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Abstract. Many algorithms have been proposed to minimally refine
abstract transition systems in order to get strong preservation relatively
to a given temporal specification language. These algorithms compute
a state equivalence, namely they work on abstractions which are parti-
tions of system states. This is restrictive because, in a generic abstract
interpretation-based view, state partitions are just one particular type
of abstraction, and therefore it could well happen that the refined parti-
tion constructed by the algorithm is not the optimal generic abstraction.
On the other hand, it has been already noted that the well-known con-
cept of complete abstract interpretation is related to strong preservation
of abstract model checking. This paper establishes a precise correspon-
dence between complete abstract interpretation and strongly preserving
abstract model checking, by showing that the problem of minimally re-
fining an abstract model checking in order to get strong preservation
can be formulated as a complete domain refinement in abstract inter-
pretation, which always admits a fixpoint solution. As a consequence of
these results, we show that some well-known behavioural equivalences
used in process algebra like simulation and bisimulation can be elegantly
characterized in pure abstract interpretation as completeness properties.

1 Introduction

The design of any abstract model checking framework and/or tool comes always
together with a preservation result, roughly stating that for a formula ϕ specified
in some temporal language L, the validity of ϕ on the abstract model implies
the validity of ϕ on the concrete model. On the other hand, strong preservation
means that any formula of L is valid in the abstract model if and only if it is
valid in the concrete model. Strong preservation is highly desirable since it allows
to draw consequences from negative answers on the abstract side.

This paper follows a standard abstract interpretation approach to abstract
model checking, as applied for instance in temporal abstract interpretation [9].
The concrete state semantics of a temporal specification language L is given by a
function [[·]] mapping a formula ϕ ∈ L to the set of states s ∈ State satisfying ϕ,
that is [[ϕ]] = {s ∈ State | s |= ϕ}. This concrete state semantics is approximated
by the abstract semantics induced by any abstract interpretation of ℘(State),
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namely a Galois connection (or, equivalently, a closure operator). This approach
is more general than classical abstract model checking [5,6] where the abstract
model is, analogously to the concrete model, a transition system or a Kripke
structure. In our framework, this classical approach corresponds to a particu-
lar case of abstraction, namely an abstract domain encoding a partition of the
system states. In a general abstract interpretation setting, an abstract model
checking is associated to any abstraction of the powerset of system states, and
this obviously enables a finer-grain taxonomy of abstract model checkers. The
concept of complete abstract interpretation is well known [8,15]: this encodes an
ideal situation where the abstract semantics coincides with the abstraction of
the concrete semantics. It should be quite clear that completeness of an abstract
interpretation with respect to some semantic functions and strong preservation
of an abstract model checker with respect to a temporal language are, somehow,
related concepts: this was first formalized by Giacobazzi and Quintarelli [13],
who put forward a method for systematically refining abstract model checking
in order to eliminate Clarke et al.’s [4] spurious counterexamples. The relation-
ship between completeness and spurious counterexamples was further studied in
[10], where it is also shown that stability à la Paige and Tarjan [20] for a state
partition can be formulated through complete abstract interpretations.

We first generalize the notion of classical strong preservation to our abstract
interpretation framework. Namely, the classical concept of strong preservation
for an abstract model specified as an abstract transition system, viz. a state
partition, is here generalized to an abstract model specified by any generic ab-
stract domain. It turns out that any generic abstract model induces a classical
partition-based abstract model checking, but this could give rise to a loss of
information. Our results rely on the notion of forward complete abstract do-
main. An abstract domain µ, viewed as a closure operator (closure operators are
particularly useful here since they allow us to be independent from the represen-
tation of abstract objects), is forward complete for a concrete semantic function
f : Concrete → Concrete when µ◦f ◦µ = f ◦µ. Forward completeness is dual to
the aforementioned standard completeness, i.e. µ ◦ f ◦ µ = µ ◦ f — called back-
ward completeness — and intuitively states that when the concrete function f is
restricted to abstract objects then it coincides with the abstract function µ ◦ f ,
i.e., the best correct approximation of f in the abstract domain µ. Giacobazzi et
al. [15] showed how to systematically and constructively derive backward com-
plete abstract domains from non-complete ones by minimal refinements. This
can be done for forward completeness as well: Given any domain µ, the most
abstract domain which refines µ and is forward complete for f does exist and it
can be characterized as a greatest fixpoint. We call such a domain the (forward)
complete shell of µ for f .

Let us turn to strong preservation. We consider generic inductively defined
languages L, generated from atomic propositions and a set of logical operators
op1, ..., opk whose interpretations are opi : ℘(State)n → ℘(State), where n is the
arity of the operator. In our framework any abstraction µ of ℘(States) induces
an abstract semantics [[·]]µ : L → µ for the language L. Given any abstraction µ,
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we show that the most abstract semantics which refines µ and is strongly pre-
serving for L is precisely the complete shell of µ for all the language operators
op1, ...,opn. This result can be also read as follows. A number of algorithms have
been proposed to minimally refine classical abstract models, i.e. state partitions,
in order to get strong preservation relatively to some relevant temporal specifi-
cation languages. Typically, these are coarsest partition refinement algorithms
which compute the state equivalence induced by some behavioural state equiv-
alence, e.g., bisimulation, stuttering equivalence (or branching bisimulation) or
simulation equivalence, since they exploit the fact that this behavioural equiv-
alence coincides with the state equivalence ≡L induced by a temporal language
L, namely, s ≡L s′ iff s and s′ agree on each formula of L. This is the case
of Paige and Tarjan algorithm [20] for strong preservation of CTL∗ [2] and of
Groote and Vaandrager algorithm [16] for strong preservation of CTL∗-X. Our
results allow us to provide a clean and elegant generalization of these coarsest
partition refinement algorithms in our abstract interpretation framework. Due
to lack of space we do not consider stuttering equivalence here (we refer to the
full version of the paper).

2 Basic Notions

Notation. Let X be any set. When writing a set S ∈ ℘(℘(X)), we often write the
sets in S in a compact form like in {1, 12, 123} ∈ ℘(℘({1, 2, 3})). � denotes the
complement operator. Fun(X) denotes the set of all the functions f : Xn → X,
for some n ≥ 0. When n = 0, f is just a specific object of X. We will denote by
Part(X) the set of partitions on X. The sets in a partition are called blocks. If
≡ ⊆ X ×X is an equivalence relation then we will denote by P≡ ∈ Part(X) the
corresponding partition of X. Vice versa, if P ∈ Part(X) then we will denote by
≡P ⊆ X ×X the corresponding equivalence relation on X. Part(X) is endowed
with the following standard partial order �: given P1, P2 ∈ Part(X), P1 � P2,
i.e. P2 is coarser than P1 (or P1 refines P2) iff ∀B ∈ P1.∃B′ ∈ P2.B ⊆ B′.

We consider transition systems (Q,R) where the relation R ⊆ Q × Q (also
denoted by R−→) is total, i.e., for any s ∈ Q there exists some t ∈ Q such that sRt.
A Kripke structure (Q,R,AP , �) consists of a transition system (Q,R) together
with a (typically finite) set AP of atomic propositions and a labelling function
� : Q → ℘(AP). A transition relation R ⊆ Q × Q defines the usual pre/post
transformers on ℘(Q): pre[R], p̃re[R], post[R], p̃ost[R].

Abstract interpretation and completeness. In standard Cousot and Cousot’s ab-
stract interpretation theory, abstract domains can be equivalently specified ei-
ther by Galois connections or by (upper) closure operators (uco’s) [8]. These
two approaches are equivalent, modulo isomorphic representations of domain’s
objects. The closure operator approach has the advantage of being indepen-
dent from the representation of domain’s objects and is therefore appropri-
ate for reasoning on abstract domains independently from their representation.
Given a complete lattice C, it is well known that the set uco(C) of all uco’s
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on C, endowed with the pointwise ordering 	, gives rise to the complete lat-
tice 〈uco(C),	,�,�, λx.C , id〉. Let us recall that each µ ∈ uco(C) is uniquely
determined by the set of its fixpoints, which is its image. Moreover, a sub-
set X ⊆ C is the set of fixpoints of a uco on C iff X is meet-closed, i.e.
X = M(X) def= {∧Y | Y ⊆ X} (where C = ∧C∅ ∈ M(X)). M(X) is called the
Moore-closure of X. Also, µ 	 ρ iff ρ(C) ⊆ µ(C); in this case, we say that µ is a
refinement of ρ. Often, we will identify closures with their sets of fixpoints since
this does not give rise to ambiguity. In view of the equivalence above, throughout
the paper, 〈uco(C),	〉 will play the role of the lattice of abstract interpretations
of C [7,8], i.e. the complete lattice of all the abstract domains of the concrete
domain C. The ordering on uco(C) corresponds to the standard order used to
compare abstract domains with regard to their precision: A1 is more precise than
A2 (or A2 is more abstract than A1) iff A1 	 A2 in uco(C).

Let f : C → C be a concrete semantic function and let f � : A → A be a
corresponding abstract function, where A = µ(C) for some closure µ ∈ uco(C).
Then, 〈A, f �〉 is a sound abstract interpretation when µ ◦ f 	 f � ◦ µ. The ab-
stract function µ ◦ f : A → A is called the best correct approximation of f in A.
Completeness in abstract interpretation corresponds to require that, in addition
to soundness, no loss of precision is introduced by the approximated function
f �◦µ on a concrete object c ∈ C with respect to approximating by µ the concrete
computation f(c), namely the equation µ ◦ f = f � ◦ µ holds. The following dual
form of completeness may be considered. The soundness equation µ ◦ f 	 f � ◦ µ
is also equivalent to the equation f ◦ µ 	 f � ◦ µ. Then, forward completeness for
f � corresponds to the equation f ◦ µ = f � ◦ µ, and therefore means that no loss
of precision occurs by approximating a concrete computation of f on an abstract
object a ∈ A with the abstract computation of f � on the same a.

Giacobazzi et al. [15] observed that completeness uniquely depends upon the
abstraction map, namely, one may define a complete abstract semantic operation
f � : A → A over A if and only if µ ◦ f : A → A is complete. Hence, an abstract
domain µ ∈ uco(C) is defined to be complete for f iff µ ◦ f = µ ◦ f ◦ µ holds.
This simple observation makes completeness an abstract domain property. The
same observations are also true for forward completeness, which is therefore a
domain property as well: µ is forward complete iff f ◦ µ = µ ◦ f ◦ µ. This jus-
tifies the terminology forward completeness and, dually, backward completeness
for the first standard form of completeness. A constructive characterization of
backward complete abstract domains is given in [15], under the assumption of
dealing with Scott-continuous concrete functions. This result allows to system-
atically and constructively derive complete abstract domains from non-complete
ones by minimal refinements: this complete minimal refinement of a domain A
for a function f is called backward complete shell of A for f .

3 Partitions as Abstractions

Let Q be any (possibly infinite) set of states. We associate to a closure µ ∈
uco(℘(Q)⊆) a state equivalence ≡µ on Q, i.e. a partition of Q, by identifying
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those states that cannot be distinguished by the closure µ, namely those states
belonging to the same set of fixpoints of the closure µ:

s ≡µ s
′ ⇔ ∀S ∈ µ. (s ∈ S ⇔ s′ ∈ S).

It is easy to show that s ≡µ s
′ iff µ({s}) = µ({s′}). Hence, this allows us to view

partitions as particular abstractions of ℘(Q). We will denote by par(µ) ∈ Part(Q)
the partition associated to the abstract domain µ ∈ uco(℘(Q)). For example,
for Q = {1, 2, 3}, the closures µ1 = {1, 12, 13, 123}, µ2 = {∅, 1, 2, 3, 123} and
µ3 = ℘({1, 2, 3}) all induce the same partition par(µ) = {{1}, {2}, {3}}. How-
ever, these closures carry additional information other than the underlying state
partition, and this additional information allows us to distinguish them. It is
then natural to say that a closure µ represents exactly a state partition when µ
carries all this possible additional information, or, otherwise stated, when µ is
the most precise among the closures inducing a given partition.

Definition 3.1. µ is partitioning if µ = P(µ) def= � {η ∈ uco(℘(Q)) | ≡η = ≡µ}.
ucop(℘(Q)) will denote the set of partitioning closures. ��

The operator P is a refinement of abstract domains in the sense of [14], i.e.,
it can be proved that P is a lower closure operator on uco(℘(Q)). Accordingly,
P will be called the partitioning shell operator. It turns out that partitioning
closures can be characterized as follows.

Lemma 3.2. Let µ ∈ uco(℘(Q)). Then, µ ∈ ucop(℘(Q)) iff µ is additive and
{µ({q})}q∈Q is a partition of Q. Moreover, in this case, par(µ) = {µ({q})}q∈Q.

For instance, for all the above closures we have that P(µi) = ℘({1, 2, 3}),
and hence µ1 and µ2 are not partitioning. Also, the closure {∅, 3, 12, 123} is
partitioning and represents the partition {12, 3}.

Lemma 3.2 allows us to see classical partition-based abstractions — i.e.,
partitions induced by a surjective abstraction map “h” in the style of Clarke et
al. [5] — as a particular case of generic abstract domain through the following
isomorphism between partitions and partitioning closures:

– par : ucop(℘(Q)) → Part(Q) is the restriction of the above operator par to
partitioning closures, i.e. par(µ) = {µ({q}) | q ∈ Q};

– pcl : Part(Q) → ucop(℘(Q)) is defined as follows: pcl(P ) def= P(M(P )) = λX ∈
℘(Q). ∪ {B ∈ P | X ∩B �= ∅}.

Theorem 3.3. The mappings par and pcl are well defined and give rise to an
order isomorphism between 〈Part(Q),�〉 and 〈ucop(℘(Q)),	〉.

4 Strongly Preserving Abstract Model Checking

We deal with specification languages L whose syntactic (state) formulae ϕ are
inductively defined by a grammar:

ϕ ::= p | f(ϕ1, ..., ϕn)
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where p ∈ AP ranges over a finite set of atomic propositions and f ∈ Op ranges
over a finite set of operators. Each operator f ∈ Op will have an arity1 �(f) > 0.

The concrete semantic domain for interpreting formulae is the boolean alge-
bra 〈℘(Q),⊆〉, whereQ is any (possibly infinite) set of states. The state semantics
of formulae in L is determined by an interpretation function I such that for any
p ∈ AP , I(p) ∈ ℘(Q) and for any f ∈ Op, I(f) : ℘(Q)�(f) → ℘(Q). We will
also use the notations p and f to denote, respectively, I(p) and I(f). As usual,
the interpretation I on AP can be equivalently specified by a labelling function
� : Q → ℘(AP) provided that �(s) = {p ∈ AP | s ∈ I(p)} holds for any s.
The concrete state semantic function [[·]]I : L → ℘(Q) is inductively defined as
follows:

[[p]]I = p and [[f(ϕ1, ..., ϕn)]]I = f([[ϕ1]]I , ..., [[ϕn]]I).
We will freely use standard logical and temporal operators together with their
usual interpretations: for example, ∧/∩, ∨/∪, ¬/�, EX/pre[R], etc.

If g is any synctatic operator with arity �(g) = n whose semantics is given by
g : ℘(Q)n → ℘(Q) then we say that the language L is closed under g when for
any ϕ1, ..., ϕn ∈ L, there exists some ψ ∈ L such that g([[ϕ1]]I , ..., [[ϕn]]I) = [[ψ]]I .

Let us now apply the standard abstract interpretation approach for defining
abstract semantics. Consider any abstract domain µ ∈ uco(℘(Q)). The abstract
semantic function [[·]]µI : L → µ induced by the abstract domain µ evaluates
any formula ϕ ∈ L to an abstract value [[ϕ]]µI belonging to µ. [[·]]µI is induced by
the abstraction µ (and the interpretation I) and is inductively defined as best
correct approximation of the concrete semantics as follows:

[[p]]µI = µ(p) and [[f(ϕ1, ..., ϕn)]]µI = µ(f([[ϕ1]]
µ
I , ..., [[ϕn]]µI )).

Generalizing strong preservation. Classical abstract model checking [5,6]
is state-based, namely it relies on an abstract model which, like the concrete
model, is a transition system. If T = (Q,R) is the concrete transition system
then this classical approach is based on a surjective abstraction h : Q → A
mapping concrete states into abstract states, namely a state partition Ph ∈
Part(Q) is required. This gives rise to an abstract model A = (A,R�) which
is a transition system, where, typically, the abstract transition relation R� is
existentially defined as the following R∃∃:

h(s1)R∃∃ h(s2) ⇔ ∃s′
1, s

′
2.h(s

′
1) = h(s1) & h(s′

2) = h(s2) & s′
1Rs

′
2.

Abstract model checking then consists in checking a temporal formula ϕ specified
in some language L in the abstract model A: a preservation theorem ensures that
if a |=A ϕ and h(s) = a then s |=T ϕ. In this classical state-based framework,
strong preservation (s.p. for short) for L means that for any ϕ ∈ L, if h(s) = a
then a |=A ϕ ⇔ s |=T ϕ. Loiseaux et al. [19] generalized this approach to
more general abstract models where an abstraction relation σ ⊆ Q × A is used
instead of the surjection h : Q → A. However, the strong preservation results
given there (cf. [19, Theorems 3 and 4]) require the hypothesis that the relation
1 It is possible to consider generic operators whose arity is any possibly infinite ordinal,

thus allowing, for example, infinite conjunctions or disjunctions.
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σ is difunctional: as a consequence, the class of abstract models allowed by this
framework is not really larger than the class of classical partition-based abstract
models (see the detailed discussion by Dams et al. [12, Sect. 8.1]).

Following Dams [11, Sect. 6.1], the above classical state-based notion of strong
preservation can be equivalently given through state equivalences as follows.
The language L and the semantic function [[·]]I induce the following state logical
equivalence ≡L ⊆ Q × Q: s ≡L s′ iff ∀ϕ ∈ L. s ∈ [[ϕ]]I ⇔ s′ ∈ [[ϕ]]I . Let PL ∈
Part(Q) be the corresponding partition of Q. Then, a partition P ∈ Part(Q)
is strongly preserving for L (and interpretation I) if P � PL, while P is fully
abstract2 for L if P = PL. For most known temporal languages (e.g., CTL∗,
CTL-X, ∀CTL∗, see [11]), if the partition P is s.p. for L then it turns out
that the quotient transition system (Q/≡P

, R∃∃) is s.p. for L. Moreover, if P is
fully abstract then the quotient (Q/≡P

, R∃∃) is the smallest transition system
(smallest in the number of states) that strongly preserves L.

We consider now an equivalent formulation of strong preservation for parti-
tions that will allow us to generalize the notion of strong preservation to generic
abstract domains. We showed above how any partition P ∈ Part(Q) can be
viewed as a partitioning closure pcl(P ) ∈ ucop(℘(Q)). Thus, any partition P in-
duces the abstract semantics [[·]]PI = [[·]]pcl(P )

I : L → pcl(P ). The following result
characterizes strong preservation for P in terms of the associated closure pcl(P ).

Lemma 4.1. P ∈ Part(Q) is s.p. for L and I iff ∀ϕ ∈ L and s ∈ Q, s ∈ [[ϕ]]I ⇔
pcl(P )({s}) ⊆ [[ϕ]]PI .

Let us stress the paradigm shift stated by Lemma 4.1. This tells us that a
partition P ∈ Part(Q) is s.p. for L and I if and only if to check that some
system state s ∈ Q satisfies some formula ϕ ∈ L, i.e. s ∈ [[ϕ]]I , is equivalent to
checking whether the abstract state associated to s, i.e. the block pcl(P )({s})
of P containing s, is less than or equal to, namely is contained in, the abstract
semantics [[ϕ]]PI of ϕ, which is an element of the abstract domain pcl(P ). Here, the
key observation is that in our abstract interpretation-based framework partitions
are just particular abstract domains. Thus, the above characterization leads to
generalize the notion of strong preservation from partitions to generic abstract
semantic functions as follows.

Definition 4.2. Let I be an interpretation for a language L (inducing the con-
crete semantic function [[·]]I). Let µ ∈ uco(℘(Q)) and let [[·]]� : L → µ be an
abstract semantic function for L. We say that [[·]]� is strongly preserving for L
and I if for any S ⊆ Q and ϕ ∈ L, µ(S) ⊆ [[ϕ]]� ⇔ S ⊆ [[ϕ]]I . ��

Definition 4.2 generalizes classical state-based strong preservation, as char-
acterized by Lemma 4.1, both to an arbitrary abstract domain µ ∈ uco(℘(Q))
and to an arbitrary semantic function [[·]]� : L → µ evaluating formulae on µ.
Hence, [[·]]� may be different from the abstract semantics [[·]]µI induced by the
abstract domain µ. It turns out that indeed this notion of strong preservation
2 Dams [11] uses the term “adequate”.
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is an abstract domain property, namely if a s.p. abstract semantics [[·]]� may be
defined on some abstract domain µ then the induced abstract semantics [[·]]µI is
s.p. as well, as stated by the following result.

Lemma 4.3. If [[·]]� : L → µ is strongly preserving for L and I then [[·]]µI is
strongly preserving for L and I.

This result allows us to define without loss of generality strong preservation
for abstract domains as follows: a closure µ ∈ uco(℘(Q)) is strongly preserving
for L and I when [[·]]µI is s.p. for L and I.

As recalled above, the concrete semantic function [[·]]I induces a state parti-
tion PL, which is the fully abstract partition according to our definition, since PL
encodes the “best” strongly preserving partition, where “best” means coarsest
(i.e. the greatest w.r.t. the ordering �). In other terms, PL is the coarsest par-
tition such that the states in any block cannot be distinguished by the language
L. We aim at defining an analogous of PL for closure-based abstractions, namely
the “best” strongly preserving closure. Given a partition P ∈ Part(Q), the as-
sociated partitioning closure pcl(P ) ∈ ucop(℘(Q)) is completely determined by
its behaviour on states q ∈ Q, namely on singletons {q} ∈ ℘(Q), since pcl(P ) is
additive (cf. Lemma 3.2). Of course, this does not happen for a generic closure
µ ∈ uco(℘(Q)). This means that a generalization of PL to closures must take
into account the behaviour of the closure on all the subsets of Q. Thus, if we
define, for S ⊆ Q, S |= ϕ iff ∀s ∈ S.s |= ϕ, one might try the following definition:
the “best” s.p. closure µL for L is given by

µL(S) = ∪{T ∈ ℘(Q) | ∀ϕ ∈ L. S |= ϕ ⇔ T |= ϕ}.

However, this does not work, as shown by the following example.

Example 4.4. Let us consider the simple transition system (Q,R) depicted in
the figure and the language L generated by the grammar ϕ ::= p | EXϕ, where
the set of the atomic propositions is AP = {p1, p2} with interpretation I(p1) =

��������b

��

p1

����
��

��
��

�
b |= EXp1

��������c
p2

��
��������a

p1�� a �|= EXp1

{a, b} and I(p2) = {c} (and I(EX) =
pre[R]). Note that b |= EXp1 while a �|=
EXp1. In this case, we have that PL =
{a, b, c} ∈ Part(Q). By using the above def-
inition of µL, it turns out that µL = λx.x ∈

uco(℘(Q)). However, the closure µ = {∅, b, c, ab, abc} is more abstract than µL
and still strongly preserving. In fact, it is not difficult to check that for any
ϕ ∈ L, [[ϕ]]µI = [[ϕ]]I , and therefore, according to Definition 4.2, µ is strongly
preserving for L. ��

Instead, we may note that if µ ∈ uco(℘(Q)) is s.p. for L then the following
property holds: for any S ∈ ℘(Q) and ϕ ∈ L, S |= ϕ ⇒ µ(S) |= ϕ. In fact, if
S |= ϕ and x ∈ µ(S) then µ({x}) ⊆ µ(S) and therefore, since µ(S) ⊆ [[ϕ]]µI ⇔
S |= ϕ, we have that µ({x}) ⊆ [[ϕ]]µI , and thus, again by strong preservation,
x |= ϕ. Actually, it turns out that this weaker property characterizes the best
s.p. closure for L.
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Definition 4.5. Let [[·]]I : L → ℘(Q) be the concrete semantic function. Then,
we define µL : ℘(Q) → ℘(Q) as follows: for any S ∈ ℘(Q),

µL(S) def=
⋃

{T ∈ ℘(Q) | ∀ϕ ∈ L . S |= ϕ ⇒ T |= ϕ}. ��

It is not hard to check that µL is indeed a closure. It turns out that µL
actually is the right candidate for the best s.p. abstract domain.

Theorem 4.6. Let µ ∈ uco(℘(Q)). Then, µ is s.p. for L and I iff µ 	 µL.

Thus, µL actually is the “best” s.p. abstract domain, i.e., it is the most
abstract s.p. closure: µL = �{µ ∈ uco(℘(Q)) | µ is s.p. for L and I}. Moreover,
it turns out that µL is exactly the closure meet-generated by the set of concrete
semantics of all the formulae in L.

Proposition 4.7. µL = M({[[ϕ]]I | ϕ ∈ L}).

As a consequence, we have that µ is s.p. for L and I iff ∀ϕ ∈ L. [[ϕ]]I ∈ µ iff
∀ϕ ∈ L.[[ϕ]]I = [[ϕ]]µI . Let us remark that as strong preservation for a partition
P w.r.t. L means that P is a refinement of the state partition PL induced by
L likewise strong preservation for a closure µ means that µ is a refinement of
the closure µL of Definition 4.5 induced by L . Strong preservation and full ab-
straction for partitions become particular instances, through the isomorphism of
Theorem 3.3, of the corresponding notions for closures, as stated by the following
result.

Proposition 4.8. Let P ∈ Part(Q).
(1) PL = par(µL) and pcl(PL) = P(µL).
(2) P is s.p. for L and I iff P � par(µL) iff pcl(P ) 	 P(µL).

Finally, it is natural to ask when the closure µL induced by a language L is
partitioning.

Proposition 4.9. Let L be closed under possibly infinite logical conjunction.
Then, µL is partitioning iff L is closed under logical negation.

Example 4.10. Consider the transition system (Q,R) depicted in the figure
and the temporal language CTL with atomic propositions p and q where I(p) =
{1, 2, 4} and I(q) = {3}. Consider the partition P = {124, 3} ∈ Part(Q) induced

��������1

��

p p����������2

����
��

��
��

�

��������3q
��

��������4

		

p




by the interpretation I. It is well known [2] that the
state partition PCTL ∈ Part(Q) induced by CTL can
be obtained by refining P using the Paige-Tarjan [20]
partition refinement algorithm. It is easy to check that
PCTL = {14, 2, 3}. However, the partition PCTL does not

carry all the semantic information. By Proposition 4.8 (1), PCTL is the state
equivalence induced by µCTL. Also, by Proposition 4.7, µCTL is the Moore-
closure of {[[ϕ]]I | ϕ ∈ CTL}. In this very simple case, it is easy to check
that µCTL = {∅, 2, 3, 14, 23, 124, 134, 1234}. Thus, as expected from Proposi-
tion 4.8 (1), PCTL = par(µCTL). Since CTL is closed under logical negation, by
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Proposition 4.9, it turns out that µCTL is partitioning and µCTL = pcl(PCTL).
Of course, this is not always the case. As an example, consider the following
sublanguage L of CTL: ϕ ::= p | q | ϕ1 ∧ ϕ2 | EXϕ. Then, {1, 3, 4} �∈ µL: in
fact, {1, 3, 4} can be obtained as the semantics of the CTL formula q ∨ EXp, i.e.
[[q∨EXp]]I = {1, 3, 4}, while it is easy to observe that it cannot be obtained from
a formula in L. In this case, µL = {∅, 2, 3, 14, 23, 124, 1234} and PL = {14, 2, 3}.
Here, it turns out that µL is not a partitioning closure, namely a loss of precision
occurs in abstracting µL, through the mapping par, to the partition PL. ��

5 Completeness and Strong Preservation

We need to consider forward completeness of abstract domains for generic n-ary
semantic functions. Let C be any complete lattice, f : Cn → C, with n ≥ 0,
and µ ∈ uco(℘(Q)). Thus, µ is forward f -complete, or simply f -complete, when
f ◦〈µ, ..., µ〉 = µ◦f ◦〈µ, ..., µ〉, i.e., for any 
x ∈ µn, f(
x) ∈ µ. If F ⊆ Fun(C), µ is
F -complete when µ is f -complete for each f ∈ F . Note that when f : C0 → C,
i.e. f ∈ C, µ is forward f -complete iff f ∈ µ. Moreover, note that any µ ∈ uco(C)
is always forward meet-complete, because any closure operator is Moore-closed.

We first note that the forward F -complete shell refinement always exists.

Lemma 5.1. Let F ⊆ Fun(℘(Q)) and µ ∈ uco(C). Then, SF (µ) def= � {ρ ∈
uco(C) | ρ 	 µ, ρ is F -complete} is F -complete.

We call SF : uco(C) → uco(C) the F -complete shell (or complete shell, when
F is clear from the context) refinement, since SF (µ) is the most abstract F -
complete domain which refines µ. As a straight consequence, the complete shell
of a closure admits the following constructive fixpoint characterization.

Lemma 5.2. Let RF : uco(C) → ℘(C) be defined as follows: RF (µ) def= {f(
x) ∈
C | f ∈ F, 
x ∈ µ�(f)}. Then, SF (µ) = gfp(λρ.µ � M(RF (ρ))).

For finite state systems, for any µ ∈ uco(C), the operator λρ.µ�M(RF (ρ)) :
uco(C) → uco(C) is trivially co-continuous and therefore its greatest fixpoint
can be computed through the Kleene’s iteration sequence. Moreover, for unary
operators, the iterative computation of the fixpoint SF (µ) can be simplified by
applying RF just to the new sets added in the previous iteration step, as follows.

Lemma 5.3. Let C be finite, F ⊆ C → C and µ ∈ uco(C). Define inductively
µ0

def= µ, µ1
def= M(µ0∪RF (µ0)), and, for i ∈ N, µi+2

def= M(µi+1∪RF (µi+1�µi)).
Then, there exists n ∈ N such that SF (µ) = µn.

Let us now turn to strong preservation. Given a language L, our goal is to
single out a set of operators F such that refining a closure η for F -completeness
is equivalent to refining η in order to get strong preservation for L. The seman-
tics of L is determined by the interpretations AP and Op of, respectively, the
set of atomic propositions AP and the set of operators Op. Thus, Op is the
obvious candidate for F . Moreover, we know (cf. Theorem 4.6) that an atomic
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proposition p is strongly preserved by a domain η if and only if p ∈ η. Also,
recall that in partition refinement algorithms like Paige-Tarjan [20] for CTL
and Groote-Vaandrager [16] for CTL-X, the interpretation of the atomic propo-
sitions determine the blocks of the initial partition, or, otherwise stated, the
blocks of the partition to refine give the atomic propositions of the language.
Likewise, here the fixpoints of the initial closure η provide the interpretation of
the atomic propositions of L. This is more general, since η need not to be a par-
tition of system states. This can be formalized by associating to any set of sets
S ⊆ ℘(Q) a set of atomic propositions APS = {pT | T ∈ S} that are interpreted
by the interpretation function IS defined by IS(pT ) = T . Also, given a closure
η ∈ uco(℘(Q)) and a language L with operators ranging in Op, we consider the
language Lη where APη is the set of atomic propositions while the operators
still are in Op. The interpretation for Lη therefore is Iη = η ∪ Op. Then, the
following key result shows the announced relationship between forward complete
shells and strong preservation.

Theorem 5.4. Let η ∈ uco(℘(Q)) and L be a language with operators in Op
closed under logical conjunction. Then, SOp(η) is the most abstract closure which
refines η and is s.p. for Lη. In particular, SOp(η) = µLη

.

The opposite direction is also interesting: given a language L, the following
result characterizes the “best” s.p. closure µL for L as a forward complete shell of
a closure associated to L. This comes as a straight consequence of Theorem 5.4.

Corollary 5.5. Let L be given by AP and Op, let I be the interpretation and
let L be closed under logical conjunction. Let µAP

def= M({I(p) | p ∈ AP}). Then,
µL = SOp(µAP ).

It is also worth remarking that, as a consequence of Proposition 4.8 (1), the
state equivalence induced by the language Lµ can be retrieved from the closure
SOp(µ): ≡SOp(µ) = ≡Lµ .

Theorem 5.4 provides a clean and precise generalization of the many existing
coarsest partition refinement algorithms from an abstract interpretation per-
spective. Indeed, the coarsest refinement of a given partition which is strongly
preserving for a given language can be characterized using our abstract domain-
based approach as follows.

Corollary 5.6. Let L be closed under logical conjunction and P ∈ Part(Q).
(1) Let P r be the coarsest partition refinement of P which is strongly preserving
for L and IP . Then, P r = par(SOp(M(P ))).
(2) Let L be closed under logical negation and let P r be the coarsest partition
refinement of P which is strongly preserving for L and IP . Then, pcl(P r) =
SOp(pcl(P )).

Note that, by the corollary above, in general the closure-based complete re-
finement of a partitioning closure pcl(P ) associated to a partition P does not
provide the closure associated to the corresponding partition-based refinement,
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but a more abstract closure. The following result shows that a closure is parti-
tioning iff it is forward complete for the complement �. As a consequence, when
the language is closed under logical negation the two refinement techniques agree.

Lemma 5.7. If µ ∈ uco(℘(Q)) then, µ is partitioning iff µ is forward �-complete.

We can draw the following consequence. Let L be closed under logical con-
junction. Then, by Theorem 5.4 and Lemma 5.7, L is closed under logical nega-
tion iff for any µ ∈ uco(℘(Q)), SOp(µ) is partitioning. Hence, for languages
which are not closed under logical negation, the output partition of any par-
tition refinement algorithm for achieving strong preservation for L is not the
optimal, i.e. “best”, abstraction refinement.

6 Application to Behavioural State Equivalences

We apply the above results to a number of standard temporal languages. It is well
known that some of these languages like CTL and CTL-X induce state equiv-
alences which coincide with standard behavioural equivalences used in process
algebra like bisimulation and stuttering equivalence. We obtain as consequences a
new characterization of these behavioural equivalences in terms of forward com-
plete abstract interpretations which shows the following remarkable fact: these
behavioural properties for a state equivalence ∼ can be interpreted as suitable
completeness properties of ∼ viewed as an abstract interpretation. Due to lack
of space we do not consider here the case of CTL-X and stuttering equivalence.

Bisimulation. Let T = (Q,R,AP , �) be a Kripke structure (R is assumed to be
total). Let us recall the well known notion of bisimulation. A symmetric relation
∼ ⊆ Q×Q is a bisimulation on the Kripke structure T if for any s, s′ ∈ Q such
that s ∼ s′: (1) �(s) = �(s′); (2) for any t ∈ Q such that s R−→ t, there exists
t′ ∈ Q such that s′ R−→ t′ and t ∼ t′. In particular, a partition P ∈ Part(Q) is
called a bisimulation on T when the relation ≡P is a bisimulation on T . The
(set-theoretically) largest bisimulation relation exists and will be denoted by
∼bis. It is well known [2] that ∼bis is an equivalence relation, called bisimulation
equivalence, which coincides with the state logical equivalence induced by the
language CTL, i.e., ∼bis =≡CTL (the same holds for CTL∗). On the other hand,
it is also known that it is enough to consider Hennessy-Milner logic [17], i.e.
a language L1 allowing full propositional logic, i.e. conjunction plus negation,
and the temporal connective EX, in order to have a state equivalence ≡L1 which
coincides with ≡CTL. The language L1 is then defined by the following grammar:

ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ
where p ∈ AP and the interpretation I for the connectives is standard.

It is also well known that the bisimulation equivalence ∼bis can be obtained
through the Paige-Tarjan [20] partition refinement algorithm on the input parti-
tion determined by the interpretation of atomic propositions, i.e., the partition
par(µAP ) where µAP = M({p | p ∈ AP}). Here, exploiting Theorem 5.4, we get
the characterization of bisimulation equivalence in terms of forward complete-
ness (points (1) and (3) below) and of the Paige-Tarjan partition refinement
algorithm as a complete shell refinement (points (2) and (4) below).
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Corollary 6.1. Let T be finite and P ∈ Part(Q).
(1) P is a bisimulation on T iff pcl(P ) is forward complete for {p | p ∈ AP} ∪
{pre[R]}.
(2) Let P r be the output partition of the Paige-Tarjan algorithm on input P .
Then, pcl(P r) = S{�,pre[R]}(M(P )).
(3) ∼bis = ≡S{�,pre[R]}(µAP ).
(4) For any µ ∈ uco(℘(Q)), S{�,pre[R]}(µ) = pcl(P r

µ), where P r
µ is the output

partition of the Paige-Tarjan algorithm on input par(µ).

In our abstract interpretation-based terminology, given a generic closure µ ∈
uco(℘(Q)), S{�,pre[R]}(µ) is the most abstract refinement of µ which is s.p. for
L1 (where the atomic propositions are determined by µ). Since the operators of
L1 include both logical conjunction and negation, by Lemma 5.7, this complete
shell is always partitioning, i.e. it is a representation of a partition by a closure.

Example 6.2. Let us consider the transition system in the figure, taken from
[11, Sect. 6.6]. Also, consider the partition P = {1, 4, 2356} which induces the
atomic propositions AP = {p, q, r}, where p = {2356}, q = {4} and r = {1}.
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It turns out that P is not a bisim-
ulation. This can be checked on the
abstract interpretation side by Corol-
lary 6.1 (1): in fact, µ = pcl(P ) =
{∅, 1, 4, 2356, 14, 12356, 23456, 123456}
is not pre[R]-complete, because, for in-
stance, pre[R]({1}) = {1235} �∈ pcl(P ).

Obviously, this logically corresponds to the fact that for EX r ∈ L1, [[EXr]] =
{1, 2, 3, 5} while [[EXr]]µ = µ({1235}) = {12356}. Using Definition 4.2 of strongly
preserving closure, this corresponds to the fact that µ({6}) = {2356} ⊆ [[EXr]]µ
while 6 �∈ [[EXr]]. It is easy to check that the Paige-Tarjan algorithm on the input
partition P yields the partition P r = {1, 2, 3, 4, 5, 6}. Thus, by Corollary 6.1 (4),
we have that S{�,pre[R]}(µ) = pcl(P r) = ℘(Q). Thus, for any S ⊆ Q there exists
a formula ϕ ∈ L1 such that [[ϕ]] = S. ��

Simulation equivalence. Consider the language L2 obtained from L1 by drop-
ping logical negation, namely L2 is defined by the following grammar:

ϕ ::= p | ϕ1 ∧ ϕ2 | EXϕ
It is known — see for example the handbook chapter by van Glabbeek [22,
Sect. 8] — that the state equivalence ≡L2 induced by L2 coincides with sim-
ulation equivalence. Let us briefly recall the notion of simulation relation. Let
T = (Q,R,AP , �) be a Kripke structure. A relation σ ⊆ Q ×Q is a simulation
if for any s, s′ ∈ Q such that sσs′: (1) �(s) = �(s′); (2) if, for some t ∈ Q, s R−→ t

then there exists some t′ ∈ Q such that s′ R−→ t′. Then, simulation equivalence
∼sim⊆ Q×Q is defined as follows: s ∼sim s′ iff there exist two simulation relations
σ, τ ⊆ Q × Q such that sσs′ and s′τs. A number of algorithms for computing
the partition ∼sim, which coincides with PL2 , have been designed (e.g. [1,3,18]).
Here, as a consequence of Theorem 5.4, we get the following characterization of
simulation equivalence in terms of forward completeness (recall that µAP is the
closure determined by the interpretation of atomic propositions AP):
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Corollary 6.3. ∼sim = ≡Spre[R](µAP ).

Moreover, as argued after Lemma 5.7, since L2 is not closed under logical
negation, we have that the output partition P r of simulation equivalence com-
puted by the aforementioned algorithms is not optimal for the strong preserva-
tion of L2, in the sense that the partitioning closure pcl(P r) does not coincide
with the set of formula semantics {[[ϕ]]� | ϕ ∈ L2}.

Example 6.4. Consider the transition system of Example 6.2. Let us compute
the simulation equivalence ∼sim by resorting to Corollary 6.3 and to the iterative
method of Lemma 5.3. Let µAP = M({1, 4, 2356}) = {∅, 1, 4, 2356, 123456}.

µ0 = µAP

µ1 = M(µ0 ∪Rpre[R](µ0))
= M(µ0 ∪ {1235 = pre[R]({1}), 346 = pre[R]({4}), 235 = pre[R]({2356})})
= {∅, 1, 1235, 235, 2356, 3, 346, 36, 4, 123456}

µ2 = M(µ1 ∪Rpre[R](µ1 � µ0)) = M(µ1 ∪ {23456 = pre[R]({346})}
= {∅, 1, 1235, 2, 235, 2356, 23456, 3, 346, 36, 4, 123456} (fixpoint)

Thus, µL2 = µ2 = Spre[R](µAP ) and ≡µ2 = ∼sim, i.e., the partition associated
to the simulation equivalence is PL2 = {1, 2, 3, 4, 5, 6}. As expected, note that
pcl(PL2) � Spre[R](µAP ). Also note that PL2 is the same partition obtained
for bisimulation in Example 6.2, although the closures µL1 and µL2 are well
different. ��

7 Conclusion

We designed an abstract interpretation-based framework to study the proper-
ties of strong preservation of abstract model checking, where classical abstract
model checking systems based on state partitions are embedded as particular
abstract interpretations. Our main result showed that the minimal refinement of
an abstract domain for achieving the completeness property w.r.t. the semantic
operators of some language L is exactly equivalent to the minimal refinement
of the corresponding abstract model checking in order to get strong preservation
for L. It is worth mentioning that we exploited the results in this paper to devise
a generalized abstract interpretation-based Paige-Tarjan partition refinement al-
gorithm which is able to compute the minimal refinements of abstract models
which are strongly preserving for a generic inductively defined language [21].
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