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Summary. We consider rules for discarding predictors in lasso regression and related prob-
lems, for computational efficiency. El Ghaoui et al. (2010) propose “SAFE” rules, based on
univariate inner products between each predictor and the outcome, that guarantee a coeffi-
cient will be zero in the solution vector. This provides a reduction in the number of variables
that need to be entered into the optimization. In this paper, we propose strong rules that are
not foolproof but rarely fail in practice. These are very simple, and can be complemented with
simple checks of the Karush-Kuhn-Tucker (KKT) conditions to ensure that the exact solution to
the convex problem is delivered. These rules offer a substantial savings in both computational
time and memory, for a variety of statistical optimization problems.

1. Introduction

Our focus here is on statistical models fit using ℓ1 regularization. We start with penalized
linear regression. Consider a problem withN observations and p predictors, and let y denote
the N -vector of outcomes, and X be the N × p matrix of predictors, with jth column xj

and ith row xi. For a set of indices A = {j1, . . . jk}, we write XA to denote the N × k
submatrix XA = [xj1 , . . .xjk ], and also bA = (bj1 , . . . bjk) for a vector b. We assume that
the predictors and outcome are centered, so we can omit an intercept term from the model.

The lasso Tibshirani (1996) solves the optimization problem

β̂ = argmin
β

1

2
‖y−Xβ‖2

2
+ λ‖β‖1, (1)

where λ ≥ 0 is a tuning parameter. There has been considerable work in the past few years
deriving fast algorithms for this problem, especially for large values of N and p. A main
reason for using the lasso is that the ℓ1 penalty tends to give exact zeros in β̂, and therefore
it performs a kind of variable selection. Now suppose we knew, a priori to solving (1), that
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a subset of the variables S ⊆ {1, . . . p} will have zero coefficients in the solution, that is,

β̂S = 0. Then we could solve problem (1) with the design matrix replaced by XSc , where

Sc = {1, . . . p}\S, for the remaining coefficients β̂Sc . If S is relatively large, then this could
result in a substantial computational savings.

El Ghaoui et al. (2010) construct such a set S of “screened” or “discarded” variables
by looking at the inner products |xT

j y|, j = 1, . . . p. The authors use a clever argument
to derive a surprising set of rules called “SAFE”, and show that applying these rules can
reduce both time and memory in the overall computation. In a related work, Wu et al.
(2009) study ℓ1 penalized logistic regression and build a screened set S based on similar
inner products. However, their construction does not guarantee that the variables in S
actually have zero coefficients in the solution, and so after fitting on XSc , the authors
check the Karush-Kuhn-Tucker (KKT) optimality conditions for violations. In the case of
violations, they weaken their set S, and repeat this process. Also, Fan & Lv (2008) study
the screening of variables based on their inner products in the lasso and related problems,
but not from a optimization point of view. Their screening rules may again set coefficients
to zero that are nonzero in the solution, however, the authors argue that under certain
situations this can lead to better performance in terms of estimation risk.

In this paper, we propose strong rules for discarding predictors in the lasso and other
problems that involve lasso-type penalties. These rules discard many more variables than
the SAFE rules, but are not foolproof, because they can sometimes exclude variables from
the model that have nonzero coefficients in the solution. Therefore we rely on KKT con-
ditions to ensure that we are indeed computing the correct coefficients in the end. Our
method is most effective for solving problems over a grid of λ values, because we can apply
our strong rules sequentially down the path, which results in a considerable reduction in
computational time. Generally speaking, the power of the proposed rules stems from the
fact that:

• the set of discarded variables S tends to be large and violations rarely occur in practice,
and

• the rules are very simple and can be applied to many different problems, including
the elastic net, lasso penalized logistic regression, and the graphical lasso.

In fact, the violations of the proposed rules are so rare, that for a while a group of us were
trying to establish that they were foolproof. At the same time, others in our group were
looking for counter-examples [hence the large number of co-authors!]. After many flawed
proofs, we finally found some counter-examples to the strong sequential bound (although
not to the basic global bound). Despite this, the strong sequential bound turns out to be
extremely useful in practice.

Here is the layout of this paper. In Section 2 we review the SAFE rules of El Ghaoui
et al. (2010) for the lasso. The strong rules are introduced and illustrated in Section 3 for
this same problem. We demonstrate that the strong rules rarely make mistakes in practice,
especially when p ≫ N . In Section 4 we give a condition under which the strong rules
do not erroneously discard predictors (and hence the KKT conditions do not need to be
checked). We discuss the elastic net and penalized logistic regression in Sections 5 and 6.
Strong rules for more general convex optimization problems are given in Section 7, and these
are applied to the graphical lasso. In Section 8 we discuss how the strong sequential rule
can be used to speed up the solution of convex optimization problems, while still delivering
the exact answer. We also cover implementation details of the strong sequential rule in
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our glmnet algorithm (coordinate descent for lasso penalized generalized linear models).
Section 9 contains some final discussion.

2. Review of the SAFE rules

The basic SAFE rule of El Ghaoui et al. (2010) for the lasso is defined as follows: fitting at
λ, we discard predictor j if

|xT
j y| < λ− ‖xj‖2‖y‖2

λmax − λ

λmax

, (2)

where λmax = maxi |xT
i y| is the smallest λ for which all coefficients are zero. The authors

derive this bound by looking at a dual of the lasso problem (1). This is:

θ̂ =argmax
θ

G(θ) =
1

2
‖y‖2

2
− 1

2
‖y+ θ‖2

2
(3)

subject to |xT
j θ| ≤ λ for j = 1, . . . p.

The relationship between the primal and dual solutions is θ̂ = Xβ̂ − y, and

xT
j θ̂ ∈











{+λ} if β̂j > 0

{−λ} if β̂j < 0

[−λ, λ] if β̂j = 0

(4)

for each j = 1, . . . p. Here is a sketch of the argument: first we find a dual feasible point
of the form θ0 = sy, (s is a scalar), and hence γ = G(sy) represents a lower bound for
the value of G at the solution. Therefore we can add the constraint G(θ) ≥ γ to the dual
problem (3) and nothing will be changed. For each predictor j, we then find

mj = argmax
θ

|xT
j θ| subject to G(θ) ≥ γ.

If mj < λ (note the strict inequality), then certainly at the solution |xT
j θ̂| < λ, which

implies that β̂j = 0 by (4). Finally, noting that s = λ/λmax produces a dual feasible point
and rewriting the condition mj < λ gives the rule (2).

In addition to the basic SAFE bound, the authors also derive a more complicated but
somewhat better bound that they call “recursive SAFE” (RECSAFE). As we will show, the
SAFE rules have the advantage that they will never discard a predictor when its coefficient
is truly nonzero. However, they discard far fewer predictors than the strong sequential rule,
introduced in the next section.

3. Strong screening rules

3.1. Basic and strong sequential rules
Our basic (or global) strong rule for the lasso problem (1) discards predictor j if

|xT
j y| < 2λ− λmax, (5)

where as before λmax = maxj |xT
j y|.
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Fig. 1. SAFE and basic strong bounds in an example with 10 predictors, labelled at the right. The
plot shows the inner product of each predictor with the current residual, with the predictors in the
model having maximal inner product equal to ±λ. The dotted vertical line is drawn at λmax; the
broken vertical line is drawn at λ. The strong rule keeps only predictor #3, while the SAFE bound
keeps predictors #8 and #1 as well.

When the predictors are standardized (‖xj‖2 = 1 for each j), it is not difficult to see
that the right hand side of (2) is always smaller than the right hand side of (5), so that
in this case the SAFE rule is always weaker than the basic strong rule. This follows since
λmax ≤ ‖y‖2, so that

λ− ‖y‖2
λmax − λ

λmax

≤ λ− (λmax − λ) = 2λ− λmax.

Figure 1 illustrates the SAFE and basic strong rules in an example.
When the predictors are not standardized, the ordering between the two bounds is not

as clear, but the strong rule still tends to discard more variables in practice unless the
predictors have wildly different marginal variances.

While (5) is somewhat useful, its sequential version is much more powerful. Suppose

that we have already computed the solution β̂(λ0) at λ0, and wish to discard predictors for

a fit at λ < λ0. Defining the residual r = y −Xβ̂(λ0), our strong sequential rule discards
predictor j if

|xT
j r| < 2λ− λ0. (6)

Before giving a detailed motivation for these rules, we first demonstrate their utility. Figure
2 shows some examples of the applications of the SAFE and strong rules. There are four
scenarios with various values of N and p; in the first three panels, the X matrix is dense,
while it is sparse in the bottom right panel. The population correlation among the feature
is zero, positive, negative and zero in the four panels. Finally, 25% of the coefficients are
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non-zero, with a standard Gaussian distribution. In the plots, we are fitting along a path
of decreasing λ values and the plots show the number of predictors left after screening
at each stage. We see that the SAFE and RECSAFE rules only exclude predictors near
the beginning of the path. The strong rules are more effective: remarkably, the strong
sequential rule discarded almost all of the predictors that have coefficients of zero. There
were no violations of any of rules in any of the four scenarios.

It is common practice to standardize the predictors before applying the lasso, so that
the penalty term makes sense. This is what was done in the examples of Figure 2. But
in some instances, one might not want to standardize the predictors, and so in Figure 3
we investigate the performance of the rules in this case. In the left panel the population
variance of each predictor is the same; in the right panel it varies by a factor of 50. We see
that in the latter case the SAFE rules outperform the basic strong rule, but the sequential
strong rule is still the clear winner. There were no violations in any of rules in either panel.

3.2. Motivation for the strong rules
We now give some motivation for the strong rule (5) and later, the sequential rule (6). We
start with the KKT conditions for the lasso problem (1). These are

xT
j (y −Xβ̂) = λ · sj (7)

for j = 1, . . . p, where sj is a subgradient of β̂j :

sj ∈











{+1} if β̂j > 0

{−1} if β̂j < 0

[−1, 1] if β̂j = 0.

(8)

Let cj(λ) = xT
j {y−Xβ̂(λ)}, where we emphasize the dependence on λ. Suppose in general

that we could assume
|c′j(λ)| ≤ 1, (9)

where c′j is the derivative with respect to λ, and we ignore possible points of non-differentiability.
This would allow us to conclude that

|cj(λmax)− cj(λ)| =
∣

∣

∣

∣

∣

∫ λmax

λ

c′j(λ) dλ

∣

∣

∣

∣

∣

(10)

≤
∫ λmax

λ

|c′j(λ)| dλ (11)

≤ λmax − λ,

and so
|cj(λmax)| < 2λ− λmax ⇒ |cj(λ)| < λ ⇒ β̂j(λ) = 0,

the last implication following from the KKT conditions, (7) and (8). Then the strong rule

(5) follows as β̂(λmax) = 0, so that |cj(λmax)| = |xT
j y|.

Where does the slope condition (9) come from? The product rule applied to (7) gives

c′j(λ) = sj(λ) + λ · s′j(λ), (12)
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Fig. 2. Lasso regression: results of different rules applied to four different scenarios. There are four
scenarios with various values of N and p; in the first three panels the X matrix is dense, while it
is sparse in the bottom right panel. The population correlation among the feature is zero, positive,
negative and zero in the four panels. Finally, 25% of the coefficients are non-zero, with a standard
Gaussian distribution. In the plots, we are fitting along a path of decreasing λ values and the plots
show the number of predictors left after screening at each stage. A broken line with unit slope is
added for reference. The proportion of variance explained by the model is shown along the top of
the plot. There were no violations of any of the rules in any of the four scenarios.
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Fig. 3. Lasso regression: results of different rules when the predictors are not standardized. The
scenario in the left panel is the same as in the top left panel of Figure 2, except that the features are
not standardized before fitting the lasso. In the data generation for the right panel, each feature is
scaled by a random factor between 1 and 50, and again, no standardization is done.

and as |sj(λ)| ≤ 1, condition (9) can be obtained if we simply drop the second term above.

For an active variable, that is β̂j(λ) 6= 0, we have sj(λ) = sign{β̂j(λ)}, and continuity of

β̂j(λ) with respect to λ implies s′j(λ) = 0. But s′j(λ) 6= 0 for inactive variables, and hence
the bound (9) can fail, which makes the strong rule (5) imperfect. It is from this point of
view—writing out the KKT conditions, taking a derivative with respect to λ, and dropping
a term—that we derive strong rules for ℓ1 penalized logistic regression and more general
problems.

In the lasso case, condition (9) has a more concrete interpretation. From Efron et al.

(2004), we know that each coordinate of the solution β̂j(λ) is a piecewise linear function of
λ, hence so is each inner product cj(λ). Therefore cj(λ) is differentiable at any λ that is not
a kink, the points at which variables enter or leave the model. In between kinks, condition
(9) is really just a bound on the slope of cj(λ). The idea is that if we assume the absolute
slope of cj(λ) is at most 1, then we can bound the amount that cj(λ) changes as we move
from λmax to a value λ. Hence if the initial inner product cj(λmax) starts too far from the
maximal achieved inner product, then it cannot “catch up” in time. An illustration is given
in Figure 4.

The argument for the strong bound (intuitively, an argument about slopes), uses only
local information and so it can be applied to solving (1) on a grid of λ values. Hence by the
same argument as before, the slope assumption (9) leads to the strong sequential rule (6).

It is interesting to note that

|xT
j r| < λ (13)
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Fig. 4. Illustration of the slope bound (9) leading to the strong rule (6). The inner product cj is
plotted in red as a function of λ, restricted to only one predictor for simplicity. The slope of cj
between λmax and λ1 is bounded in absolute value by 1, so the most it can rise over this interval is
λmax − λ1. Therefore, if it starts below λ1 − (λmax − λ1) = 2λ1 − λmax, it can not possibly reach
the critical level by λ1.

is just the KKT condition for excluding a variable in the solution at λ. The strong sequential
bound is λ− (λ0 − λ) and we can think of the extra term λ0 − λ as a buffer to account for
the fact that |xT

j r| may increase as we move from λ0 to λ. Note also that as λ0 → λ, the
strong sequential rule becomes the KKT condition (13), so that in effect the sequential rule
at λ0 “anticipates” the KKT conditions at λ.

In summary, it turns out that the key slope condition (9) very often holds, but can
be violated for short stretches, especially when p ≈ N and for small values of λ in the
“overfit” regime of a lasso problem. In the next section we provide an example that shows
a violation of the slope bound (9), which breaks the strong sequential rule (6). We also
give a condition on the design matrix X under which the bound (9) is guaranteed to hold.
However in simulations in that section, we find that these violations are rare in practice
and virtually non-existent when p >> N .
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4. Some analysis of the strong rules

4.1. Violation of the slope condition
Here we demonstrate a counter-example of both the slope bound (9) and of the strong
sequential rule (6). We believe that a counter-example for the basic strong rule (5) can
also be constructed, but we have not yet found one. Such an example is somewhat more
difficult to construct because it would require that the average slope exceed 1 from λmax to
λ, rather than exceeding 1 for short stretches of λ values.

We took N = 50 and p = 30, with the entries of y and X drawn independently from a
standard normal distribution. Then we centered y and the columns of X, and standardized
the columns ofX. As Figure 5 shows, the slope of cj(λ) = xT

j {y−Xβ̂(λ)} is c′j(λ) = −1.586
for all λ ∈ [λ1, λ0], where λ1 = 0.0244, λ0 = 0.0259, and j = 2. Moreover, if we were to use
the solution at λ0 to eliminate predictors for the fit at λ1, then we would eliminate the 2nd
predictor based on the bound (6). But this is clearly a problem, because the 2nd predictor
enters the model at λ1. By continuity, we can choose λ1 in an interval around 0.0244 and
λ0 in an interval around 0.0259, and still break the strong sequential rule (6).

4.2. A sufficient condition for the slope bound
Tibshirani & Taylor (2010) prove a general result that can be used to give the following
sufficient condition for the unit slope bound (9). Under this condition, both basic and
strong sequential rules are guaranteed not to fail.

Recall that a matrix A is diagonally dominant if |Aii| ≥
∑

j 6=i |Aij | for all i. Their result
gives us the following:

Theorem 1. Suppose that X is N × p, with N ≥ p, and of full rank. If

(XTX)−1 is diagonally dominant, (14)

then the slope bound (9) holds at all points where cj(λ) is differentiable, for j = 1, . . . p, and
hence the strong rules (5), (6) never produce violations.

Proof. Tibshirani & Taylor (2010) consider a generalized lasso problem

argmin
β

1

2
‖y−Xβ̂‖2

2
+ λ‖Dβ‖1, (15)

where D is a generalm×p penalty matrix. In the proof of their “boundary lemma”, Lemma
1, they show that if rank(X) = p and D(XTX)−1DT is diagonally dominant, then the dual
solution û(λ) corresponding to problem (15) satisfies

|ûj(λ)− ûj(λ0)| ≤ |λ− λ0|

for any j = 1, . . .m and λ, λ0. By piecewise linearity of ûj(λ), this means that |û′
j(λ)| ≤ 1 at

all λ except the kink points. Furthermore, whenD = I, problem (15) is simply the lasso, and

it turns out that the dual solution ûj(λ) is exactly the inner product cj(λ) = xT
j {y−Xβ̂(λ)}.

This proves the slope bound (9) under the condition that (XTX)−1 is diagonally dominant.
Finally, the kink points are countable and hence form a set of Lebesgue measure zero.

Therefore cj(λ) is differentiable almost everywhere and the integrals in (10) and (11) make
sense. This proves the strong rules (5) and (6).
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(9). In the top right part of the plot, the inner product path for the predictor j = 2 is drawn in red,
and starts below the bound, but enters the model at λ1. The slope of the red segment between λ0

and λ1 exceeds 1 in absolute value. A dotted line with slope -1 is drawn beside the red segment for
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We note a similarity between condition (14) and the positive cone condition used in
Efron et al. (2004). It is not hard to see that the positive cone condition implies (14), and
actually (14) is a much weaker condition because it doesn’t require looking at every possible
subset of columns.

A simple model in which diagonal dominance holds is when the columns of X are or-
thonormal, because then XTX = I. But the diagonal dominance condition (14) certainly
holds outside of the orthogonal design case. We give two such examples below.

• Equi-correlation model. Suppose that ‖xj‖2 = 1 for all j, and xT
j xk = r for all j 6= k.

Then the inverse of XTX is

(XTX)−1 = I · 1

1− r
− 1

1− r

(

11T

1 + r(p− 1)

)

,

where 1 is the vector of all ones. This is diagonally dominant as along as r ≥ 0.

• Haar basis model. Suppose that the columns of X form a Haar basis, the simplest
example being

X =











1
1 1
...
1 1 . . . 1











, (16)

the lower triangular matrix of ones. Then (XTX)−1 is diagonally dominant. This
arises, for example, in the one-dimensional fused lasso where we solve

argmin
β

1

2

N
∑

i=1

(yi − βi)
2 + λ

N
∑

i=2

|βi − βi−1|.

If we transform this problem to the parameters α1 = 1, αi = βi−βi−1 for i = 2, . . .N ,
then we get a lasso with design X as in (16).

4.3. Connection to the irrepresentable condition
The slope bound (9) possesses an interesting connection to a concept called the “irrepre-
sentable condition”. Let us write A as the set of active variables at λ,

A = {j : β̂j(λ) 6= 0},

and ‖b‖∞ = maxi |bi| for a vector b. Then, using the work of Efron et al. (2004), we can
express the slope condition (9) as

‖XT
AcXA(X

T
AXA)

−1sign(β̂A)‖∞ ≤ 1, (17)

where by XT
A and XT

Ac , we really mean (XA)
T and (XAc)T , and the sign is applied element-

wise.
On the other hand, a common condition appearing in work about model selection prop-

erties of lasso, in both the finite-sample and asymptotic settings, is the so called “irrepre-
sentable condition” Zhao & Yu (2006), Wainwright (2006), Candes & Plan (2009), which is
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closely related to the concept of “mutual incoherence” Fuchs (2005), Tropp (2006), Mein-
hausen & Buhlmann (2006). Roughly speaking, if βT denotes the nonzero coefficients in
the true model, then the irrepresentable condition is that

‖XT
T cXT (X

T
T XT )

−1sign(βT )‖∞ ≤ 1− ǫ (18)

for some 0 < ǫ ≤ 1.

The conditions (18) and (17) appear extremely similar, but a key difference between
the two is that the former pertains to the true coefficients that generated the data, while
the latter pertains to those found by the lasso optimization problem. Because T is asso-
ciated with the true model, we can put a probability distribution on it and a probability
distribution on sign(βT ), and then show that with high probability, certain designs X are
mutually incoherent (18). For example, Candes & Plan (2009) suppose that k is sufficiently
small, T is drawn from the uniform distribution on k-sized subsets of {1, . . . p}, and each
entry of sign(βT ) is equal to +1 or −1 with probability 1/2, independent of each other.
Under this model, they show that designs X with maxj 6=k |xT

j xk| = O(1/ log p) satisfy the
irrepresentable condition with very high probability.

Unfortunately the same types of arguments cannot be applied directly to (17). A dis-

tribution on T and sign(βT ) induces a different distribution on A and sign(β̂A), via the
lasso optimization procedure. Even if the distributions of T and sign(βT ) are very simple,

the distributions of A and sign(β̂A) can become quite complicated. Still, it does not seem
hard to believe that confidence in (18) translates to some amount of confidence in (17).
Luckily for us, we do not need the slope bound (17) to hold exactly or with any specified
level of probability, because we are using it as a computational tool and can simply revert
to checking the KKT conditions when it fails.

4.4. A numerical investigation of the strong sequential rule violations

We generated Gaussian data with N = 100, varying values of the number of predictors p
and pairwise correlation 0.5 between the predictors. One quarter of the coefficients were
non-zero, with the indices of the nonzero predictors randomly chosen and their values equal
to ±2. We fit the lasso for 80 equally spaced values of λ from λmax to 0, and recorded the
number of violations of the strong sequential rule. Figure 6 shows the number of violations
(out of p predictors) averaged over 100 simulations: we plot versus the percent variance
explained instead of λ, since the former is more meaningful. Since the vertical axis is the
total number of violations, we see that violations are quite rare in general never averaging
more than 0.3 out of p predictors. They are more common near the right end of the path.
They also tend to occur when p is fairly close to N . When p ≫ N (p = 500 or 1000 here),
there were no violations. Not surprisingly, then, there were no violations in the numerical
examples in this paper since they all have p ≫ N .

Looking at (13), it suggests that if we take a finer grid of λ values, there should be fewer
violations of the rule. However we have not found this to be true numerically: the average
number of violations at each grid point λ stays about the same.
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Fig. 6. Total number of violations (out of p predictors) of the strong sequential rule, for simulated
data with N = 100 and varying values of p. A sequence of models is fit, with decreasing values of
λ as we move from left to right. The features are uncorrelated. The results are averages over 100
simulations.

5. Screening rules for the elastic net

In the elastic net we solve the problem ‡

minimize
1

2
||y −Xβ||2 + 1

2
λ2||β||2 + λ1||β||1 (19)

Letting

X∗ =

(

X√
λ2 · I

)

; y∗ =

(

y

0

)

, (20)

we can write (19) as

minimize
1

2
||y∗ −X∗β||2 + λ1||β||1. (21)

In this form we can apply the SAFE rule (2) to obtain a rule for discarding predictors. Now
|x∗

j
Ty∗| = |xT

j y|, ||x∗
j || =

√

||xj ||2 + λ2, ||y∗|| = ||y||. Hence the global rule for discarding
predictor j is

|xT
j y| < λ1 − ||y|| ·

√

||xj ||2 + λ2 ·
λ1max − λ1

λ1max

(22)

‡This differs from the original form of the “naive” elastic net in Zou & Hastie (2005) by the
factors of 1/2, just for notational convenience.
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Fig. 7. Elastic net: results for different rules for three different values of the mixing parameter α.
In the plots, we are fitting along a path of decreasing λ values and the plots show the number of
predictors left after screening at each stage. The proportion of variance explained by the model
is shown along the top of the plot is shown. There were no violations of any of the rules in the 3
scenarios.

Note that the glmnet package uses the parametrization ((1 − α)λ, αλ) rather than
(λ2, λ1). With this parametrization the basic SAFE rule has the form

|xT
j y| <

(

αλ− ||y|| ·
√

||xj ||2 + (1− α)λ · λmax − λ

λmax

)

(23)

The strong screening rules turn out to be the same as for the lasso. With the glmnet

parametrization the global rule is simply

|xT
j y| < α(2λ− λmax) (24)

while the sequential rule is

|xT
j r| < α(2λ− λ0). (25)

Figure 7 show results for the elastic net with standard independent Gaussian data,
n = 100, p = 1000, for 3 values of α. There were no violations in any of these figures, i.e.
no predictor was discarded that had a non-zero coefficient at the actual solution. Again we
see that the strong sequential rule performs extremely well, leaving only a small number of
excess predictors at each stage.
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6. Screening rules for logistic regression

Here we have a binary response yi = 0, 1 and we assume the logistic model

Pr(Y = 1|x) = 1/(1 + exp(−β0 − xTβ)) (26)

Letting pi = Pr(Y = 1|xi), the penalized log-likelihood is

ℓ(β0,β) = −
∑

i

[yi log pi + (1 − yi) log(1 − pi)] + λ||β||1 (27)

El Ghaoui et al. (2010) derive an exact global rule for discarding predictors, based on
the inner products between y and each predictor, using the same kind of dual argument as
in the Gaussian case.

Here we investigate the analogue of the strong rules (5) and (6). The subgradient
equation for logistic regression is

XT (y − p(β)) = λ · sign(β) (28)

This leads to the global rule: letting p̄ = 1ȳ, λmax = max|xT
j (y − p̄)|, we discard

predictor j if

|xT
j (y − p̄)| < 2λ− λmax (29)

The sequential version, starting at λ0, uses p0 = p(β̂0(λ0), β̂(λ0)):

|xT
j (y − p0)| < 2λ− λ0. (30)

Figure 8 show the result of various rules in an example, the newsgroup document clas-
sification problem (Lang 1995). We used the training set cultured from these data by Koh
et al. (2007). The response is binary, and indicates a subclass of topics; the predictors are
binary, and indicate the presence of particular tri-gram sequences. The predictor matrix
has 0.05% nonzero values. § Results for are shown for the new global rule (29) and the new
sequential rule (30). We were unable to compute the logistic regression global SAFE rule
for this example, using our R language implementation, as this had a very long computation
time. But in smaller examples it performed much like the global SAFE rule in the Gaussian
case. Again we see that the strong sequential rule (30), after computing the inner product
of the residuals with all predictors at each stage, allows us to discard the vast majority of
the predictors before fitting. There were no violations of either rule in this example.

Some approaches to penalized logistic regression such as the glmnet package use a
weighted least squares iteration within a Newton step. For these algorithms, an alternative
approach to discarding predictors would be to apply one of the Gaussian rules within the
weighted least squares iteration.

Wu et al. (2009) used |xT
j (y−p̄)| to screen predictors (SNPs) in genome-wide association

studies, where the number of variables can exceed a million. Since they only anticipated
models with say k < 15 terms, they selected a small multiple, say 10k, of SNPs and
computed the lasso solution path to k terms. All the screened SNPs could then be checked
for violations to verify that the solution found was global.

§This dataset is available as a saved R data object at
http://www-stat.stanford.edu/ hastie/glmnet
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Fig. 8. Logistic regression: results for newsgroup example, using the new global rule (29) and the
new sequential rule (30). The broken black curve is the 45o line, drawn on the log scale.

7. Strong rules for general problems

Suppose that we have a convex problem of the form

minimizeβ

[

f(β) + λ ·
K
∑

k=1

g(βj)
]

(31)

where f and g are convex functions, f is differentiable and β = (β1,β2, . . .βK) with each
βk being a scalar or vector. Suppose further that the subgradient equation for this problem
has the form

f ′(β) + λ · sk = 0; k = 1, 2, . . .K (32)

where each subgradient variable sk satisfies ||sk||q ≤ A, and ||sk||q = A when the constraint
g(βj) = 0 is satisfied (here || · ||q is a norm). Suppose that we have two values λ < λ0, and

corresponding solutions β̂(λ), β̂(λ0). Then following the same logic as in Section 3, we can
derive the general strong rule

||f(β̂0k

dβk

)||q < (1 +A)λ −Aλ0 (33)

This can be applied either globally or sequentially. In the lasso regression setting, it is easy
to check that this reduces to the rules (5),(6) where A = 1.
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The rule (33) has many potential applications. For example in the graphical lasso
for sparse inverse covariance estimation (Friedman et al. 2007), we observe N multivariate
normal observations of dimension p, with mean 0 and covariance Σ, with observed empirical
covariance matrix S. Letting Θ = Σ−1, the problem is to maximize the penalized log-
likelihood

log detΘ− tr(SΘ)− λ||Θ||1, (34)

over non-negative definite matrices Θ. The penalty ||Θ||1 sums the absolute values of the
entries of Θ; we assume that the diagonal is not penalized. The subgradient equation is

Σ− S − λ · Γ = 0, (35)

where Γij ∈ sign(Θij). One could apply the rule (33) elementwise, and this would be
useful for an optimization method that operates elementwise. This gives a rule of the form
|Sij − Σ̂(λ0)| < 2λ − λ0. However, the graphical lasso algorithm proceeds in a blockwise
fashion, optimizing one whole row and column at a time. Hence for the graphical lasso, it
is more effective to discard entire rows and columns at once. For each row i, let s12, σ12,
and Γ12 denote Si,−i, Σi,−i, and Γi,−i, respectively. Then the subgradient equation for one
row has the form

σ12 − s12 − λ · Γ12 = 0, (36)

Now given two values λ < λ0, and solution Σ̂0 at λ0, we form the sequential rule

max|σ̂0

12
− s12| < 2λ− λ0. (37)

If this rule is satisfied, we discard the entire ith row and column of Θ, and hence set
them to zero (but retain the ith diagonal element). Figure 9 shows an example with
N = 100, p = 300, standard independent Gaussian variates. No violations of the rule
occurred.

Finally, we note that strong rules can be derived in a similar way, for other problems
such as the group lasso (Yuan & Lin 2007). In particular, if Xℓ denotes the n× pℓ block of
the design matrix corresponding to the features in the ℓth group, then the strong sequential
rule is simply

||XT
ℓ r||2 < 2λ− λmax.

When this holds, we set βℓ = 0.

8. Implementation and numerical studies

The strong sequential rule (6) can be used to provide potential speed improvements in

convex optimization problems. Generically, given a solution β̂(λ0) and considering a new
value λ < λ0, let S(λ) be the indices of the predictors that survive the screening rule (6):
we call this the strong set. Denote by E the eligible set of predictors. Then a useful strategy
would be

(a) Set E = S(λ).
(b) Solve the problem at value λ using only the predictors in E.
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Fig. 9. Strong global and sequential rules applied to the graphical lasso. A broken line with unit slope
is added for reference.

(c) Check the KKT conditions at this solution for all predictors. If there are no violations,
we are done. Otherwise add the predictors that violate the KKT conditions to the
set E, and repeat steps (b) and (c).

Depending on how the optimization is done in step (b), this can be quite effective. Now in
the glmnet procedure, coordinate descent is used, with warm starts over a grid of decreasing
values of λ. In addition, an “ever-active” set of predictors A(λ) is maintained, consisting
of the indices of all predictors that have a non-zero coefficient for some λ′ greater than the
current value λ under consideration. The solution is first found for this active set: then the
KKT conditions are checked for all predictors. if there are no violations, then we have the
solution at λ; otherwise we add the violators into the active set and repeat.

The two strategies above are very similar, with one using the strong set S(λ) and the
other using the ever-active set A(λ). Figure 10 shows the active and strong sets for an
example. Although the strong rule greatly reduces the total number of predictors, it contains
more predictors than the ever-active set; accordingly, violations occur more often in the ever-
active set than the strong set. This effect is due to the high correlation between features
and the fact that the signal variables have coefficients of the same sign. It also occurs with
logistic regression with lower correlations, say 0.2.

In light of this, we find that using both A(λ) and S(λ) can be advantageous. For glmnet
we adopt the following combined strategy:

(a) Set E = A(λ).
(b) Solve the problem at value λ using only the predictors in E.
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Fig. 10. Gaussian lasso setting, N = 200, p = 20, 000, pairwise correlation between features of 0.7.
The first 50 predictors have positive, decreasing coefficients. Shown are the number of predictors
left after applying the strong sequential rule (6) and the number that have ever been active (i.e. had
a non-zero coefficient in the solution) for values of λ larger than the current value. A broken line with
unit slope is added for reference. The right-hand plot is a zoomed version of the left plot.

(c) Check the KKT conditions at this solution for all predictors in S(λ). If there are
violations, add these predictors into E, and go back to step (a) using the current
solution as a warm start.

(d) Check the KKT conditions for all predictors. If there are no violations, we are done.
Otherwise add these violators into A(λ), recompute S(λ) and go back to step (a)
using the current solution as a warm start.

Note that violations in step (c) are fairly common, while those in step (d) are rare. Hence
the fact that the size of S(λ) is ≪ p can make this an effective strategy.

We implemented this strategy and compare it to the standard glmnet algorithm in a
variety of problems, shown in Tables 1–3. Details are given in the table captions. We see
that the new strategy offers a speedup factor of five or more in some cases, and never seems
to slow things down.

The strong sequential rules also have the potential for space savings. With a large
dataset, one could compute the inner products {xT

j r}p1 offline to determine the strong set
of predictors, and then carry out the intensive optimization steps in memory using just this
subset of the predictors.

9. Discussion

In this paper we have proposed strong global and sequential rules for discarding predictors
in statistical convex optimization problems such as the lasso. When combined with checks
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of the KKT conditions, these can offer substantial improvements in speed while still yielding
the exact solution. We plan to include these rules in a future version of the glmnet package.

The RECSAFE method uses the solution at a given point λ0 to derive a rule for dis-
carding predictors at λ < λ0. Here is another way to (potentially) apply the SAFE rule in

a sequential manner. Suppose that we have β̂0 = β̂(λ0), and r = y−Xβ̂0, and we consider

the fit at λ < λ0, with r = y −Xβ̂0. Defining

λ0 = maxj(|xT
j r|); (38)

we discard predictor j if

|xT
j r| < λ− ||r|||xj ||

λ0 − λ

λ0

(39)

We have been unable to prove the correctness of this rule, and do not know if it is infallible.
At the same time, we have been not been able to find a numerical example in which it fails.
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Table 1. Glmnet timings (seconds) for fitting a lasso prob-
lem in the Gaussian setting. In the first four columns, there
are p = 100, 000 predictors, N = 200 observations, 30
nonzero coefficients, with the same value and signs alter-
nating; signal-to-noise ratio equal to 3. In the rightmost
column, the data matrix is sparse, consisting of just zeros
and ones, with 0.1% of the values equal to 1. There are
p = 50, 000 predictors, N = 500 observations, with 25%
of the coefficients nonzero, having a Gaussian distribution;
signal-to-noise ratio equal to 4.3.

Method Population correlation
0.0 0.25 0.5 0.75 Sparse

glmnet 4.07 6.13 9.50 17.70 4.14
with seq-strong 2.50 2.54 2.62 2.98 2.52

Table 2. Glmnet timings (seconds) for fitting an elas-
tic net problem. There are p = 100, 000 predictors,
N = 200 observations, 30 nonzero coefficients, with the
same value and signs alternating; signal-to-noise ratio
equal to 3

Method α
1.0 0.5 0.2 0.1 0.01

glmnet 9.49 7.98 5.88 5.34 5.26
with seq-strong 2.64 2.65 2.73 2.99 5.44

Table 3. Glmnet timings (seconds) fitting a
lasso/logistic regression problem. Here the
data matrix is sparse, consisting of just ze-
ros and ones, with 0.1% of the values equal
to 1. There are p = 50, 000 predictors, N =
800 observations, with 30% of the coefficients
nonzero, with the same value and signs alter-
nating; Bayes error equal to 3%.

Method Population correlation
0.0 0.5 0.8

glmnet 11.71 12.41 12.69
with seq-strong 6.31 9.491 12.86
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