with initial condition u(0) = ug € H.

While the literature on numerical methods for deterministic infinite dimensional
Volterra equations is abundant (see, for example, [IL6112L13L20], which is a very in-
complete list), the numerical analysis of stochastic Volterra equations is completely
missing. We are only aware of [7] where an algorithm is described and numerical
experiments are performed with no error analysis given. We will consider a numer-
ical approximation of (B by means of an Euler scheme and a Laplace transform
convolution quadrature in time together with a finite element method in space. Let
n > 1 be an integer, At = T/n and t, = kAt, k =0,...,n. Also, let {V,,}1>0 be a
family of finite dimensional subspaces of D(A'/?) = H}(D). For each 1 < k < n, we
look for an approximation of u(tx) in V3, by wuy p, defined by the following induction:

Kk
(1.6)  (ukp — un—1m,vn) + AL wij(Aujn, vn) = VAHQ Xk, vn), k> 1,

Jj=1

for any v, € V},, where VAt xy, is the noise increment and where (-,-) is the inner
product of H. The approximation of the convolution term in (LX) is achieved via
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STRONG ORDER FOR LINEAR STOCHASTIC VOLTERRA EQUATIONS 2327

a quadrature rule such that for any continuous function f on [0, 7],

k te
S wneift) ~ [ b= () ds = e 1)),

Then, the approximation of bx f on the time grid tx, k =0, ..., n, is obtained from a
discrete convolution with the values of f on the same grid. Before going into detail,
let us point out that not just any quadrature rule can be chosen. In particular, it
will be important for the chosen quadrature to satisfy a discrete analogue of (2.

In order to understand the specific quadrature rule used in this paper, we will
take the example of the Riesz kernel (IL3]). Let us note that in this case the Laplace
transform of b is 2~? and the term b+ Au in (LI can be seen as the fractional
integral (0/0t)"?(Au). Then, the idea is to use the same Euler approximation
of 9/0t in both terms on the left-hand side of (II]). Since the discrete Laplace
transform of the implicit Euler scheme is (1 — z)/At, one chooses the quadrature
weights to have discrete Laplace transform ((1 — z)/At)=5.

Such a convolution quadrature has been introduced in [9l[I0]. It was motivated
by the fact that the main properties of the solution of the homogeneous problem,
like stability, existence, or regularity, are largely determined by the distribution of
the frequencies of the kernel (by means of its Fourier or Laplace transform), espe-
cially when the kernel has weak singularities or when it exhibits different behaviour
at different time scales. Since, by construction, the discrete Laplace transform of
the quadrature kernel is closely related to the Laplace transform of the continuous
kernel, it is thus possible to carry over frequency domain conditions from the con-
tinuous problem to the discretization and thereby obtain stable approximations.
Moreover, this kind of quadrature rule inherits the rate of approximation from the
time integrator of d/0t. In the context of stochastic PDEs, we think that it is
important to make sure that the deterministic part of the scheme is stable and that
the perturbations are due to the noise only.

Although the analysis in the present paper allows for kernels slightly more general
than ([3]), we follow the same idea: the convolution quadrature weights {wy} in
([C8) will be defined by means of the Laplace transform of the kernel b. Therefore,
we choose the quadrature coefficients to have generating function 3((1 — z)/At)
where b denotes the Laplace transform of b; that is,

—+o0
~/1-
(1.7) Y wet =0 (th) el <L
n=0

We will not focus here on practical algorithms for the computations of the quadra-
ture weights and we refer the reader, for example, to [10].

While precise conditions on the kernel b are postponed to Sections 2l and El we
can already state our main result, Theorem [(.Il with the above notations in the case
of the specific kernel ([[3]) when D is a convex polygonal domain using continuous,
piecewise linear finite elements. We shall prove a (strong) error estimate of the
form

(Elunp —u(@)]?)"* < AL +h¥),
where v < (1—-(8+1)(d/2—k))/2 and v < 1/(B+1) —d/2+ k. Let us note that we
recover the known order of convergence for the heat equation (see [8|[I6L21]) when
8 —0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2328 MIHALY KOVACS AND JACQUES PRINTEMS

The paper is organized as follows. In Section 2lwe introduce notation, recall some
basic preliminary results, and state our main assumptions on A, @ and b. We note
that assumptions (Z8)—(29) on A and @ could be replaced by a single, somewhat
sharper, assumption as discussed in Remarks 2.8 [3.5] 1 and It is, however,
harder to check in most cases. In Section[3 we study the space semidiscretization of
(LI) and strong error estimates are derived for smooth initial data under minimal
regularity assumptions (Assumption [Il) on b. In Section [] we prove strong error
estimates for the time semidiscrete scheme with nonsmooth initial data. One of the
key results in this direction is Theorem [£.I] where we prove a general [P-stability
result on Lubich’s convolution quadrature based on the Backward Euler method for
deterministic Volterra equations. Interestingly, this stability result implies (Corol-
lary 4.2)) that the time-discrete scheme exhibits the same smoothing effect in time
as the solution under Assumption [Il on . However, in order to obtain optimal
convergence rates for the stochastic problem we need to put a further regularity
restriction on b in Subsection 2] Assumption [ which is in fact common in the
deterministic literature for nonsmooth initial data. Indeed, Assumption [ implies
that the deterministic equation has an analytic resolvent family while Assumption
[ only implies that the deterministic equation is parabolic. Unlike for equations
with no memory term, these two notions are not equivalent (See [I7, Chapter 1,
Section 3]). As far as we know the derivation of nonsmooth initial data estimates
using only parabolicity (Assumption [I]) remains an open problem. Finally, in the
last section, we gather the results from the preceding sections and consider the fully
discrete scheme.

2. NOTATIONS AND PRELIMINAIRIES

Let (X,]| - |lx) and (Y, - ||y) be two Banach spaces and let B(X,Y") denote
the space of bounded linear operators from X into Y endowed with the norm
IBllax,y) = supgex [ Bz|ly/||z][x. When X =Y, we use the shorter notation
B(X) for B(X, X). If X is a Banach space and I is an interval in R then, LP(I, X),
1 < p < o0, denotes the space of functions f : I — X which are measurable and
t — [|f(®)]|P is integrable on I, equipped with the usual norm. If p = oo, then
L*°(I, X) denotes the space of functions f : I — X which are measurable and
t — || f(t)] is essentially bounded on I endowed with the usual norm.

Throughout this paper, H denotes a real separable Hilbert space with inner
product (-, -) and associated norm ||-||. We consider the stochastic Volterra equation
given in the abstract It6 form as

(2.1)  du-+ (/Ot b(t — s)Au(s) ds) dt =dWe, te€(0,T]; u(0)=wug € H,

where the process {u(t)}.co,7) is an H-valued stochastic process, A is a densely
defined, nonnegative self-adjoint unbounded operator on H with compact inverse,
and We is a @Q-Wiener process in H on a given probability space (2, F,P). The
weak solution of (27) is a mean-square continuous H-valued process satisfying

//br—s )An)dsdr—(uO,n)Jr/Ot(deQ(S))’

for all n € D(A*) almost surely for all ¢ € [0,T].
It is well known that such assumptions on A imply the existence of a sequence
of nondecreasing positive real numbers {A}r>1 and an orthonormal basis {ex }x>1
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of H such that
(22) Aep, = Ak€k, lim A, = +oo.

k—+oco
We define classically, by means of the spectral decomposition of A, the domains
D(A?®) of fractional powers s € R of A and we set
lolls = 14°/20]l, v € D(A*/?).

Remark 2.1. We note that since A is nonnegative self-adjoint, —A generates an
analytic contraction semigroup on H. Moreover, for any 8 < 7, there exists My > 1
such that the following holds:

_ M,
(=1 + A)~Ysa) < |7|0, for any 2z € X,

where ¥y = {z € C\{0}, |arg(z)| < 6}.
Let £1(H) denote the set of nuclear operators from H to H; that is, T € £,(H)
if there are sequences {a;}, {b;} C H with °72 [la]|[[b;|| < oo and such that
Tz = Z(x,bj)aj, r € H.
j=1
Sometimes these operators are referred to as trace class operators. For T' € £4(H)
we define Tr(T"), the trace of T, by

+oo
Tr(T) = Y (Ben, en),
n=1
where {e,} is an orthonormal basis of H. This definition turns out to be inde-
pendent of the choice basis. Furthermore, if L € £1(H) and M € B(H), then
LM,ML € £,(H) and

(2.3) Tr(LM) = Te(ML).
If L is also symmetric and nonnegative, then
(2.4) Te(LM) < Tr(L)|[M||5(m).-

Hilbert-Schmidt operators also play an important role in this paper. An operator
L € B(H) is Hilbert-Schmidt if L*L € £4(H) or, equivalently, LL* € £1(H). We
denote by Lo(H) the space of such operators. It is a Hilbert space under the norm
(2.5) Ll 2aary = (Tr(L*L)? = (Tx(LL*) 2.

Our analysis will also use the Laplace transform. Let f: R, — H be subexpo-
nential; i.e., that for any ¢ > 0 the function ¢ — f(t)e=*! belongs to L*(R4, H).
We define the Laplace transform of f: C, — H by

flz)= /0 ft)e *'dt, Rez >0,

where we have used the same notation H for the complexification of H. We denote
by * the Laplace convolution product on [0,¢] of two locally integrable subexpo-
nential functions f,g € L}, (R, H) defined as

loc

(f*g)() :/0 f(t—s)g(s)ds.
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2330 MIHALY KOVACS AND JACQUES PRINTEMS

It is well known that f g € L}, (R, H) is subexponential and
fxg(2) =[f(2)g(z), Rez>0.

2.1. Main assumptions. Next we state the main assumptions concerning the
kernel b and the operators A and @, which will be used throughout this paper.

Regarding b, first note that property (2] can be characterized by means of the
Laplace transform b of b. It is equivalent to say that Re(g(k)) >0 for any Re A > 0
(see [15] or [I7, page 38]). Now it is clear that the positivity property ([L2) is
not sufficient, in general, to ensure smoothing effects like (L4]) when working with
kernels that are more general than (L3]). This is why, following [3] and [14], we will
impose stronger conditions on b.

Assumption 1. The kernel 0 # b € L} _(R,), is 3-monotone; that is, b, —b are

loc
nonnegative, nonincreasing, convez, and lim;_,o, b(t) = 0. Furthermore,

2 ~
(2.6) p=1+ - sup{|arg b(\)], Re A > 0} € (1, 2).
In the special case of the Riesz kernel given in (I3]) one can easily show that
p =1+ 3. From now on we set 8 = p — 1 with p defined by (2.8).

Remark 2.2. Tt follows from [I7, Proposition 3.10] that for 3-monotone and locally
integrable kernels b, condition (26) is equivalent to
1 rt
gy L)
=0 [ —sb(s)ds

o~

Also note that, by (Z0]), we have that Re(b(\)) > 0 for ReA > 0 and hence b
satisfies (2]).

For A and ) we suppose that there exists numbers a > 0 and x € R such that
(2.8) Tr(A™) < +o0,

2.7)

(2.9) A"Q € B(H), a—%</€§a.

2.2. The nonhomogeneous deterministic problem. Given f € L*([0,7]; H),
Assumption [Tl together with the fact that A is positive and self-adjoint implies that
the deterministic problem,

(2.10) U(t) —I—/O b(t — s)Au(s)ds = f(t), te(0,T], wu(0)=uwup€ H,

is well posed for all T > 0. Indeed, there exists a resolvent family {S(t)}:>0 C B(H)
which is strongly continuous for ¢ > 0, differentiable for ¢ > 0 and uniformly
bounded by 1; see [I7, Corollary 1.2 and Corollary 3.3]. The unique mild solution
of (2I0) is given by the following variation of parameter formula [I7, Proposition
1.2]

u(®) :sa)uo+/0 S(t— 8)f(s)ds, t € [0, T].

Remark 2.3. The positivity of the kernel b defined in (), together with the
positivity of the operator A already allows for the construction of a unique solution
to (2I0) using an energy argument; see [17, Corollary 1.2]. Assumption [ gives
further integrability and smoothing properties for {S(¢)}¢>o-
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Note that such a resolvent family does not satisfy the semi-group property be-
cause of the nonlocal feature of the memory term in (ZI0). Nevertheless, it can be
written explicitly using the spectral decomposition [2.2) of A as

(2.11) tyv = Zsk (v, ex)ek,
where the functions s (t) are the solutions of the ordinary differential equations

t
(2.12) Sk(t) + )\k/ b(t — s)sk(s)ds =0, s,(0) =1.

0
The next proposition summarizes the main properties of the functions {s }x>1.

Proposition 2.4. Suppose that b satisfies Assumption [0l and let p € (1,2) as
defined in (28). Then lim,_, sk(r) =0 for all k > 1 and there exists Cy > 0 such
that for any k > 1,

(2.13) Isklle®yy < 1,

(2.14) lskller®,)y < Co,
(2.15) Itsillie,y < CoAg ",
(2.16) lsellzrryy < Co Py

Proof. Estimate (ZI3)) follows from [I7, Corollary 1.2], inequalities (ZI4]) and (ZI5])
can be found in [I4, Proposition 6] and estimate (216 is shown in [3, Lemma 3.1]
where also the fact lim, o si(r) = 0 for all k¥ > 1 is shown in the proof of the
lemma. (]

Smoothing effects of the resolvent family {S(¢) }+>0 when b satisfies Assumption[I]
can be now easily proved using Proposition 2.4

Proposition 2.5. Let b and p be as in Proposition 24l Then for any t > 0, there
exist constants Cy, C1 > 0 such that for any 0 < s < 2/p and 0 < s’ <2,

(2.17) JA2S() sy < Cot™*F2, t>0,

IN

(2.18) 1A 28 sy < Cullbll G, /2L >0,

0,6)
Proof. For any 6 € (0,1) and any k& > 1, Holder’s inequality, (214) and 2I5)

yields
+oo “+oo
/ ()| du :/ w5 (w) | |5 (w) [~ dus
0 0

< </ u|sk(u)|du> (/ sk(u)|du>
0 0
S CO )\ 5/P
Note, that the previous final estimate also holds for § = 0,1 by 2I4) and (2I5).
Then, since sg(t) = —ft FCu0ul sy (u) du as lim, o s5(r) = 0 for all & > 1 by
Proposition Iﬂl, we can conclude that
(2.19) lsk(t)] < Cot =A%, t>0, 6el0,1].
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Thus, for any s € [0,2/p] and = € H, 219) with 0 < = ps/2 < 1 implies

|42S@al? = 30 N se(t) (s ex)? < Co t7 e,
k>1

which is 2I7). To show (ZI8]), we use [I7, Corollary 3.3] which states that under
Assumption [Tl and since 0 belongs to the resolvent set of A, there is M > 0 such
that

(2.20) ISt)x|| < Mt~ Y|z||, =€ H, t>0.

On the other hand, we can bound S(t)x for z € D(A) as follows:

(221)  [[S@z)* =D (sk(t)*(x,ex)?
E>1
¢ 2
(2.22) =) A (/0 bt — S)Sk(S)dS) (@, ex)? < |IblZ1 (0,0 1 A1,

k>1

where we have used ([2I2) and (2I3). Finally, interpolation between (220) and
(Z21) yields (2:I8). O

Remark 2.6. The estimate in (ZI8) does not provide an optimal rate, in fact, it
is the worst case scenario, as further smoothing may come from ||b[|z1(04). The
rate can be improved if we impose further regularity assumptions on b. Indeed, if
in addition, b satisfies Assumption [ from Subsection A2 then by (£3) and (L)
it follows that b(A) ~ A!=% as A — oo. Thus, the nonnegativity of b implies that
[0l L1(0,ey < Ct°~! by a Tauberian theorem for the Laplace transform (see, for
example, [22] Chapter V, Theorem 4.3]). Therefore, in this case, we get a sharper
estimate

IA=" 28t |lsmy < C1 177271, >0, 0<s <2

Nevertheless, the rate given in (28] is sufficient for our needs when it is used in
the deterministic error analysis for smooth initial data.

2.3. The continuous stochastic problem. Next we recall an existence result
for the problem (Z1]) and, for the sake of completeness, we indicate a proof (see
[3, Theorem 2.1] and we refer to [I8] for more general noise).

Proposition 2.7. Let A and Q satisfy ) -Z3) and let b satisfy Assumption [Il
Then there exists a unique H-valued (Gaussian) weak solution u of @21 given by
the variation of constants formula

t
(2.23) u(t) = S(t)up + / S(t—s)dWe(s).
0
Furthermore, the stochastic convolution term has a version whose trajectories are

a.s. 0-Holder continuous for any 6 < (1 — p(a— k))/2.
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Proof. Analogously to [4, Theorem 5.4], it is sufficient to show that the stochastic
convolution is well defined. By Itd’s isometry,

2
/ 15t — Q|12 s

/ SISt - 5)QY%ei* ds

i>1

/ Z (t —5)QY%e;,¢j)% d

1,7>1

ey ([ s> B

j>14>1

< O ZZ}\;l/p(Qlﬂei,ej)Z

j>1i>1
= COHA_l/(zp)Ql/z”?CQ(H)v

where we have used Parseval’s identity, (213) and [2I6). By (29) we have that
—1/p — k < —a, and thus also using (2.4)),

JATVEIQUE ) = Te(A1/PQ) = Tr(A™ /P r4%Q)
< To(A 7 ) | A%QI gy < TH(A™®) | AQ s

E /0 S(t—s)dWe(s)

Finally, the proof of the Holder regularity in time of u uses similar techniques and
is omitted. O

Remark 2.8. Note that assumptions [28)—-(2Z3) are stronger than the minimal as-
sumption [|A~Y2PQY2|| 25y < +00 needed for the existence of a mean squared
continuous solution. One can replace ([2.8)—(Z3) by

HA(S?i)/QQl/QHL‘?(H) < 400

for some s > 0 as a single main assumption on A and @ and obtain Holder regularity
1 ps
of order less than min(z, 57).
3. SPACE DISCRETIZATION

In this section we discretize ([21) in space by a standard piecewise continuous
finite element method. We refer to the monograph [19] for further details on fi-
nite elements. We shall derive strong error estimates for the spatially semidiscrete
problem for smooth initial data only imposing Assumption[lon b. We will see later
that for time discretization and also for the fully discrete scheme, we have to put
further restrictions on b. Let {7, }o<n<1 denote a family of triangulations of D, with
mesh size h > 0 and consider finite element spaces {V}, }o<n<1, where V,, C H} (D)
consists of continuous piecewise linear functions vanishing at the boundary of D.
In order to derive the finite element formulation we look for a Vj-valued process uy,
such that

(dun(t), x) +/0 b(t — s)(Vup(t), Vx) dsdt = (dWQ(t),X), x €Wy, t>0,

(un(0),x) = (uo,X)-
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We introduce the “discrete Laplacian”
(3.1) Ap Vi = Vi, (Anth,x) = (V, Vx), ¥, X € Vi,
and the orthogonal projector

Pp:H =V, (Puf,x) =(f,x), X €V

It is clear that the operator Aj is a positive definite bounded operator on V. Let
us note also that using the definition (B]) of Ay, the following uniform inequality
can be easily derived:

(3.2) 1A, 2P| < |AV%2||, € H.

Then, using the Lo-stability of Pj, and some interpolation theory, we also have that
1

(3.3) | Ay Pl < [[A™%z]|, &€ o, b wEH

Similarly to — A, the operator — A}, generates an analytic contraction semigroup on
V), and satisfies the uniform resolvent estimate

l2(z + Ap) "' Pull = [l2R(2, An) Pall < My,

for z € 3y = {z € C: |arg(z)| < ¢ < w}. Since AR R(z,A) = I — zR(z, Ap), it
follows that

(3.4) IALR(z, An) Pallsmy < My +1, 2 € .

Then we can rewrite the spatially semidiscrete problem in the same form as the
original one as

t
duy, + (/ b(t — ) Apun(s) ds) dt = P, dW°(t), >0,
0

Up, (0) = Phuo.

(3.5)

Similarly to the original problem the weak solution is given by
t
uh(t) = Sh(t)Phuo + / Sh(t — S)Ph dWQ(S),
0

where the resolvent family {S5(t)}:>0 can be written explicitly as
Sh(t)Prug = Z shk(t) (U0, €n k) €n k-
k=1
Here (A, en k) are the eigenpairs of Aj, and sy, 1 (t) are the solution of the ODEs

t
5h,k(t) + Ah,k / b(t - s)shvk(s) ds =0, Shﬁk(O) = 1.
0
We have the following stability result.
Lemma 3.1. If b satisfies Assumption [, then for some C' > 0,

t
/ 1S(s)a|ds < Cllall? 1, ¢ > 0
0 P

and

¢
/ 1S (s)Prz||?ds < C||lz||*> 1, t >0, h>0.
0 P
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Proof. We have, by 213) and ([2.I6)), that

/0 IS(e)el*ds =3 / $3(s) ds (. ex)?

-1
< skl @allskllzie ) (2, er)? < Co D AP (z,e)? = Collal|2,
k=1 k=1

As the constants in [2I3) and (ZI6]) do not depend on A, we similarly obtain
t
/ 151 (s) Paz||? ds < Col| A, /> P||>.
0

Finally, since —1/2 < —1/2p < —1/4, using (33]) with § = 1/(2p), completes the
proof. O

The error analysis is based on the Ritz projection
Ry, : HY(D) = Vi, (VRuv,Vx) = (Vv,Vx), v € HY(D), x € Vj.
In particular, we assume that R} satisfies the error bound
(3.6) |Rpv —v| < Ch7||v|l4, ve D(AY?), 1<y <2

This puts some restriction on the domain D but it is satisfied for convex polygonal
domains, for instance.

Next we prove an L?((0,00), H) error estimate for the space semidiscretization
of the deterministic problem. It is an extension of the result in [2] where the special
kernel b(t) = ﬁe’ttﬁfl was considered.

Proposition 3.2. If b satisfies Assumption [l and B8) holds, then
/OOO IS(t)z — 5u(t) Pl dt < OR> a2, 0 <s<2.
Proof. Tt follows from Lemma B1] that
1) [ 1656) - $ue) R s <2 [ [Shal? + 184(6) Pl ds < .
To prove an error estimate of optimal order we set

e(t) == S(t)x — Sp(t)Prx := v(t) — vp(t)
= v(t) — Pro(t) + Pro(t) — vp(t) := p(t) + 6(2).
For p, using the best approximation property of Py, we obtain by Lemma [3.I] and

B0 that

63 [ o< [T - Do P < onteli.

In a standard way one derives an equation for 6 which reads
(t) + /t b(t — s)Apb(s)ds = A, Py, /t b(t — s)(Ry — DNv(s)ds, t >0,
0(0) = OO. ’

Taking Laplace transforms of both sides yields
26(2) + b(2)An0(2) = APy (R, — Do(2)b(2).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2336 MIHALY KOVACS AND JACQUES PRINTEMS
Therefore,
~ z R
(3.9) 0(z) = AhR(m’ Ap)Pr(Rp, — 1)V(2).
z

It can be shown that b extends continuously to iR\ {0}; see, for example, [I4].
Therefore, using (2.6]), it follows that A( k) € Xy, k € R\ {0}, with ¢ < m. Thus,

||AhR( Ah)PhHB (i) < (My+1) by (3.4). Therefore, setting z = ik, k € R\ {0},

in (B:Ql) and using the isometry property of the Fourier transform we obtain, by
Lemma Bl and (34]), that

(3.10) / 10112 dt < (M, +1) / I(Rn — D)) dt < CH* ]2,
0 0 P
Interpolation using (B71), B.8), and B.I0) yields

/ le(t)]? dt < 2 / (I + 16()]%) dt < Ch2*|z]>_,, 0<s<2. O
0 0 P

Next, using the error analysis from [13], we have the following pointwise smooth
data estimate for the spatially semidiscrete scheme.

Proposition 3.3. If b satisfies Assumption [l and BH) holds, then for every e > 0
there is C' = C (T, €) such that

1S(®)7 — Su(t)Prae]l < Ch¥l[allyrre), 0 < s <2, e [0,T].

Proof. As already observed, Assumption[Ilimplies that b is a positive definite kernel.
Therefore, by [I3] Theorem 2.1], it follows that

t
1S(t)z — Su(t) Pz < OB (||x|2 + [ |S<s>x||2ds) |
0
Proposition implies that
t t
(3.11) / |S(s)x|2ds = / ||A’€S(S)A1+€x|| ds < C(T, €)||z||242¢-
0 0

Finally, since [|S(t) — Sx(t)Pnlls(m) < 2, interpolation finishes the proof. O

Theorem 3.4. Let A and Q satisfy (Z8)-29) and let b satisfy Assumption [ If

]E||“0||u(1+e < oo and B6l) holds, then there is C = C(T,e€,v) such that

1
(Ellult) - un()|?) > < Ch*, v < = —a+r, t€[0,T).
P
Proof. By the variation of constants formula,

u(t) —up(t) = S(t)x — Sp(t)r + /0 (S(t —5) — Sp(t — s)Pp) dW(s).
Thus,
Ellu(t) — un(t)|® < 2E[[S(t)z — Sp(t)z|

2

/Ot(S(t —5) = Sp(t — s)Py) dWO(s)

It follows from Proposition [3.3] that
e1 < Ch?E|jug||?

+2E‘ = e1 + ea.

v(l+e):
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To bound e5 we use It6’s isometry and Proposition to obtain

2

es =E /(S(t—s) — Sp(t = s)Pp) dW(s)
0

t
— / 1(S(t = 8) — Su(t — $)PQY|2, (p) ds

(312) fZ / 1(5(5) — S1() PL)Q 2ex | s

< CH 3 [AWDAQU e P = A DIEQUE
k=1

= Ch¥Tr(A"5 Q) < CR¥Tr(AY ™7 %) | AQ)||. -
Remark 3.5. In particular, if Q = I, thend =1, x =0 and o > % whence v < %— %
Also, note that it is clear from the proof that instead of (Z8))—(29) we could assume

that ||A(”_%)/2Q1/2||£2(H) < oo and get a convergence rate of order v. Then, for

trace class noise; that is, when Tr(Q) < oo we can take v = %.

We end this section by showing that the above error estimate is optimal in the
sense that it corresponds to the spatial regularity of the solution.

Theorem 3.6. Let A and Q satisfy 2.8)-23) and let v = % —a+ kK, or, let

||A(”_%)/2Q1/2||52(H) < oo for some v > 0. If b satisfies Assumption [0 and
Ellug||? < oo, then E||u(t)||? < C for some C >0 for all t > 0.

Proof. Tt follows by Itd’s isometry and the fact that ||S(¢)|| < 1 that
t
Ellu(t)]} < 2Elluoll} + 2/0 147725 (5) QY2 12,y ds.

Let (er, Ax) be the eigenpairs of A. Then, by monotone convergence, the self-
adjointness of A and S, and Proposition 2.4] it follows that

t & t
[ 160 s = 3 / 4°/25(5)Q e s

_ Z/ Au/2S Ql/Qek e dS_ Z/ Q1/2ek S AV/2 )

jk?l 7,k=1

V 2
< Z Q1/2 . /ej)2||8j||Loo(]R+)||Sj||L1(R+)

= v v/2 *Lp
<G 3 Qe X e PN = ) 3 (@1 X e
Jik=1 jk=1
v—31 v—1_ K
= C'0||A( ”)/2Q1/2||2£2(H) < GoTr(A”»77)[|A QH%(H)' ([l

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2338 MIHALY KOVACS AND JACQUES PRINTEMS

4. TIME DISCRETIZATION

Time discretization is achieved via a classical implicit Euler scheme and, con-
cerning the convolution in time, via a quadrature rule based on (7). Let At > 0
and we set t,, = n At for any integer n > 0. We look for an approximation wu,, of
u(ty) defined by the recurrence

(4.1) Uy — Up—1 + AL <Z Wh—k Auk> =We(t,) =W (t,_1), n>1,

k=1

with initial condition ug = u(0). We recall that the coefficients {wy}r>0 of the
quadrature are chosen such that
1—-2
, 2l < 1.
=) K

+oo
(4.2) Zwkzk :3<
k=0

Let us note that thanks to [14] estimate (3.6)], we have the lower bound for wy,

(4.3) wo = b(1/At) > cAtP™", At < 1,

where p € (1,2) is defined in (2.6]).

In the sequel we derive a discrete mild formulation (variation of constants for-
mula) for ([@I]). This formulation cannot be made easily explicit as a function of
the operators A, @ and the kernel b, because of the memory effect in the drift. First
consider the deterministic algorithm

n
(4.4) Uy, — Up—1 + At <an—k Avk> =0, n>1; vy=n=x.

k=1

Taking the z-transform, using the notation

Z vz and w( Z wiz2",

we get
V(z) —x — 2V (2) + At@(2)A(V(z) — 2) = 0.
Thus,
Vi(z) = (I4 Ato(2)A)((1 — 2)I + Ato(2)A) " Le .= B(2)z,
where

oo
z)x = Z Baz".
k=0

This means that vy = Bpx, k = 0,1,.... No:ce that By = 3(0) = I. For the
stochastic equation it will be useful to rewrite B(z)z as

B(2)x = (1 — 2)I 4+ &(2) AtA) 1T + &(2) AtA)z
(45) (1= 2) ] +&(2)AtA) e+ @(2)AtA((1 — 2)I + &(2)AtA) 'z
(1—2) +&(2)AtA)! —(1—2)((1—z)I+of)(z)AtA)_1x+x
= (2((1 = 2)I +&(2)AtA) ™ + Dz,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STRONG ORDER FOR LINEAR STOCHASTIC VOLTERRA EQUATIONS 2339

Now, we consider the stochastic case (4I)) which, after taking the z-transform,
rearranging and using the notation w, = WQ(t,) — W®(t,_) for n > 1, wy = 0,

and
Zwkz and U Zukz

k=0
reads as

0(z) = Bz)e + (1 - )I+M@Aw®”w@)

— Be)e+ 28 L) = Bye + B(2)

where we also used (LX) to rewrite the stochastic term in the previous calculation.
This yields the discrete variation of constants formula, taking into account that
wo = 0 and that By =1,

n n—1
(4.6) Uup = Bpx + Z B kW11 — Wpy1 = Bpx + Z B kWi1-
k=0 k=0

The importance of this formula lies in the fact that it connects the deterministic
case to the stochastic case with the deterministic time-discrete solution operators
B,, explicitly appearing in the formula.

4.1. Deterministic estimates: stability and smoothing. The next theorem is
interesting in its own right. It shows that Lubich’s convolution quadrature based on
the backward Euler scheme has a remarkable qualitative property: it preserves the
LP-norm of the orbits of the solution. The result can be viewed as a generalization of
the ones in [6]; in particular, it removes the additional technical frequency condition
in [6, Theorem 2]. The proof uses a representation similar to that in [I]. We also
note that the statement holds in Banach spaces as well since the proof does not use
Hilbert space techniques.

Theorem 4.1. If the resolvent family {S(t)}+>0 of I0) satisfies
S()a € L7((0,00); H)
for some 1 < p<oo andx € H, then
At || Bzl < / |S(#)z||Pdt, 1<p<oo
k=1 0

and
sup || Bez| < [[S()z|[zoe(m,)-
k>1

Proof. The Laplace Transform of {S(t)}:>0 is given by
S(2)x = (21 +b(2)A) 'z
Using (E2) and (@) we see that the z-transform Ba of {B,z}, is given by
1 ,1-=2

B(z) = ZES( A7

)x+x:x+z/ S(Ats)e™%e* ds
0

—s k—1

= i e s
=z+ zk/ S(Ats)x——ds.
2, 1
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2340
Therefore, we conclude that By = I and that
[e%S) e—ssk 1
(4.7 Brzr = / S(Ats)x ds for £ > 1.
0 (k=11
Let
—sk—1
€ s k> 1.

fi(s) = W,

Then f, > 0, [|frllzr(m,) = 1. Therefore, if p = oo, we immediately obtain from
D) that
sup || Bpz|| < [|S()2| L@y
k>1

If 1 < p < oo, then we use Jensen’s inequality in (7)), and have

Atz |BealF < Zm/ 1S(Ats)z|P fi(s) ds
:/O 1St x||pik )ydt < supik /OOO IS (t)z||P dt.

Finally, noticing that Y, f, = 1, completes the proof |
Theorem [ Tlhas the following important corollary on the smoothing and stability

of the time discretization scheme in case b satisfies Assumption [II

Corollary 4.2. If b satisfies Assumption [, then, for all x € H

sup | B < o] and A Bl < Clal . n > 1,
k=1

Proof. The statement follows from Theorem 1] together with Lemma [B.I] and the
(Il

fact that ||S(t)]| < 1 for t > 0.

Finally, we will need a Holder type estimate on the resolvent family {S(¢)}:>0
v) > 0 such that

Lemma 4.3. If b satisfies Assumption [, then C = C/(
1/2
> < C’AtWHxHSfl, nAt=T

te—1

(Z | St 5) = (e — ti-a)al*ds

k=1

for all v < &2 where 0 < s < %.
Proof. 1t follows from 217, with s = %—6, and Lemma[3T]that there is a constant

C = C(e,T) such that, for 0 < e < %,

1/2
n th
<Z / ||<s<tn—s)—S(tn—tk_1>>x||2ds> < Cllallo—y, nAt =t =T
tr—1 ’

k=1
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Next, it follows from Proposition 2.4] that

S [ S =) = Stt — e )al s
k—=1"Ytk—1

o0
= Z x,€;) Z (si(tn — 8i(tn — tr—1))*ds
i=1 th—1
e th
<2 Zx €;) Z —8) — 8i(tn, —tg—1)|ds
i=1 te—1
e tr tn—tk—1
<23 e Z / / ()] d ds
P t
oo
<2

ZIGZ Z/ /t e (t)|dtds
i=1 in

—tr

< 2At||:v\|2$1>1§> I$ill 22 ey < CAtJ]?.
12

Finally, interpolation gives the desired result. O

4.2. Deterministic estimates: convergence rates. In order to give an error
estimate of optimal order with no initial regularity for the time discretization of
the deterministic problem we have to impose another assumption on b. This kind
of assumption, that is, the existence of an analytic extension of b to a sector be-
yond the left half-plane, is fairly standard in the existing deterministic literature
(see, for example, [BLOLITLA2]), but it clearly represents a major restriction com-
pared to Assumption [ We note that this additional assumption is not needed
for neither the spatial error estimates with smooth initial data, and hence for the
space-semidiscretization of the stochastic equation, nor for the stability results for
the time discretization in the previous subsection.

Assumption 2. The Laplace tmnsformg of b can be extended to an analytic func-
tion in a sector Lg with 6 > /2 and b (2)| < C|z|'=P~*, k=0,1, z € 5.

Note that Assumption 2] implies that
(4.8) wo = b(1/At) < CALP™Y At < 1.

An important example of a family of kernels satisfying both Assumptions [I] and
is given by b(t) = Ct#~1e™ 0 < < 1 and n > 0.

Assumptions [I] and [ allows us to use the following deterministic nonsmooth
data estimate [I2, Theorem 3.2].

Proposition 4.4. If Assumptions [l and [ hold, then there exists C = C(p) > 0
such that

(4.9) 1Stz — Bual < CAt[all, n> 1.

Corollary 4.5. If Assumptions [l and [2 hold, then there exists C = C(T,~, p) such
that

n 1/2
(AtZ|S(tk)x—ka||2> < CAU x|, nAt=T
k=0

forall’y<§whereo<s§%.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2342 MIHALY KOVACS AND JACQUES PRINTEMS

Proof. 1t follows from ([2I7), with s = % — ¢, and Corollary that there is a
constant C' = C(e,T) such that, for 0 < € < %,

n 1/2
<AtZ||S(tk)x—ka||2) <Cllx||e—1, nAt=T, €>0,

k=0

where we also used the fact that By = S(tg) = I. Furthermore, since ||.S(ty)— Byl <
2 by Corollary [£2] it follows from (€3] that

1

IS(te)x — Byal| < CAEE=t, [|z||, k> 1,
and thus, for some C = C(e,T, p),

n 1/2
<Atz 1S (tx)x — ka||2> < CALT~¢|z|.

k=0

Interpolation finishes the proof. |

4.3. Error estimate for the stochastic equation. We can now state and proof
the main result of this section.

Theorem 4.6. Let A and Q satisfy )23 and let b satisfy Assumptions [
and Bl Suppose further that Ellug||* < co. For T > 0, let {u(t)}ieo,r) be the
unique weak solution of (ZI) and let u, be the solution of the scheme (@) with
T = nAt. Then for any v < (1 — p(a — K))/2, there is C = C(p, E|jug||?) > 0 and
K =K(T,«a,v,k,p) >0 such that

(4.10) (E|u(T) — un|®)Y? < CT At + KALY,  t, =nAt =T.

Proof. If e, = u(T) — uy, = u(ty) — ty, then (Z23) and (@A) yields

en = (S(tn) — Bp)uo + Z / k (S(tn — 8) = Bp—g+1)dW<(s) | .
k=1 L7tr—1

Taking the expectation of the square of the H-norm of e,, leads to, by independence
and Itd’s isometry,

(4.11) ]E||en||2 <2(a+b),
where a denotes the deterministic part of the error
(4.12) a = E|[(S(t,) — Bn)uol?,

and b the stochastic part,

" ZZ/ 1(S(tn = 5) = Bup+1)Q"?ei]|* ds.
Thanks to (@), a can be bounded as

C
(4.13) a < t—QAtZIEHuOHQ, n>1.

n
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We use Corollary and Lemma to bound b as

© n th
p<2 D [ IS = ) = St — 11 1)Q el ds
i=1k=1""tk-1

tr
#2303 [ St~ th1) — Baos)Q s

i=1 k=1"tr—1

oo
< OAPT Y [Q el s = CAPYACTB2Q V2|, )

i=1

< CAPVT(AY 77| AQ13 -

Finally, we set —a = s — % — « and conclude that v < & = (1 - p(a—x))/2. O

Remark 4.7. In particular, if Q = I, then d = 1, Kk = 0 and a > % whence

v < 1/2 — £. Also, note that it is clear from the proof that instead of (Z8)-(2.3)
we could assume that HA(S*%)/QQUQHQ(H) < oo and obtain v < £2. Then, for
trace class noise, that is, when Tr(Q) < oo, we can take s = % and hence v < 1/2.
Remarkably, this is the same rate as for the heat equation [2I] independently of the

value of p.

5. THE FULLY DISCRETE SCHEME

In this section we derive strong error estimates for a fully discrete scheme for
@1). Both Assumptions [Il and 2l on b are needed but in return we get optimal
error bounds with no initial regularity. As the fully discrete scheme, similarly to
the time semidiscretization (4.1I), we consider the recurrence

(5.1) Upp—Up—1,n+AL (Z Wn—k Ah“k,h) =P, (We(t,) —We(t,_1)), n>1,
=1

with g, = Prug. Again, the solution is given by the discrete variation of constants

formula,
n—1

(5.2) Unh = BnnPutio + Y Bk n PAAW,
k=0

where AWy = W(tky1) — W(tg) and {By 1 }r>0 is a family of linear bounded
operators with By j, = 1.

Theorem 5.1. Let A and Q satisfy (Z8)-@29) and let b satisfy Assumptions [l
and 2 Suppose further that E|ug||* < co. For T >0, let {u(t)}1eo,) be the unique
weak solution of 1) and let uy, ;, be the solution of the scheme ([B.1]) with T = nAt.
If B8) holds, then there is C = C(p,E||uol|?*) > 0 and K = K(T,«a,v,k,p) > 0
such that

(53)  (Bllu(T) — unnl?)/® < C(ALT™ + h2T7) + K(A + hY), nAt =T,

where v < (1 — p(a — K))/2 anduﬁ%—a—i—n.
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Proof. We decompose the error as

w(T) — upp = S(T)ug — Bp,nPrug

T T
+ / S(T — 5) dW9(s) — / Sp(T — 5) P, dW? ()
0 0
T n—1
+ / Su(T = s)PydW?(s) = > Bu_pnPaAWS,
0 k=0
= e1 + eg + e3.
First we bound e; which is the deterministic error. Under Assumptions [I] and 2l we
have that
(Eller]*)'? < C(AIT™ + B2 TP (EfJuol®) /2
by [12, Theorems 2.1 and 3.2]. Next, e2 has already been bounded in (BI2)) as

-1 v v—1i_g K
(5.4) Elles||* < CR*[|AY=22QY2|Z, ) < CR* Tr(A" 5~ ")[|A*Q)|.
Finally, the proof of Theorem shows that
(s—%)/2
(5.5) Elles||* < CA#*Y| 4, (PhQP) 2117, iy

Set —r = (s — %)/2 and note that since 0 < s < % we have that 0 <r < 1/2. Then
145" (PaQPn) 12, 1) = Tr(PhAy " PhQPy AL Pa) = || AL PuQY 2|2, )
<AL PAT s AT QY2 2, 1)
Thanks to 3.3]) with 6 = r € [0,1/2), it follows that [|A," P, A"||g#) < 1. Hence,
Elles|| < CAV[ACTIEQVRZ, 4y < CAPTTR(AT ™) |A"Qll .
and the proof is complete. (Il

Remark 5.2. We would like to highlight two important special cases. First, if Q = I,

thendzl,/ﬁ:()anda>%. Henceu<%—%and’y<1/2—§. As before,

we could assume that ||A(”7%)/2Q1/2||£2(H) < oo instead of ([28) and ([Z9) and
get a convergence rate of order v is space and v < £ in time. In particular, if
Tr(Q) < oo, then we may set v = %. Thus, the time order is almost 1/2, the same
as for the heat equation with trace class noise, but the space order is less than 1,
which is the space order for the heat equation; see [21].

Remark 5.3. The pure time-discretization as well as the fully discrete scheme can be
studied for smooth initial data under Assumptions[Iland2lon b. Using [13, Theorem
3.1] and [12, Lemma 3.2] one arrives at the deterministic estimate

(5.6) ||S(T)uo — By,nPrugl|
T

T
< C(T)(h* + k) (IIUollz +/O 15 (s)uol|2 ds+/0 IS(S)UoHdS) :

If ug € D(A), then u(t) = S(t)up is a strong solution of (ZI0) (see [I7, Proposition
1.2)); that is, u(t) = S(t)ug satisfies 2I0) with f = 0 for all ¢ > 0. Then

t
$(t)uo + / bt — 5)AS(s)uo ds + b(t) Aug = 0, £ > 0,
0
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and thus
T

T .o .
/ 13(s)uoll ds < C(T) / 15(s)uollz ds + Juollz
0 0

Therefore, using stability, interpolation and BII]), it follows that
[1S(T)uo — B Pruol|| < C(T,€)(h* + k*/?)[|ug | s(14¢), 0 < s < 2.

The latter estimate can be used to replace the first term in the bound (53] in the

case IEHu()H?(HG) < 00, 0 < s < 2. The estimates for the pure time-discretization

are analogous using [I12, Theorem 3.1] which states (5.6) with h = 0 and B,, o = B,,.
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