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ABSTRACT: The biological functions of natural polyelectrolytes
are strongly influenced by the presence of ions, which bind to the
polymer chains and thereby modify their properties. Although the
biological impact of such modifications is well recognized, a
detailed molecular picture of the binding process and of the
mechanisms that drive the subsequent structural changes in the
polymer is lacking. Here, we study the molecular mechanism of the
condensation of calcium, a divalent cation, on hyaluronan, a
ubiquitous polymer in human tissues. By combining two-
dimensional infrared spectroscopy experiments with molecular
dynamics simulations, we find that calcium specifically binds to hyaluronan at millimolar concentrations. Because of its large size and
charge, the calcium cation can bind simultaneously to the negatively charged carboxylate group and the amide group of adjacent
saccharide units. Molecular dynamics simulations and single-chain force spectroscopy measurements provide evidence that the
binding of the calcium ions weakens the intramolecular hydrogen-bond network of hyaluronan, increasing the flexibility of the
polymer chain. We also observe that the binding of calcium to hyaluronan saturates at a maximum binding fraction of ~10—15 mol
%. This saturation indicates that the binding of Ca** strongly reduces the probability of subsequent binding of Ca** at neighboring
binding sites, possibly as a result of enhanced conformational fluctuations and/or electrostatic repulsion effects. Our findings provide
a detailed molecular picture of ion condensation and reveal the severe effect of a few, selective and localized electrostatic interactions
on the rigidity of a polyelectrolyte chain.

B INTRODUCTION in previous work,”~" the molecular details of the complexes
formed between cations and polyelectrolytes, and the
molecular mechanisms underlying the conformational changes
that follow from the ion binding are still unknown.

Among all the natural polyelectrolytes, a specific class of
extracellular matrix polysaccharides, the glycosaminoglycans
(GAGs), is arguably one of the most important ones for animal
life. In the human body, GAGs are critically important in many
biological processes, such as proliferation, anticoagulation,”"
inflammatory responses,'”'* and the immune response to
external pathogens.”” Hyaluronan (HA) is the structurally
simplest member of the GAG family. Alone or together with
other extracellular matrix macromolecules (eg, collagen), it
dictates tissue elasticity, hydration, and permeability, and it
also directs cell behavior through multivalent engagement with

Polyelectrolytes are charged polymers, which are widely
present in nature and in manmade materials for applications
ranging from wound dressing to oil recovery.”” Because of
their charged nature, the conformation and physical properties
of polyelectrolyte chains strongly depend on the solution pH
and on the salt conditions. The electrostatic repulsive forces
among the charges along the chain enhance the polymer
rigidity. Usually, dissolved ions are mobile and can thus screen
the charges along the chain, thereby reducing the total
persistence length that is a measure of the chain rigidity.’
Localized electrostatic interactions between ions and the
charges on the chain (normally referred to as Manning
condensation) can occur if the distance between the charges
on the chain is less than the Bjerrum length (Ap).* One
possible consequence is that the polymer backbone wraps
around bound ions.”® Condensation of multivalent ions has
also been reported to entail local ion “jackets”, and
consequently, a reduction in persistence length of polyelec-
trolyte chains can also happen without creating local wrapping
of the chain.” Although the effect of condensation on the
configuration of polyelectrolytes has been thoroughly studied
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cell surface receptors, such as CD44."* These properties allow
HA to mediate diverse functions in a wide range of
physiological and pathological processes, including develop-
ment,">'® mammalian reproduction,17 inflammation,'® and
tissue lubrication.'””° Diseases such as cancer or osteoarthritis
are correlated with changes in the average molecular weight,
supramolecular organization, and concentration of hyalur-
onan.”' ™** Thanks to its biocompatibility, hyaluronan is also
widely applied as a building block for responsive and
biocompatible hydrogels.”*~>°

An interesting feature of hyaluronan is the sensitivity of its
mechanical properties to a particular divalent cation, calcium.
Calcium ions have been found to show an unusually strong
effect on the thickness of hyaluronan brushes (i.e., dense arrays
of hyaluronan chains grafted with one end to a surface)
de51gned to emulate certain properties of the glycocalyx of
cells.”” Moreover, at a concentration of a few millimolar of
calcium ions, hyaluronan solutions show a decrease in viscosity
that is much more drastic than in the presence of a similar
concentration of sodium or magnesium.”**” Consistent with
this finding, a previous study also showed that calcium ion
levels in the low millimolar range cause a reduced translational
diffusivity of small solutes, such as glucose and lysine, in
hyaluronan polymer solutions.” These findings suggest that
hyaluronan polymers change their molecular conformation
when interacting with calcium ions.

Hyaluronan is a linear polysaccharide composed of repeating
disaccharide units (Figure 1a) made of N-acetylglucosamine
(with an amide group) and glucuronic acid (with a carboxyl
group) monosaccharides linked together by alternating 1 — 4
and f1 — 3 glycosidic linkages. The contour length per
disaccharide is 1.0 nm. The distance between negative charges
(at the carboxyl groups) is thus smaller than the Bjerrum
length for divalent cations (~1.4 nm)”*” and ion condensation
may occur, leading to a reduction of the charge density along
the chain.

Here, we investigate the interaction between hyaluronan and
calcium ions at the molecular level, with linear infrared (IR)
spectroscopy, femtosecond two-dimensional infrared (2DIR)
spectroscopy, single-molecule force spectroscopy, and molec-
ular dynamics (MD) simulations. We find that calcium ions
bind to hyaluronan at millimolar concentrations, forming
complexes with the carboxylate anion and amide groups. We
further find that the formation of only a few of these complexes
per any one polymer chain suffices to change the intra-
molecular hydrogen bond network and, as a result, the
persistence length of hyaluronan polymers. We thus obtain a
direct molecular picture of the binding mechanism between
calcium and hyaluronan, and a molecular explanation of the
change in flexibility of the polymer upon interaction with
calcium ions.

B RESULTS

Complexation of Calcium lons with Hyaluronan. We
used linear and nonlinear IR spectroscopy to characterize the
interaction between calcium ions and HA (see Supporting
Information Methods for details). In Figure 1b, we report
linear infrared absorption spectra of a solution of HA at a
concentration of 20 mg/mL, where we vary the CaCl,
concentration from 0 to 300 mM. In the frequency region
between 1580 and 1680 cm™!, we observe two bands, one at
1609 cm™' and the other at 1633 cm ~'. Following the
literature, we assign the band at 1609 cm™' to the absorption
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Figure 1. (a) Molecular structure of a disaccharide unit of hyaluronan
containing amide (red) and carboxylate (green) groups on adjacent
saccharide units. (b) Linear FTIR infrared spectra for a solution of
hyaluronan at 20 mg/mL in water containing 0, 25, 50, 150, or 300
mM of calcium ions (as indicated). We observe the absorption peaks
of the antisymmetric stretching mode of the carboxylate anion group
(V) and of the amide I vibration (v4y). All the spectra are
background-subtracted. (c) Differential FTIR infrared spectra
obtained by subtracting the infrared spectrum in pure water (0 mM
Ca*) from the other spectra shown in (b). The error bars represent
experimental errors due to background fluctuations and were obtained
by comparing two independent measurements of the same solution.

band of the antisymmetric stretching mode of the carboxylate
anion group (V) and the band at 1633 cm™' to the
absorption band of the amide I vibration (v4y;) of the amide
group.”’ Upon addition of CaCl,, we observe a small increase
of the absorption around 1590 cm™ and a decrease of the
absorption near 1607 cm™’, indicating that the calcium affects
the molecular vibrations of the carboxylate anion group. Most
notable, however, is the enhanced absorption in the high-
frequency region of the spectrum, corresponding to the high-
frequency wing of the amide I band (1650 cm™). In the
absence of calcium, the amide group is hydrated on average by
two water molecules, and each hydrogen bond induces a red-

shift of the amide I absorption band of 10—20 cm™.**** The

observed partial blue-shift of the amide I band from 1633 to
1650 cm™ thus suggests that calcium ions dehydrate a part of
the amide groups. Computational studies have shown that in
simple model systems containing a single amide group, calcium
ions have a significant probability to be located close to the
carbonyl oxygen (<2 S A) and thus to be in direct contact with
the amide group.”” >* The creation of such a cation—amide
pair induces a red-shift in the amide I vibration with respect to
the frequency of this mode in the gas phase, but this red-shift is
smaller than the red-shift that results from the formation of
hydrogen bonds with water molecules. In a previous study,
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Figure 2. (a) 2DIR spectra of hyaluronan at a concentration of 20 mg/mL in water containing 0 (left) and 25 mM (right) calcium ions. The
waiting time between the pump and probe pulse was 0.3 ps. The yellow rectangles indicate the regions with the largest changes in absorption. (b)
Top: transient absorption 2DIR signals taken along the diagonal slice (dashed line: guideline for the eye set at 2DIR signal equal to 0) of the bleach
in (a). Bottom: differential spectrum obtained by subtracting the spectrum measured for a solution without calcium (0 mM) from the spectrum of a
solution with 25 mM calcium ions. (c) Fraction of complexed amide groups as a function of calcium concentration. The data (symbols with error
bars) are fitted with a model that includes an increasing energy penalty with increasing occupation of the amide groups (see main text and
Supporting Information Methods for details). The mean values and error bars (which represent the standard deviation) were obtained by averaging
over three different experiments. (d) Illustration of the complex formed. The gray dashed lines show the bidentate binding of the carboxylate anion

group to Ca®*.

calcium was found to bind to the carbonyl oxygen in a collinear
fashion, displacing both water molecules,®” thus corroborating
that the observed blue-shift of the amide vibration results from
the binding of calcium ions.

At calcium concentrations below 150 mM, there is no
significant difference between the linear absorption spectra
measured with and without added salt. Nevertheless, based on
previous reports, we do expect a significant effect of calcium
ions on the hyaluronan structure already in this low-
concentration regime. We studied the molecular-scale effect
of calcium at low concentrations with 2DIR spectroscopy.
2DIR is a nonlinear technique in which molecular vibrations
are excited from the ground state (n = 0) to the first excited
level (n = 1) with an intense femtosecond mid-infrared light
pulse (pump pulse). This excitation leads to a change of the
absorption of the excited and other vibrations that we probe
with a second, weaker, broadband, femtosecond mid-infrared
light pulse (probe pulse). The absorption change Aa measured
with 2DIR is proportional to the square of the vibrational cross
section, 6 (Aa ~ ¢*), while in linear infrared spectroscopy, the
signal is linearly proportional to the vibrational cross section (&
~ 0). Therefore, 2DIR is ideally suited to distinguish species
with high cross sections and low concentrations (e.g, molecular
vibrations of amide and carboxylate groups) from a back-
ground of species with low cross sections and high
concentrations (e.g., molecular vibrations of water). In Figure
2a, we present 2DIR spectra measured for a hyaluronan
solution with 0 and 25 mM calcium ions (Figure S1 shows
additional data spanning from 0 to 300 mM). In both spectra,

we observe a strong signal when exciting at a pump frequency
of 1607 cm™, which extends to higher probe frequencies and
shows a shoulder at 1630 cm™. The peak and the shoulder
colored in blue represent a decrease in absorption due to
bleaching of the fundamental n = 0 to n = 1 transitions of the
Ve and vy vibrations, respectively. The signals at lower
probe frequencies colored in red represent the induced
absorption of the n = 1 to n = 2 transition. Upon addition
of calcium ions, we observe an enhanced absorption at higher
frequencies (indicated by the arrow in Figure 2b around 1660
cm™!), which can be seen more clearly in the lower part of
Figure 2b, where we show the difference between the two
slices taken along the diagonal of the bleach (also shown in
Figure S1), illustrating the enhanced absorption.

We observe a significantly increased absorption on the blue
side of the amide vibration peak, already at a calcium
concentration of 25 mM. As with the linear absorption spectra,
we assign this enhanced absorption to the complexation of the
amide carbonyl to the calcium ion, which we will indicate as
Uamr.ca>» We fit the 2DIR data with three Gaussian-shaped
peaks to extract the relative area of the v,y c,>* amide band at
different concentrations of calcium ions. In this fit, we used
two Gaussian-shaped peaks to describe the v, and vy
vibrational bands in the absence of calcium and a third
Gaussian-shaped peak to describe Ujypc.o. (see Supporting
Information Methods for details). The central frequencies and
the widths of the three bands were global parameters in the fit,
meaning they were fixed at all studied calcium concentrations,
and only the amplitudes of the three bands were allowed to be
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Figure 3. (a) Illustration of the setup to measure the persistence length of HA by single-molecule force spectroscopy: HA polysaccharide chains
(red; My, = 647 kDa) were grafted via their nonreducing end to an AFM tip; extracellular domains of the HA receptor CD44 were anchored via
their C-terminal end to a planar support and served as baits to capture HA chains. (b) Representative force curves obtained for stretching a single
HA chain in CaCl, (red curve) and NaCl (black curve; offset by 100 pN along the y-axis for clarity). Except for a region of nonspecific binding at
small separations (<50 nm), the data are well fit by the WLC model (blue curves). (c) Histograms of persistence lengths L, determined from WLC
model fits for CaCl, (red bars) and NaCl (black bars). These are well fit by Gaussian-shaped curves (lines in matching colors), giving mean and
standard deviations of L, = 3.2 + 1.0 nm in NaCl and 1.7 £ 0.7 nm in CaCl,. Conditions: retract velocity of 1 ym/s, 150 mM NaCl or 50 mM

CaCl,.

different at different calcium concentrations. Examples of the
fits are reported in Figures $2,S3. We assume that vy c,> and
Uami have the same cross section, and thus, the fraction of
amide groups bonded to calcium ions follows directly from the
areas of the vy and Vayyc,> bands (Figure 2c). We observe
that at a low calcium concentration of 10 mM, a significant
fraction of amide groups is already bonded to calcium ions.
Because of limited experimental sensitivity, measurements at
physiological calcium conditions (~1—2 mM) were not
possible. The fraction of amide bonded groups rises quickly
with increasing calcium concentration but effectively saturates
at a fraction of ~10—15 mol % of N-acetylglucosamine.

The observed saturation implies that the binding between
Ca** and hyaluronan is best described with a model that
accounts for a high affinity for calcium ions at low
concentrations but includes an energetic penalty for further
binding upon complex formation. This energy penalty depends
on the fraction of formed complexes and can be accounted for
by using an expression for the association equilibrium constant
that contains an exponential term with a constant energy E
(normalized by the thermal energy, k,T), weighted by the
fraction of occupied binding sites f

—Ep/ka'f — [Ca2+HA]

K =K _
anlf) = K [Ca**][HA] (1)

with

fe [Ca’*HA]
" [HA] + [Ca’*HA] )

Here, [Ca®'] is the concentration of free calcium ions, and
[HA] and [Ca®*HA] are the concentrations of unoccupied and
occupied Ca®* binding sites on HA (assuming one binding site
per HA disaccharide), respectively. Using [Ca®*] + [Ca**HA]
= [Ca**], where [Ca®*]; is the total concentration of calcium
ions in the solution and the index i runs over all concentrations
investigated, and [HA] + [Ca**HA] = [HA],, where [HA], is
the total concentration of binding sites (i.e., disaccharides); we
can rewrite the equilibrium expression 1 as

X
(ICa™]; — x)([HA], — ) 3)

Ka,H

where x = [Ca>HA]. Solving eq 3 for x and using expression 2,
we obtain

-1 2
N Ky + [Ca +]i

1
f=3 2[HA],

JE, " + [Ca**], + [HAL)* — 4[Ca®*),[HA]
2[HA],

(4)
To extract the zero-concentration binding constant K, ;; and
the energy penalty E,, we globally minimize

2 (P (1Ca™)) - f(ICa™]))

i (%)
where the f*?([Ca®'],) values are obtained from the 2DIR
experiments. The f([Ca*'],) values follow from solving the
coupled eqs 1 and 4 (see Supporting Information Methods for
details), where we fit the fraction of bonded amide. We obtain
K.y, =7 +2M "and E, =30 % S kT. The result of the fit is

shown in Figure 2c. This binding constant is significantly
higher than the binding constants of the separate amide or
carboxylate anion groups to calcium. As reported in the
Supporting Information Methods, we find that for N-
acetylglucosamine, K, = 0.013 + 0.05 M™" (Figure S9), and
for glucuronic acid, K, = 1.2 + 0.2 M™" (Figure S10).

Effect of Calcium lons on the Persistence Length of
HA. To assess the effect of ions on the persistence length of
HA at the level of individual chains, we devised an atomic force
microscopy (AFM) assay to probe the stretching of individual
HA chains under tensile force, as schematically illustrated in
Figure 3a (see Supporting Information Methods for details).
Force spectroscopy with polymer chains benefits from a
uniform population of molecules with well-defined character-
istics. Here, we made quasi-monodisperse (i.e., size distribution
approaching the ideal) HA polymers with a “handle” only at a
single specified point. In the polysaccharide realm, our HA
probe is much more homogeneous than previous naturally
occurring and semisynthetic preparations.‘?’5

For the single chain force spectroscopy experiments, in brief,
HA polysaccharide chains were anchored through a thiol
handle (SH-HA); a sulfhydryl group was site-specifically
introduced at the nonreducing end (a difficult or impossible
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Figure 4. (a) Key hydrogen bonds (labeled A to E) between adjacent monosaccharides along the hyaluronan chain. (b) 2D histograms of the
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for the CaCl,-OPLS and CaCl,-Deublein environments are presented in Figure SS.
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Figure S. Differential 2D histograms for contacts A to F (cf. Figure 4a), generated by subtracting the histograms for hyaluronan in the NaCl
environment (Figure 4b) from histograms for hyaluronan in the CaCl,-OPLS environment (Figure SSa). Blue indicates an increase in Ca**
compared to Na*, and red indicates a decrease. The differential 2D histograms obtained for the CaCl,-Deublein environment are presented in

Figure S6a.

location for all previous syntheses with HA polysaccharides
because of the terminus’ relative lack of unique chemical
reactivity in contrast to the reducing end) to a gold-coated
AFM probe. The AFM probe was brought into contact with a
planar support displaying the HA receptor CD44, which acted
as a bait to capture a HA chain dangling from the AFM tip.
Pulling the AFM probe away from the planar support then
generated a tensile force that was monitored as a function of
the probe-support distance, as exemplified in Figure 3b. Care
was taken to adjust the surface densities of HA and CD44 such

that the rupture of individual HA-CD44 bonds, and thus, the
stretching of individual HA chains, could be resolved (Figure
S4). The force versus extension curves could be well fitted with
the worm-like chain (WLC) model (Figure 3b; see also
Supporting Information Methods for details), as expected for
flexible and sufficiently long polymer chains. Histograms of the
persistence lengths L, extracted from these fits (Figure 3c)
show that calcium ions decrease the persistence length of HA.
At physiological concentrations of monovalent salt (150 mM
NaCl), we found L, = 3.2 + 1.0 nm, in reasonable agreement
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with previous work.* In the presence of 50 mM CaCl,, the
persistence length was reduced almost twofold, to 1.7 + 0.7
nm. Such a marked decrease in persistence length, or
equivalently, increase in chain flexibility, indicates that calcium
ions strongly affect the molecular conformation of hyaluronan.

Effect of Calcium lons on the Molecular Conforma-
tion of Hyaluronan. To understand why calcium con-
densation causes an increased chain flexibility, we performed
force field-based MD simulations with atomistic resolution and
an explicit description of the solvent molecules. We performed
MD simulations of aqueous solvated HA at a concentration of
50 mM CaCl,, as used in the AFM experiments. We used
specialized and previously tested force field parameters for a
short HA oligomer dissolved in NaCl and CaCl, solvent
environments. We employed two different sets of parameters
for Ca?*, referred to as CaCl,-Deublein and CaCl,-OPLS (see
Supporting Information Methods for details) because the
treatment of divalent cations is known to be challenging at the
classical, that is, force field, level of theory.3’2’3’7 We ran 200 ns
of unbiased MD simulations of HA oligomers with a length of
8 disaccharides, starting from a straight-chain state, that is,
without chain bending, in the presence of either calcium or
sodium ions. The last S0 ns were used for analysis, in
particular, to probe the effect of the cations on the structure
and dynamics of the hydrogen bonds within the HA
oligosaccharide.

In Figure 4a, we show the structure of the oligomer, in which
we also indicate the five studied hydrogen bonds (labeled A to
E). In addition, we also studied the geometry of the complex
formed with the cation (labeled F). In Figure 4b, we show 2D
histograms of the donor—acceptor distances and angles of the
hydrogen bonds A to E and the amide/carboxylate/cation
complex in a NaCl environment. Strong hydrogen bonds are
characterized by donor—acceptor distances shorter than 3 A
and angles larger than 2.5 rad,”® the latter implying a high
degree of alignment between the acceptor, the hydrogen, and
the donor.

In Figure S, we show the changes in the 2D histograms (blue
for increasing, red for decreasing) when NaCl is replaced by
CaCl,. For contacts A to E, we observe positive peaks at longer
distances and smaller angles, indicating a weakening of these
hydrogen bonds. An exception is hydrogen bond D, which, in
addition to some shift to longer distances and smaller angles,
also shows a small positive peak at a distance of 3 A and an
angle of 2.8 rad. The largest difference is observed for the
complex F. The Ca®" cations form close contacts with the
carboxylate (<3 A) and both close (<3 A) and far (>3 A)
contacts with the amide. The presence of close contacts
between the cation and the amide group agrees with the IR
and 2DIR experimental observation that, upon addition of
calcium, amide groups experience dehydration because of the
formation of a direct bond between amide oxygen and the
divalent ions (Figures 1 and 2). The positive change at a
distance of ~10 A observed for both the amide and the
carboxylate groups can be explained from cations located on
neighboring monomers. The MD results thus confirm that
Ca® ions have a high propensity to bind to the carboxylate and
amide groups and show that this binding results in a weakening
of the intramolecular hydrogen bonds of hyaluronan.

Table 1 shows the probabilities of the formation of close
contacts between the cation and the amide or the carboxylate
group, or with both groups. For both force fields of Ca*, we
find that the CaCl, environment yields much greater

Table 1. Probability (+One Standard Deviation) of Close
Contact (<3 A) of Na* or Ca>* Cations with the Carboxyl
(0O6A/B) or Amide (O2N) Oxygens, or with Both Oxygens
Simultaneously (O6A/B & O2N)

probability of close contact O2N and
with the cation O2N (%) Q6A/B (%) 06A/B (%)

HA in NaCl 1.8 £ 0.7 1.1 +£07 03 +03
HA in CaCl,-OPLS 172 + 19 429 + 0.0 172 £ 19
HA in CaCl,-Deublein 18.1 + 3.8  25.6 +10.1 9.9 £ 835

probabilities of close contacts than the NaCl environment.
The CaCl,-OPLS and CaCl,-Deublein yield similar values for
the probability of close contacts with the amide (O2N; 17 and
18%, respectively), which is larger than the S—10% extracted
from the 2DIR experiments (Figure 2c). Such discrepancy may
arise because of the force field choice and/or because the cross
section of the amide vibrational band may change upon
formation of a bond with the calcium ion. In Table 1, we also
observe that the probabilities of close contacts between the
cation and the carboxylate (O6A/B) differ between the two
Ca** force fields. Previous literature reports that OPLS
overestimates the Ca®* carboxylate affinity’ and points to
CaCl,-Deublein being more realistic. In Figure S5, we show
2D histograms of the different hydrogen bond lengths and
angles obtained with CaCl,-Deublein and CaCl,-OPLS.

The time-averaged hyaluronan end-to-end chain length
remained around 70 A for all unbiased MD trajectories
starting with a straight chain configuration (Figure S7). This is
only slightly shorter than the contour length of the HA
oligosaccharide (80 A) and suggests that large deformation
events do not occur within the computational time scale and
for this relatively small polymer size. In order to estimate the
effect of Ca®" on the flexibility of hyaluronan, we calculated the
bending free energy of the same HA oligosaccharide in NaCl,
CaCl,-Deublein, and CaCl,-OPLS environments. This was
achieved by means of a variation of the constrained MD
method* (see Supporting Information Methods for details).
The resulting bending free energy profiles, spanning end-to-
end lengths from a slightly stretched (compared to the time-
average length) hyaluronan oligosaccharide (75 A) to a half-
bent U-shaped one (35 A), are shown in Figure 6a. The two
environments with Ca** are consistent with each other and
present significantly lower free energies of flexed configurations
than the Na® environment, indicating a higher flexibility of
hyaluronan in the presence of Ca**. For flexible polymers, the
bendinﬁg free energy is linearly related to the persistence
length."" This proportionality enables a quantitative compar-
ison of the MD simulation results with the experimental force
spectroscopy results. The free energy of the U-shaped bent HA
decreases by approximately 40% from 4.96 + 0.73 kcal/mol in
NaCl to 3.04 + 0.63 kcal/mol in CaCl,-OPLS (or by 35% to
324 + 0.87 kcal/mol in CaCl,-Deublein). This reduction
agrees with the approximately twofold decrease in persistence
length observed by AFM (Figure 3c).

In Figure 6c, the differences in the five key hydrogen bonds
are analyzed for the bent configuration with an end-to-end
length of 35 A for both CaCl,-OPLS and NaCl. There is a
general weakening of all contacts, even more considerable than
the weakening observed for the unconstrained chain in Figure
5. Contacts B to E shift to either longer distances (>4 A) or
smaller angles (<2 rad), showing a clear weakening of these
hydrogen bonds. Contact A is the only hydrogen bond with a
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Figure 6. (a) Bending free energy profile of hyaluronan for the three different simulation environments described in the text. The shaded regions
refer to one standard deviation, as determined from a blocking analysis (see Supporting Information Methods, Figure S8 and Table S1). (b)
Visualization of the amide/carboxylate/cation complex rendered by averaging atomic positions during the last 25 ns of the CaCl,-OPLS run
constrained at an end-to-end length of 35 A. The picture is centered at the middle of the chain. The calcium is represented according to its van der
Waals radius. (c) Differential 2D histograms of the distances and angles in key hyaluronan inter-monosaccharide hydrogen bonds (labeled A to E;
of. Figure 4a) and in the cation—amide (O2N)—carboxylate (O6A/B) complex (labeled F) generated by subtracting histograms obtained in the
NaCl simulation environment from histograms obtained in the CaCl,-OPLS simulation environment, with both systems constrained at an end-to-
end length of 35 A. The differential 2D histogram obtained in the CaCl,-Deublein environment is presented in Figure S6b.

small positive change at close distances. The bending is thus

accompanied by a weakening of most intramolecular hydrogen
bonds.

B DISCUSSION

The 2DIR and MD results show that the HA polymer chains
bind calcium ions at millimolar concentrations, leading to the
formation of specific calcium complexes with amide and
carboxylate groups of adjacent saccharide units. The force
spectroscopy measurement and MD simulations consistently
show an increase in hyaluronan flexibility in the presence of
calcium. The combination of the three techniques provides a
direct link between the molecular mechanism of calcium
binding and its effect on the hyaluronan chain mechanics.

The 2DIR results show that the association constant of Ca**
and hyaluronan has a relatively high value of 7 M™" at low Ca*
concentrations. This association constant is much higher than
the association constant for the binding of Ca** to amide
groups, for which an association constant of ~0.1 M™" has
been reported.” We observed a similar association constant
for Ca®* and N-acetylglucosamine (0.013 + 0.05 M™'; see
Supporting Information Methods and Figure S9). This
difference can be explained from the fact that in case of
hyaluronan, the Ca®* not only binds to an amide group but at
the same time to a nearby carboxylate anion group. The
binding with the latter group will be rather strong, thus
explaining the much larger association constant of Ca’* to
hyaluronan compared to isolated amide groups.

It is also interesting to compare the association constant of
Ca® and hyaluronan with the second saccharide unit that
constitutes the building block of hyaluronan, glucuronic acid.
For glucuronic acid, we found an association constant of 1.2 +
0.2 M~ (Supporting Information Methods and Figure S10),
which is similar to the association constants found for
complexes of simple acids and calcium.”* The association
constant of glucuronic acid and Ca®" is thus approximately six
times smaller than that of hyaluronan and Ca*'. This finding
indicates that in hyaluronan, the relative position and
orientation of the amide group of N-acetylglucosamine and
the carboxylate anion of glucuronic acid lead to a highly
favorable binding of Ca.

The strong affinity of hyaluronan for calcium may also be
because of the size-charge requirements of the calcium ions.
Because of its larger diameter compared to other cations, such
as magnesium, the calcium ion binds well to less polar oxygens
than water oxygens. Hence, the favorable inner chelation with
other less polar groups, such as the amide oxygen in this case,
greatly increases the stability of the calcium complex.** It is
likely that the restrained conformational fluctuations and the
size-charge requirements add up synergistically, explaining the
high affinity of hyaluronan to calcium. Interestingly, we find
that the high affinity of hyaluronan for Ca** rapidly drops when
the concentration of Ca®* increases, that is, we observe that the
occupation of the binding sites saturates at an occupied
fraction of ~10—15%. This strong saturation is not observed
for glucuronic acid or N-acetylglucosamine on their own. It
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thus appears that the binding of a calcium ion at a particular
binding site of HA hinders the binding of other Ca** ions at
nearby binding sites. This hindrance may be due to a
conformational change of the hyaluronan induced by calcium
binding, with the result that the neighboring binding sites no
longer possess the highly favorable conformation of the
carboxylate and amide groups that caused the initial high
association constant of 7 M™". This explanation is supported by
MD simulations that show that the binding of Ca** induces a
weakening of the hydrogen bonds and increases the flexibility
of the polymer chain. The increase of the flexibility, which is
also borne out by the force measurements, implies that the
conformational fluctuations increase in amplitude. As a result,
the time fraction in which the conformation of the binding site
is favorable for binding Ca*" is reduced, thereby decreasing the
association constant. An additional contribution to the
decrease of the affinity for Ca®" may originate from
electrostatic repulsion between Ca* ions at neighboring units.

B CONCLUSIONS

In this work, we have studied the interaction between
hyaluronan polymers and Ca®* ions with a combination of
linear infrared spectroscopy, two-dimensional infrared spec-
troscopy, molecular-scale force measurements, and MD
simulations. We find that hyaluronan binds Ca** with an
affinity that is unusually high for inorganic ions, with an
association constant of 7 + 2 M~ in the limit of millimolar
Ca®" concentrations. This association constant is ~6 times
higher than that of glucuronic acid, which contains the same
carboxylate anion motif as hyaluronan. This finding, as well as
our spectroscopic data, indicates that the relative position and
orientation of the amide group and the carboxylate anion
groups of hyaluronan are highly favorable for binding of Ca*".
The MD simulations confirm that hyaluronan has a high
affinity for Ca®" ions. We also observe a strong saturation of
the binding of Ca’" to hyaluronan at higher Ca’*
concentrations. This saturation effect can be well modeled
with a free-energy penalty that scales with the fraction of
bound Ca®". The decreased binding affinity can be explained
from the increase of the flexibility of the hyaluronan polymers
upon the binding of Ca**, as shown by the MD simulations. An
additional contribution to the saturation effect may come from
electrostatic repulsion, that is, the positive charge of Ca®"
repels the binding of other positive charges at nearby binding
locations.

The force measurements show that the binding of Ca*" leads
to a large decrease of the persistence length of the hyaluronan
polymers, which amounts to ~50% at a calcium concentration
of 50 mM. The MD simulations explain this decrease of the
persistence length in terms of the weakening of several of the
intramolecular hydrogen bonds, induced by the formation of
the complex of Ca** with the carboxylate and amide groups.

In summary, by using a multitechnique approach, we show
that a selective and localized cation binding process takes place
between calcium and hyaluronan polymers, leading to the
formation of specific complexes. Here, we provide a detailed
molecular picture of ion condensation on a polymer,
highlighting the severe effect of few, selective and confined
electrostatic interactions on the rigidity of a polyelectrolyte
chain. As the extracellular matrix contains calcium, this ion’s
effect on the structure of HA chains and thus their binding to
hyaladherin proteins and receptors should be considered.
Moreover, given the vast employment of glycosaminoglycans

to devise hydrogels with tailored applications, such as drug
delivery, our findings may lead to novel ideas for creating smart
materials by exploiting the unique structural properties that
can be tuned by the addition of specific ions.
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