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Atta leaf-cutter ants are the prime herbivore in the Neotropics: differently-sized foragers harvest plant material to grow a
fungus as crop. Efficient foraging involves complex interactions between worker-size, task-preferences and plant-fungus-
suitability; it is, however, ultimately constrained by the ability of differently-sized workers to generate forces large enough
to cut vegetation. In order to quantify this ability, we measured bite forces of A. vollenweideri leaf-cutter ants spanning
more than one order of magnitude in body mass. Maximum bite force scaled almost in direct proportion to mass; the largest
workers generated peak bite forces 2.5 times higher than expected from isometry. This remarkable positive allometry can
be explained via a biomechanical model that links bite forces with substantial size-specific changes in the morphology of
the musculoskeletal bite apparatus. In addition to these morphological changes, we show that bite forces of smaller ants
peak at larger mandibular opening angles, suggesting a size-dependent physiological adaptation, likely reflecting the need
to cut leaves with a thickness that corresponds to a larger fraction of the maximum possible gape. Via direct comparison
of maximum bite forces with leaf-mechanical properties, we demonstrate (i) that bite forces in leaf-cutter ants need to be
exceptionally large compared to body mass to enable them to cut leaves; and (ii), that the positive allometry enables colonies
to forage on a wider range of plant species without the need for extreme investment into even larger workers. Our results
thus provide strong quantitative arguments for the adaptive value of a positively allometric bite force.

Introduction

Leaf-cutter ants are remarkable in many ways: They are the
world’s first farmers; their colonies collect plant material to
grow a fungus as crop – a mutualism that originated around 50
million years ago [1, 2]. They are considered the principal her-
bivore in the Neotropics; Atta ants are estimated to consume
about 15 % of the foliar biomass produced by Neotropical trees
[3, 4]. And last, they display a level of polymorphism, linked to
size-dependent task-preferences and a complex ecology, excep-
tional even within social insects [e. g. 5, 6].

Among the diverse tasks arising in a leaf-cutter ant colony
are brood care, fungus gardening, worker transport, soil excava-
tion, nest defence and foraging [2, 5, 7]. In particular foraging
behaviour has received considerable attention, as it is central to
leaf-cutter ant ecology [e. g. 5, 8–34]. Key to foraging success
is the cutting of small fragments from vegetation – the ener-
getically most demanding task faced by the colony [35]. Al-
though many aspects of foraging involve complex biological in-
teractions [e. g. 36], cutting plant fragments is, to first order, a
mechanical problem: The ability to cut a leaf or fruit is deter-
mined by the maximum available bite force, the morphology of
the mandible, and the material and structural properties of the
plant. Perhaps surprisingly, this mechanical foundation of leaf-
cutting has received comparatively little quantitative attention
[e. g. 37–39]. Larger workers possess larger mandible closer
muscles and may thus be reasonably expected to produce larger
bite forces, which may in turn enable them to cut a wider range
of plant materials. Indeed, they tend to be more likely to cut
tougher and denser leaves [5, 8, 40–43]. Understanding the ex-
act relation between bite force and worker size is crucial for the
analysis of leaf-cutter ant foraging behaviour, because it holds
the key to distinguish between foraging assignments based on
ability (which ants can cut a given leaf) vs. suitability (which
ants should cut a given leaf).

This distinction is relevant for assessing the evolution and
possible adaptive advantage of worker polymorphism, and for
predictions on ‘optimal’ foraging strategies based on ergonomic
considerations [e. g. 8, 30, 43].

We previously predicted the scaling of bite force based on
the morphology of the bite apparatus in Atta vollenweideri leaf-
cutter ants [44]. However, direct experimental confirmation of
this prediction is missing and difficult to obtain, because ants
are small. To make matters worse, bite forces in insects gen-
erally depend on the mandibular opening angle [45–47], which
is challenging to control experimentally. Here, we address both
difficulties with the help of a custom-built bite force set-up and
first principles biomechanical analysis. We report direct bite
force measurements for ant workers spanning more than one or-
der of magnitude in body mass, relate our results to the foraging
behaviour of leaf-cutter ant colonies, and discuss both the mag-
nitude and scaling of bite forces in a comparative framework.

Nomenclature

Aphys Physiological cross-sectional area of the mandible
closer muscle

α Misalignment angle between Fb,m and Fb

β Muscle force-length shape parameter

e1, e2, e3 Local head coordinate system

Γ Correction term for differences in lever arm around the
beam pivot (correction ii)

Fb Applied bite force

Fb,m Measured bite force

Fb,θ Maximum bite force at opening angle θ
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Fb,max Maximum bite force at an equivalent mandibular open-
ing angle, θmax

F̂ Bite force-opening angle relationship, normalised with
its maximum

F̂θ Relative bite force at opening angle θ

L f Average muscle fibre length

Li,e f f Effective mandible inlever

Lo,c Mandible outlever at bite contact point

Lo,e f f ,c Effective mandible outlever at bite contact point

Lo,d Most distal (largest) mandible outlever

Lo,e f f ,d Most distal (largest) effective mandible outlever

Lopt Optimal muscle fibre length at which muscle stress is
maximal

Lp Lever arm length around the beam pivot during biting
experiment

Lp,cal Lever arm length around the beam pivot during sensor
calibration

φ Average fibre pennation angle

R̂ Rotational axis of the mandible joint

Sl Vector connecting joint centre with left head spike

Sr Vector connecting joint centre with right head spike

σ Muscle stress

σmax Maximum muscle stress

θ Mandibular opening angle

θmax Mandibular opening angle at which bite force is maxi-
mal

θopt Mandibular opening angle at which muscle stress is
maximal

Materials & methods

Study animals

Bite force experiments were conducted with A. vollenweideri
ants from three colonies, all founded and collected in Uruguay
in 2014 (see Fig. 1A). The colonies were kept at 25◦C and
50 % humidity in a climate chamber under a light:dark cycle
of 12 h:12 h, and were fed with fresh bramble leaves, cornflakes
and honey water ad libitum. We collected around 80 workers
from the foraging areas of each colony (n = 248), covering ap-
proximately the entire size range (1 - 50 mg). We excluded min-
ims (body mass < 1 mg), because their bite apparatus is mor-
phologically distinct [N Imirzian, F Püffel and D Labonte, in
preparation], and they do not generally partake in foraging [5].

Experimental set-up

Bite forces were measured with a custom-built set-up based on a
capacitive force sensor (SingleTact S8-1N, Pressure Profile Sys-
tems, Inc., California, USA, data acquisition frequency 33 Hz,
maximum force 1 N, resolution 2 mN). In order to distribute the
force equally across the sensor area, we used a lever mecha-
nism to convert point-like bite forces into an areal compression
(see Fig. 1B). Ants bit onto two thin bite plates (1 mm long, and
≈ 0.15 mm thick, see Fig. 1D), protruding from two mechan-
ically uncoupled beams (6 x 6 x 40 mm and 6 x 12 x 6 mm,
respectively). Both beams and the terminating bite plates were
manufactured in one single piece from stainless steel to min-
imise compliance, using electrical discharge machining. The
beam that transmits the bite force to the sensor was connected
to a metal base plate, made from a single aluminium block using
CNC milling, via a small hinge placed in the beam centre. As
an ant bites onto the bite plates, the opposite end of this pivot-
ing beam is pressed onto the sensor, which is glued to a vertical
wall protruding from the base. At the maximum load of 1 N, the
sensor only deforms approximately 10 µm [manufacturer data].
Because the gear ratio of the pivoting beam is unity, the magni-
tude of this deformation is equivalent to the maximum displace-
ment of the bite plate arising from beam rotation. As bite plate
bending is also negligible (see SI), we measured approximately
isometric bite forces. The second beam, in turn, was connected
to a lubricated rail, so that its position relative to the pivoting
beam can be altered via a stepper motor (28BYJ-48, 5 V), con-
nected to a gearing system 3D printed from PLA. This design
allowed us to vary the distance between the two bite plates by
less than 100 µm per motor step. The minimum required gape to
bite both bite plates, equivalent to the shortest distance between
their outer surfaces, was 0.5 mm, and the largest gape used dur-
ing experiments was 3.0 mm. This range is similar to the range
of head widths of the ants used in this experiment (1.1 - 4.5 mm).

In order to extract coordinates of key landmarks (see below),
a top-down camera was synchronised to the sensor recording,
and recorded the bite experiments at 30 fps, (camera module
v 2.1, 8 MP, Raspberry Pi Foundation, Cambridge, UK; with a
Black Eye HD macro lens, Eye Caramba Ltd., Helsinki, Fin-
land). A mirror, tilted 45◦ with respect to the camera plane,
provided depth information. Force sensor, motor, camera and
a touchscreen (7 inch HDMI-LCD Display, Elecrow, Shenzhen,
China) were connected to a Raspberry Pi (v 3B+, Raspberry Pi
Foundation, Cambridge, UK). The system was operated via a
custom software written in Python [v 3.5, see 48, and SI for de-
tails on the user interface and circuit].

Sensor calibration, accuracy and precision

The sensor was calibrated using a series of calibration weights
(Kern & Sohn GmbH, Balingen, Germany), suspended from the
pivoting lever via a thin cotton thread (the weight of the cotton
thread was small, ≈ 0.015g , and hence neglected). The thread
was placed at around one-quarter of the length of the bite plate
measured from its base, resulting in a moment arm around the
pivot of Lp,cal ≈ 20.25 mm. The set-up was rotated such that
the measurable force vector aligned with gravity (see Fig. 1E).
We used 20 weights between 5 and 100 g; a weight of 1.4 g was
required to establish equilibrium around the pivot, and was con-
sequently subtracted from all readings. The range of effective
weight forces was hence 35 - 970 mN, approximately spanning
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the range of measured bite forces. Each weight was suspended
five times in random order, and the steady-state sensor reading
averaged across ≈ 2s was used for sensor calibration. The re-
lationship between weight and sensor output was characterised
via an Ordinary Least Squares regression on log10-transformed
data in order to prioritise minimisation of relative error over ab-
solute error; the high R-squared of the regression line indicates
robust calibration (R2 = 0.993, see Fig. 1E).

To quantify calibration accuracy and precision, five addi-
tional weights (7 - 87 g) were measured three times each, and
the relative error was calculated as ε = 1 − |Fw|/|Fx|, where
Fx is the predicted and Fw is the measured force, respectively
(see Fig. 1F). The average measurement error, the sensor accu-
racy, was 2± 6 % independent of weight [Linear Mixed Model
(LMM) with weight as fixed and repetition as random effect:
χ2

1 = 0.38, p = 0.53; the average magnitude of the measurement
error was 5±4 %]; the standard deviation indicates the precision
of the measurements.

To quantify sensor noise, the output of the unloaded sensor
was recorded for 100 s. Discrete Fourier transformation sug-
gested a constant power spectral density, indicating white noise
[49, p. 61] This noise had a standard deviation of 1 mN and a
range of -5 to 4 mN. The maximum positive value of this range
was about eight times smaller than the smallest measured bite
force (see Fig. 1C). Sensor drift was significant [Spearman’s
correlation coefficient: rs,2867 = -0.26, p < 0.001; see manufac-
ture data sheet], but small enough to be inconsequential across
the time scale of our measurements (cf. 1 mN/min vs ≈30 -
60 s).

In a last validation step, we directly compared measurements
with our set-up with those of an established set-up based on a
substantially more expensive piezoelectric sensor [50, 51]. To
this end, maximum bite forces of three house crickets (Acheta
domesticus) were measured with three repetitions on both set-
ups, by two independent operators each. A LMM with set-up
and operator as fixed and specimen as random effect showed
no significant influence of neither set-up nor operator on bite
forces [LMM versus random intercept model: χ2

2 = 3.83, p =
0.15; set-up: t31 = 1.68, p = 0.10; operator: t31 = 0.95, p = 0.35].

The camera was calibrated assuming an inverse size-distance
relationship, L2S2 = L1S1, where S1 and S2 are the apparent
sizes of an object at distances L1 and L2 to the camera aperture.
The apparent size of a calibration target (5 units on 1 mm-grid
paper), placed on the top surface of the metal base at a distance
L1 ≈ 32 mm to the camera, was measured from ten images, and
the pixel-to-mm conversion factor C1 was extracted. This con-
version factor changes approximately in direct proportion to the
camera distance as C2 = C1L2/L1, where L2 is the distance be-
tween the camera and the imaged object. In contrast to L1, L2
is not constant, but varies with the vertical position of the object
coordinate, which was extracted using the mirrored side view.

For validation, the grid paper was photographed at 25 differ-
ent positions along the bite plate, extracted from five trials, and
its physical size was calculated from the calibration. The rela-
tive error was 1±2 %. This error changed significantly with grid
paper-lens distance – the physical dimensions were increasingly
underestimated at smaller distances [LMM with lens distance
as fixed effect and trial as random effect: χ2

1 = 6.94, p < 0.01].
This effect, however, was miniscule (1.5 % across the entire bite
plate length, 6 mm), corresponding to only ≈ 60 µm, or about
10 % of the smallest measured mandible length; it is thus con-
sidered negligible.

Experimental protocol

To measure bite forces, individual ants were held in front of the
bite plates using insect tweezers. Ants were eager to bite, typ-
ically executing numerous bite cycles in quick succession (see
Fig. 1C). After completing at least five bite cycles, or exceeding
a total bite duration of 10 s, the measurement was terminated,
each ant was weighed (AX304 Microbalance, 310 g x 0.1 mg,
Mettler Toledo, Greifensee, Switzerland) and isolated, and the
maximum force was extracted. To obtain bite forces from a
maximum range of sizes and varying opening angles without
pseudoreplication, we measured each ant only once at a single
bite plate distance. In practice, we gradually increased the bite
plate distance from 0.5 to 3.0 mm; for each distance, we used
ants of all sizes capable of biting onto the plates. For small
plate distances, this included almost all ants; for the largest
plate distance, however, only larger specimen were able to bite.
We assume that ants bit with maximum muscle activation at all
opening angles, as indicated by measurements involving direct
muscle stimulation in closely related Atta cephalotes [47].

Extraction of landmarks

In order to obtain the opening angle, the orientation of the bite
force vector, and the length of the mandible outlever (see be-
low), we extracted the coordinates of a series of landmarks from
the video frame corresponding to the time of maximum bite:
(i) the contact point between mandible and bite plate; (ii) the
tip of the most distal and proximal mandibular teeth; (iii) the
mandible joint centre (defined as in [44]); and (iv) a pair of dis-
tinct head spikes (see Fig. 1D). In addition, we extracted the ori-
entation of the mandible joint axis R̂ via kinematics analysis of
the mandible motion [47, V Kang, F Püffel and D Labonte, in
preparation]. In order to position R̂ on the biting ant, we intro-
duced a local head coordinate system (e1, e2, e3) based on the
vectors connecting the joint centre with the tips of both head
spikes, Sl and Sr, respectively. The coordinate axes were de-
fined as e1 = Sl/|Sl |, e3 = (Sl ×Sr)/|Sl ×Sr|, and e2 = e3 ×e1.
The estimated rotational axis was then projected onto this lo-
cal head coordinate system (for more details, see SI). In line
with previous work [52], we define the opening angle as the
angle between the lateral head axis and the largest effective out-
lever. The lateral head axis was defined as the vector connect-
ing both head spikes (Sr −Sl , see Fig. 1D); the largest effective
outlever was defined as the projection of the most distal out-
lever onto the plane of rotation, Lo,e f f ,d = Lo,d − (R̂ ·Lo,d)R̂.
The opening angle then follows from basic vector algebra as
θ = arccos[(Lo,e f f ,d · (Sr −Sl))/(|Lo,e f f ,d ||Sr −Sl |)].

Confounding effects due to size-differences

Measuring bite forces across a large size range poses at least two
challenges. First, the signal-to-noise ratio typically decreases
with animal size, as smaller animals generally bite with less
force. We addressed this challenge by selecting a force sen-
sor capable of measuring small and large bite forces with suf-
ficiently high resolution (see above). Second, the characteristic
dimensions of the set-up are relatively larger for small animals.
The implications of this size-effect are perhaps less obvious and,
unfortunately, more complex. To appreciate the problem, con-
sider a small ant of 3 mg body mass biting onto bite plates that
are 1 mm apart. This bite plate distance is approximately equal
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Figure 1 (A) We measured bite forces of polymorphic Atta vollenweideri leaf-cutter ants ranging between 1.5 and 46.8 mg in body mass.
(B) To measure bite forces, we built a custom-designed force setup based on a capacitive force sensor and a lever mechanism. The ants
bit onto two bite plates, one protruding from a pivoting beam connected to the force sensor, the other protruding from a sliding beam.
The distance between the two bite plates can be varied by moving the sliding beam via a geared stepper motor. Bite experiments were
filmed with a top-down camera, which also recorded a side view from a 45◦ mirror. (C) When placed in front of the bite plates, ants read-
ily bit. The measured forces exceeded the sensor noise (shaded area) by at least a factor of eight. From each force trace, the maximum
force (cross) was extracted for further analysis. (D) From the video recordings, we further extracted the coordinates of the mandible joint
centre, head spikes Sl and Sr, outlever length Lo,c, and the most distal and proximal tooth tips. The rotational axis of the mandible R̂ was
projected onto the local head coordinate system (e1, e2, e3). The mandibular opening angle θ was defined as the angle between the lat-
eral head axis, span by the head spikes, and the projection of the largest outlever onto the plane of rotation. The magnitude of the bite
force |Fb| was extracted from the measured force |Fb,m| and the misalignment angle α , extracted from the video recordings, as defined by
Eq. 1. For simplicity, the depicted ant bites with its most distal tooth such that Lo,c = Lo,d , and all vectors are shown in the plane of ro-
tation. The head orientation during experiments however may be different such that the angles θ and α were not measured directly from
the recordings, but were inferred indirectly via their vector-algebraic basis using R̂ and the local coordinate system (e1, e2, e3; see text).
(E) For sensor calibration, we suspended weights between 5 and 100 g from the bite plate of the pivoting lever at a distance Lp,cal to the
pivot. A linear regression on log10-transformed data characterised the relationship between measured output and force with high accuracy
(R2 = 0.993). (F) A subsequent error analysis using intermediate weights between 7 - 87 g yielded relative errors between measured and
expected forces of 2 % (accuracy, black line) with a standard deviation of 6 % (precision, shaded area), independent of weight (see text).

to the distance between both mandible joints; a bite with the
distal-most teeth would thus involve a mandibular opening an-
gle of about 90◦. For a bite with the most proximal teeth, in
turn, the opening angle is larger, around 110◦ (see Fig. 1A), and
the effective outlever is smaller. Consider next a large ant of
45 mg biting onto the same bite plates. For a distal bite, the bite
plate distance corresponds to only 40 % of the joint distance,
and thus a much lower opening angle of about 70◦. Notably,
the ant’s ability to bite proximally is limited because the length
of the mandible blade exceeds the length of the bite plate by
about 20 % (see Fig. 1D). Evidently, for a given configuration
of the experimental setup, both the range of possible mandibular
opening angles and bite positions along the mandible blade vary

systematically with size. Because both directly affect the mag-
nitude of bite force [see Eq. 2 and 47], an unbiased comparison
of bite force magnitude across animal sizes, requires four cor-
rective steps, implemented here with the ultimate aim to extract
the maximum bite force an ant worker can produce when biting
with an equivalent point of her mandible (see Fig. 2). First, we
correct for the misalignment between measurable force vector,
Fb,m, and applied bite force vector, Fb. Second, we correct for
differences in moment arms around the lever pivot, arising from
variation of the bite contact point. Third, we account for varia-
tion in bite position along the mandible blade, which alters the
mechanical advantage of the force transmission system. Fourth,
we account for differences in mandibular opening angle during
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exertion of the maximum bite force.
The first correction is necessary, because the sensor mea-

sures 1D compression, Fb,m, but the applied bite force vector,
Fb, may deviate from this line of action by a misalignment an-
gle α (see Fig. 1D). The orientation of Fb,m is approximately
equal to the plane normal of the bite plate; the orientation of
the bite force vector is defined by the cross product between
mandible outlever Lo,c and the rotational axis, where Lo,c is
the vector connecting joint centre and the bite contact point
[for more details, see 47]. The resulting correction factor reads
1/cosα = (|Lo,c × R̂| · |Fb,m|)/((Lo,c × R̂) ·Fb,m) [for more de-
tails, see 47]. This correction was typically larger for larger
animals, which more frequently bit at opening angles below 90◦

(see results), leading to larger misalignment angles.
The second correction is necessary, because the point of force

application on the bite plate itself may vary across ants – smaller
ants have shorter mandibles and are thus more likely to bite at
the end part of the bite plates (see Fig. 1D), so changing the lever
arm around the pivot, Lp. To account for variation in lever arm,
we introduce the correction term Γ = Lp,cal/Lp. Γ was always
close to 1, as the length of the bite plate is small in comparison
to the total length of the lever arm (≈ 5%); the effect of this
correction was thus miniscule.

The third correction is necessary, because the bite force may
be transferred onto the bite plate at an arbitrary position along
the mandible; an ant biting with the distal end of its mandible
may use the same muscle effort but nevertheless produce a
smaller measured bite force than an ant biting with the proxi-
mal end of its mandible, because the mechanical advantage of
the force transmission system differs [see e. g. 53]. To correct
for this variation, we converted the measured bite force into
an equivalent bite force at a fixed point on the mandible blade
(the most distal tooth tip). To this end, two effective mandible
outlevers, each defined as the projection of the outlever onto
the plane of rotation, were calculated for the contact point and
the most distal tooth tip, Lo,e f f ,c and Lo,e f f ,d , respectively [see
above and 47, for more details].

After implementation of corrections (i-iii), the magnitude of
the bite force |Fb,θ | follows as:

|Fb,θ |= Γ
|Fb,m|
cosα

|Lo,e f f ,c|
|Lo,e f f ,d |

(1)

The fourth and last correction is necessary, because changes
in opening angle are associated with changes in both muscle
length and mechanical advantage. The resulting variation in bite
force magnitude can be substantial; in A. cephalotes majors, bite
forces at small opening angles are around five times larger than
those at large opening angles [see 47, and Fig. 2].

In order to implement this correction, we first recognise that
bite force is a function of both morphological and physiological
parameters; it is determined by muscle stress σ , the physiologi-
cal cross-sectional area of the mandible closer muscle Aphys, the
average fibre pennation angle φ , and the mechanical advantage
of the mandible lever system, defined as the ratio between effec-
tive in- and outlever |Li,e f f |/|Lo,e f f ,d | [see 44, 47, for details]:

|Fb|(θ) = σ(θ)Aphys cos[φ(θ)]
|Li,e f f (θ)|
|Lo,e f f ,d |

(2)

We analysed 13 tomographic scans of A. vollenweideri leaf-
cutter ants across the size range but excluding minims in order
to extract muscle volume, average muscle fibre length, penna-

tion angle, and the effective mandible levers [for details, see 44].
Fibre length, pennation angle and effective inlever are functions
of the mandibular opening angle. We previously demonstrated
that these functions can be accurately predicted from first prin-
ciples, using a small set of assumptions, geometry and reference
measurements at a single opening angle [47]. For this study, we
assume that all fibres of the closer muscle attach to the tendon-
like apodeme via thin filaments [which holds for 98 % of fibres
in A. vollenweideri, 44]; the length of these filaments determines
the change of fibre length with opening angle, and was extracted
from the scans (for more details, see SI). We define the physi-
ological cross-sectional area as the muscle volume divided by
the optimal fibre length at which the muscle stress is maximum,
Lopt [47]. Muscle fibres which are stretched or shorten deviate
from this optimum length, and as a result the muscle stress de-
creases due to characteristic force-length effects [54–56]. The
magnitude of the decrease may be characterised by an empirical
shape parameter β via σ(θ) = σmaxe−β (1−L f (θ)/Lopt )

2
[see 47,

and SI figure]. The maximum muscle stress σmax = 1.16MPa
and β = 5.34 were taken from Püffel et al. [47], where they were
determined experimentally for closely related A. cephalotes ma-
jors. We make the simplifying assumption that these parameters
are size-independent, and this assumption is supported by the re-
sulting agreement between theoretical prediction and measured
bite force (see below).

The mandibular opening angle at which the muscle stress is
maximum, L f (θopt) = Lopt , was then estimated via a non-linear
least squares numerical fitting routine of Eq. 2 in python [v 3.9
48]. Notably, θopt may be reasonably expected to vary with
body size, as it is sensitive to head capsule geometry which
changes with size in A. vollenweideri [see 44, and N Imirzian,
F Püffel and D Labonte, in preparation]. In order to investi-
gate the size-dependence of θopt , we selected bite force mea-
surements from individuals with a body mass that differed by
no more than ≈ 25 % from the individuals for which we ob-
tained morphological data from µCT scans. Each size-class bin
contained at least eight bite force measurements, except for the
largest and smallest ant, which contained two and three bites,
respectively.

In order to implement the opening angle correction across
worker sizes, we first characterised the size-dependent relation-
ship between bite force and opening angle as outlined above.
Next, we calculated a database containing the relationship be-
tween predicted bite force, normalised with its maximum, |F̂|,
opening angle and size. We rescaled the measured forces, cor-
rected via Eq. 1, |Fb,θ |, to the force expected at an equivalent
mandibular opening angle – the angle θmax at which bite forces
are maximal – |Fb,max|= |Fb,θ |/|F̂θ |. The magnitude of this cor-
rection thus depends on both the size and the mandibular open-
ing angle of the biting ant; the corrected value used for the final
analysis is the maximum force the animal can transmit at the
distal mandibular tooth (see Fig. 1D).

Data curation and statistical analysis

We pooled bite force data from all three colonies, because the
relationship between bite force and body mass was indepen-
dent of colony both before and after correcting for differences
in opening angle [Analysis of covariance (ANCOVA) on log10-
transformed data, before correction: F2,242 = 1.26, p = 0.28;
after correction: F2,242 = 0.85, p = 0.43]. Out of 248 bite force
measurements, three slightly exceeded the range of calibration
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Figure 2 In order to extract the maximum bite force from the mea-
sured data, we account for four confounding effects: First, we
account for the misalignment between bite force orientation and
the force-sensitive axis. Second, we account for variation in bite
contact point on the bite plate, which results in different moment
arms. Third, we account for differences in bite position along
the mandible blade, which determines the mechanical advantage
of the musculoskeletal force transmission system. Fourth, we
account for variation in mandibular opening angle, which is as-
sociated with variation in mechanical advantage, fibre length and
pennation angle, all of which influence bite forces. Implemen-
tation of these corrections reduces the size-dependent variation
introduced by the experimental design and animal behaviour, and
thus enables an unbiased comparison of maximum bite force ca-
pacity across animals of different sizes. The data depicted in this
schematic is not ‘real’ data, but merely serves for illustration.
The ‘actual’ relative change in force caused by each correction,
averaged for all ants, is shown in percent.

forces; two were lower and one higher, but all within 15 % to
the nearest calibration force. These measurements neither ap-
peared to be outliers, nor altered the scaling relationship (see
results), and were hence kept for the analysis. Scaling relation-
ships were characterised with Ordinary Least Squares (OLS)
and Reduced Major Axis (RMA) regression models on log10-
transformed data in R [v 4.1, 57]. For simplicity, we only report
the results of the OLS regressions in the text; the RMA regres-
sion results are provided in the SI. Scaling coefficients tend to
be higher for RMA regressions [also see 58]; however, the main
conclusions of this study are supported by both.

Results

Leaf-cutter ant bite forces increase with
strong positive allometry

We measured bite forces of A. vollenweideri leaf-cutter ants
spanning more than one order of magnitude in body mass, m.
Measured bite forces |Fb,m| ranged from a minimum of 31 mN
to a maximum of 1029 mN, and were proportional to m0.79

[OLS 95 % CI: (0.74 | 0.85), R2 = 0.75, see SI figure], suggest-
ing positive allometry (isometry predicts m0.67). After correct-
ing for force orientation, and bite position along the bite plate
and mandible blade, respectively, bite forces, |Fb,θ |, ranged be-
tween 19 and 901 mN (see Fig. 2 and Eq. 1), and were propor-
tional to m0.85 [OLS 95 % CI: (0.79 | 0.92), R2 = 0.74], in sub-
stantial excess of the scaling coefficient of |Fb,m| (see Fig. 3B).
However, this scaling relationship is still influenced by sys-

tematic differences in mandibular opening angle, which, as ex-
pected, were systematically smaller for larger animals [Analy-
sis of variance (ANOVA) on log10-transformed data: F1,246 =
15.24, p < 0.001].

In order to correct for the systematic differences in open-
ing angle, we first assessed the size-dependence of the opening
angle, θopt , at which muscle stress is maximum [see methods
and 47]. Notably, θopt decreased significantly with body mass
[OLS: slope = -0.09, 95 % CI: (-0.15 | -0.04), p < 0.01, R2 =
0.56]: θopt ≈ 70◦ for a 1.5 mg ant, but θopt ≈ 50◦ for a 45 mg
ant. Next, we calculated the opening angle at which the bite
force is maximum, θmax. θmax may differ from θopt , because
bites with larger or smaller opening angles may involve a higher
mechanical advantage, so counteracting any loss of force asso-
ciated with isometric contractions at non-optimal fibre length
[47]. θmax decreased significantly with size [OLS: slope = -
0.06, 95 % CI: (-0.10 | -0.03), p < 0.01, R2 = 0.59, represented
by the crosses in Fig. 3A]; the bite forces of a 1.5 mg and 45 mg
ant are maximal at around 65◦ and 50◦, respectively. Thus, the
difference between θmax and θopt is small, supporting our earlier
conclusion that the musculoskeletal bite apparatus of leaf-cutter
ants has a morphology which maximises the magnitude of the
peak bite force [see 47].

Equivalent bite forces at θmax and the most distal bite point
scale with an even stronger positive allometry, |Fb,max| ∝ m0.90

[OLS 95 % CI: (0.86 | 0.95), R2 = 0.86]. The increase in scaling
coefficient is surprising, because larger ants bit at significantly
smaller opening angles; the intuitive expectation is thus that the
bite forces of small ants were underestimated, and the scaling
coefficient overestimated. However, this argument neglects the
significant decrease of θmax, which reverts the effect: because
θmax decreases more quickly than the opening angle increases,
larger ants were measured at less favourable opening angles, and
the scaling coefficient was underestimated.

Together, the four corrections result in a significant increase
of the scaling coefficient by 0.11, or about 15 % [LMM with
correction as fixed and sample number as random effect: χ2

1 =
118, p < 0.001], and in an increase of the R2 from 0.75 to 0.86.
The difference in scaling coefficient may appear small, but this
impression is misleading: the difference in maximum bite force
between ants varying in body mass by a factor of 30 is 300.90 ≈
22 compared to 300.79 ≈ 15 – a drop by about 30 %. Clearly, a
careful analysis of bite force measurements is required in order
to draw meaningful conclusions on scaling relationships.

Discussion

Leaf-cutter ants are an ecologically and economically important
herbivore [4, 6], foraging on a wide variety of plants with dif-
ferent mechanical properties [40, 41]. Key to foraging success
is the ability of workers to produce bite forces sufficiently large
to cut plant tissues [59]. How does this ability vary with worker
size? In order to address this question, we measured the max-
imum bite forces of A. vollenweideri leaf-cutter ants spanning
more than one order of magnitude in body mass. In the follow-
ing discussion, we (i) connect the bite force allometry with its
morphological and physiological determinants; (ii) discuss the
magnitude and scaling of maximum bite forces in the context of
foraging ecology; and (iii) place our findings in an evolutionary
and comparative context.
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Figure 3 (A) Maximum bite force is determined by the morphology of the bite apparatus and the physiology of the mandible closer muscle.
The morphological force determinants were extracted from 13 tomographic scans of Atta vollenweideri scans across all sizes excluding
minims. The physiological determinants were determined experimentally for closely related Atta cephalotes majors [47], except for the
mandibular opening angle at which the muscle stress is maximum. This ‘optimum’ angle was fitted numerically using bite forces mea-
sured for ants similar in size to those for which tomographic scans were available (circles). The solid lines represent the predicted bites
forces from morphology and physiology across mandibular opening angles, calculated via a first-principle biomechanical model derived
in [47]. The maxima of these predictions (crosses) shift to significantly larger opening angles for smaller ants [Ordinary Least Squares
(OLS) regression: slope = -0.09, p < 0.01]. (B) Bite forces, corrected to an equivalent mandibular opening angle and bite points on the
mandible (crosses), scale with strong positive allometry [mass0.90, OLS 95 % CI: (0.86 | 0.95), R2 = 0.86], far surpassing the parsimo-
nious prediction from isometry (mass0.67); bite forces are almost directly proportional to body mass. The scaling coefficient exceeds the
estimate from angle-uncorrected data [mass0.85, OLS 95 % CI: (0.79 | 0.92), R2 = 0.74], represented by the green line and circles.
(C) The residuals of the regression on corrected maximum bite forces are independent of mandibular opening angle [ANOVA: F1,246 =
2.43, p = 0.12], supporting the validity of the angle-correction. (D) The corrected measured bite forces are in excellent agreement with a
quantitative prediction from morphology and physiology, as demonstrated by the identity function (solid line). The predicted forces are
the result of an OLS regression on log10-transformed data between force maxima (crosses in figure part A) and body mass of the scanned
ants. We note that predicted and corrected forces are not strictly independent; the optimum opening angle, affecting the force prediction,
was fitted using the measured bite forces, and the correction factor, applied to the measured forces, was determined via the normalised
predictions.

Bite force allometry can be accurately
predicted from muscle architecture and head
morphology

Maximum bite forces of A. vollenweideri workers show strong
positive allometry, |Fb,max| ∝ m0.90. Due to the large vari-
ation in worker size, the effect of this positive allometry is
rather extreme: the largest ant workers generate maximum bite

forces about 2.5 times higher than a theoretical isometric worker
with the same body mass, (45/1)0.90−0.67 ≈ 2.5. Can this ex-
treme positive allometry be understood from the morphology
and physiology of the Atta bite apparatus?

We have previously extracted the relevant morphological bite
force determinants in A. vollenweideri workers from tomo-
graphic scans [see 44]. Using these data in conjunction with
Eq. 2 led to the prediction that bite forces should scale as m0.88
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(95 % CI: 0.81 | 0.95), a positive allometry largely driven by
a disproportional increase in physiological cross-sectional area
of the mandible closer muscle [44]. This prediction is in rather
close agreement with our bite force measurements. The small
difference stems from the fact that we previously extracted the
morphological bite force determinants from scans, where the
mandibles were maximally closed, whereas θmax varies across
sizes (see Fig. 3A). In order to account for this variation in our
morphological prediction, and to estimate the intercept of the
scaling relationship, we use the stress and force-length shape
parameter measured for closely related A. cephalotes [47], the
change in θopt as observed in this work, and a biomechanical
model which links morphology, opening angle and bite force to
directly predict maximum bite forces [see 47, and Fig. 3A].

The maximum bite forces predicted by this calculation are
proportional to m0.91 [OLS 95 % CI: (0.82 | 1.01), R2 = 0.98],
with an intercept of 1.42 [units: mN, mg; OLS 95 % CI: (1.32 |
1.52]. Both estimates are almost identical to the results obtained
from direct measurements: m0.90 (scaling coefficient), 1.46 (in-
tercept) [units: mN, mg; OLS 95 % CI: (1.41 | 1.51)]. In other
words, the ratio between maximum measured and predicted bite
forces is close to unity (1.11±0.30), and independent of body
mass [ANOVA on log10-transformed data: F1,246 = 0.23, p =
0.63, see Fig. 3D]. We thus conclude that the scaling of bite
forces can be predicted to reasonable accuracy from morpho-
logical measurements.

Predicting bite performance from morphology is of consid-
erable interest to evolutionary biologists, palaeontologists and
biomechanists alike, as in-vivo force measurements are often
challenging if not impossible to obtain. Consequently, theo-
retical models to predict maximum bite force have been de-
veloped and deployed for numerous taxa [e. g. 47, 60–63]. In
arthropods, the two key obstacles facing such theoretical efforts
are the extraordinary variation in reported muscle stresses [e. g.
64, 65], and the uncertainty in estimates of the physiological
cross-sectional area, which requires knowledge of the optimal
fibre length [47]. The fact that we were able to accurately pre-
dict both the magnitude and scaling of bite forces in A. vol-
lenweideri using physiological parameters measured in closely
related A. cephalotes suggests that muscle stress and shape pa-
rameter β are conserved across sizes and within Atta, cautiously
indicating that the intraspecific and intrageneric variation of bite
forces may be predictable based on morphological data alone.

Positive allometry of bite force has
substantial benefits at colony level

Bite force is a non-pareil performance measure which influ-
ences access to food sources and high-quality mating partners
[66]. As a result, the variation in morphology and physiology of
the bite apparatus across species often reflects species-specific
needs [45, 67–70]. What needs have shaped the evolution of
bite performance in Atta?

Atta ants are known for their ‘catholicity of taste’ [71, 72];
a single colony may forage on more than 100 plant species at
once, spanning a large range of chemical and mechanical prop-
erties [40, 73]. Foraging is not completely indiscriminate, how-
ever: for example, foragers seem to prefer young (tender) over
old (tough) leaves from the same plant [40, 42, 73, 74]. No-
tably, this preference disappears when pre-cut leaf fragments
are offered instead [41, 42], suggesting that foraging decisions
are not solely driven by plant chemistry, but also by mechani-

cal considerations. Because larger ants typically cut tougher and
denser leaves than smaller ants [5, 8, 16, 17, 40, 41], we surmise
that these mechanical considerations are further confounded by
size. From these simple observations emerge two key demands
on bite forces in Atta: its magnitude must be large enough to
cut a representative leaf, and its scaling determines the range of
plant leaves that can be cut by workers of different size.

In order to contextualise the magnitude of the bite force, we
estimate the forces required to cut leaves. Consider a blade-like
tool which exerts a force of magnitude F to make a cut of length
dx through a thin sheet of thickness t. The work done,

∫
Fdx,

supplies the energy required to create the new surface arising
from the cut, Gtdx, where G is the energy associated with a
unit area of surface; the cutting force then follows as Fc ≈ Gt.
This calculation provides a lower bound on the required force,
because it neglects the influence of friction, tool geometry and
sheet bending [e. g. 75–77]. Onoda et al. used cutting tests to
quantify a proxy for G, the work per unit fracture length to cut
leaf lamina of known thickness, for about 1000 tropical plant
species [78, 79, we note that although A. vollenweideri is of-
ten referred to as a grass-cutting ant, workers also cut dicotyle-
donous leaves, also see 80]. On the basis of the simple mechani-
cal model and these extensive experimental results, we estimate
that the forces required to cut tropical leaves vary between 7 -
828 mN. The median required cutting force of 82 mN can be
generated by a worker of about 5 mg (see Fig. 4B), and we sub-
mit that this finding strongly suggests that the remarkable mag-
nitude of bite forces in A. vollenweideri (see below) arises from
the ecological need to cut leaves.

In order to contextualise the positive allometry of bite force,
we next calculate the fraction of cuttable leaves as a function of
worker size, both for observed allometric (|Fb,max| ∝ m0.90) and
hypothetically isometric workers (|Fb,max| ∝ m0.67, see Fig. 4).
A direct comparison between two populations of workers which
follow different scaling laws requires to specify the body mass
at which the two scaling lines intersect. Do large workers
bite relatively more strongly, or small workers relatively more
weakly? This question cannot be answered a priori, and we thus
refer to three biological arguments instead: First, the worker-
size distribution in leaf-cutter ant colonies typically has a long
right tail, i. e. the vast majority of foraging workers is relatively
small [5, 10, 81, 82]. Second, large workers are only produced
in larger numbers once colonies exceed a critical size [10, 82].
Third, larger workers are more ‘costly’ than smaller workers.
On the basis of these arguments, increasing the bite force ca-
pacity disproportionally may represent a strategy to minimise
the cost associated with a unit increase in maximum bite force.
A disproportionate decrease of bite forces, in contrast, appears
to have no obvious biological benefit. Thus, small workers may
represent a reasonable generalist ‘starting point’, and we choose
a body weight of 1 mg as intersection mass.

Viewed in this light, the positive allometry of bite force has
substantial benefits for the colony for at least two reasons. First,
the maximum bite force of an allometric worker with a body
mass of 27 mg, at the upper end of forager sizes typically re-
ported in Atta [12, 16, 17, 29, 83], exceeds that of an equally-
sized isometric worker by a factor of two (see Fig. 4A). Pro-
vided that the data reported by Onoda et al. [79] are representa-
tive, this difference increases the fraction of cuttable leaves from
94 % to almost 100 % (see Fig. 4B). This difference may seem
small, but this perception is erroneous: A large isometric forager
would need to be three times heavier to cut the same fraction of
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leaves. Second, the smallest worker that can cut the median leaf
almost halves in mass between isometric and allometric workers
(5 to 3 mg, see Fig. 4B). As the majority of workers are typically
small [82], the positive allometry thus significantly increases the
fraction of the colony that can partake in leaf-cutting: an allo-
metric forager of 5 mg can cut up to 70 % of leaves, a whopping
20 % more than its isometric counterpart. This substantial in-
crease in the size range which can forage on a large number
of plant species facilitates flexible task assignment, likely in-
creases harvesting speed and overall influx of nutrients to the
nest, and may thus be reasonably expected to enhance colony
fitness.

In addition to the positive allometry of maximum bite force,
our results revealed a significant decrease in the opening angle
at which fibres take their optimum length, θopt . We note that the
last correction step, which led to this conclusion, is complex. In
contrast to the first three corrections steps which are based on
geometrical relations and thus have high predictive accuracy, it
involves assumptions on muscle physiology, and neglects pas-
sive force-length effects due to muscle or connective tissue elas-
ticity [47]. In support of the validity of our angle correction and
the resulting conclusion, three independent lines of evidence
may be offered. First, the angle-corrected regression analysis
explains a substantially larger share of the variation of bite force
with mass (86 % vs 74 % for |Fb,θ |, see Fig. 3B). Second, the re-
gression residuals are independent of opening angle [ANOVA:
F1,246 = 2.43, p = 0.12, see Fig. 3C], which does not hold with-
out angle-correction [ANOVA: F1,246 = 148, p < 0.001]. Third,
the relationship between θopt and body mass remains significant
even after removing the smallest and largest size classes, which
contain fewer data points (see methods), and are thus associated
with higher uncertainty [OLS: slope = -0.08, 95 % CI: (-0.15 |
-0.01), p < 0.05, R2 = 0.44]. Our result therefore appears statis-
tically robust, and we next offer a cautious functional interpre-
tation. Ant workers large or small may often forage on the same
plant leaf. Although their size differs, the characteristic dimen-
sion of the leaf lamina – its thickness – is the same. Because cuts
are typically initiated at the leaf-edge by drawing mandibles to-
gether like scissors, ants need to produce sufficiently large bite
force at a gape width comparable to the leaf lamina thickness.
For an ant of 3 mg, the strongest bites occur at a mandible gape
of 0.1 mm, approximately half the median leaf thickness [79].
At 0.2 mm gape, the opening angle is only a few degrees larger
and the force is almost identical (≈ 99 %). If, however, this
small ant had the same θmax as the largest colony workers, the
force at 0.2 mm would be 10 % less. We thus suggest that shifts
in the optimal length such that the maximum bite force occurs at
larger opening angles in small workers may represent an adap-
tive strategy to counter size-specific disadvantages when work-
ers of different size forage on leaves with a similar thickness.

Positive allometry of bite force is common
within, but rare across species

We discussed the mechanistic origin and ecological significance
of the positive allometry of bite forces in A. vollenweideri. As
a last step, we place our findings in a broader comparative and
evolutionary context.

To this end, we compare both the scaling and magnitude of
bite forces with two extensive datasets including close to 900
species, covering eight orders of magnitude in body mass and
head volume [89, 90]. Regression analysis on log10-transformed

bite force data for 203 amniote and four insect species against
body mass [45, 46, 89, 107, 108], and for 139 amniote and 653
insect species against head volume [89, 90] suggests isometry
of bite forces [mass0.68, OLS 95 % CI: (0.64 | 0.72), R2 = 0.86;
head volume0.68, OLS 95 % CI: (0.66 | 0.70), R2 = 0.87, see
Fig. 4]. The intercepts of the regression, which reflect mass-
and head-volume specific bite forces (with mass in g, volume
in mm3, and force in N), in turn are -0.06 [mass across species:
OLS 95 % CI: (-0.15 | 0.03)], 1.17 [mass within A. vollenwei-
deri: OLS 95 % CI: (1.07 | 1.26), see Fig. 4C], -1.49 [volume
across species: OLS 95 % CI: (-1.53 | -1.44)], and -1.29 [vol-
ume within A. vollenweideri: OLS 95 % CI: (-1.33 | -1.25)].
Leaf-cutter ants thus appear exceptional in at least two aspects:
Their bite forces grow with strong positive allometry, and their
weight-specific bite forces are in substantial excess of that for
the average amniote and insect, respectively [see also 47]; the
largest ants produce maximum bite forces comparable to that
of amniote species at least 20 times heavier (see Fig. 4C), and
we have argued above that such a remarkable magnitude of bite
forces probably arises from the ecological need to cut tough
plant matter. Notably, both the magnitude and the scaling of
the bite force of leaf-cutter ants are less remarkable relative to
head volume [V0.79, OLS 95 % CI: (0.75 | 0.83), R2 = 0.86,
see Fig. 4D]. This discrepancy reflects the fact that a large share
of the positive allometry of bite forces in leaf-cutter ants is
achieved by a positive allometry of head volume [see 44], and
that leaf-cutter ants, and perhaps insects in general, have rela-
tively larger heads than vertebrates; indeed, the weight-specific
head volume for A. vollenweideri is 671±74 mm3/g compared
to 209±134 mm3/g for amniotes [see Fig. 4 and 89].

In the above argument, we have conflated evolutionary al-
lometry involving different species, with static allometry in-
volving individuals of the same species at identical ontogenetic
stage [109]. In order to analyse if the static positive allome-
try of bite forces in leaf-cutter ants is indeed exceptional, and
to facilitate a more appropriate comparison of the magnitude of
bite forces, we collated results from 22 intraspecific and intra-
generic scaling studies on bite force across twelve taxonomic
groups (including this study, see Table 1. We note that the ma-
jority of intraspecific scaling studies report ontogenetic instead
of static scaling coefficients). For each study, we then calcu-
lated a log10-transformed ‘bite force quotient’, log10(BFQ) =

log10(bite force/body mass2/3) in N/kg2/3 [62, 92] as a mea-
sure for weight-specific bite performance. Leaf-cutter ants have
the highest log10(BFQ) apart from coconut crabs, for which bite
force were measured at a favourable mechanical advantage [94,
in contrast, we report bite forces for the maximum outlever and
thus small mechanical advantage].

We conclude that leaf-cutter ants are highly specialised to
produce large bite forces: (i) they have large heads relative to
their body mass compared to vertebrates; (ii) the volume oc-
cupation of mandible closer muscle in these heads and (iii) the
geometry of the bite apparatus are close to putative theoreti-
cal optima [44, 47]; and (iv), the estimated maximum stress of
the mandible closer muscle is among the highest ever measured
[47].

In sharp contrast to the magnitude of bite force, the positive
static allometry appears to be less remarkable: around 70 % of
available intraspecific studies reported significant positive al-
lometry of bite forces, if often less pronounced [including one
study that also reported negative allometry for other phenotypes
of the same species, 100]). Remarkably, and with the notable
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Figure 4 (A) We consider possible benefits of the positive allometry of bite force by calculating the minimum worker size which can gen-
erate a given force, both for measured positively allometric and hypothetical isometric workers. An isometric worker needs to be about
three times larger to produce the same bite force as the largest allometric forager; typical Atta vollenweideri foragers range between 2.5
to 26.9 mg [29]. (B) An allometric workforce increases the total fraction of cuttable leaves, estimated from measurements on 1000 trop-
ical plant species [79], from around 94 % to almost 100 %. A medium-sized forager of about 5 mg can cut 70 % of leaves; its isometric
counterpart only 50 %. The positive allometry of bite forces thus likely increases harvesting speed, and provides flexibility in task allo-
cation, so enhancing colony fitness. (C) Positive allometry of bite force has been reported in intraspecific studies for several taxa [dashed
lines, see 84–88, and Table 1]. Across distantly related species and a large size range, however, bite forces scale with isometry [black line,
mass0.68, OLS 95 % CI: (0.65 | 0.72), R2 = 0.86]; each circle represents the average maximum bite force for a single species [extracted
from 45, 46, 89]. A. vollenweideri ants generate exceptionally large weight-specific bite forces, comparable to those of amniotes 20 times
heavier. (D) Relative to their head volume, however, their bite forces are comparable to those of other insects [extracted from 90], and
amniotes [89], suggesting that leaf-cutter ants have a large weight-specific head volume. Across species, bite forces are isometric, head
volume0.68 [OLS 95 % CI: (0.66 | 0.70), R2 = 0.87]. Within A. vollenweideri, however, bite force ∝ head volume0.79 [OLS 95 % CI: (0.75
| 0.83), R2 = 0.86], in excess of isometric predictions, due to a disproportionate increase in volume-specific physiological cross-sectional
area of the mandible closer muscle [44].

exception of bats and finches [89, 110–113], bite force stud-
ies involving different genera typically report isometric scaling

[89, 114, 115, and see meta-analysis above], or even modest
negative allometry [85, 103, 116–119]. There thus appears to
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Table 1 Scaling of maximum bite forces for intraspecific (or intrageneric ‡) scaling studies across various taxa. The statistical models used
to characterise the scaling relationships include Ordinary Least Squares (OLS) and Reduced Major Axis (RMA) regressions performed on
log10-transformed data; in three studies, a non-linear RMA regression on untransformed data was used instead [86, 87, 91]. The relevant
morphological variables are body mass (m), or one of several characteristic lengths, L: manus length (ML), snout vent length (SVL), cara-
pace length (CL), and body length (BL). Where possible, we selected body mass as key variable to facilitate comparison with this study.
A range of scaling coefficients is given when more than one species (or genus ‡), intraspecific morphotypes or sexual dimorphism were
studied. Significant deviations from isometric scaling, i (m0.67, L2) are indicated with a p for positive allometry or n for negative allome-
try. We calculated a log10-transformed bite force quotient (BFQ) based on the reported mass range and regression coefficients [see 62, 92].
Because the BFQ is based on isometry, studies that reported allometric scaling are characterised by a range of BFQs. Where regression co-
efficients for body mass were missing, we calculated the range of BFQ based on the reported mass and bite force ranges (labelled with ∗).
Bite forces that were not measured at the most distal tip of the jaws, or for which the bite position was not explicitly reported, are labelled
with a †; these data are biased and thus need to be compared with care (see main text).

Taxon Statistical model Scaling Allometry log10(BFQ) Source

Ants OLS m0.90 p 2.50 - 2.85 this study

Ants RMA m0.97 p 2.44 - 2.90 this study

Birds ‡ RMA m0.76−0.88 i 0.62 - 1.22 ∗ [93]

Crabs not specified m0.82 p 2.66 - 2.94 † [94]

Crabs ‡ OLS ML1.49 n no mass reported [95]

Crocodylians OLS m0.79 p 1.92 - 2.36 † [84]

Crocodylians RMA m0.77−0.78 p 1.98 - 2.40 † [96]

Frogs RMA m0.91 p 1.59 - 1.88 [88]

Eels not specified BL2.79−2.94 p no mass reported † [97]

Lizards ‡ RMA SVL3.83−4.60 p 1.27 - 2.34 ∗ † [98]

Lizards RMA SVL2.65−3.37 p 2.10 - 2.67 ∗ † [99]

Lizards OLS m0.57−0.73 n, p 2.02 - 2.36 ∗ [100]

Piranhas OLS BL2.30 p 2.37 - 2.47 ∗ [101]

Ratfish OLS BL2.34 i 2.07 ∗ [102]

Rodents RMA m0.89−0.99 p 1.83 - 2.04 [85]

Rodents RMA m1.11 p 1.91 - 2.06 ∗ [103]

Rodents non-linear RMA m0.93−1.01 p 1.78 - 2.07 [91]

Rodents OLS m0.83 p 1.78 - 2.06 ∗ [104]

Snakes OLS m0.28 n 0.71 - 1.14 † [105]

Turtles RMA CL1.73−2.23 n, i 1.52 - 2.53 ∗ † [99]

Turtles RMA m0.98 p 1.90 - 2.48 † [106]

Turtles non-linear RMA m0.80 p 1.40 - 1.85 [86]

Turtles non-linear RMA m0.64 i 1.33 [87]

be a systematic difference between ontogenetic, static and evo-
lutionary scaling of bite forces. To visualise this contrasting ten-
dency, we superimpose a small selection of scaling relationships
on the overall evolutionary slope (dashed lines in Fig. 4C). The
difference between ontogenetic, static and evolutionary allom-
etry of bite forces is reminiscent of ‘transpositional allometry’
[120–122], where group means fall onto one regression line, but
within-group variation is governed by a different growth law –
a result which appears to be common in biomechanical scaling
studies [123–125]. Positive allometry of bite forces is likely
associated with direct ecological advantages, related for exam-
ple to the quantity and quality of accessible food sources [e. g.
84, 99, this study]. However, increased evolutionary rates of

adaptive change in bite forces, required to drive departures from
isometry, appear to be the exception rather than the norm, at
least across amniotes [89].

Four factors may contribute to this seeming discrepancy:
First, intraspecific and intrageneric studies on bite performance
may be biased toward taxa which may be reasonably expected
to face strong ecological or behavioural demands on their bite
forces, so increasing the probability of departures from isometry
[also see 126]. Second, strong positive allometry across many
decades of mass is challenging if not impossible to achieve
without fundamental ‘re-design’ [127]; as an illustrative ex-
ample, a hypothetical leaf-cutter ant with a body mass of 3 g
would have a closer muscle with a volume that exceeds that
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of its head capsule. Third, in particular ‘static’ scaling stud-
ies may often be limited by comparatively narrow size ranges
[e. g. 119, 128], which increases the influence of biological vari-
ation and thus decreases the accuracy of the estimated allomet-
ric slope. Fourth, few of the available scaling studies accounted
for potential size-specific biases in bite force measurements (see
methods), and may thus report under- or overestimates of the al-
lometric slope. Ultimately, the differences between ontogenetic,
static and evolutionary allometry of bite forces reflect species-
specific needs, coupled with complex developmental, evolution-
ary and ecological constraints [e.g. 58, 109, 126, 127, 129–134].
Untangling the influence of these different factors constitutes an
exciting avenue for comparative and evolutionary work across
disparate taxa, and a large range of body sizes.

Conclusion and outlook

Bite forces in leaf-cutter ants scale with strong positive allome-
try, driven and accurately predicted by morphological and phys-
iological adaptations of the bite apparatus. The positive al-
lometry enables the colony to access an increased number of
plant species, and is thus ecologically meaningful. Our study
adds strong quantitative evidence in support of the hypothesis
that size-polymorphism and the associated variation in shape
broadens a colony’s access to food plants [2, 5, 82, 135, 136].
However, we acknowledge that the exact relationship between
worker size, food plants and cutting behaviour is complex, and
is influenced by nest distance [13], mandibular wear [38], and
stridulation of the ant gaster, which can reduce force fluctuations
during cutting [37, 137]. To fully integrate the mechanical re-
sults of this study with foraging behaviour, direct measurements
of cutting forces with differently-sized mandibles as well as be-
havioural assays with materials of varying mechanical proper-
ties are needed; both are currently under way in our laboratory.
We hope that such work will increase our understanding of the
complex interactions between polymorphism, bite force allom-
etry and foraging ecology in leaf-cutter ants.
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