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STRONG RENEWAL THEOREMS WITH INFINITE MEAN
BY

K. BRUCE ERICKSONC)

Abstract. Let F be a nonarithmetic probability distribution on (0, oo) and suppose
1 —F(f) is regularly varying at oo with exponent a, 0<aál. Let U(t) = J, F"'(t) be
the renewal function. In this paper we first derive various asymptotic expressions for
the quantity U(t+h)— U(t) as t -* oo, h>0 fixed. Next we derive asymptotic relations
for the convolution U*z(t), t —>■ oo, for a large class of integrable functions z. All of
these asymptotic relations are expressed in terms of the truncated mean function
m(t) = f0 [1 — F(x)] dx, t large, and appear as the natural extension of the classical
strong renewal theorem for distributions with finite mean. Finally in the last sections
of the paper we apply the special case a = l to derive some limit theorems for the
distributions of certain waiting times associated with a renewal process.

1. Principal theorems. Let A be a probability measure concentrated on
[0, oo)(2) and let U be the associated renewal measure defined for any measurable
set / by

(l.i) t/{/} = !>"•{/}
0

where Fn' denotes the «-fold convolution of F with itself (P°* is the probability
measure concentrated at the origin). The series (1.1) converges to a finite number
for every bounded I. (For this and other elementary properties of U see [3, VI. 6] ;
for a probabilistic interpretation of U see §9 in this paper.) We write U(x) for
U{[0, x]} and we shall henceforth ignore the distinction between U the measure
and U the function. (This convention applies to other measures as well.)

The main results of this paper deal primarily with the differences U(t+h) — U(t)
for h>0 fixed, and t -*■ oo. The principal assumption is that Phas the form

(1.2) \-F(t) = t~aL(t),       t>0,
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(2) We assume, however, that not all the mass is at the origin.
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264 K. B. ERICKSON [September

where O^a^l (fixed) and A is a slowly varying function(3). Unless otherwise
indicated, we also assume A is nonarithmetic; that is, we exclude the possibility
that A concentrates the entire mass on the multiples of some positive real number.
For a 5¿ 1, the arithmetic versions of Theorems 1 and 2 below were treated by A.
Garsia and J. Lamperti, [5] (nothing was known in the case a=l). See §2(ii) for
further discussion. Define the "truncated mean" function

(1.3) m(t) =  f (l-F(x))dx = t(Í-F(t))+ f xF{dx).
Jo Jo

Theorem 1. Aei A satisfy (1.2) with \ < a ^ 1. Then for every A > 0 and as t —> oo

(1.4) U(t+h)-U(t) ~ Cah/m(t)

where Ca=[T(*)T(2-a)]-\

Theorem 2. IfO < a g \ then

(1.5) lim inf m(t)(U(t+h)- U(t)) = CaA.
¡-.00

Remark. When ce^l, m(t)~(\ —a)'1t1'ttL(t), r-5-00 (see Lemma 1, §3) and
r(a)r(2—a)=7r(l —a) csc wot. It follows that (1.4) is equivalent to

(1.6) lim t^«Ht)(U(t+A)- £/(/)) = ^-^ A.
t->oo TT

The results of Theorems 2, 3, and 4 may be restated in an analogous fashion.
Let z be a nonnegative function on [0, oo). For A > 0 write

op

o~ = A 2 sup{z(x) : (k — 1)A S x < kh)
k = l

and similarly define a_ with inf in place of sup. Following Feller [3, p. 348], we
say that z is directly Riemann integrable (dri) if the series defining the upper sum
a" converges and a' — <r_->-0asA->0. It follows immediately that a dri function
is bounded, measurable and (Lebesgue) integrable.

Theorem 3. Let z be a nonnegative dri function on [0, oo) wAi'cA satisfies

(1.7) z(t) = 0(1/0,       t > 0.

If F has the form (1.2) with \<<xfí 1 then

(1.8) ¡toZ(t-y)U{dy}^-m^-)[z(x)dx.

(3) A measurable ultimately positive function L on [0, oo) is regularly varying with exponent
P if as t -> oo, L(xt)/L(t) -* x" for all x> 0. When p = 0, i.e., L{xt)¡L(t) -* 1, we also say L is
slowly varying. We assume as known the various properties of slowly varying functions as
described in [3, pp. 272-274], or in [6]. Note that the function L in (1.2) must be bounded on
bounded subintervals of [0, oo).
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1970] STRONG RENEWAL THEOREMS WITH INFINITE MEAN 265

Theorem 4. Let z = 0 be a dri function (not necessarily satisfying (1.7)). If F
satisfies (1.2) with a=£0 then

(1.9) liminfffí(0 f z(t-y)U{dy) = Ca[   z(x)dx.
t->=° Jo Jo

Remarks. 1. Define a complex valued z to be dri if \z\ is dri as defined above.
With this definition it follows readily from Theorem 3 that (1.8) holds for any dri z
satisfying (1.7).

2. Any piecewise continuous function on [0, co) vanishing off a compact interval
is dri and certainly satisfies (1.7). In particular, taking z(x) = \ for 0 = x^h, and
z(x)=0 elsewhere we have by (1.8)

U(t+h)-U(t) = |      z(t+h-x)U{dx} CJi
m(t + h)        a m(t)

as t -*■ oo. (That m(t+h)~m(t), t ->• oo, h fixed, follows easily from monotonicity
and regular variation of m, see Lemma 1.) Thus Theorem 3 is equivalent to Theorem
1 (we use Theorem 1 to prove Theorem 3). Similarly Theorem 4 (with 0 < a ^ %) is
equivalent to Theorem 2.

For a generalization of (1.8) to nonintegrable but regularly varying z see §2(iii).
§§3-8 of this paper are concerned with the proofs of Theorems 1-4. In §9 we

give an application of the special case a — 1 to obtain some curious limit theorems
for the spent and residual waiting times of a renewal process.

2. Notes, (i) Let m and U be defined as in §1 and let m and Û be their Laplace
transforms:

m(X) =  C e-Xx(\-F(x))dx,       U(X) = f° e~*xU{dx}.
Jo Jo

If in addition F is the transform of F then by (1.1) and (1.3)

m = l-^M,    ü(x) =
l-P(A)

and hence Û(X)m(X) = l/X. Using this relation and Karamata's Tauberian theorem,
[3, p. 420], we conclude the following:

Theorem 5. Let O^a^l. Each of statements (a) and (b) which follow implies
the other and both imply the asymptotic relation (2.1).

(a) m is regularly varying with exponent I—a.
(b) U is regularly varying with exponent a.

(2.1) U(t) ~ [V(a+\)T(2-a)Y\t/m(t)).

By Lemma 1 statement (a) is true when F satisfies (1.2). (The converse is also
true provided a ̂  1 ; if (a) is true for some 0 ̂  a < 1, then (1.2) holds for some slowly
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266 K. B. ERICKSON [September

varying A, cf. [3, p. 422].) When a^ 1 in (1.2) we see as in the remark following
Theorem 2 that (2.1) is equivalent to

,,/ n       Sin ira   t"(2.2) v(t)~—w       f-co,

(when a=0, (sin wa)/7ra= 1). For a proof of (2.2) when 0<a<l cf. [3, p. 446].
See also Teugels [10]. When \<a-¿\ (2.1) may also be derived from Theorem 1
(1.4). We shall not do this however. Theorem 1 cannot be proved from (2.1).

(ii) Let A be an arithmetic distribution on (0, oo) which we suppose, without
loss of generality, has span 1. (A distribution has span A > 0 if it is concentrated
on the multiples of A and A is the largest such number.) The renewal measure U
defined by (1.1) is also arithmetic with span 1. Denote by/n and un the mass assigned
to the integer n by A and U. If A satisfies (1.2), i.e.,

00

\-E(n) = 2 Á = n-«L{n)
n + l

for some 0<a< 1 and slowly varying A, then (Lamperti-Garsia, 1962) for ^<a< 1

,~ « ■• i    „t , v sin ira
(2.3) hm n1-"L(n)un =-

n->oo IT

while for 0<aS^ the lim must be replaced by lim inf. However (2.3) does hold
when 0<<x^ provided the limit is taken excluding a set of intergers having
density 0.

These authors did not consider the case a=l (nor, for that matter, a = 0). The
appropriate and true conclusion for a = 1 is

(2.4) lim m(n)un = 1

where, as before,
/»n n        oo n

m(n)=      (\-F(x))dx=  2   2 f>'~ 2-^>       "->°°.
Jo k=i   ¡=k 1

The proof of (2.3) and (2.4) starts with the following representation for un
(see [5] or [8, pp. 98-99]): let <p(8) = J,fkeike and put W(8) = Re [l-^fl)]"1 then
provided A has an infinite mean

i «i   p-ine 2 C
(2.5) un = - Re      T—m* dO = - \    W(8) cos n8 d9

71       Jo l-pW "" Jo

for n^ 1. (When the mean p. is finite (2.5) holds with un replaced by un—l/p.) The
lack of a similar formula for U(t+h)- U(t) when A is nonarithmetic constitutes
the chief difficulty in the proof of Theorem 1.

Here is a brief proof of (2.4): from (2.5)
/ CBIn       rxl2\

2 "" = (J     + J    ) W{-6) C0S n9 d0 = Jl +J2'
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1970] STRONG RENEWAL THEOREMS WITH INFINITE MEAN 267

As in the latter part of the proof of Theorem 1, see (5.10) and (5.11), we get

lim m(n)Jx = tt/2,       lim sup m(n)\Jx\ = 0(l/B).
n-»eo n-*oo

(The first limit follows directly from Lemma 4, a=l.) Hence

lim m(n)un = lim lim (2¡ir)m(n)(Jx+J2) = 1.
n-*oo J9-»oo n-*co

J. A. Williamson [11] has extended the results of Lamperti and Garsia [5] to
include distributions not necessarily restricted to the positive integers nor to
1-dimension. He does not, however, consider nonarithmetic distributions. He also
gives examples showing that (2.3) and its generalization to ¿/-dimensions cannot
hold when a¿d/2 without making further assumptions on F. In this connection,
see also [5, §3.4].

(iii) Suppose the positive function z on (0, oo) is nondecreasing and regularly
varying with exponent ß > 0. Consider the integral

U*z(t) =  f z(t-x)U{dx} =  Ç z(t(\-y))U{tdy).
Jo Jo

By Theorem 5 U(ty)IU(t)^-y" and it follows that the measure U{tdy}/U(t)
converges weakly as t -*■ oo to the measure with density ay"'1. Furthermore

(2.6) fly) = z(t(\ -y))lz(t) - (1 -y)»,       t -> co

and the convergence is uniform in y, O^yH, since each ft(y) is monotone in y
and the limit function (1 —y)B is continuous. We see therefore that

(2.7)
U*z(t)       rz(t(\-y)) U{tdy)

z(t)U(t) -r^^-jw-'*
as t ->■ oo. Now iz(r)~(l +ß) §0 z(x) dx by Karamata's theorem on regular varia-
tion, [3, p. 273]. Hence using (2.1) we see that (2.7) may be put in the equivalent
form

(2.8) f z(t-x)U{dx} ~ ^P- f z(x) dx,       t -> oo,Jo m(t)   Jo
where

«0+fl      f1,,   „v,„«-w„_       r(2+J8)x^-wSwl-aySl«-'"-1* r(a+j8+i)r(2-«)

Notice that the proof of (2.7) and (2.8) did not depend on the renewal nature,
(1.1), of U; (2.8) remains true when U>0 is any nondecreasing function regularly
varying with exponent a, 0<a^ 1, and m is any function satisfying (2.1).

J. Teugels [10] gave a proof of (2.8) when z>0 is nonincreasing and regularly
varying with exponent ß where -1 <ß = 0. The proof is much complicated by the
fact that convergence in (2.6) is no longer uniform: when ß<0 the function
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(l-y)ß is not bounded at y=l. (Teugels imposes a supplementary and rather
technical condition on U, in addition to regular variation, which seems to me to
be unnecessary ; compare the proof in Feller [3, p. 447], of a result where similar
problems arise.) Again the proof makes no use of the renewal properties of U.

The regular variation of z with exponent ß > — 1 and to a lesser extent the mono-
tonicity of z is clearly essential to the proof of (2.8). In particular, the condition
ß> — 1 cannot be dropped. When ß> — 1, the integral j'0 z(x) dx occurring in (2.8)
diverges to oo as t -» oo, while for ß < - 1, J™ z(x) dx is finite for all large enough A.
In this case, ß< — 1, Theorem 3, §1, usually applies and leads to results directly
opposed to (2.8). For example, let z(t) = t~5, t> 1 and z(i)= 1, t^ 1 (z is regularly
varying with exponent ß = — 5). Then J"™ z(x) dx=5/4 and, provided a > \, Theorem
3 gives m(t)U*z(t) -> Ca5/4< oo as t -> oo. On the other hand, if (2.8) were true we
would get m(t)U*z(t) -> D(a, -5)5/4=co.

One last remark. As noted before, one could prove Theorem 5 from Theorem 1
(and Lemma 1) at least for £<aá 1. Since (2.8) depends only on Theorem 5 for
the regular variation of U and since Theorem 3 is equivalent to Theorem 1, we
see that (2.8) could be derived from Theorem 3, at least in principle, when the
only data given, besides the function z, is that U is the renewal function of a
distribution A of the form (1.2). In no way, however, can Theorem 3 be proved
from (2.8).

(iv) The classical "strong" and "weak" renewal theorems assert respectively

(2.9) U(t+h) - U(t) -> h/fi       (A > 0)

(2.10) (\/t)U(t)^\/fi
as f->-oo, for any (nonarithmetic) distribution A on (0, oo) with mean /x^oo
(l/fi is interpreted as 0 when fi = co). Since m(t) -> p, as t -»■ oo we may rewrite (2.9)
and (2.10) as

U(t + h)-U(t) ~ h/m(t),        U(t)~t/m(t)
providedp<co. Thus apart from the constant Ca in (1.4) and [Y(a+\)Y(2—a)]-1
= CJa in (2.1), Theorems 1 and 5 are the natural generalizations of these classical
theorems.

(v) It should be pointed out that when <x = l in (1.2), i.e., if A has the form
1 —F(t)=L(t)/t for some slowly varying A, then A may or may not have a finite
mean. For an example when /¿<oo consider L(t) = [log(t+2)]~3~(logt)'3. For
fi=oo, consider L(t) ~const >0.

As noted in (iv), the classical theorems already imply Theorem 1 (and 5) when
jii<oo. Hence we shall assume from now on that ju = oo when a= 1 in (1.2).

3. Properties of distributions satisfying (1.2). Let A be of the form (1.2) (when
a = 1 we assume in addition that A have infinite expectation, see §2). Let <j> be the
characteristic function of A:

¿(0) = T eixeF{dx}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1970] STRONG RENEWAL THEOREMS WITH INFINITE MEAN 269

Lemma 1. The function m defined by (1.3) is regularly varying with exponent
\—a, and as t —> oo

(3.1) r(l-F(t))/m(t) = ^-"¿(OMO-> \-a.

We shall need the following immediate consequence of Lemma 1 : let -r¡ > 0, then
provided a > 1 ¡2 and B>0,

rtlB
(3.2) lim t-xm2(t)       m~2(x)dx = [(2a-\)B2«-XYX.

t-CO J„

Note. The restriction to a > 1/2 in (3.2) partly explains the failure (at least of
the proof) of Theorems 1 and 3 when a ^ 1/2. See equation (5.11).

Proof. This lemma is a direct consequence of Karamata's theorem on regularly
varying functions, see Feller [3, p. 273]. The relation (3.2) likewise follows from
this theorem. To see this, define Z(x)=m~2(x) for x^-q, Z(x)=0, 0^x<r¡. Since
m is regularly varying with exponent 1 — a, Z varies regularly with exponent
— 2(1 —a) = 2a—2. Hence, according to the theorem,

]im     *(*>     = ]im (ffgWf = i+2a_2 . 2a_,.t- » po Z(x)dx     *-• P0IB Z(x) dx

But Z (t j B)~ (I I B)2a~2Z(t), /-»-co (by definition of regular variation). Therefore

rtlB
2a -1m-\x)dx ~ (2a-\)-\tlB)Z(t¡B) ~ riw-a(0/(2a-l)5:

as í ->■ oo which proves (3.2).

Lemma 2. y4i 0->O +

(3.3) \-4>(8) ~ e-i™i2Y(2-a)8m(\l8)       (a # 0).

H7¡e« a=\ we have in addition to (3.3)

(3.4) Re(l-#0))~-Jir0L(l/0),        0-^0 + .

Proof. Suppose 0<«<1. Then by (3.1) m(\/9) ~ (l-a)-19a'1L(l/9), 0^0 + .
Since T(2 —a)/(l — a) = T(l —a) we see that (3.3) is equivalent to

(3.5) 1—#0) ~ e-i"al2T(l-a)8aL(l/9),       0-^0 + .

Stated in this form (3.3) is well known so we omit the proof. See Garsia and
Lamperti [5], or Feller [3, Problems 12 and 13, p. 562]. (There is a slight misprint
in the latter reference.)

When a= 1, (3.3) and (3.4) do not seem to be as well known. Here then is a brief
proof. For any A, 0>O, write

a Aie     ¡"x \+ jJ(l-enF{dy} = Jx+J2
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then

|/a| = I P (l-e™)F{dy}   è 2(l-F(A/8)),
I Jais
¡•Aie rA

j1=\     (\-ew)F{dy} =-(l-eiA)(l-F(A/8))-i\   eix(l-F(x/8))dx.
Jo Jo

But 1 —F(t)=L(t)/t with A slowly varying. Hence

(3.6) 1 -<p(8) = o(9L^ieA - i T eix(l -F(x/8)) dx.

(The bound in the 0 term is ^ 4 in magnitude.)
We prove (3.3) first. From (3.1) and slow variation of A we get

L(A/8) ~ A(l/0) = o(m(\/8)),       9->0 + .

Hence from (3.6)

(3 7) lim tdíñ = _,- lim   f eixß-F(x/9)\
KXI) e-T+ 9m(l/8) 7io + J0      [ 8m(\/8) j UX

provided the latter limit exists. Now by Lemma 1 m is slowly varying (=regularly
varying with exponent 0); also w(0) = 0. Hence, the measure Qe on [0,^4] with
distribution function QB(y)=m(y/9)/m(\/9) converges weakly as 9-+0+ to the
measure which assigns unit mass to the origin. Whence, for any continuous g on
[0,A]

rg(x)QÁdx} - r H^eïnm1)dx -*°>
as 0^-0 + . Taking g(x) = eix we see that the right-hand side of (3.7) equals — i.
This proves (3.3).

Note. The preceding proof requires only minor changes to apply in the case
0<a<l. In particular, a term 0(1 ¡Aa) must be added to the right side of (3.7);
also QB converges to the measure with density (1 -a)x~a. In (3.7) one lets 8 -> 0 +
followed by A -> oo. The remainder of the proof is then an evaluation of an im-
proper integral.

To prove (3.4), take real parts in (3.6). Then

Re (1-¿(g))
8L(l¡8) °§<*?m*-

(The bound in the 0 term is â 8 for all 0< 8^ 8A sufficiently small.) Letting 9 -» 0+
and then ^l-s-oowe see that

Re (!-#*))_ v_  v_  ÇAsinxL(x/8)dx<3-8> lim ̂ muw1 - lim lim f8-.0 OL\llO) A-*oo    $->0   Jt0        X       Hl ¡ff)
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provided the iterated limit exists. Since L is slowly varying, we get from the Kara-
mata theorem mentioned earlier

|  L(u) du ~ tL(t),       t -> oo.

Hence, for every v ̂  0,

,.   rvL(xi8), e   p»    w¡To lmmdx= is mm I L{u) du = y-
That is, the measure with density L(;t/0)/L(l/0), x^O, converges weakly as 0->O
to Lebesgue measure. Hence for any continuous function / and any compact
interval [0, A], say,

Letting/(jc)=(sin x)/x and returning to (3.8) we have

..     Re (1-0(0))      ..      fAsinx,      n
llm  —arnia\      =  llm        -"•* = V

e-»o+       ttJL\llu) A-><B Jo     X Z

which proves (3.4).
For the purposes of the next two lemmas put

(3 9) W(x) = Re (     l     ) = Re(1~^)).{iy) mX)     Ke[l-<p(x))       |1-0W|2

Note that IP is positive since Re (1 — </>(x)) = ¡^ (1 —cos xt)F{dt) > 0, and symmetric:
W(—x)=W(x). Also, W is unbounded (hence undefined) at all x for which
<f>(x) = 1 (in particular at x=0); at all other x Wis continuous.

Lemma 3. As 0->-O+

COS (irct/2) 1(3.10) " W(x)dxJ0     v ' (l-«)r(2-a) m(l/0)

When a= 1 the constant on the right is replaced by

2
(_ ,•       cos (to/2)   \
I      ™(l-a)r(2-«)|

Remark. The integrability of W over bounded intervals containing the origin
is, of course, part of the conclusion. This fact, however, is true for any distribution
on (0, oo) (and for some distributions on the entire line) ; see [3, p. 578].

Proof. A simple calculation using (3.9) and the asymptotic relations (3.3),
(3.4) and (3.5) gives

<311> ™*~t&8$% *-*0+>
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where ka is the constant occurring on the right in (3.10) (A:1=7r/2). Next note that
the function \/m(\/x), x>0 is absolutely continuous on any interval bounded
away from 0 and oo. So, by the chain rule and (1.2)

<3-12) í (=}n) = l-
dx \m(llx))      >

-F(l/x)_      L(l/x)
x2m2(l/x)     x2~am2(l/x)

for almost all x. (The exceptional set is at most countable.)
Consider 0<e< 1 fixed but arbitrary. By (3.11) there is a A = A(e)>0 such that

W(x)$(l±e)ka-
x2-"m2(l/x)

whenever 0 < x ^ A. Integrating these inequalities from x = 8 to x = 8 and using (3.12)
yields

iW^dx^l±^mh)-n^

for 0< 8-¿ 8^ X. Now let 8 ->- 0, then m(l/8)-+co (p.=co recall), hence

^-£)mel<[w(x)dx<(l+E)nWeT

whenever 0< 0:£ A. This concludes the proof.
By Lemmas 1 and 3, as t —> oo

(3.13) ^ f W(y/t)dy = m(t) C W(x)dx^ka91~a
t    Jo Jo

for all 9>0 and it follows that the measure with density qt(y) = (m(t)/t)W(y/t)
converges weakly as t —> oo to a measure which when a= 1 is concentrated at the
origin with total mass kx=-n/2 and when 0<a<l is absolutely continuous with
density (1 — a)kay~a. Denote the limit measure by Ea. Then for any function/
continuous on a compact interval, [0, B], say,

¡-Bit fB pB
m(t)\    f(t9)W(9)d9=      f(y)qt(y)dy^\   f(y)Ea{dy},       t-+co.

Jo Jo Jo

Taking f(y)=cos y we have

Lemma 4. Let W be given by (3.9). Then for any B>0

i-       /n CBlt „,/m        n ,n     cos Ua 12) CBcosy ,lim m(t)        W(8)cost8d8=   _,.,;    '.'      —^dy,       a ¿ 1,(3.14) «-« Jo T(2-a)  J0    ya     '*

= it/2, a = 1.

Lemma 5. (i) Aor all 6X # 82

(3.15) \4>(e2)-j>(8x)\ Ú 2\82-9x\m(l/\92-9x\).
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(ii) If F is nonarithmetic, then for each A>0, there is a number k>0, which may
depend on A, such that

(3.16) 9m(\/8) S k\l-0(0)|   for 0 < 0 = A.

If F is arithmetic with span h, (3.16) is true provided A <2ir/h = period of'</>.

Proof, (i) Fix B >0. Then

IW-O-Wi)! = \[fo+Qie^-e^)F{dx}
^ i"   \eixe*-eixei\F{dx}+2(\-F(B))

^ 102 - 0i I Ç xF{dx} + 2(1 - F(B)).

But OSfâxF{dx} = m(B)-B(l-F(B)) by (1.3). Hence setting B=\92-9X\-1 we
get |0(02)-<p(9x)\ afi-'KB)-B(\ -F(B))] + 2(1 -F(B)) = B~*m(B) +1 -F(B)Ï
2B~1m(B) which proves (3.15). (Note that (1.2) was not used; (3.15) holds for any
F on [0, oo).)

(ii) If F is nonarithmetic then 11 - 0(0) | > 0 for all 0 ¿ 0. By Lemma 2 as 0 -+ 0+

8m(l/9)/\l-0(0)| -> l/r(2-<x)

and it follows that the function

ß(9) = 0w(l/0)|l -0(0)| -\       9*0
= (r(2-a))-s 0 = 0

is continuous on [0, A]. Taking k = max{ß(9) :0^9^A} gives (3.16).

4. An inversion formula for the renewal measure.   Define the symmetric renewal
measure

v{i} = uu{i}+u{-i})
where U is given by (1.1) and — l—{x : —xel}. In this section we establish the
following

Formula. Suppose F is nonarithmetic and has an infinite mean. Then for any
continuous function g with compact support whose Fourier transform

(4.1) y(x)= r   e'*°g(9)d9
J — OO

satisfies

(4.2) y(x) = 0(\/x2),       |x| ^oo,

we have

(4.3) J"^ e-^y(x)V{t+dx} - J^ e-™g(9+X) Re (yz^) d9
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for all real A and t. Here, as elsewhere, </> is the characteristic function of A. Note
that the integral on the right in (4.3) only extends over a bounded interval. For
examples of g and y see §5.

Lemma 6. Aei y be any continuous function satisfying (4.2). Then for every t the
integral

r   \y(x-t)\V{dx}
J — CO

is finite.

Proof. Since {^ \y(x—t)\V{dx}<co  and  since   \y(x—1)\  is  bounded  by a
constant (which may depend on t but not x) times l/x2, it suffices to show

(4.4) f       1 V{dx} =  r ¿ U{dx} < oo.
Jlxlël x Jx    x

From (2.10) it follows that U(x)¿kxX for some constant kx<co and all xfel.
Therefore integrating by parts in (4.4) we get

= - f/(l)+2 P -^ <¿c g 2kx r -^dx < co

which proves (4.4) and the lemma.
For 0^s< 1 let V, be the finite symmetric measure

Vs{dx} = 1 2 ■s"0F"'{<&} + F'l*{-cit})
^ n = 0

and note that

(4.5) F5{/}fF{/}   assfl

for every measurable / bounded or not.
Since

<I>(-8)=W)
we have

£ e<x°Vs{dx} = \pW(S)+n-e)) = Re (j-^)

and an application of Fubini's theorem gives

£ y(x)VÁdx} = £ g(9) Re (^J «      (0 * , < 1)

for any (Lebesgue) integrable function g with y given by (4.1). Replacing g by

Sitf) = e-™g(8+X)
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and y by

yx(x)=  r   eixegx(8)d8 = e-Wx~tty(x-t)
J — 00

we get

(4.6)      J""^ e-^x-»y(x-t)Vs{dx} = J^ e-«°g(e+X) Re (tz^) de-

Lemma 7. For any continuous function h with compact support

(4-7)     .Üf- £ ™ Re (rdb))" = L m Re (r=iw) "
provided F is nonarithmetic and has infinite expectation.

Proof. We base the proof on the following proposition due to Feller and Orey
[4]:

Proposition. 77ie measure whose density is

1
l + l Re G-*0(0))

converges weakly and in variation to a finite measure as s -> 1 —. In every interval
excluding the origin the limit measure is automatically absolutely continuous with
density given by

h02Re(l-0(0)j"1 + 02

Ifß is the mass assigned to the origin by the limit then ß=it/p. > 0 when p. (the mean of
F) is finite and ß = 0 in case /x = oo.

We omit the proof. (Besides the Feller-Orey paper, see also Breimann [1, p. 221],
and Feller [3, p. 578].) The proposition implies, among other things, that

Ä L r+^ Re (j=m)de - ^(0)+£ ttI2 Re (t=m) de
for every continuous function / with compact support. In our case j8=0, and
(4.7) follows by setting/(0)=(1 + 82)h(9).

Proof of formula (4.3). The very strong convergence (4.5) of the measures
Vs to V implies

(4.8) lim   f" f(x)Vs{dx} = f" f(x)V{dx}
S-*l —   J — 00 J - 00

for every/integrable with respect to V. (In fact, if/is nonnegative the integral on the
left is nondecreasing as a function of 5 and one can show (4.8) holds even iff is not
integrable.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



276 K. B. ERICKSON [September

Suppose now g and y satisfy (4.1) and (4.2) with g continuous and vanishing off
a compact set. Then by Lemma 6

e-iA<*-<V(*-0

is integrable with respect to V{dx} for every t and A. Hence by (4.6) and (4.8)

P   e-axy(x)V{t + dx} = P   e-Wx-»y(x-t)V{dx}
J — CO J — 00

=.ïf-E«-"w+A>Re(ïdw)*
Formula (4.3) now follows from Lemma 7.

5. Proof of Theorem 1.
1°. Introduce measures fit,t>0, by

(5.1) fit{I} = 2m(t)V{I+t} = m(t)(U{I+t}+U{-I-t})

where /is measurable and I+t={x : x—tel}. Since Uis concentrated on [0, co)
it follows by taking /= [0, A] in (5.1) that

U(t+h)-U(t) = (l/m(t))fit{I}.

Therefore to prove Theorem 1 it suffices to show

(5.2) fit{I}^Ca\I\,       r^co,

for every bounded interval /where |/| denotes the length of I and

ca = [r(a)r(2-«)]-1.
For each a > 0 put y JO) = 1 and

(5.3) ya(x) = 2(1 -cos (ax))/a2x2.

Lemma 8. Aeí {/¿J, t > 0, be a family of measures such that /xt{/} < oo for every
compact set I and all t. Suppose for some constant C

(5.4) lim  P   e-iAxya(x)fit{dx} = C P   e-iÁxya(x)dx
t-K*>    J -CO J-CO

for every a>0 and all real A. AAen C"1/^ converges weakly to Lebesgue measure:
fit{I} —> C\I\ for every bounded interval I.

(We defer the proof until §6.)
Now ya is the Fourier transform (4.1) of the function

ga(0) = (l/a)(l-1e\/a),   when \8\ ¿ a
= 0, when |0| > a.

Whence by the Fourier inversion theorem

(5.6) P   e-*xya(x)dx = 2TTga(X).
J — 00
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Clearly we may also apply our inversion formula (4.3) to obtain

(5.7) T   e~ikxya(x)ptt{dx} = 2m(t) f"   e-il<>ga(8+X)W(8) dd
J — CO J — 00

where 1^(0) = Re [1— 0(0)]_1. Note that the integral on the right extends from
0=— a — Xto8=a—X. From (5.6) and (5.7) we see that (5.4) in our case is equivalent
to

(5.8) lim m(r)P   e-uega(8 + X)W(8) d9 = nCga(X)
t-"C J-00

and, by Lemma 8, the proof of (5.2) (and Theorem 1) will be completed when we
establish (5.8), with C=Ca for every a>0 and all real A.

2°. Let B>\ be fixed but otherwise arbitrary, and write the integral in (5.8)
as the sum Jx +J2 where

¡•Bit
Jx(t,b)=\      e-it6ga(9+X)W(9)d9   and

J -Bit

J2(t,B)=  f e-™ga(8+X\W(8)d8
,,. „, J\e\>Bit

= i    [e-itsga(e + X) + eitega(d-X)]W(8)dd,
JBIt

A = max{a+A, a — A}.

(The last integral follows by making the substitution 0 -> —8 in the integral
J_œ"> using the evenness of the functions ga and W and noting that ga vanishes
outside the interval (—a, a).) We will show

,.x.     „. ... 2 COS-rral2   fs COS X   . ,   ,
(5.10)     ft m{t)Uu B) =gÁX) T(2^r J. — *    « * J

= ngaW, a =  !

and "

(5.11) limsup«i(0|/a(MÏ)| = o(^),       \

which lead directly to (5.8).
3°. Proof of (5.10). It is clear from (5.5) that

(5.12) |*„(0a)-S„(0i)|  ^(1/«2)|02-0!|

for all 9X, 82. Hence

< a <  1

mit)
¡•Bit ¡"Bit

Jiit, B)-gaiX) \       e~MW(8)d8   Sm(t)\       |ga(0 + A)-ga(A)| W(9) d9
J -Bit J - Bit

^r*»*-0©
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where the 0(1/t) follows from (3.10) and Lemma 1. Thus
(■Bit

lim m(t)Jx(t, B) = ga(X) lim m(t) e~mW(9) dd
Í-.CO (-.to J-BIt

[Bit
= 2ga(X) lim m(t)        W(8) cos td d8

«-<*> Jo
and (5.10) now follows from Lemma 4.

4°. Proof of (5.11). Let

hx(8) = e-"°ga(8 + X) + ei">ga(8-X),
h2(8) = e-uega(8 + 7r/t + X) + eul3ga(8 + 7rlt-X).

Then hx(9+-n/t)= —h2(8) and making the change of variables 0-* 8+tt/í in (5.9)
gives

J2(t,B)=[   hx(8)W(8) d9 = f -h2(9)W(8+TT¡t)d8
JbH Ji.B-n1lt

(note that the integrand in the last written integral vanishes for A—ir/f^d).
Adding these integrals we get

(5.13)   2y2 = -£     ^h2(8)w(e + -^d9 + ^hx(0)W(9)-h2(8)w(9+-\\d8.
rBit

J(.B-n)lt \ 1/

Now |A/0)| S2/a and from (5.12) we have

M8)-h2(8)\ Ï   g¿o + \)-ga(o+\ + ty | + |ga(0-A)-ga(0-A+^ | ^ p(-

Thus

hx(9)W(9)-h2(8)w(9+-^   ï |A1(0)-A2(0)|fF(0) + |lF(0)-lF(0+^||A2(0)|

^a%WW + l\W{e+-t)-WW-
Applying these inequalities in (5.13) gives

\J2\ ^ - ¡Bl       wÍ8 + -\ d8+~ f  W(8)d8
a J(B_«,i     \      t)        a2t Jen

(5.14)
HB-nVt

+ - f \w(8 + -)-W(8)\d8.a Jbh I     \      t) j
From Lemma 3 it is clear that

(■Bit

lim ™C)£"      W(6+l) dd = ^[(B+Tty-^-B'-"] = o(l).

Also, since IF is integrable on [0, A], A<co,
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(That m(t)/t -> 0, í -^ oo, follows from Lemma 1, §3, in our case, but is true for
any Fon [0, oo) with m given by (1.3).) Hence from (5.14)

lim supm(t)\J2(t,B)\ = a"1 lim sup m(t) f I w(d+^\- W(9) d8 + o{^-\-
t-.<o ¡-.oo Jsit \     \      tj \a I

But 0(B~a) = 0(B1-2a) (B> 1, O^aá 1), so the proof of (5.11) will be complete
when we show

(5.15) lim sup m(t) £ | w(e+-^ - W(8) d8 = o(^¿^j-

By Lemma 5 (i) we get

\wÍ9+-\-W(9) =  Re 0(0+77/0-0(0)
[i-0(0+WO][i-0(0)]

2(n/t)m(t ¡it)
= ll_^+w/r)lll_^ö)l

Applying this estimate and the Cauchy-Schwarz inequality to the integral in (5.15)
gives

P |wf0+-)-»r(-0)|rf0
Jbu I      \       i I

(5.16) s £ „(í) (£ |T_^L__)1/2 (£ ttz^)1"

< 8 m(t)(J) f2A _
t Lit |i

d9
(n/t ^ A).

JBit   |*--0(0)|2
Again by Lemma 5(ii) there is a constant k < oo such that

for 0 < 0^ 2A. Consequently

<"2A _ d8
I Bit

(5.17)
¡"dec
¡Bit   |1-0(0)|2= h

1/|1-0(0)| Úk/9m(\l8)

de■2A

0(ö)|2
where r¡=\/2A. Combining (5.16) and (5.17) we get

= k2
Jn

dx
m2(x)

lim sup m(t)- f     w(e + -\ - W(8)
t-» Jb/í I     \      t]

d9 ^ %k2 lim
Í-.0O

1

m2(t) Ct,B   dx
t    J„    m2(x)

(«>*)(2a- l)^2*-1

where the last equality comes from (3.2). This completes the proof of (5.15) and
hence of (5.11).

5°. The proof of (5.8) with C=Ca = [r(ot)r(2-a)]~1 is now almost immediate.
Let

A(0 = m(t)j° e-uegaie+miO)dO-TCaga(X)

= \m(t)(Jx+J2)—nCaga(X)\
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and suppose a^ 1. Then by (5.10) and (5.11)

*Z.(A)        I

[September

(5.18)
lim sup A(?) í¡ lim

t~* 00 (-* 00
m(t)Jx

g.(A)
r(2-«)'

r(«)r(2-a)
, /WV   CB COS
2cos(t)J0-^

+ lim sup w(/)|A2|

X    j ITdx ricol + ̂ U2«-1)'
Now as B -> oo, (B x " cos x dx -> sin (7ra/2)r(l —a), hence

lim
B-. co

2 cos /Wv  CB cos * dx- r(«) sin (7Tce)r(l—a)- IX«)= 0.

Therefore taking the limit in (5.18) asfi-^-oowe get

lim sup A(?) = lim lim sup A(r) = 0
(-»CO B-.CO        (-.CO

which proves (5.8) when a^l. When «=1 the proof of (5.8), with C=CX = 1,
from (5.10) and (5.11) is even simpler so we omit it. Theorem 1 now follows from
Lemma 8.

6. Proof of Lemma 8.   There is no loss in generality in supposing C= 1. Taking
A = 0 in (5.4) and (5.6) we see that as í -^ co

r °° r °° 2-TT
N<*) = ya(x)fit{dx} -> ya(x) dx = — > 0.

J — co J — co a

Hence (5.4) implies that the characteristic function of the probability measure

Pt{dx} = 1
Nfl) Ya(x)fit{dx}

converges pointwise to the characteristic function of the probability measure

P{dx} = (a/2iT)ya(x) dx.

Consequently, by the continuity theorem for characteristic functions Pt converges
weakly to A as t -> oo. Whence

(6.1)
/•oo /*oo

lim B(x)ya(x)fit{dx} = B(x)ya(x) dx
t-*ccJ_co J — CO

for every bounded continous function B on A1 and for every a > 0.
For any continuous function/with compact support, write

un = r /WftW' a(/) - r twdx-
J — CO J — CO

Let / be a bounded interval and let e > 0 be arbitrary but fixed. We can find con-
tinuous functions/+ and/- both with compact support such that

(ï)0ïf-il,f-(x)=0forxtl,
(ii)  \I\iX(f-) + e,
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(iii) /+ ^0,/+(*)= 1 for x in /,
(iv) A(/+)^|/|+£.

Now choose a>0 so small that

/+(*) =/-(*) = 0   when |x| = ir/A-a.
Then since

i \      ~(l—cosax\       n    c      \   \ ii
Yaix) = 2y    q2x2    j > 0   for |*| < 7r/2a

it follows that B+=f+/ya and B'=f~¡ya are continuous functions on R1 with
compact support (hence bounded). Therefore by (6.1)

/•»co /»oo

(6.2)        W±)=\      B-(x)ya(x)pit{dx}^\      B±(x)ya(x) dx = X(f±).
J — CO J — 00

From (i) and (iii) it is clear that

W~) = i4fí i Uf+)
for all t > 0. Letting t -> oo and using (6.2) we get

X(f~) t¿ liminfMí{/} Ú Hm sup ̂ {7} ú X(f+),

and hence by (ii) and (iv)

|/|-e ^ lim inf/*,{/} ^ lim sup ^{7} g |/|+e.

Since this holds for every e > 0 it follows that

/ut{/}->|/|,        ?->oo,

which completes the proof.

7. Proof of Theorem 2.
Io. Our first task is to show

(7.1) liminfm(t)(U(t+h)-U(t)) ^ CJi       (h > 0),
Í-.0O

or, equivalently,

(7.2) liminfí1-aZ.(?)(t/(/ + A)-í7(0) ^ %2-^h.
f-><o TT

(See remark following the statement of Theorem 2.)
Condition (1.2) with 0 < a < 1 is necessary and sufficient for F to be in the domain

of attraction of the unique (apart from a scale factor) stable distribution with
exponent a concentrated on [0, oo). Thus if a sequence {Bn} is chosen so that
0 < Bn f oo and

n(\-F(Bn)) = nB-aL(Bn)^\
as n -*■ oo, then

(7.3) F"-(Bnx) -> j' qa(y) dy       (« -> co, x ^ 0)
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where qa > 0 and satisfies

e - Ayqa(y) dy = exp [ - A<T(1 - «)],       A ̂  0.
i

In addition to (7.3) a local limit theorem for nonarithmetic distributions due to
C. Stone [9] implies the somewhat stronger result

(7.4) A*Xi + A)-AkX0 = (h\Bk)qa(t/Bk) + 8k/Bk

where Sfc->0 as k->co uniformly in r>0 ((7.3) only allows Fk'(t+h) — Fk'(t)
~hBk1qa(tBk1) for t and A fixed). Using (7.4) we prove (7.2) almost exactly as
Garsia and Lamperti [5] prove the analogous inequality in the arithmetic case.
Thus from (1.1) and (7.4)

U(t+h)-U(t) > 2 (F^it+^-F^t))

=htiq^yvt
LetO<A<C<co, and choose n = [Ata/L(t)}, r= [Cta¡L(t)\. Then, as in [5], we have
both

ti-«L(t)2^ = o(l),       t- ■co

and, writing xk = kL(t)/t", n^k^r,

ii-"A(i)2i-4ir)~     2    x^qJx^Xx^x-x,)

-»■ f  x-llaqa(x-lla) dx

as t -> oo. Hence for any e > 0

/x -aZ,(0(i/(i + A) - C/(r)) ̂   f  x-wqjx-^dx-e

for all t sufficiently large. In other words

liminfí^^íXí/^-r-A)-^)) à  f  x-llaqa(x-1,a)dx,
t->co JA

and (7.2) now follows by letting A -*■ 0, C -»■ oo and noting

P x-1'«^*"1'«) ¿c^f v-a9a(j) ¿v = ^^-
Jo Jo w

2°. To complete the proof of Theorem 2 we need the following lemma (also
needed in the proof of Theorem 3).

Lemma 9. Let z be any nonnegative integrable (but not necessarily dri) function
on [0, oo). Then

(7.5)        liminfw(í) f z(t-y)U{dy} ^ Ca P z(x) dx       (0
«-►co Jo Jo

< a Ú 1).
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To finish the proof of Theorem 2 we set z(x) = 1 for O^xSh, z(x)=0 elsewhere.
Noting that m(t+h)~m(t) as t-*■ oo we get from (7.5)

liminfm(O(£/(' + /0-t/(O) = Mminf m(t+h)U*z(t+h)
¿-»GO (-»oo

(7.6) roo
g Ca      z(x) dx = Cah.

Together (7.1) and (7.6) give (1.5).
Proof of Lemma 9. Let v(t)=U*z(t) = P z(t-x)U{dx}. Then

¿(A) = r e~Áxv(x)dx = (r e-Xxz(x)dx\û(X) = z(X)Û(X)

where Û is defined as in §2(i). Since U is regularly varying with exponent a we have

Û(X) ~ Y(a+\)U(\/X)   as A^0 +
by Theorem 1 in [3, p. 420]. Now í(0)=f¿° z(x) dx<oo and it follows that

v(X) ~z(0)r(a+l)C/(l/A),       A->0 +

which, by the converse of the same Theorem 1 in [3], is the same as

(7.7) f v(x) dx ~ ¿(0)17(0,       t -> oo.

Now by Theorem 5 in §2

(7.8) U(t) ~ (r(a+l)r(2-«))-1i//n(0 = (Ca/a)t/m(t)

as t-^-co; also, since \/m is regularly varying with exponent a —1> — 1 we have
for fixed r¡ > 0

,-m It f  dx(7.9) -T-T  ~ —r-^ t -*■ 00a m(t)     J„ m(x)

(cf. [3, p. 273]). From (7.7), (7.8), and (7.9) it follows that

(7.10) £ v(x) dx ~ Caz(0) £ ^>       t -* co.

Suppose, contrary to (7.5),

liminfw(Of(0 > Caz(0).
t-oo

Then for some e > 0 and all x £ r¡ sufficiently large

v(x)^(l+e)Caz(0)illm(x)).

Hence

£ t<*) dx = £ K*) dx ^ (1 +0Caz(0) £ ^

for all í^t?. But this contradicts (7.10).
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8. Proof of Theorems 3 and 4.
Io. Let A>0. Throughout this section put zk(x)=l  when (k-l)h^x<kh,

Z/c(*)=0 elsewhere, and let

vk(t) = U*zk(t) = U(t-(k-l)h)-U(t-kh).

Since m(t—kh)~m(t) for fixed kh, t -> oo, we have by Theorems 1 and 2

lim inf m(t)vk(t) = Cah       (0 < a g i),
(8.1)

lim m(t)vk(t) = Cah       Q < a ^ 1);   Â: = 1, 2,....
Í-.CO

2°. Let z^O be any dri function on [0, oo]. Then

(8.2) lim inf m(t) f z(t-y)U{dy} è Ca P z(x) dx       (0 < a ^ 1).
i-co Jo Jo

Theorem 4 follows immediately from (8.2) and Lemma 9.
To prove (8.2) let e > 0 be arbitrary. We suppose A > 0 is so small that

/.CO CO

z(x)dx-— < 2akh
Jo w        i

where ak = inf{z(x) : (& — l)A^x<A:A}. Then by (8.1) and Fatou's lemma

»co <*>

Ca z(x) dx — e < 2ak nm ml" W2(0I'fc(0
Jo i (->»

CO

g liminf/?í(0 2akí/*zfc(0
í-».00 j*

g liminf/M(i)C/*z(í)
Í-.CO

which implies (8.2) as e>0 is arbitrary.
3°. From now on in addition to being dri we assume z satisfies (1.7). That is for

some constant A < oo

(8.3) 0 ^ z(x) ^ b/x,       x>0.

We also assume \<a^ 1 in (1.2). Obviously our goal now is to show

Í't /*CO
z(t-y)U{dy) <, Ca\    z(x)dx.

- o Jo
4°. Fix O<0<1. Then

(8.5) lim sup m(t) f z(t-y)U{dy} Ï 4f^
(-»» Jo a(l —0)

and
t*t /»CO

(8.6) limsupw(l)      z(t-y)U{dy} ^ Ca       z(x) dx.
t-»co J(9 J0
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Proof of (8.5). From (8.3)

But U(t8)~8aU(t)~a-1Ca9a(t/m(t)) as r-^oo by Theorem 5 and Lemma 1.
Hence

limsupw(0 Í  z(t-y)U{dy) = -^—a lim ^ U(t9) = ^
t-.oo Jo 1 — " t-»oo     t a(l-

Proof of (8.6). Let oO be arbitrary and put èfc=sup{z(jc) : (k — \)húx<kh).
We assume h is so small that

(8.7) y bkh < f z(x) dx+~
i Jo Ca

Let n be the largest integer satisfying (n — l)h^t(l — 0). Then zk(t—y)=0 for
k^n+l and all t8^y^t, hence

(8.8) f z(í->>)£/{¿y} ^ 2 b« f ̂ -^)^{*} á J °Mt).
Jte i       Jw i

Suppose for the moment that

(8.9) lim m(t) ¿ Mt(0 = C« £ M-

Then by (8.8) and (8.7)

f* ^ f °°
lim sup m(/)      z(/-j)t/{</y} ^ Ca> èfcA < Ca       z(jr)<£c + e

f-*10 Jte i Jo

which yields (8.6) on letting e -> 0.
Let ßt(k) = bkm(t)vk(t) for A: =1,2,..., n and ßt(k)=0 for fc^n+1 then

m(t) 2Ï M*(0 = 2?= i ßt(k), and since, by (8.1), ßt(k) -> CÄ, k = 1, 2,..., t -* oo,
we see that to establish (8.9) it will suffice to find numbers T and B so that

(8.10) ßt(k) = Bbk   for all k = 1 and all t ^ T.

First choose s0 so that iSs0 implies

U(s+h)-U(s) < 2Cah/m(s).

Next from m(t8-h)~m(t9)~ 01-aw(O as f -► oo, wé find a i0 so that for all t^t0

m(t) < 26a'1m(te-h).

Suppose now that t^t0, td-h^s0 and l^k^n. Noting that t8-h^t-kh, by
definition of n, we get

m(t) < 28a-im(t8-h) ^ 20"-lfw(i-kh)
and

ffc(0 = U(t-kh+h)-U(t-kh) < 2Cah/m(t-kh),
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that is, m(t)vk(t)<4CJi9a-1. Since ßt(k)=0 for k>n we see that (8.10) holds with
A=max{(so-l-A)/0, t0} and B=4Cah9a~1. This completes the proof of (8.6).

5°. From (8.5) and (8.6) we have

lim sup m(t)U*z(t) = lim sup m(t)l \   + j )z(t-y)U{dy}
(-.co (-.« \Jo      Jtel

= °{-^9)+C°SoZ(X)dX
whenever 0 < 0 < 1. Letting 0-^-0 gives (8.4).

Theorem 3 is evident from (8.2) and (8.4).

9. An application. In this section we study the asymptotic behavior of the
spent and residual waiting times associated with a renewal process whose waiting
time distribution has the form (1.2) with a= 1.

A renewal process with waiting time distribution A is any sequence {Sn}, n ̂  0
of the form So=0, Sn = Xx+ • ■ ■ +Xn, n£l, where the Xn are positive mutually
independent random variables with common distribution A. The Sn are usually
interpreted as consecutive points on a time axis and are called renewal epochs.
The Xn are then called waiting times. In this context U{I} = 2 Fn'{I} = 2 P{Sn e 1}
is clearly the expected number of renewal epochs falling in A

Our interest here is in two auxiliary random variables Yt and Z¡ called, respec-
tively, the spent and residual (or excess) waiting time at epoch t defined as follows :
let Nt = max{n : Sn^t} ( = the number of renewal epochs in (0, i]). Then

F( = t — SNt,       Zt = S[f,+ x~t-

When the distribution A has a finite mean, Yt and Zt have nondegenerate limit
distributions:

(9.1) lim P{Yt > y,Zt> z} = - C   [1 -F(u)] du
Í-CO fl    Jy+z

(see [3, p. 371, problem 3], or [2, Theorem 1]).
In general when p.=oo the most one can say is Yt -* oo and Zt -*• co in probability.

However, if A has the form (1.2) with 0<a< 1, then Lamperti [7] and Dynkin
[2] have shown that Yt/t and Zt/t have nontrivial limit distributions:

lim p!L > yt £ > A . !Efï f (Z+U)-"(1 -u)«-1 du,
!-•• U t ) TT Jy

for 0gz<oo and O^y^l. See also Feller [3, p. 447]. These writers show that
(1.2) with 0<<x< 1 is in fact necessary and sufficient for YJt and Zt/t to have non-
trivial limit distributions. (Dynkin proves that if Yt/ß(t) (or Zt/ß(t)) has a non-
trivial limit distribution where ß(t) is regularly varying and approaches infinity
as í -s> oo, then (1.2) holds for some 0 < a < 1 and j8(i)/i -* const.)

When a= 1 in (1.2) A may or may not have a finite mean (see §2(v)), but in either
case it is quite straightforward to show that Yt/t ->- 0 and Zt/t ->- 0 in probability
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(see (9.4) for the precise rate). But as noted above if p.=co we also have Yt and
Zt -> oo (in probability) so one might expect that some nonlinear normalization
such as X(Yt)/ß(t) where A(0, ß(t) -*■ oo will yet produce a nontrivial limit distri-
bution.

Theorem 6. Let F have the form
\-F(t) = L(t)/t,       t>0,

where L is slowly varying at oo and suppose the mean of F is infinite. Then for
0 = aSl,b^0
(9.2) limp{^^,^^4 = min{fl,¿,}¡-«o     lm(t) m(t)        J

where m is the function defined by (1.3).

The limit distribution in (9.2) is just the uniform distribution concentrated on
the diagonal of the unit square, consequently we have the following.

Corollary. (m( Yt) - m(Zt))/m(t) -> 0 in probability as t -> oo, and for 0 < 0 < 1

(9.3) lim PÍ^ á0\= lim p{^ g ö\ = 0.
v    '                    i-«    \m(t)        j     t-«    \m(t)        }

Remarks. 1. Since Zt and Yt -*■ oo in probability it is clear that the function m
in these results may be replaced by any function mx such that mx(t) f oo and
mx(t)/m(t) ->k*0 as t-► oo.

2. It should be pointed out that for any F on (0, oo) with a finite mean (9.3)
(but not (9.2)) is still valid. To see this consider for example Yt. Let p be the continu-
ous inverse of m: p(m(t)) = t, m(p(x))=x, 0^x<p.. From (9.1),

hence
lim P{Yt úy} = p.'1 f [1 -Fix)] dx = «OO//*;
t-»oo Jo

lim P{m(Yt)/m(t) ^ 9} = lim P{Yt ^ p(8p)} = w(/3(0-i))//i =0        (0 < 0 < 1).

Our last result gives precise information about the distribution of Yt/t and Zt/t
for large r.

Theorem 7. Let F be as in Theorem 6 and let O^a^ 1, é = 0, a+¿#0. Then as
f-i-oo

(Note that L(t)/m(t) -»• 0 as t -> oo by Lemma 1.)
Proof. From (9.7) it follows that

Gt(a,b) = P{Yt> ta,Z, > tb} = £ " [l-F(t+tb-x)]U{dx}

a [l-F(t(l+b-y))]U{tdy}.-s:
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We now argue as in the proof of (2.8): By Lemma 1 and Theorem 5 (with a=l)

[1 -F(t)]U(t) ~ L(t)/m(t),       t -> oo,
so

m(t)      r1-al-F(t(l+b-y)) U{tdy}

Now

r (n K\ m^      f      l-F(r(l+A-j)) U{tdy}Gt(a,b)m~jo     -j-^--uw,       t^co.

„a     l-Fjtjl+b-y)) 1
Uy)~ l-F(t)        ^l+b-y   as/^°°

and the convergence is uniform in O^y^l—a (provided a+A^O) since each
f(y) is monotone in y and since the limit 1/(1 +b—y) is continuous onO^y^ 1 —a.
Also, since U(ty)/U(t) -> y, the measure U{tdy}/U(t) converges weakly to Lebesgue
measure as t -*■ oo.

From these remarks we see that

P{Yt> ta, Zt >*}$ + JTï4V' ■oo.

and (9.4) follows.
Proof of Theorem 6. Since we use Theorem 1 we shall assume Ais nonarithmetic.

Theorem 6 is still true when A is arithmetic, and, though certain of the details in
the present proof must be slightly modified, the essential points are the same. (Of
course one uses (2.4) rather than Theorem 1 in the arithmetic case.)

Let p be the strictly increasing continuous inverse of the function m: p(m(t))
= m(p(t)) = t. Since A has infinite expectation, m(t) -> oo as t -*■ oo so p is defined on
[0, oo). Fix0<a<l, A>0 and let

(9.5) at = p(am(t)),       bt = p(bm(t)).
We will prove

(9.6) lim P{Yt é (h, Zt > AJ = max {a, b}-b
t-.CO

which is evidently the same as (9.2).
Our starting point in proving (9.6) is the following equation

(9.7) P{Yt úa,Zt>b}= f    [l-F(t+b-y)]U{dy}.
Jt-a

Here is a probabilistic derivation: By definition Yt=t—SNt, Zt = SNt+1 — t where
Nt=n if and only if Sn^t<Sn+1- Hence the joint event {Yt^a, Zt>b} occurs if
and only if for some (unique) n, Sn=y with t-a^y^t and then Zt=Sn+1 — t
= Xn+1+y—t>b. By independence of Sn and Xn+1, the conditional probability
of the second event is simply P{Xn+1 > t+b-y} = l -F(t+b-y). Multiplying this
by Fn'{dy}, the distribution of Sn, and summing over all t—a íkyú t we get

P{Yt úa,Zt> b, Nt = n}= f    [1 -F(t + b-y)\F"'{dy}.
Jt-a
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Summing over all n j£ 0 gives (9.7) since 2 Fn' = U.

Lemma 10. (i) Let at be defined by (9.5) with 0<a< 1. Then

(9.8) at\t -^ 0   but at -»■ oo   as t -> oo.

(ii) Lei e, 8 > 0. 7%e/i i/jere is a T>0 such that for all t^T and all \f^yi2t we
have

(9.9) iZf8<C/(,+S)-í/(,)<l±í8.

(We prove Lemma 10 later.)
Let e, S>0 with 0<e<l be fixed but arbitrary. By Lemma 10, at->oo and

(t—at)/t-+ 1 as *-* oo. Hence by choosing Tx sufficiently large we may assume
that both (9.9) and the inequalities

(9.10) ii+108 < t-at < t < 2/—108,   at > 1008,

hold simultaneously for all t^Tx. Let t^Tx and consider the partition 0=j>0
<yx<y2< ■ ■ ■ of [0, oo) whereyk=k8. Write

At4 - U(yk+X)-U(yk) = U(yk + S)-U(yk)

and let yr and yn be chosen as in the following diagram

yr yr+i yn-i yn

(9.11) ^-,-1-,-1-M-1-,-1-,-„
0 t-at-h t-at t t + 8

(jr^/-a¡, jv-i^O- Since jr>i-at-8 and jn</ + 8 it follows from (9.9) and
(9.10) that

(9'12) W)h<^<W)K       t-r.r+1......-!.«.

Now let/(^)=l-F(r+¿,->;), 0^j^? + è(. Then/is nonnegative, nondecreasing
and bounded by 1. Consequently by (9.7), (9.11) and (9.12)

P{Yt ̂ at, Zt > bt} = f    f(y)U{dy) â "f/lWAt/* < i±f 2/->fc+1)8

A similar calculation gives
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But

f    Ay) dy = f     [1 - A(/ + At-v)] dy = m(at+bt)-m(bt)
Jt — at Jt-at

= m(at + bt)-bm(t).
Therefore for all t ̂  Aj

(,,3, nr,ia,,Zt>bi)Ui±.,((^yb)±^

Assume for the moment

(9.14) lim ^±^ = max {a, ¿>}.
(-.co     m(t)

Then since m(t) -*■ co as í -*■ oo we conclude from (9.13) and (9.14):

(l-e)(max{a,A}-A) g lim inf P{Yt ^ at,Zt > A}
è lim sup P{F( ^ at,Zt > A}
Ú (l+e)(max{a,A}-A)

and (9.6) follows.
It remains to prove (9.14). Let c = max{a, A} and ct=p(cm(t)). Then cm(t)

= m(ct) ^ m(at + bt) á m(2ct), or

(9.15) c í m(at+bt)lm(t) ^ m(2ct)¡m(t) = (m(2ct)/m(ct))c.

Now m is slowly varying by Lemma 1 and ct —> oo by Lemma 10, hence

m(2ct)lm(ct) -+ 1

as l-^-oo. Letting r->oo in (9.15) gives (9.14). This completes the proof of
Theorem 6.

Proof of Lemma 10. (i) Since both p(t) -*■ oo and m(t) -*■ oo it is clear that
at = p(am(t)) -> oo as t -*■ oo for any a > 0. Let 0 < a < A we show

(9.16) p(am(t))lp(bm(t)) = ajbt -+0,       t -> oo.

To get (9.8) take A = l, 0<a< 1 in (9.16).
Suppose (9.16) fails. Then for some O<0<1 and some sequence ¡\,->oo we

have 8-¿atJbtnúl for all n. Hence m(8btn)-¿m(atn)<m(bti), or since m(at)=am(t),
m(bt) = bm(t),

(9.17) m(6btn)lm(btn) S a\b < 1.

But m(8btn)lm(btn) -> 1 as tn -*■ oo, since m is slowly varying and Ain -> oo, so (9.17)
leads to the contradiction 1 ̂ a/b< 1. Hence (9.16) must be true.

(ii) Let s, ex, e2, 8 be positive numbers with ex, s2< 1. Since m is slowly varying
there is a tx > 0 such that

(9.18) I-ex < m(t/2)/m(2t) < 1+e,    for all t ^ fj.
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By Theorem 1, a= 1, we can find i2>0 so that

(9.19)       (l-*2)-¿) < U(y + 8)-U(y) < (1+Ê2).-|L,   for y ^ ,„

Suppose now that y = max{tx,t2} and itúyú2t. Then since m is increasing

m(t/2)lm(2t) g m(t)/m(y) Ú m(2t)/m(t/2).

Consequently \-ex<m(t)/m(y)<\/(\-ex) by (9.18), and from (9.19) it follows
that

(l-1)(l-2)¿)<^+S)-^)<(}^)¿)-

By (pre) choosing ex, e2 so that (l—ex)(l—e2)^l—e and (1 +£2)/(l — ex)S 1 +e
we get (9.9) with T=max {2tx, 2t2}.
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