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ABSTRACT

Theoretical accounts of the N400 are divided as to whether the amplitude of the N400
response to a stimulus reflects the extent to which the stimulus was predicted, the extent to
which the stimulus is semantically similar to its preceding context, or both. We use state-of-
the-art machine learning tools to investigate which of these three accounts is best supported by
the evidence. GPT-3, a neural language model trained to compute the conditional probability
of any word based on the words that precede it, was used to operationalize contextual
predictability. In particular, we used an information-theoretic construct known as surprisal
(the negative logarithm of the conditional probability). Contextual semantic similarity was
operationalized by using two high-quality co-occurrence-derived vector-based meaning
representations for words: GloVe and fastText. The cosine between the vector representation of
the sentence frame and final word was used to derive contextual cosine similarity estimates.
A series of regression models were constructed, where these variables, along with cloze
probability and plausibility ratings, were used to predict single trial N400 amplitudes recorded
from healthy adults as they read sentences whose final word varied in its predictability,
plausibility, and semantic relationship to the likeliest sentence completion. Statistical model
comparison indicated GPT-3 surprisal provided the best account of N400 amplitude and
suggested that apparently disparate N400 effects of expectancy, plausibility, and contextual
semantic similarity can be reduced to variation in the predictability of words. The results are
argued to support predictive coding in the human language network.

INTRODUCTION

Fedorenko and Thompson-Schill (2014) note that the brain systems that support language pro-
cessing are better described at the level of interactive networks than individual brain regions,
arguing that investigations into the functional significance of neural activity are best directed at
large-scale distributed neural networks, that is, a set of interconnected brain regions acting in
concert. This may explain why language researchers have found event-related brain potentials
(ERPs) to be such a useful method for probing the neurobiology of language, despite known
limitations in the spatial resolution of the technique (see Federmeier, Kutas, & Dickson, 2016,
for a review). Electroencephalography (EEG) reflects post-synaptic potentials generated mainly
in cortical pyramidal cells (Luck, 2014). Moreover, brain activity cannot be detected at the
scalp unless large numbers (on the order of 10 million) of neurons are simultaneously active
(Woodman, 2010). The identification of any scalp recorded potentials whose amplitude is
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systematically modulated by language processing demands is thus likely to reflect activity in
the very sort of interactive neural networks Fedorenko and Thompson-Schill (2014) propose.

One ERP component of particular interest to language researchers is the N400, a monopha-
sic negativity peaking approximately 400 ms after the onset of a visually presented word. The
N400 was first reported in a study that compared ERPs elicited by the last word of sentences
that made sense (He takes his coffee with cream and sugar) versus those that did not (He takes
his coffee with cream and dog; Kutas & Hillyard, 1980). However, it soon became clear that
the N400 is not observed only at the end of sentences; it is elicited by all words, written, spo-
ken, or signed, and that its amplitude is modulated by factors such as contextual congruity,
frequency of usage, and category membership, all thought to affect the difficulty of retrieving
information in semantic memory (for review, see Kutas & Federmeier, 2011).

Here we consider the adequacy of two proposals regarding the functional significance of
the N400 that differ in their implications for the underlying neurocognitive mechanisms. The
first is that N400 amplitude is sensitive to the conditional probability of words in their linguistic
contexts as driven by a predictive coding mechanism. This account is referred to below as
predictive preactivation. The second is that N400 amplitude is driven by a context-sensitive
retrieval mechanism and as such indexes the semantic similarity of incoming words to the
semantic features of prior words in the context. This is referred to below as contextual semantic
similarity. We briefly review empirical support for each of these proposals as well as that for a
combined account.

One reason for the continued dispute on this issue is that advocates of each account have
mostly focused on a subset of N400 effects, discounting the relevance of less amenable phe-
nomena and arguing that they are potentially explicable given a suitable operationalization of
either expectancy or semantic similarity. Whereas advocates of predictive processing focus on
expectancy effects (Bornkessel-Schlesewsky & Schlesewsky, 2019; DeLong, Troyer, & Kutas,
2014; Kuperberg et al., 2020; Kuperberg & Jaeger, 2016), advocates of contextual similarity
and combined accounts focus on the way that N400 amplitude is modulated by the presence
of semantically related words in the immediate context (Ettinger et al., 2016; Federmeier,
2022; Lau et al., 2013; Uchida et al., 2021). By contrast, the present study examines manip-
ulations of the expectancy, plausibility, and relatedness of sentence final words to the words
that precede them.

Noting how researchers in the neurobiology of language have struggled to operationalize
the theoretical constructs proposed to drive the N400, we turn instead to tools from compu-
tational linguistics. The 21st century has seen immense progress in the utility of statistical tools
designed to characterize the features and probabilities of words in texts (Berger & Packard,
2022; Jurafsky & Martin, 2023). Trained on large corpora, such tools are used in applications
such as information retrieval, speech recognition, machine translation, and chatbots. Although
they are not proposed as cognitive models per se, we suggest that the data-driven estimates
they provide serve as excellent metrics for the theoretical constructs proposed to drive theN400.
We utilize three state-of-the-art natural language technologies—one language model and two
sets of word vectors—to provide metrics for the predictability and the contextual semantic sim-
ilarity (respectively) of our sentence-final words and compare their adequacy in accounting for
N400 effects of expectancy, plausibility, and relatedness in human participants.

Predictive Preactivation Account

One prominent account of the N400 is that it reflects the activation of semantic features asso-
ciated with the eliciting word (Kutas & Federmeier, 2011). According to this account,

N400:
A negative-going component of the
event-related brain potential that
peaks roughly 400 ms after stimulus
presentation; thought to indicate
processing.

Predictive coding:
A theory under which the functional
role of neural systems centers on
prediction and learning from
prediction error.

Language model:
A computational system that
calculates the contextual probability
of a word. Most contemporary
language models are transformer
neural networks.

Event-related brain potential (ERP):
Electrical activity in the brain
recorded at the scalp using
electroencephalography, time-locked
to a particular category of stimulus or
response event.
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contextual congruity effects occur because elements of the prior context have already acti-
vated some of these associated features. If relevant features associated with a word have been
activated by the preceding context—whether these be semantic features (Federmeier, 2022;
Kuperberg et al., 2020) or a combination of semantic, grammatical, and phonological features
(as supported by the work of DeLong et al., 2005; Fleur et al., 2020; Nicenboim et al., 2020;
Otten et al., 2007; Urbach et al., 2020; Van Berkum et al., 2005)—they need not be newly
activated when the word is encountered, and thus the amplitude of the N400 is less than when
words are encountered alone or in less supportive contexts.

The most obvious source of support for predictive preactivation lies in the close relationship
between N400 amplitude and the expectancy metric known as cloze probability (the propor-
tion of people to fill in the relevant gap in a sentence with a given word; Taylor, 1953, 1957). A
higher-cloze continuation of a sentence elicits a smaller (i.e., more positive) N400 response,
while a lower-cloze continuation elicits a larger (more negative) N400 (Kutas & Federmeier,
2011; Kutas & Hillyard, 1984). In fact, in previous work the two variables have been reported
to have a Pearson correlation coefficient r of −0.9 or more (Kutas & Federmeier, 2011; Kutas &
Van Petten, 1994). As the cloze task requires participants to predict an upcoming word, cloze
probability has often been argued to reflect how predictable a word is in context (Brothers &
Kuperberg, 2021; Fischler & Bloom, 1979; Kuperberg et al., 2020; Kutas et al., 2011; Kutas &
Hillyard, 1984; Luke & Christianson, 2016; Tannenbaum et al., 1965; Van Petten & Luka,
2012). Moreover, the negative correlation between N400 amplitude and cloze probability tells
us that N400 amplitude is not simply a categorical indicator of surprise, but reflects the pre-
dictability of the eliciting word in a more fine-grained way.

Beyond the graded predictability effect, the predictive preactivation account is supported
by the way in which N400 amplitude is modulated by sentence context. Research has shown
that words elicit a large N400 when presented alone, a large N400 when presented in
sentence frames that render them unexpected, and a progressively smaller N400 in more
supportive sentence contexts, suggesting that what reduces the amplitude of the response is
the activation of neural representations associated with the stimulus before the stimulus is
encountered (Dambacher et al., 2006; Payne et al., 2015; Van Petten, 1993; Van Petten &
Kutas, 1990, 1991; for discussion, see Federmeier, 2022; Van Petten & Luka, 2012). Second,
unlikely sentence continuations elicit a similar-sized N400 in constraining contexts in which
there is a highly salient alternative (e.g., month in The bill was due at the end of the hour) and
in open-ended contexts in which there is not (e.g., He kicked himself when he realized that he
forgot the key; see DeLong & Kutas, 2020; Federmeier, 2022; Kuperberg et al., 2020; Van
Petten & Luka, 2012).

This sensitivity to the contextual fit of the actual word encountered rather than the predict-
ability of potential alternatives has been interpreted as suggesting that rather than the registra-
tion of surprise, the N400 reflects the activation of semantic (and possibly other) features
associated with the word presented. Under this account, cloze probability effects occur because
the greater the extent of preactivation for a word’s features, the smaller the N400 elicited by the
word (DeLong & Kutas, 2020; DeLong, Quante, & Kutas, 2014; Federmeier, 2022; Kuperberg
et al., 2020; Kutas et al., 2011; Kutas & Federmeier, 2011; Van Petten & Luka, 2012).

In addition to cloze, the amplitude of the N400 is also correlated with other metrics of pre-
dictability. Research has found that the predictions of language models, computational systems
designed to predict the probability of a word in context based on the statistics of language, are
correlated with the N400 response to these words (Aurnhammer & Frank, 2019; Frank et al.,
2015; Merkx & Frank, 2021). Specifically, such studies find that surprisal, the negative
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logarithm of the conditional probability of a word, is a significant predictor of N400 amplitude
(Aurnhammer&Frank, 2019; Ettinger, 2020; Frank et al., 2015;Merkx&Frank, 2021;Michaelov
& Bergen, 2020; Michaelov et al., 2022; Parviz et al., 2011; Szewczyk & Federmeier, 2022).

Research also shows that language model surprisal can be used to model N400 effects—in
many cases, where we find a significant difference in N400 amplitude between stimuli from
two experimental conditions, we also find a significant difference in surprisal in the same direc-
tion (Michaelov & Bergen, 2020). Further, this computational approach fits into a larger body of
work showing that N400 amplitude is sensitive to the statistics of language—for example, more
frequent words elicit smaller N400 responses (Dambacher et al., 2006; Fischer-Baum et al.,
2014; Kutas & Federmeier, 2011; Rugg, 1990; Van Petten, 1993; Van Petten & Kutas, 1990).
These results together suggest that the N400 component reflects a neural process that veridi-
cally tracks the conditional probability of upcoming words. Note that the definition of condi-
tional probability here is not restricted to that calculated by a traditional n-gram model, only
based on actual co-occurrences of lexical items; language models are designed to generalize
based on their training data when making predictions, and humans are also thought to do so
(DeLong & Kutas, 2020; DeLong, Troyer, & Kutas, 2014; Kuperberg et al., 2020).

Contextual Semantic Similarity

An alternative explanation of the neural activity underlying the N400 is contextual semantic
similarity. Under this account, as we comprehend a sentence, the semantic features of each
word are activated and briefly maintained, thereby reducing the neural activity required in
response to words with overlapping features (Federmeier, 2022). While this feature-based
account is compatible and indeed central to some prediction-based accounts of the N400
(e.g., Kuperberg et al., 2020), the key difference is that the activations are limited to semantic
features of previously encountered words. That is, there is no additional spreading activation to
related words or semantic features, and, crucially, no prediction. Some investigators have sug-
gested that contextual semantic similarity may be able to account for all variation in N400
amplitude (Ettinger et al., 2016; Uchida et al., 2021), while others suggest semantic similarity
acts in concert with a prediction mechanism (see, e.g., Federmeier, 2022; Frank & Willems,
2017; Lau et al., 2013).

Several previous ERP studies have examined the impact of semantically related words within
sentences or sentence-like word strings, with results that suggest the N400 component is sen-
sitive to semantic similarity among the individual words that comprise sentences along with
factors that are difficult to accommodate within a pure similarity account. For instance, an early
experiment found that the relationship between the two terms of a statement about category
membership influenced the N400, whereas the truth or falsity of the statement had no impact,
so that a robin is a bird and a robin is not a bird were equivalent and both led to smaller N400s
than a robin is/is not a vehicle (Fischler et al., 1984). Similarly, Kounios and Holcomb (1992)
found no impact of quantifiers all, some, and no on statements about category membership.
However, a more recent study on this topic reports N400 effects both for relationships between
words (viz., farmers primes crops more than farmers primes worms) as well as a small N400
effect of quantifiers, that is, the final word of the more plausible sentence farmers often grow
crops elicited a smaller N400 than farmers rarely grow crops (Urbach & Kutas, 2010).

Outside the realm of negation and quantification, initial studies showed that the presence of
a strongly related word within either a meaningful sentence (e.g., When the moon is full, it is
hard to see many stars or the Milky Way) or a grammatically legal but meaningless word string
(e.g., When the moon is rusted, it is available to buy many stars or the Santa Ana) leads to a
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smaller N400 to stars than if the prior context does not include a related word (Van Petten,
1993; Van Petten et al., 1997). However, other studies indicate that N400 is not driven solely
by an automatic semantic comparison process during sentence comprehension. Coulson and
colleagues found much smaller N400s to the second words of related (tin/aluminum) than
unrelated (tin/disposal) word pairs when the pairs were presented by themselves (Coulson
et al., 2005). The word pairs were then embedded in sentences that were compatible or
incompatible with the word-pair relationship, like the quartet below.

(1) (a) Coke cans used to be made out of tin but now they use aluminum.

(b) Paul heard a loud grinding noise when someone put a tin can right down the
garbage aluminum.

(c) Paul heard a loud grinding noise when someone put a tin can right down the
garbage disposal.

(d) Coke cans used to be made out of tin but now they use disposal.

In the incongruous sentences, the presence of a semantically related word continued to reduce
the amplitude of the N400 elicited by the final words—condition (b) smaller than (d)—but this
difference was dramatically smaller and shorter in duration than when the word pairs were
presented in isolation. In contrast, the impact of overall sentence congruity—conditions (a) and
(c) versus (b) and (d)—dwarfed the impact of a single related word earlier in the sentence.

Camblin et al. (2007) similarly pitted overall plausibility against lexical relationships by
embedding strongly related word pairs (arms/legs) in discourse contexts that were more or less
compatible with the word-pair relation (skin irritation from a sunburn would be likely to affect
both arms and legs, but irritation from a wool sweater would not). Much like Coulson et al.
(2005), they found smaller N400s for the second words of semantically similar pairs than their
unrelated controls, but that this effect was substantially smaller when opposed by the global
discourse context.

As is the case for the prediction account, the contextual semantic similarity account is sup-
ported by work with computational models. N400 amplitude, for example, has been found to
correlate with the degree of semantic similarity between prime and target word (Chwilla &
Kolk, 2005; Van Petten, 2014), as operationalized by latent semantic analysis (LSA), a measure
of semantic distance derived from word co-occurrence frequencies in written corpora
(Dumais, 2004; Dumais et al., 1988; Landauer et al., 1998). This is also true for words in sen-
tence contexts—N400 amplitude is correlated with the LSA distance between a target word
and the words that precede it (Chwilla et al., 2007; Parviz et al., 2011), and with other statis-
tically derived metrics of word similarity (Broderick et al., 2018; Ettinger et al., 2016; Frank &
Willems, 2017; Parviz et al., 2011; Uchida et al., 2021; Van Petten, 2014).

Multiple Systems Accounts

A number of investigators have suggested the brain activity underlying the N400 reflects both
predictive preactivation and contextual semantic similarity. Some of these suggest that the
contextual semantic similarity system operates by default, and the predictive system is
engaged under conditions of increased attention (Federmeier, 2022), or when predictions
are more likely to be successful, as when a high proportion of word pairs are semantically
related (Holcomb, 1988; Lau et al., 2013). Some studies have shown that conditions that foster
prediction result in N400 effects with an earlier onset latency than conditions that do not, such
as those with little time between words (Anderson & Holcomb, 1995; Luka & Van Petten,
2014) or a small proportion of related word pairs (Lau et al., 2013).
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According to other accounts, both systems are constantly active but implemented in differ-
ent brain circuits. In one functional magnetic resonance imaging (fMRI) experiment, Frank and
Willems (2017) found that contextual semantic similarity was correlated with activations in the
anterior middle temporal sulcus, the precuneus, and bilateral angular gyri, whereas predict-
ability was correlated with activations in the left inferior temporal sulcus, left posterior fusiform
gyri, bilateral superior temporal gyri, and bilateral amygdalae. In view of the limited temporal
resolution of fMRI, however, it is also possible that these findings reflect a disparate impact of
contextual similarity and predictability at distinct stages of language processing.

Finally, one well-replicated result appears challenging to accommodate in single-system
accounts, whether predictive or similarity based. Kutas and Hillyard (1984) first reported that
generally poor (unexpected) sentence completions elicited smaller N400s if they were seman-
tically related to the most expected completion than if not, so that He liked lemon and sugar in
his coffee led to a less negative ERP than an equally unexpected word (dog) that is semanti-
cally dissimilar to the expected completion (tea). The finding that words related to the best
completion elicit significantly less negative N400 responses than their unrelated counterparts
has been replicated many times, and occurs regardless of whether the related words comprise
congruous or anomalous continuations of a sentence (Amsel et al., 2015; DeLong et al., 2019;
Federmeier & Kutas, 1999; Ito et al., 2016; Kutas, 1993; Kutas et al., 1984; Kutas & Hillyard,
1984; Thornhill & Van Petten, 2012). One might imagine that this effect (relationship-to-best-
completion, or RBC) arises from predicting a sentence completion, followed by an assessment
of the similarity between that prediction and the actually delivered word, but no study has
suggested that the RBC effect is temporally delayed relative to simple sentence congruity
effects. Because an RBC condition is included in the present study, we return to theoretical
accounts and attempts to computationally model it in the Discussion.

The Present Study

In the present study we explore whether the brain activity underlying the scalp-recorded N400
component is driven by predictability, contextual semantic similarity, or a combination of the
two. To do so, we recorded EEG as participants read sentences whose final words were
designed to elicit three kinds of N400 effects: predictability, plausibility, and RBC. Based on
the stimuli used by Thornhill and Van Petten (2012), our materials were sentence frames with
four different kinds of sentence-final words. As in the original study, the predictability manip-
ulation was guided by results from a cloze task. The Best Completion condition was thus the
word with the highest cloze probability. The Related completions were low-cloze completions
semantically related to the best completions, as determined by Thornhill and Van Petten
(2012). Likewise the Unrelated completions were low-cloze completions unrelated to the best
completions. Finally, to investigate the plausibility effect, we included Implausible comple-
tions, completions with a cloze probability of zero that were also implausible.

(2) (a) Best Completion: On his vacation, he got some much needed rest.

(b) Related: On his vacation, he got some much needed relaxation.
(c) Unrelated: On his vacation, he got some much needed sun.
(d) Implausible: On his vacation, he got some much needed airlines.

We then use state-of-the-art language models to calculate the predictability and contextual
similarity of our stimuli and investigate how well these metrics predict the single-trial N400
amplitudes elicited by the stimuli. To operationalize predictability, we used the transformer
neural network language model, GPT-3. Research has shown that in general, larger language

Transformer neural network:
A state-of-the-art neural network
architecture that uses an “attention”
mechanism that allows it to make use
of a long context when making
predictions.
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models trained on more data provide the best fits to human data, and that transformer neural
networks are the architecture best suited to predicting N400 data (Merkx & Frank, 2021).
However, rather than using the conditional probabilities assigned by GPT-3 to our stimuli,
we instead utilize surprisal scores, the negative logarithm of the probability assigned by the
language model to a given word in context. Previous work has shown that when directly com-
pared, language model surprisal is a better predictor of N400 amplitude than raw probability
(Szewczyk & Federmeier, 2022; Yan & Jaeger, 2020).

Contextual semantic similarity is generally calculated as the cosine distance between a
vector representation of the stimulus word (often referred to as an embedding) and the mean
vector across each word in the context, where the vector representations are based on the
statistics of language. To operationalize contextual semantic similarity, we took advantage
of two different tools for obtaining vectors for word meanings, GloVe (Pennington et al.,
2014) and fastText (Bojanowski et al., 2016; Mikolov et al., 2018). GloVe (Pennington
et al., 2014) is an unsupervised learning algorithm trained on global, aggregated word–word
co-occurrence statistics that yields vector representations for words. The fastText library
(Bojanowski et al., 2016) is an updated version of word2vec (Mikolov, Chen, et al., 2013;
Mikolov, Sutskever, et al., 2013), which has been used in previous work investigating the
effect of contextual semantic similarity (Ettinger et al., 2016; see also Frank & Willems,
2017, and Nieuwland et al., 2020, for related approaches). Both models are driven by lan-
guage statistics, but GloVe embeddings are derived from co-occurrence statistics from a whole
corpus (Pennington et al., 2014), while fastText embeddings are retrieved from a neural net-
work (known as a continuous bag-of-words model) trained to predict a word based on the
other words occurring in a given sentence (Bojanowski et al., 2016; Mikolov et al., 2018).

We expect that our experimental manipulation of predictability, plausibility, and RBC will
replicate each of these well-documented effects on the N400, as would be evidenced by an
effect of experimental condition. In particular, we expect the Best completions to elicit the
least negative (most positive) N400, the Implausible completions to elicit the most negative
N400, and the Related and Unrelated completions to fall in between the two. Despite the fact
that the Related and Unrelated completions are matched for cloze probability and plausibility,
the Related completions are expected to elicit smaller N400 than Unrelated completions.

Next we use our metrics of predictability and contextual semantic similarity to model
single-trial N400 data using linear mixed effects regressions. If the brain activity underlying
the N400 reflects predictive preactivation, we expect regressions incorporating surprisal to
provide the best account of the data. Alternatively, if the brain activity underlying the N400
reflects contextual semantic similarity, we expect regressions incorporating one of our cosine
similarity measures to provide the best account of the data. Finally, if the N400 reflects the
operation of both a predictive preactivation mechanism and contextual similarity mechanism,
the best account of the data will lie in regressions that incorporate measures both for surprisal
and cosine similarity.

MATERIALS AND METHODS

Participants

Fifty University of California, San Diego (UCSD) volunteers participated for course credit or
payment. Participants were right-handed, fluent English speakers with normal or corrected-to-
normal vision with no history of neurological or psychiatric disorders. Participants ranged in
age from 18 to 31 years old.

Surprisal:
The negative logarithm of a
probability (in this study, the
probability of a word in context).
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Materials

Our stimuli were based on the original stimuli of the experiment carried out by Thornhill and
Van Petten (2012). These stimuli were of the form given in Table 1. For each sentence frame,
the stimuli from the Thornhill and Van Petten (2012) study fall under three conditions—Best
Completions, the completions with the highest cloze probability; Related Completions,
low-cloze completions that are semantically related to the best completions (as determined by
Thornhill & Van Petten, 2012); and Unrelated Completions, low-cloze completions that are
unrelated to the best completions. Thornhill and Van Petten (2012) found that these stimuli elicit
both a predictability and RBC effect in human comprehenders. In order to also investigate the
plausibility effect, we added a fourth experimental condition of Implausible Completions.

Sentences were normed via online surveys using the same participant pool we used to
recruit participants for the EEG study. First, cloze probability measures were collected from
UCSD students such that each sentence frame was completed by at least 35 participants. In
this survey, participants were provided with sentence frames and instructed to produce the last
word of the sentence. Average cloze probability and standard deviation for each condition are
shown in Table 1.

All sentences were also rated for plausibility by a separate group of at least 30 students. In
this survey, participants read one sentence at a time and were asked to rate each on a scale
from 1 (very plausible) to 5 (very implausible). Multiple stimulus lists were employed so that
each participant viewed only one of the four versions of each sentence frame. Average plau-
sibility ratings for each experimental condition are shown in Table 1. All sentences in the
Implausible condition had ratings above 3.5, with an average rating of 4.3. By contrast, the
other conditions all had ratings below 2, suggesting participants found them plausible.

These stimuli were initially constructed as part of a larger study. In order to use the com-
putational tools required to test our hypotheses, we opted to analyze a subset of the data such
that critical words of all sentence stimuli appeared as whole tokens in GPT-3, GloVe, and
fastText—that is, critical words were present as whole words in the vocabularies of these
models. We then further selected stimuli such that, as in Thornhill and Van Petten (2012), there
was no overall difference in cloze probability between the related and unrelated completions.
We also additionally ensured that there was no overall difference in plausibility. Thus, the two
conditions differed only in how related they were to the Best Completion for that sentence.
This resulted in a final stimulus set of 125 sentence frames in four conditions, for a total of
500 items. The stimuli were presented along with 165 other sentences that were part of the
larger study and thus similar in character to the experimental sentences. As for the experimen-
tal sentences, these additional stimuli were equally likely to end with the Best, Related,
Unrelated, or Implausible completion for the sentence frame as each participant saw

Table 1. Descriptive statistics for sentences: mean and standard deviation (SD) of cloze probabilities
and plausibility ratings (1 = very plausible; 5 = very implausible) for each experimental condition.

Condition Example stimulus

Cloze Plausibility

Mean SD Mean SD

Best It’s hard to admit when one is wrong. 49.8% 27.3% 1.4 0.3

Related It’s hard to admit when one is incorrect. 2.3% 3.3% 1.5 0.4

Unrelated It’s hard to admit when one is lonely. 2.3% 3.9% 1.5 0.3

Implausible It’s hard to admit when one is screened. 0% 0% 4.3 0.4
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approximately 41 non-experimental stimuli in each condition—in addition to the approxi-
mately 31 experimental sentences in each condition.

Procedure

Testing consisted of a single experiment session, with words presented centrally using RSVP
presentation. For each sentence, participants first saw a break screen, then pressed a key to
display the sentence. A fixation character remained on the screen while words were presented
for 300 ms, followed by a 200 ms blank screen. The final word was displayed for 1,200 ms.
After some sentences, participants saw a question about the content of the previous sentence
(e.g., “Was the previous sentence about banking?”) and responded Yes or No with a button
press.

EEG Recording and Analysis

The EEG was recorded from 29 electrodes in an Electro-cap organized in the International
10–20 configuration. Additional electrodes were placed below the eye and near the external
canthi to detect eye movements and blinks. Scalp electrodes were referenced online to an
electrode on the left mastoid, and later re-referenced to an average of the left and right mastoid
electrodes. The EEG was amplified using an SA Instrumentation bioelectric amplifier, digitized
online at 250 Hz.

EEG was time locked to the onset of each sentence final word. Mean voltage during the
100 ms interval preceding each word’s appearance was used to baseline epochs spanning
100 ms before until 900 ms after word onset. Trials containing artifacts due to blinks, eye
movements, or amplifier saturation were removed prior to analysis. As discussed in Materials,
the data used in the present study were collected as part of a larger experiment involving
additional stimuli constructed to cover the same four conditions. We analyzed all the data
for stimuli that fulfilled the requirements stated in Materials, namely, stimuli where all critical
words existed as whole words in all language models’ and word embeddings models’ vocab-
ularies and Related and Unrelated words were matched for Cloze and Plausibility.

N400 amplitude was operationalized as the mean voltage 300–500 ms post-onset recorded
from nine centroparietal electrodes: C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and P4. All graphs and
statistical analyses were run in R (R Core Team, 2022) using RStudio (RStudio Team, 2020) and
the tidyverse (Wickham et al., 2019), lme4 (Bates et al., 2015), lmerTest (Kuznetsova et al.,
2017), corrr (Kuhn et al., 2022), colorspace (Zeileis et al., 2009, 2020), gridExtra (Auguie,
2017), and cowplot (Wilke, 2020) packages. All figures use colorblind-friendly palettes
(Chang, 2022; Jackson, 2016; Zeileis et al., 2020). All reported p values are corrected for
multiple comparisons based on false discovery rate (Benjamini & Yekutieli, 2001).

Computational Metrics

In this article, we derive three computational metrics based on the statistics of language—
GPT-3 surprisal, GloVe cosine similarity, and fastText cosine similarity. While the pretrained
models we used differ in a number of ways, we did attempt to match some of their properties
as much as possible. For example, GPT-3, GloVe, and fastText are all trained on Common
Crawl data (https://commoncrawl.org/), albeit using subsets of different sizes. GPT-3 is trained
on 300 billion tokens, GloVe on 840 billion, and fastText on 600 billion tokens. In spite of
these differences, at a minimum the corpus is the same and the training set is the same order
of magnitude for all three models. Further, to ensure that all the models are equally able to
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capture the relationships between the stimuli and their contexts, stimuli were chosen such that
critical words existed as whole words in all models’ vocabularies. For this reason, we use the
version of fastText that does not include subword information in its representations, as the
other models do not have access to subword information. More details on how each metric
was calculated are provided below.

GPT-3 surprisal

The OpenAI API (OpenAI, 2021) was used to access the predictions of the largest original
GPT-3 model (Davinci ), which has 175 billion parameters (Brown et al., 2020). Each sentence
stimulus was input into the API, and GPT-3 was used to calculate the log probability of the
final word given its preceding context. Since these log probabilities used the natural exponent
as a base, they were converted to the logarithm of base two and multiplied by negative one.
The resultant surprisal values are thus measured in bits (see, e.g., Futrell et al., 2019, for
discussion).

GloVe cosine similarity

To obtain the measure of contextual similarity we refer to as GloVe contextual cosine similar-
ity, we used the GloVe (Pennington et al., 2014) vectors made available through the GloVe
website (https://nlp.stanford.edu/projects/glove/)—specifically, the version with a 2.2 million
word vocabulary and 300-dimensional vectors trained on 840 billion tokens from the
Common Crawl corpus. We took the mean vector of all the words preceding the stimulus word
and then used SciPy (Virtanen et al., 2020) to calculate the cosine similarity between this
vector and the vector corresponding to the stimulus word. Because cosine similarity is based
on the angle between two vectors and is not affected by the overall magnitude, this approach
is equivalent to taking the sum of the context vectors as in Frank and Willems (2017).

We also calculate the similarity between the best completion (i.e., highest-cloze sentence
completions) and each critical word in each sentence frame, which we refer to as GloVe best
completion cosine similarity or GloVe BCCS.

fastText cosine similarity

To calculate fastText contextual cosine similarity, we utilized the fastText (Bojanowski et al.,
2016) vectors made available through the fastText website (https://fasttext.cc/)—specifically,
the version with a 2 million word vocabulary, 300-dimensional vectors, and no subword
information trained on 600 billion tokens from the Common Crawl corpus. As with the GloVe
vectors, we calculated the cosine similarity between the vector corresponding to the stimulus
word and the mean vector of the preceding context. In addition to calculating fastText con-
textual cosine similarity (fastText CCS), we also calculate fastText best completion cosine
similarity (fastText BCCS).

RESULTS

Figure 1 shows grand average ERP waveforms for words in each of the four conditions (Best
Completion, Related, Unrelated, and Implausible) along with topographic maps. By conven-
tion, negative voltage is plotted upwards making it apparent that, as predicted, the Implausible
condition elicited the largest (most negative) N400, and the Best Completions elicited the
smallest (most positive) N400. The Unrelated condition fell in between these two extremes,
and, as predicted, elicited more negative ERPs than did the Related condition (which was vir-
tually overlapping the Best Completion condition, despite the large difference in their average
cloze probability). The topographic maps were formed by first calculating point-by-point

Neurobiology of Language 10

Language model surprisal explains multiple N400 effects

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/doi/10.1162/nol_a_00105/2124488/nol_a_00105.pdf by guest on 27 Septem
ber 2023

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://fasttext.cc/
https://fasttext.cc/
https://fasttext.cc/
https://fasttext.cc/


difference waves obtained by subtracting the amplitude of ERPs recorded at each electrode in
the Best Completion condition from their counterparts in the Related, Unrelated, and Implau-
sible conditions, respectively. The mean amplitude 300–500 ms was then measured on each
difference wave and plotted on the scalp to visualize the relative pattern of positive and neg-
ative voltage. The posterior negativity apparent in all three plots is characteristic of N400 ERP
effects reported in sentence reading paradigms like the one used here.

Figure 2 presents normalized (z-scored; and in the case of surprisal and plausibility, multi-
plied by −1) values in each experimental condition for the outcome variable (N400) and for
each of our predictors. Note that the human derived metrics of cloze probability and plausi-
bility reflect our experimental design. The Best Completions were intended to be predictable,
while the Related, Unrelated, and Implausible conditions were designed to be unexpected,
with Related and Unrelated conditions equated for cloze probability. Similarly, Best Comple-
tions, Related, and Unrelated conditions were all intended to be plausible, whereas the
Implausible condition was intended to be implausible. Figure 1 indicates that all of the com-
putational metrics were associated with differences between Best Completions and Implausi-
ble endings. Related and Unrelated conditions were quite similar on some metrics—such as
GloVe contextual cosine similarity (GloVe CCS) and fastText CCS—and differed on others,
such as GPT-3 surprisal and both measures of BCCS.

Figure 3 presents a heatmap of correlations between the various predictors used in the
regression analyses below. Recall that contextual cosine similartity is the cosine of the angle
between the vector for each word and the mean of the vectors for each of the words in the
preceding sentence context and serves as an operationalization of contextual semantic simi-
larity. Best completion cosine similarity is the cosine of the angle between the vector for each
word and the vector for the word that is the best completion for the sentence frame and is
relevant for some multiple systems accounts. Although the two kinds of embeddings (GloVe
and fastText) yielded virtually identical estimations of similarity between pairs of words—as
reflected in the 0.98 correlation between GloVe BCCS and fastText BCCS—they differed some-
what in their estimates of contextual semantic similarity as GloVe CCS and fastText CCS had a
correlation coefficient of 0.66. Relative to GloVe CCS, fastText CCS was more associated with
cloze probability (0.39 vs. 0.32), GPT-3 surprisal (−0.61 vs. −0.46), and plausibility (−0.56 vs.

Figure 1. Event-related potential (ERP) scalp maps and waveforms. (A) Topography of the mean amplitude 300–500 ms of the difference wave
for the Relatedness-to-Best-Completion (RBC) and Best Completion conditions (top), Unrelated and Best Completion (middle), and Implausible
and Best Completion (bottom) using a spherical spline interpolation. (B) ERP waveforms for each condition (Best Completion, Related,
Unrelated, Implausible) as measured at the centroparietal electrode cluster used in the regression models.
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−0.37). Relative to GloVe CCS, the fastText CCS measure also showed more sensitivity to the
semantic relationship between each unexpected ending and the best completion, as evi-
denced by a greater correlation with fastText BCCS (0.52 vs. 0.33) and even with GloVe BCCS
(0.54 vs. the 0.4 correlation between GloVe CCS and Glove BCCS).

GPT-3 exhibited similar correlations with cloze probability (−0.33) as did the contextual
semantic similarity measures described above. Moreover, GPT-3 surprisals were highly corre-
lated with human measures of plausibility (0.85), a level far greater than any of the other mea-
sures. As noted above, GPT-3 surprisal exhibited moderate negative correlations with both
measures of CCS (−0.61 for fastText and −0.46 for GloVe). GPT-3 exhibited even higher cor-
relations with the measures of BCCS (−0.71 for fastText and −0.73 for GloVe), presumably due
to the way BCCS implicitly incorporates the predictions of the best completion.

Single Factor Accounts

To begin our investigation, we evaluate how well each metric predicts N400 amplitude, allow-
ing us to validate our statistically derived metrics (surprisal and cosine similarity) against the
more traditional human-derived metrics (cloze probability and plausibility judgements) and to
directly compare the former in their ability to predict N400 amplitude.

In order to compare these predictors, we constructed linear mixed-effects regression models
with each variable of interest as a fixed effect and used Akaike’s information criterion (AIC;

Figure 2. Average values of all predictors under each experimental condition. For easier compar-
ison across predictors, we plot negative surprisal and plausibility, and the values of all predictors
were z-scored. For easier comparison to the N400 waveform, the y-axis is reversed, with negative
values plotted upwards. Error bars show the standard error. BCCS = best completion cosine simi-
larity; CCS = contextual cosine similarity.
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Akaike, 1973) to compare the regressions’ fits of the neural data. Each regression had a fixed
effect of either cloze probability, plausibility judgement, GloVe Contextual Cosine Similarity,
fastText Contextual Cosine Similarity, GPT-3 surprisal, and experimental condition. Note that
we use cloze probability rather than cloze surprisal (i.e., log-transformed cloze probability)
because previous work has not shown any clear evidence that the latter is a better predictor
of N400 amplitude (see Michaelov et al., 2022; Szewczyk & Federmeier, 2022). In addition,
one experimental condition (Implausible) was entirely made up of stimuli where critical words
had a cloze probability of zero, which cannot be log-transformed, and “smoothing” such zero
values to allow log-transformation by assigning them a very low probability also introduces
problems for analysis (Nieuwland et al., 2021).

Because the inclusion of random slopes often leads to problems with convergence and sin-
gular fits, we chose to utilize a parsimonious random effects structure (Bates et al., 2018) in our
regressions. Consequently, model comparison always involves regression models with the
same random effects structures, which allows for comparison across models with different pre-
dictors. All regressions had random intercepts of sentence frame, subject, and electrode, as
well as fixed effects of word frequency (calculated using the wordfreq Python package; Speer
et al., 2018) and orthographic neighborhood size as operationalized by Coltheart’s N
(Coltheart et al., 1977; calculated using MCWord; Medler & Binder, 2005). We also included
a random intercept for each critical word because critical words often occurred in more than
one condition.

The AIC of each regression, normalized by the AIC of the null regression (which includes
the same random effects structure as the other regressions, and only word frequency and
orthographic neighborhood size as fixed effects) is presented in Figure 4.

Figure 3. Heatmap of correlations between predictors.
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Of the continuous predictors, Figure 4 indicates that the best-fitting regression is that includ-
ing GPT-3 surprisal as a main effect, suggesting GPT-3 surprisal is the best predictor of N400
amplitude. GPT-3 surprisal is followed by human plausibility judgements, which are followed
by fastText CCS, which in turn is followed by cloze probability and GloVe CCS. It is generally
accepted that a difference in AIC of 4 indicates a substantial difference (Burnham & Anderson,
2004), and the difference between cloze probability and GloVe CCS is only 0.9; thus it is not
clear from our analysis which is the better predictor.

Figure 4 also indicates that the regression including experimental condition (a categorical
variable with four levels: Best Completion, Related, Unrelated, and Implausible) has a lower
AIC than the GPT-3 surprisal regression. However, experimental condition should not be con-
sidered to reflect a single variable in the way that the other individual predictors do because it
includes information about predictability, plausibility, and RBC. Additionally, the experimental
condition regression has an AIC of only 3 less than the GPT-3 surprisal regression; thus it is not
clear that experimental condition is in fact a better predictor than GPT-3 surprisal.

We also ran likelihood ratio tests on each of the predictors listed in Figure 4, comparing
each regression to a null regression, that is, one without the predictor of interest but all other
fixed and random effects. All variables were significant predictors of N400 amplitude (GloVe
CCS: χ2(1) = 30.6, p < 0.001; Cloze: χ2(1) = 31.6, p < 0.001; fastText CCS: χ2(1) = 49.1, p <
0.001; Plausibility: χ2(1) = 114.5, p < 0.001; GPT-3 Surprisal: χ2(1) = 126.6, p < 0.001;
Condition: χ2(3) = 133.6, p < 0.001).

Combined Accounts

The GPT-3 surprisal metric was chosen to model a prediction-based account of the N400, and
GloVe CCS and fastText CCS were chosen to model the contextual semantic similarity
accounts. As noted above, some authors have suggested the N400 indexes neurocognitive
systems sensitive both to the predictability of a word and to its similarity to the semantic con-
text. To investigate the viability of such combined accounts, we compare the AICs of

Figure 4. The AICs of the regressions resulting from the single factor analyses. AIC = Akaike’s
information criterion.
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regressions including a single variable corresponding to either prediction or contextual seman-
tic similarity, with the AICs of regressions also including one of the other. Thus, we look at all
combinations of prediction (viz., cloze probability and GPT-3 surprisal) with CCS metrics. The
results are presented in Figure 5. A comparison of the AICs suggests that cloze probability and
the two CCS metrics explain variance in N400 amplitude not explained by the other. This is
borne out by the likelihood ratio tests: After correcting for multiple comparisons the cloze
probability regression is improved by adding either GloVe CCS (χ2(1) = 21.0, p < 0.001) or
fastText CCS (χ2(1) = 31.6, p < 0.001) as a predictor; and conversely, the GloVe (χ2(1) = 22.0,
p < 0.001) and fastText (χ2(1) = 14.0, p < 0.001) regressions are each improved by adding
cloze probability as a predictor. This suggests cloze probability and the CCS metrics explain
non-overlapping portions of the variance in N400 amplitude. However, the same is not true of
GPT-3 surprisal—while adding GPT-3 surprisal improves both the GloVe (χ2(1) = 96.3, p <
0.001) and fastText (χ2(1) = 77.8, p < 0.001) CCS regressions, the GPT-3 surprisal regression
is not improved by adding either GloVe CCS (χ2(1) = 0.4, p = 1.000) or fastText CCS (χ2(1) =
0.4, p = 1.000). Thus GPT-3 explains variance left unexplained by the CCS measures, while
the information provided by CCS was largely redundant with that provided by GPT-3.

The Plausibility Effect

To test how well our metrics explain the variance in N400 amplitude traditionally explained
by plausibility judgements, here we investigate whether the addition of plausibility as a pre-
dictor improves the GPT-3 surprisal regression, the cloze + GloVe CCS regression, and the
cloze + fastText CCS regression. These regressions were selected because they were the
models including each of our original three statistically derived metrics (that is, for predictabil-
ity and for contextual semantic similarity) that performed the best in accounting for observed
variance in N400 amplitude. Of these, we can consider the GPT-3 surprisal regressions as rel-
evant to the predictive preactivation account of the N400 and the cloze + CCS regressions as
relevant to multiple systems accounts.

Figure 5. The AICs of the regressions resulting from the two-variable analyses corresponding to
combined accounts.
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Shown in Figure 6, the results indicate that even when combined with cloze probability
(and thus, when part of a combined model that takes into account predictability as well as
contextual similarity), the AICs of the regressions including GloVe (χ2(1) = 70.3, p < 0.001)
and fastText (χ2(1) = 60.0, p < 0.001) CCS are improved by the addition of plausibility as a
predictor. By contrast, the GPT-3 surprisal regression is not improved by adding plausibility as
a predictor (χ2(1) = 1.9, p = 0.715). Whereas neither CCS metric can model the N400 plau-
sibility effect—even when combined with cloze—variance attributable to plausibility was cap-
tured by GPT-3 surprisal. Thus, predictability alone (operationalized by GPT-3 surprisal) can
explain the apparent effect of plausibility on N400 amplitude.

The Relatedness to the Best Completion Effect

Finally, we explore the extent to which RBC is captured by our three metrics. As with plausi-
bility, we look at whether adding a metric of RBC improves regression fit, where we operatio-
nalize RBC as the cosine distance between the word embeddings of the best completion for
each sentence frame and the critical word in each of the other conditions, that is, our BCCS
metric. We used both GloVe and fastText to derive measures of BCCS.

As with plausibility, we investigate whether our previous best regressions for each of our
three statistical metrics—that is, GPT-3 surprisal, cloze + GloVe CCS, and cloze + fastText
CCS—are improved by the addition of BCCS to the model. The results are shown in
Figure 7. The addition of GloVe BCCS to either cloze + CCS regressions led to improvements
in model performance (Cloze + GloVe CCS: χ2(1) = 32.4, p < 0.001; Cloze + fastText CCS:
χ2(1) = 24.8, p < 0.001); likewise the addition of fastText BCCS to either cloze + CCS regres-
sion led to significant improvements (Cloze + GloVe CCS: χ2(1) = 31.0, p < 0.001; Cloze +
fastText CCS: χ2(1) = 23.6, p < 0.001). These results show that even when combined with
cloze, contextual similarity cannot explain the RBC effect.

On the other hand, adding GloVe BCCS to the GPT-3 surprisal regression only reduces the
AIC by 2, and adding fastText BCCS only reduces the AIC by 2.3; far from a clear

Figure 6. The AICs of the regressions resulting from the analyses investigating whether the single-
factor and combined models account for the effect of plausibility.
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improvement. When we run likelihood ratio tests, neither is found significantly to improve
regression fit after controlling for multiple comparisons (GloVe BCCS: χ2(1) = 4.0, p =
0.192; fastText BCCS: χ2(1) = 4.3, p = 0.175). However, unlike all our other tests, this result
is dependent on controlling for multiple comparisons—before this step, both BCCS metrics do
appear to have a significant effect (GloVe BCCS: p = 0.044; fastText BCCS: p = 0.039). Thus,
both when comparing AICs and when testing using likelihood ratio tests, while BCCS metrics
may appear to improve model fit, they do not do so reliably.

One possible concern is that the extent to which the BCCS metrics predict N400 amplitude
above and beyond surprisal may be undermined by the fact that for one condition (Best
Completion), all BCCS values are, by definition, 1, as the critical word is the best completion.
For this reason we also ran the same analysis excluding all data for Best Completions. The
results were qualitatively the same: After correction for multiple comparisons, neither
GloVe BCCS (χ2(1) = 5.0, p = 0.118; uncorrected p = 0.025) nor fastText BCCS (χ2(1) = 5.7,
p = 0.087; uncorrected p = 0.017) significantly improved the regression already including
GPT-3 surprisal.

DISCUSSION

The aim of this article was to use current state-of-the-art language models to compare the pre-
dictions of two accounts of the neural activation underlying the N400 response—predictive
preactivation versus contextual semantic similarity. To do this, we investigated how well
GPT-3 surprisal—our best approximation of the kinds of predictions neurocognitive systems
may make based on the statistics of language—predicts N400 amplitude. We compared this
with the performance of GloVe and fastText contextual cosine similarity, our two best approx-
imations of contextual semantic similarity based on the statistics of language. Finally, we
compared this with the performance of combined models including both kinds of metrics.
Based on this approach, we found that the predictive preactivation account explains more
variance in N400 amplitude than the two models of contextual semantic similarity.

Figure 7. The AICs of the regressions resulting from the analyses investigating whether the single-
factor and combined models account for the effect of the relatedness to the best completion.
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Below we consider the adequacy of predictive preactivation, contextual semantic similar-
ity, and combined systems to account for the three kinds of N400 effects examined in the present
study: expectancy effects, plausibility effects, and RBC. In each case, predictive preactivation
provides a better account of N400 amplitude variation than does either a pure contextual
similarity account or a multiple systems account. We end with a consideration of how the
features of the deep learning language systems we used here relate to those of the language
network in the brain.

Expectancy Effects

While the close association between measures of contextual predictability and N400 ampli-
tude is most naturally accounted for by the predictive preactivation account, advocates of con-
textual semantic similarity have argued that expectancy effects on the N400 arise because
highly expected words share more semantic features with their context than do less expected
words. This is demonstrated in computational modeling work by Ettinger et al. (2016), who
uses the similarity between word2vec (Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al.,
2013) representations of stimulus words and their contexts to account for the N400 amplitude
differences between the best completions and their lower cloze counterparts in a widely cited
study by Federmeier and Kutas (1999). Similarly, using wikipedia2vec embeddings (Yamada
et al., 2020), Uchida et al. (2021) show that high cloze sentence continuations from a number
of ERP language studies are more similar to their contexts than their less predictable
counterparts.

In the present study, we likewise find that contextual similarity as measured both by GloVe
CCS and fastText CCS is greater for best completions than for the other less expected endings.
However, in a direct comparison of how well various measures of predictability versus con-
textual similarity account for variance in N400 amplitude, predictability as indexed by GPT-3
surprisal was the clear winner, providing a better account of the data than either GloVe CCS or
fastText CCS. Moreover, the finding that regressions using both CCS measures improved when
combined with cloze probability suggests these measures of contextual semantic similarity
were unable to fully capture expectancy effects on the N400.

Of course, this same finding—that regressions with CCS measures are improved by the
cloze probability factor—replicates work that supports the multiple systems account of the
N400 (Federmeier, 2022; Lau et al., 2013). However, GPT-3 surprisal outperformed even
these regressions (see Figure 5), suggesting that the predictive preactivation account of
N400 is superior to both a pure contextual semantic similarity account and a combined
systems account.

Plausibility Effects

GPT-3 surprisal also accounts for more variance in N400 amplitude than our human-derived
measure of cloze probability (in line with Michaelov et al., 2022), presumably due to its ability
to capture subtle differences between highly unexpected items. Indeed, as Nieuwland et al.
(2020) note, plausibility effects on the N400 might result because less plausible stimuli are also
less predictable. Because cloze probability measures are limited in the extent to which they
can adequately capture the predictability of highly improbable words, plausibility ratings may
serve as a proxy for their predictability, allowing us to differentiate very low-probability com-
pletions from extremely low-probability ones. Of course, plausibility effects can also be
accounted for in principle via contextual semantic similarity, since we would expect less plau-
sible stimuli to be less related to their context.
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Results of the present study, however, argue against the latter possibility as we find that even
when combined with cloze probability, regressions including measures of contextual semantic
similarity could not fully account for the plausibility effect. This finding serves as a conceptual
replication of Nieuwland et al. (2020), who found that plausibility explains amplitude variance
in the N400 not explained by either cloze probability or a contextual similarity metric derived
from word2vec. However, unlike Nieuwland et al. (2020), we find that one metric of
predictability—namely, GPT-3 surprisal—can successfully model the plausibility effect. In fact,
it explains all the variance that plausibility judgements do. Thus, in contrast to the findings of
Nieuwland et al. (2020), the results of the present study suggest that a single neurocognitive
process—predictive preactivation—may be able to account for both predictability and plau-
sibility effects on the N400. Whether this also applies to analyses across individual time steps
within the N400 time window (of the kind carried out by Nieuwland et al., 2020) is a question
for further research.

Relatedness to Best Completion

As described in the Introduction, the RBC effect is not trivially explained by either predictabil-
ity or contextual similarity; however, in principle it can be accommodated by either account,
and there is some evidence for each. Under a predictability perspective, if semantic prediction
is taking place, then we should expect words with a similar meaning to the best completion to
be preactivated along with the best completion (DeLong et al., 2019). Consistent with this
account, the predictions of computational language models have been used to successfully
model the RBC effect (Michaelov & Bergen, 2020). Specifically, Michaelov and Bergen
(2020) report that two language models (Gulordava et al., 2018; Jozefowicz et al., 2016) find
related words to be more predictable than unrelated overall when modeling the stimuli from
an experiment by Ito et al. (2016), and that one of these language models also shows the same
pattern for stimuli from Kutas (1993).

According to the contextual semantic similarity account, the RBC effect results because
words related to the best completion share semantic features with it. Thus, related words elicit
reduced N400 for much the same reason the best completions do—their features have been
preactivated because they are semantically related to the sentence context. This has also been
successfully modeled computationally: Ettinger et al. (2016) find that the similarity between
the word2vec (Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013) representation of
a stimulus word and its preceding context demonstrates the RBC effect found by Federmeier
and Kutas (1999)—words related to best completions were more semantically similar to the
preceding context than were unrelated words.

The present study provides a conceptual replication of results reported both by Michaelov
and Bergen (2020) and by Ettinger et al. (2016). Using GPT-3 surprisal we find that our Related
completions were more predictable than the Unrelated ones (in line with Michaelov & Bergen,
2020); using fastText CCS we find that Related completions were more similar to the preceding
context than were the Unrelated ones (in line with Ettinger et al., 2016). However, results in
Figure 2—like those in both Michaelov and Bergen (2020) and Ettinger et al. (2016)—only
demonstrate that overall, there is a significant difference in the predictability and in the
contextual semantic similarity of Related and Unrelated completions as estimated by these
computational language models; there is no direct comparison with human data.

The strength of the present study lies in our efforts to do just this. Direct comparison with the
human N400 data suggests that the predictability metric from GPT-3 explains more variance in
N400 amplitude than does either metric of semantic similarity to the context. Moreover, in our
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attempts to probe how well each metric captures the RBC effect, we utilized two computa-
tional measures of the semantic similarity between each best completion and the other three
completions for the sentence frame: GloVe BCCS and fastText BCCS. As both the graphs in
Figure 2 and the high correlation coefficient in Figure 3 suggest, the two BCCS measures were
virtually identical with each other and both captured the human intuition that Related words
were closer in meaning to the Best Completions than Unrelated words.

Regression models of N400 data indicate that the addition of either GloVe or fastText BCCS
metrics to models already including cloze probability and GloVe or fastText CCS improves
model fit (see Figure 7). This suggests that neither of our contextual semantic similarity metrics
could fully account for the RBC effect—even when combined with cloze probability. On the
other hand, the GPT-3 surprisal regression of N400 data was not substantially improved by the
addition of either BCCS metric (see Figure 7), suggesting the variance associated with our mea-
sure of similarity to the best completion was largely redundant with that captured by GPT-3
surprisal. Moreover, the regression model including only GPT-3 surprisal outperformed all of
the regression models with additive combinations of CCS, cloze probability, and BCCS. GPT-3
surprisal provides a better account of the RBC effect than does either a pure contextual seman-
tic similarity account or a combination of prediction and contextual similarity.

While the superiority of GPT-3 over the contextual similarity measures is unambiguous,
there is a bit of uncertainty regarding whether GPT-3 is improved by the addition of the BCCS
metrics. In our statistical model comparisons, we do not consider regressions with a difference
in AIC of less than 4 to differ meaningfully in their fit (following Burnham & Anderson, 2004).
However, it is the case that numerically, the regressions including both GPT-3 surprisal and
either GloVe or fastText BCCS have a lower AIC than that only including surprisal. Unfortu-
nately, the outcome of the relevant likelihood ratio tests was also somewhat equivocal on this
matter. After correcting for multiple comparisons, neither GloVe nor fastText BCCS explain a
significant amount of the variance in N400 amplitude above and beyond what is explained
by GPT-3 surprisal. Before correction, however, those comparisons were both significant at
the 0.05 level. It is thus important to consider what might explain this (marginally) better fit
to the data.

One straightforward explanation can be arrived at by further inspection of Figure 2. As can
be seen, GPT-3 surprisal provides a good account of the difference in the expectancy between
Best Completions and the Unrelated condition, and a good account of the difference between
the Unrelated and the Implausible condition—impressions borne out by the analyses compar-
ing surprisal to human-derived metrics of cloze probability and plausibility. The disconnect
between GPT-3 surprisal and N400 data lies mainly in failing to fully capture the similarity
in N400 amplitude between the Best Completions and the Related condition, as the latter elicit
more positive N400 in humans than the GPT-3 regression model fits suggest. Thus, the addi-
tion of another variable that captures the difference between Related and Unrelated
completions—variance not present in cloze probability or plausibility, and unreliable in the
CCS metrics—may explain the improved fit with the addition of BCCS metrics. This may also
explain the slightly lower AIC of the regression including the categorical variable of experi-
mental condition in Figure 4.

Crucially, however, even if GPT-3 does not fully account for the RBC effect, the RBC effect
observed here supports predictive preactivation as at least a partial account of the brain activ-
ity underlying the N400. If words semantically related to the best completion are facilitated in
virtue of being related to the best completion, this presupposes the preactivation of information
related to the best completion (DeLong & Kutas, 2020; see also Kuperberg et al., 2020). For
example, it may be the case that the reason for the greater facilitation for related than unrelated
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words is that predictive processing involves the preactivation of conceptual semantic features
rather than lexical items (Thornhill & Van Petten, 2012). Alternatively, it may be that there is a
separate associative mechanism that activates words related to the best completion. In the first
case, the preactivation of the related word occurs as part of a single predictive process; in the
second, as a consequence. Both possibilities require the preactivation of the best
completion—either the lexical item itself or its semantic features. Regardless, the present study
clearly shows that, as operationalized here, predictive preactivation provides a better account
of the RBC N400 effect than does contextual semantic similarity (see Figure 7).

Overall, in addition to being the best metric of predictability tested (in line with the results
of Michaelov et al., 2022), GPT-3 surprisal also appears to successfully account for additional
reported N400 effects, namely, that more plausible completions elicit smaller N400 responses
than less plausible completions, and that words that are semantically related to the best
(highest-cloze) completion elicit smaller N400 responses than unrelated words. In sum, with
a good enough operationalization of contextual predictability, it is possible that we can reduce
all effects observed during the temporal interval associated with the N400 to this single factor.
Themost parsimonious interpretation is that apparent effects of expectancy, plausibility, andRBC
all index sensitivity to contextual predictability—and predictability derived from the statistics
of language at that—suggesting N400 effects are due to a predictive preactivation process.

Implications for Neural Mechanisms

Although we do not here treat any of the computational models used in this study as cognitive
models, it is important to consider what the differences in the way that they work imply about
that language network in the human brain. GPT-3 is a neural language model trained to opti-
mize its estimates of the probability of upcoming words and how these values change with
different amounts of linguistic context. Moreover, GPT-3 surprisal was the single best numer-
ical predictor of N400 amplitude. On the other hand, GloVe and fastText, which model the
relations between words, performed worse overall at predicting N400 amplitude. In this way,
our results are highly compatible with predictive coding theories that suggest neural systems
are constantly generating and updating an internal model of the environment (Allen & Tsakiris,
2018; Bendixen et al., 2012; Clark, 2013; Friston, 2010; Huang & Rao, 2011; McRae et al.,
2019; Rao & Ballard, 1999; Shipp et al., 2013).

Applied to language, such approaches typically take the form of neural systems that gen-
erate predictions regarding upcoming words, using the word encountered at the next time step
to generate a learning signal known as a prediction error (e.g., Elman, 1990). Indeed, some-
thing that we believe has been underappreciated in this regard is that the loss function used to
train language models such as GPT-3, cross-entropy, is equivalent to surprisal (see Jurafsky &
Martin, 2023, pp. 149–150). The close relationship we observed here between GPT-3 surprisal
and N400 amplitude is perfectly in line with the suggestion that the N400 reflects a prediction-
error based update of an internal language model (Bornkessel-Schlesewsky & Schlesewsky,
2019; Fitz & Chang, 2019; Hodapp & Rabovsky, 2021; Kuperberg, 2021; Kuperberg et al.,
2020; Lewis & Bastiaansen, 2015; Rabovsky, 2020).

As Kuperberg et al. (2020) note, this account does not fit neatly into either retrieval (e.g.,
Brouwer et al., 2017; Brouwer & Hoeks, 2013; Kutas et al., 2006; Kutas & Federmeier, 2000;
Lau et al., 2008; Van Berkum, 2009, 2010) or integration (e.g., Hagoort et al., 2009; van den
Brink & Hagoort, 2004) accounts of the N400. Under our predictive coding account of the
N400, the N400 is a measure of the neural activation elicited by a stimulus that was not
already activated by prediction based on the preceding context. In this way, it indexes retrieval
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difficulty—the effort required to fully activate the neural representations needed to process the
stimulus, which is reduced if some of these representations are already activated. By contrast,
N400 amplitude could also be considered to index integration in that words that are easier to
integrate with the preceding context are likely to be more strongly predicted (see, e.g.,
Kuperberg et al., 2020; Kuperberg & Jaeger, 2016). However, this only encompasses a lim-
ited subset of what could be considered integration difficulty—words that are highly anom-
alous, violate thematic roles, or lead to a substantial shift in the meaning of the preceding
context instead appear to elicit later positivities (Coulson & Lovett, 2004; DeLong & Kutas,
2020; Kuperberg et al., 2020).

Our results are compatible in principle with a two-system account involving both contex-
tual semantic similarity and predictive preactivation (as in Federmeier, 2022; Frank &Willems,
2017; Lau et al., 2013). However, given that the former does not explain any additional
variance in the neural data, a predictive-preactivation-only account is more parsimonious.
Further, in view of the correlation between GPT-3 surprisal and the CCS metrics (GloVe: r =
−0.46; fastText: r = −0.61), it is possible that N400 effects previously explained as resulting
from contextual semantic similarity may be an artifact of its correlation with the contextual
predictability of words. Indeed, direct evidence of a neurocognitive process implementing
contextual semantic similarity-based activation would require demonstrating an effect of
contextual semantic similarity that cannot be linked to its contextual predictability.

One possible candidate for an effect that would help to test this is the finding that in some
contexts, highly anomalous words that violate thematic roles (A. Kim & Osterhout, 2005;
Kuperberg et al., 2003; Nieuwland & Van Berkum, 2005) or temporal event structure (Delogu
et al., 2019) do not elicit a larger N400 response than non-violating stimuli. For example,
Kuperberg et al. (2003) find no significant difference in N400 amplitude between For breakfast
the eggs would only eat and For breakfast the boys would only eat, and Delogu et al. (2019) do
not find a significant difference between John entered the restaurant. Before long, he opened
the menu and John left the restaurant. Before long, he opened the menu. In both cases, the
critical word’s relation to the preceding context appears to nullify the increase in N400 ampli-
tude one might expect from the degree of semantic anomaly. To the best of our knowledge,
only one study (Michaelov & Bergen, 2020) has attempted to model this effect using the stimuli
from A. Kim and Osterhout (2005), finding that the surprisal elicited by stimuli such as The
hearty meal was devouring is significantly higher than that elicited by either The hearty meal
was devoured or The hungry boy was devouring, which differs from N400 amplitude where
it is not significantly different from either. This would indeed suggest that predictability, and
thus prediction, cannot fully account for the N400 effect. However, it is important to note
that this study used recurrent neural networks, whose predictions have been found to cor-
relate far less with N400 amplitude than contemporary transformer language models (Merkx
& Frank, 2021; Michaelov et al., 2022). Thus, whether this effect can be accounted for by
contextual predictability alone is still an open question, and we believe a fruitful avenue for
future research.

The results of using a language model to model the study carried out by A. Kim and
Osterhout (2005) may also be valuable in better understanding the content of the preactiva-
tion underlying the N400 response. For example, a number of accounts argue that the pre-
activation underlying the N400 response is at the level of the semantic features of words
(Federmeier, 2022; Kuperberg et al., 2020). While there is evidence that N400 amplitude
is sensitive to phonological and grammatical features (DeLong et al., 2005; Fleur et al.,
2020; Nicenboim et al., 2020; Otten et al., 2007; Urbach et al., 2020; Van Berkum
et al., 2005), it may be that the shared semantic features between, for example, devouring
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and devoured, are sufficient to preactivate both words equally. Thus a semantically aug-
mented language model may be able to better model the effect.

Alternatively, or in addition, it may be that the preactivation underlying the N400 operates
at the morphemic level either in general (as proposed by Smith & Levy, 2013), or in cases
where the redundant derived forms of words are not stored (for discussion, see Hanna &
Pulvermüller, 2014). It may be that it is devour that is activated, and any additional activation
conferred by -ing or -er suffixes is so subtle as to be undetectable in the scalp-recorded N400.
This suggestion is in line with the finding that N400 amplitude is most sensitive to the predict-
ability of content words (Frank et al., 2015). This could be investigated by testing language
models with different tokenization schemes, for example, those where tokenization schemes
are implemented that make tokens correspond more closely to morphemes (for discusion and
attempts, see Bostrom & Durrett, 2020; Hofmann et al., 2021; Klein & Tsarfaty, 2020; Mohebbi
et al., 2021; Yehezkel & Pinter, 2023).

Finally, it may be the case that surprisal measures derived from language models relate to
aspects of the brain response to words in sentences beyond the N400. For example, some of
the predictions of the recurrent neural networks tested by Michaelov and Bergen (2020) were
better correlated with post-N400 positivities than the N400. The adequacy of different neural
language models in fitting various aspects of the ERP waveform (such as those discussed in
DeLong & Kutas, 2020; Kuperberg et al., 2020) is thus a promising area of further research
and may help to shed light on language processing in the human brain.

A further intriguing question is the role played by the statistics of language. GPT-3 is trained
using only linguistic data, meaning its predictions are solely based on the statistical patterns
available in their language input. By contrast, under the majority of contemporary accounts of
the N400, world experience plays a key role in shaping the semantic representations that are
activated during language comprehension (e.g., Amsel et al., 2015; Chwilla & Kolk, 2005;
Federmeier, 2022; Hagoort et al., 2004; Kutas & Federmeier, 2011; Metusalem et al., 2012;
Paczynski & Kuperberg, 2012). For this reason, it may be surprising that a model deriving its
semantics solely from language is able to predict words in a way that so closely appears to
match the activation of words in humans. One possible conclusion to draw from this is that
humans, too, base their linguistic predictions on the statistics of language.

While there is evidence that both humans (Bedny et al., 2019; J. S. Kim et al., 2021;
Marmor, 1978; Saysani et al., 2018) and language models (Abdou et al., 2021; Li et al.,
2021; Piantadosi & Hill, 2022) can learn a wide range of semantic information based on lan-
guage input alone, language models have also been found to have limitations. Specifically,
language models trained only on language data struggle to learn perceptual properties of enti-
ties (Forbes et al., 2019) and are limited in the kinds of novel affordances they can infer for
objects (Jones et al., 2022). By contrast, N400 amplitude is sensitive to people’s understanding
of the sensorimotor properties of the referents of words (Amsel et al., 2013, 2014, 2015; Wu &
Coulson, 2011). Perhaps most importantly, language alone drives the probability estimates of
GPT-3, whereas the N400 is sensitive to the contextual congruity of faces, gestures, images,
environmental sounds, and action sequences (see Kutas & Federmeier, 2011, for review).
Further work is needed to determine how other, non-linguistic sources of information influ-
ence the N400 response.
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