Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory
Title
STRONG RARE EARTH COBALT QUADRUPOLES
Permalink
https://escholarship.org/uc/item/0mr5m0zh
Author
Halbach, K.
Publication Date1979-05-09
Peer reviewed
conf $790327-113$

Presented at the Particle Accelerator LBL-8906 Conference, San Francisco, CA, March 12-14, 1979

STRONG RARE EARTH COBALT QUADRUPOLE
MSS:

Klaus Halbach

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

STRONG RARE EARTH COBALT QUADRUPOLES

Klaus Halbach

UC Lawrence Berkeley Laboratory

This report was prepased a an accourt of work 1ponsored by the United States Government. Neither dhe United Steies nor the United States Deputiment of Encrgy, nor any of their employees, nor any of then contractors, subcontactors, or their employees, molifs any waranly, exprent or implied, or asumes any legal liatility ot respondbithy for the accuracy, comple tenes or ueffulness of any inir mation, appsaratus, product or process diactoved. ar tr revents that its use would not infinge privately owned nights.

Abstract

General properties u s well as specific cunfigurations of c new family of strong Rare Earth Cobalt quadrupoles are discussed. *Work prepared by i.awrence Berkeley Laboratory and funded by Los Nl allows Suientific Laboratory for the Department.

Introduction

For some applications, one of the perfomance limitations of conventional quadrupoles is caused by the power dissipation in the coils: It puts an upper limit on the current density that can be used, which in turn limits for small aperture quadrupoles the achievable pole tip field far below the field that the properties of steel vould allow. the subject of this paper is a new design of Rare Larth Cobalt (REC) quadrupoles that allows construction of compact quadrupoles with magnet aperture fields of at least $1.2 T$ with presently available likterials.

Beculuse of space limitations, 1 describe here maly the basic ideas and most important properties of RLC quadrupules. The details, derivations of formulas etc., will be contained in a separate paper. While that paper will have general expressions for 2N-pole magnets, this paper is intentionally restricted to the discussion of quadrupoles. The maynetic properties of REC are described in some detail, even though this descrip tion does not contain anything that has not been known for more than ten years. The motivation is my feeliny that the astounding simplicity of this material is not sufficiently well known; and it is this simplicity that leads to a good understanding of REC systenis, which in turn leads to improvements in design.

REC Properties

The developnent of REC materials started in 1966 witli Strnat's ${ }^{2}$ work. The make up of most currently available materials can be summarized as follows: It is a sintered block of simall, oriented, highly anisotropic crystals (composed roughly of une part Rare Earth metal per five parts Col strongly magnetized in the preferred crystaline direction, customarily called the easy axis.

x CLL 792-8537

Figure 1: $B_{l l}\left(H_{\|}\right)$for REC

Figure 1 shows the relationship between B and H in the direction parallel to the easy axis. Presently available materids have a remanent field Br_{r} in the range . 87 to .95 T , and materials with even larger Br will probably be available in the not toc distant future. Over a wide range of field values, the $B_{f}\left(H_{n}\right)$ curve is for all intents and purposes a straight ${ }^{\prime}$ line, with $d B_{\|} / d_{0} \mu_{01}=\mu_{11}=1.04$. The point on the curve where the $B_{11}\left(H_{n}\right)$ curve starts to deviate from the straight line depends on the material composition and manufacturiny process.

While some materials start to break off in the lower part of the second quadrant; others have a straight line to $B_{1}=-.5 \beta_{+}$. As long as one stays on the straight line, one can llove up and down on the $B_{11}\left(i_{1}\right)$ curve without any significant change of the curve. That means in particular that one can assem. ble a system from magnetized pieces. In the direction perpendicular to the easy axis, the relationship between b_{\perp} and H_{\perp} is given by $B_{\perp}=\mu_{0} \mu_{\perp} H_{\perp}$; $\mu_{\perp} \approx 1.03$ and holds over a range of several T.

A convenient way to express these properties in the magnetostatic equations is the following: The material behaves like a weakly, and sliyhtly anisotropic, pemeable material, with either an impressed current density
$\vec{j}=\operatorname{curl} \vec{H}_{c}$
or an impressed charge density

$$
\rho=-\operatorname{div} \overrightarrow{\mathrm{B}}_{r},
$$

with \vec{H}_{C} and \vec{B}_{r} equaling vectors of llagnitude H_{C} and B_{r} in the (lucal) direction of the easy axis.

For homogeniously magnetized pieces of material, \vec{j} and 9 are zero everywhere except at the surface of the pieces, where orie finds a current sheet $\vec{l}=\vec{n} \times \vec{H}_{C}(\vec{\pi}=$ unit vector nomal to surface) or a surface charge density
$\vec{G}^{2}=\vec{n} \overrightarrow{B_{r}}$
Since $\mu_{1}-1$ and $\mu_{1}-1$ are so small, it is for most purposes sufficiently accurate to say that a piece of this material behaves like vacuum with a field inde.. pendent surface current or surface charge. ${ }^{3}$ One of the most significant aspects of this statement is the fact that in the absence of saturating materials, linear superposition of fields is valid. Unless explicitly stated otherwise, in the rest of the paper it is alway assurned that $\mu_{11}=\mu_{1}=1$.

For completeness, it should be pointed out that some oriented ferrites behave qualitatively similar to REC, but are quantiatively different: $\mu=1.1$ or larger; and $\mathrm{Br}_{\mathrm{r}}=.2-.35 \mathrm{~T}$.

Properties of a Multipiece Quadrupole

The crossection of a quadrupole corsisting of 16 trapezoidal REC pieces is 5 hown in Figure 2. The arrows in each piece indicate the direction of the easy axis throughout that piece. If the radial symmetry line of a piece forms the angle \boldsymbol{C} with the x axis, then the angle α between the direction of the easy axis and the symmetry line folluws for this design the relationship
$\alpha=2 \varphi$
For most of this section, we will discuss the two dimensional fields produced by structures such as shown in Figure 2.

Figure 2: Schematic Crossection of 16 Piece REC Quadrupale

A plot of the B-lines in a 45° slice of the maynet shown in Figure 2 is shown in Figure 3.

It one has a quadrupole that consists of M trapezoidal REC pieces with their easy axes oriented according to equ.(1), and if one piece is bisected by the $+x$ axis, with intersection coordinates $x=$ r_{1}, and $x=r_{2}$, then the quadrupole strength at the aperture i.e. $x=r_{1}$, is given by $e\left(r_{1}\right)=2 B_{r} \cos ^{2} \pi / M \cdot \frac{\sin 2 \pi / M}{2 \pi / M} \cdot\left(1-\gamma_{1} / \gamma_{2}\right)$
For $M \rightarrow \infty$, i.e. a quadrupole with cont inuously varying easy axes, equ.(2) reduces to $B\left(r_{1}\right)=2 B_{r}\left(1-r_{1} / r_{2}\right)$
In an unpublished internal report, J.P. Blewett ${ }^{4}$ gives this expression, but fails to discuss the anisotropy of the material that is necessary to produce these fields or that the easy axis of the waterial has to be arranged according to equ.(1)

If one fomulates the variational problem: how should the continously variable easy axes between two concentric circles be oriented in order to get the largest possible quidrupole field inside the swaller circle, one gets equ. (1) as an answer, i.e. equ. (3) expresses the stronyest quadrupole field achievaule with REC material between two such circles. The lo-piece quadrupole shown in Fig. 2 represents a comprumise between ease of manufacturing and asseri.blying the pieces; and coning close to fulfilling equ. (3). The loss in strengtif due to the finite numbber of pieces is only 6.3^{*}, compared to losses of 10.9% and $23.2{ }^{2 \%}$ for 12 and 8 piece quadrupoles.

The harmonics possible in a structure consisting of M identical pieces with their easy axes oriented dccurding to equ. (1) are given by
$n=2+\mu \mu ; \mu=0,1,2 \ldots$
Equ. (4) expresses a high deyree of symnetry. That syialinetry is a direct consequence of a general theorail: If in an assembly of REC pieces, all easj axes are rotated by the anyle β, then the direction of the maynetic field everywhere outside the REC is rotated by the argle- β

Figure 3: Field Lines ill 45° slice of 16 plece KLC Quadrupale
without any change in magnitude. This theoretin is valid only in two diliensions, and then only if there are no waterials with $\mu>1$;resent.

The first undesirable harmonic fur the 16 piece quadrupole is rather large, but can be made zero by having thin normannet ic sheets between adjacent pieces. The first undesirable harmonic ($n=34$) is then of such high order to be of no concern.

The field radially outside a multipiece quadrupole is very weak and decays like r^{l-11}. In the unlikely event that that strayfield should be of concern, it can be eliminded with a thin seit irun shield, without having a significant effect on the fields ill the aperture region.

Because of the linear superposition of fields produced by REC assemblies, a quadrupole with adjustatle gradient can be made by placing a shall REC quadrupole into the aperture region or a larger REC quad, and rotating one relative to the other. Sifiillarly, one can place a REC magnet into a conventional maynet and obtain linear superposition of fields provided the REC is not driven out of the range where the $B_{11}\left(H_{11}\right)$ is a straight line.

Another direct consequence of the validity of the linear superposition principle is the property that the effective length of a REC quadrupole is the same as its physical length. Computing the three dimensional fringe fields of the quadrupole shown in Figure 2 involves only elementary transcendental functions. However, a fair amount of bookketping and computation of cuordinate transformations is involved, since one has to compute the fields produced by 48 different rectangular charge shects.

Figure 4: Photograph of 16 Piece Guadrupole Built by NEN

A photoyraph of a lo-piece quadrupole built by Hew England Nuclear is shown in Fig. (4). Measurehents on that quadrupole, as well as andysis with the computer cude pallikas, confirm predictions frow the idealized theory, with the exception of shdlleffects due to non zero values of $\mu_{11}-1$ and $\mu_{\perp}-1$. The only such effect worthy to bote is the presence of harmonies other than those yiven by equ. (4). They are, however, very small: The field error at the waynet aperture duetan=6 is . 2 z ; $n=14: .12 ; n=10$: too small to measure. While whiludes are sufficiently small to be of any concern for most dpplications, they could be tunca uthay if it were necessary.

As lony ds equ. (1) is observed and a reasunable volume filling factor is achieved, any arrangement uf Kll moterial will give a quadrupole with a strenyth close to that given by equ.(3). Dependmy of circumstances, dvallability of nideridal etc., on. 1 mitht. for instance want to use tightly packed circular rods that are diagonally magnetized. The suadrupule shown in figure 1 serves only as an exafle ile of d system that is fairly easily mallufactured am comes cluse to the stremgth given by equ. (3).

He quadruinle shown in fiy. (1) requires pieces Whb tive different or.ientations of the udsy axis relative :o the symitetry line of the fieces. That mumer ban be reduced to four by ratatimy the edsy wis in every piece of the monnte by 22.50. Howevor, the bernetits from that reduetion of the mander of difteremt fieces are not redly significonl.

The advantages of these RLC quadrupoles are obvious: For small apertures they produce quadrupole fields at the magnet aperture that are much larger than those achievable with any other method, they are conidet, and they need neither power supplies nor cooling. The disadvantages are madily cost: When no machining is necessury the price of ready to LSSe REC is of the order of $1-25 \mathrm{~cm}^{-3}$. When accurate grinding is necessary, the price goes up tu luscm for large quantities, and $30 \$ \mathrm{cmo}$ for shall quantities. It is possible, at least in principle, to replace part of the REC $\div n$ a quadrum fole with soft steel without chanying the field in We dperture region. However, the savings in REC muterial are probably not sufficient to offset the additiunal yrinding costs.

The maynetic properties of REC are fairly insensitive to temperature up to $150^{\circ} \mathrm{C}$, and with proper frecautions, one can operate at temperatures of 2OU- $250^{\circ} \mathrm{C}$. REC is brittle, and the magnetic forces between jieces are substantial, requiring rather careful assembly procedures to protect the moterial (and fingertips!) from damage.

Generalizations

Multipole magnets of order witl also be described in Ref. (1). Equ's (1) and (4) becone in the general case of a multipiece $2 N$ pole:

$$
\begin{align*}
& x^{\prime}=N \varphi \tag{5}\\
& n=N+\mu M ; \mu=0,1,2 \ldots \tag{6}
\end{align*}
$$

If the individual pieces are trapezoids, equ. (2)

$$
B(r 1)=B_{r} \cdot \frac{N}{N-1} \cdot(\cos K / M)^{A^{\prime}} \frac{\sin (N \pi / M)}{N / A / M} \cdot\left(1-\left(\frac{r_{1}}{r_{2}}\right)^{N-1}\right)
$$

For a dipote $(N=1)$, equ. 7 becolles $B=B_{r} \quad \cos \left(n /(N) \cdot\left(n\left(r_{i} / T_{i}\right)\right.\right.$

Linear arrays of RLC magnets die used to contain plasinas, and will urobably be used in : he future as wigylers for the preduction of sync irotrun radiation in clectron storage rings. The ablication of the concepts developed for construct on of hultipole maynets to these linear arrays will alsu te treated in a fortheoning publication.

References

(1) K. Walbach, ta be putiisted n KSI.
(2) k.J. Strnat, G.I. Hoffer, echri. Report AFML-Til-65-445, Wriyht-Pattersor Air Force Base, (1906).
(3) J. W. Y. Tsui, U.J. Iden, k.J. Strnat, A.d. Evers, ILLE Transas.tiuns on Mugietics, Ho.2-p.lbs, (1972):
(4) J.P. Blewe'.t, UNL Internal Revort, MAOU- 89 (1965).
(6) R.F, llolsinijer, K. Hallaci, wo be published in Proceedings of the Tourth' International Workshof On Rare Earch Cobalt Permanent Maynets and their Apllications, (1979).
(6) K, Thlbachi, R.t. Holsinger, to be published.

