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Abstract

Motivated by applications to a manifold of semilinear and quasilinear stochastic
partial differential equations (SPDEs) we establish the existence and uniqueness of
strong solutions to coercive and locally monotone SPDEs driven by Lévy processes.
We illustrate the main result of our paper by showing how it can be applied to the
following SPDEs: stochastic reaction-diffusion equations, Burgers type equations, 2D
Navier-Stokes equations, p-Laplace equations and porous media equations with locally
monotone perturbations.
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1 Introduction and Main Results

In recent years, Stochastic Partial Differential Equations (SPDEs) driven by jump type noise
such as Lévy-type or Poisson-type perturbations become extremely popular for modeling fi-
nancial, physical and biological phenomena. In some circumstances, purely Brownian motion
perturbation has many imperfections while capturing some large moves and unpredictable
events. Therefore, Lévy-type perturbations come to the stage to reproduce the performance
of those natural phenomena in some real world models. The existence and uniqueness of
solutions for SPDEs driven by jump type noise has already been intensively investigated by
many authors, see e.g. Kallianpur and Xiong [24], Albeverio et al [2], Mueller et al [40, 41],
Applebaum and Wu [3], Mytnik [42], Truman and Wu [53], Knoche [25], Hausenblas [22, 23],
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Mandrekar and Rüdiger [36], Röckner and Zhang [48], Dong and Xu [14], Marinelli and
Röckner [37], Bo et al [4], Dong et al [16], Brzeźniak and Hausenblas [7], Brzeźniak and Zhu
[10], Brzeźniak et al [8], and the recent monograph by Peszat and Zabczyk [44]. The last
reference can also be used for more detailed expositions and references.

In this paper, we aim to establish a framework in which one can treat a large number of
SPDEs driven by Lévy type noise including stochastic reaction-diffusion equations, Burgers
type equations, 2D Navier-Stokes equations, p-Laplace equation and porous media equation.
In the case of Wiener noise the second named author and Röckner in [35] investigated
such problems as special cases of SPDEs with locally monotone coefficients. They showed
that the method first used by Menaldi and Sritharan [38] (and later used by Sritharan and
Sundar [51], Chueshov and Millet [11] for various stochastic equations of hydrodynamics)
can be generalized to such an extent that it covers all the above listed problems. On the
other hand, there are no many papers studying non-Lipschitz SPDEs driven by Lévy type
noises with small jumps. The first and third named author proved in [9] the existence and
uniqueness of solutions to stochastic nonlinear beam equation driven by Lévy type noise.
They together with Hausenblas extended in [8] (see also [15]) the work of Menaldi and
Sritharan by showing that their method yields the existence and uniqueness of solutions to
stochastic 2D Navier Stokes equations driven by a Lévy type noise. There is also the work
of the first named author and Hausenblas [7] in which by means of generalized compactness
method the existence of solutions to stochastic reaction diffusion equations driven by a Lévy
type noise was investigated. This paper is a generalization of both papers [35] and [8].

The line of investigation proposed in this paper began with the celebrated works by
Pardoux [43] and Krylov and Rozovskii [27], and later it was further developed by many
authors, see Gyöngy and Krylov [19], Gyöngy [21]. Ren et al [46], Röckner and Wang [47]
and Zhang [54]. Roughly speaking, for stochastic equations in finite dimensional spaces,
the existence and uniqueness result was obtained under the local monotonicity assumption
for the coefficients, see [27] for SDEs driven by Brownian motion and [19] for SDEs driven
by (possibly discontinuous) locally square integrable martingale. However, concerning the
existence and uniqueness of strong solutions to SPDEs in infinite dimensional spaces driven
by Wiener process or local martingale, all results were established for the globally monotone
coefficients SPDE (cf. [27, 21, 46, 54]). It was the breakthrough paper by Menaldi and
Sritharan [38] which used certain local monotonicity of the 2D stochastic Navier-Stokes
equations to show the existence of strong solutions to such equations (see also [51, 11]).

Recently, this variational framework has been extended by the second named author and
Röckner in [35] for SPDE driven by Wiener process in Hilbert space with locally mono-
tone coefficients. They showed that many fundamental examples of SPDEs can be included
into their framework, for instance the stochastic Burgers type equations and the stochas-
tic 2D Navier-Stokes equations. Moreover, the examples investigated in [11, 12, 34], such
as magneto-hydrodynamic equations, the Boussinesq model for the Bénard convection, 2D
magnetic Bénard problem and stochastic 3D Leray-α model, can be also included into that
framework. What we do in the present paper is to confirm the natural conjecture that the
framework in [35] works not only for locally monotone SPDEs driven by multiplicative Gaus-
sian noise but also by multiplicative Lévy type noise. However, we should point out that our
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results are not applicable to evolution equations with general space time white noise, see for
instance [9, 7] and the references therein. The reason is that the solutions of SPDEs with
general space time white noise are not regular enough to fit in the variational framework.

The main contribution of this work is that we establish a unified framework for a large
class of semilinear and quasilinear SPDE driven by general Lévy noises, which generalizes
many previous works [43, 27, 21, 35]. The main result is applied to various types of concrete
examples (see Section 4 for details). It also recovers and improves many known results in
the literature, see for instance [14, 38, 48, 15, 11, 8]. In a recent work [10] by the first and
third named author, a type of stochastic nonlinear beam equations with Poisson-type noises
was studied and the existence and uniqueness of solutions was established by following
a natural route of constructing a local mild solutions and proving, with the help of the
Khasminski test, that this solution is a global one. In contrast to [10], the approach used
in this paper is different. We will follow the lines in [8, 35] and the technique involves the
use of the Galerkin approximation, local monotonicity arguments but not, as opposed to
[7], compactness argument. We shall use the result from [19, 1] for finite dimensional case
to construct a sequence of solutions of approximated equations and obtain a prior estimate
for those approximated solutions. Then we show the limit of those approximated solutions
solves the original equation by using the local monotonicity arguments.

Now let us describe the framework in more detail. Let

V ⊂ H ≡ H∗ ⊂ V ∗

be a Gelfand triple, i.e. (H, 〈·, ·〉H) is a separable Hilbert space which is identified with its
dual space by the Riesz Lemma, V is a reflexive Banach space that is continuously and
densely embedded into H. If V ∗〈·, ·〉V denotes the duality between V and its dual space V ∗,
then we have

V ∗〈u, v〉V = 〈u, v〉H , u ∈ H, v ∈ V.

Let (Ω,P,F,F), where F = (Ft)t≥0, be a filtered probability space, (Z,Z) be a measurable
space, and ν be a σ-finite measure on it. Let

Ñ((0, t]× B) = N((0, t]× B)− tν(B), t ≥ 0, B ∈ Z

be a compensated Poisson random measure on [0, T ] × Ω × Z associated with a stationary
Poisson point process p (see Section 2 for more details). A typical example of N is a Poisson
random measure associated with a Lévy process taking values in a separable Banach space.
Let U be a separable Hilbert space and let us denote by (T2(U ;H), ‖ · ‖2) the Hilbert space
of all Hilbert-Schmidt operators from U to H. Let us assume that {Wt}t≥0 be a U -valued
cylindrical Wiener process on the probability space (Ω,P,F,F). Let P be a predictable
σ-field, i.e. the σ-field generated by all left continuous and F-adapted real-valued processes
on [0, T ] × Ω. We shall denote by BF the σ-field of the progressively measurable sets on
[0, T ]× Ω, i.e.

BF = {A ⊂ [0, T ]× Ω : ∀ t ∈ [0, T ], A ∩ ([0, t]× Ω) ∈ B([0, t])⊗Ft}.
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Now we consider a type of SPDEs driven by Lévy processes of the following form:

dXt = A(t,Xt)dt+B(t,Xt)dWt

+

∫

Dc

f(t,Xt−, z)Ñ(dt, dz) +

∫

D

g(t,Xt−, z)N(dt, dz),

X0 = x,

(1.1)

where x is an F0-measurable random variable, A : [0, T ]×Ω×V → V ∗ andB : [0, T ]×Ω×V →
T2(U ;H) are both BF ⊗ B(V )-measurable functions, D ∈ Z with EN((0, t] × D) < ∞ for
every 0 < t ≤ T , and f, g : [0, T ]×Ω×V ×Z → H are P ⊗B(V )⊗Z-measurable functions.

The main aim of this work is to establish the existence and uniqueness of strong solutions
to (1.1) under the coercivity and local monotonicity conditions. For this purpose, let us first
formulate the main assumptions on the coefficients.

Suppose there exist constants α > 1, β ≥ 0, θ > 0, K > 0, a positive F-adapted process
F and a measurable, bounded on balls function ρ : V → [0,+∞) such that the following
conditions hold for all v, v1, v2 ∈ V and (t, ω) ∈ [0, T ]× Ω:

(H1) (Hemicontinuity) The map s 7→ V ∗〈A(t, v1 + sv2), v〉V is continuous on R.

(H2) (Local monotonicity)

2V ∗〈A(t, v1)− A(t, v2), v1 − v2〉V + ‖B(t, v1)− B(t, v2)‖
2
2

+

∫

Dc

‖f(t, v1, z)− f(t, v2, z)‖
2
Hν(dz) ≤ (K + ρ(v2)) ‖v1 − v2‖

2
H ,

(H3) (Coercivity)

2V ∗〈A(t, v), v〉V + ‖B(t, v)‖22 + θ‖v‖αV ≤ Ft +K‖v‖2H .

(H4) (Growth)

‖A(t, v)‖
α

α−1

V ∗ ≤ (Ft +K‖v‖αV )
(

1 + ‖v‖βH

)

.

Definition 1.1. (Solution of SEE) An H-valued càdlàg F-adapted process {Xt}t∈[0,T ] is
called a solution of (1.1), if for its dt× P-equivalent class X̄ we have

(1) X̄ ∈ Lα([0, T ];V ) ∩ L2([0, T ];H), P-a.s.;

(2) the following equality holds P-a.s.:

Xt = x+

∫ t

0

A(s, X̄s)ds+

∫ t

0

B(s, X̄s)dWs

+

∫ t

0

∫

Dc

f(s, X̄s−, z)Ñ(ds, dz) +

∫ t

0

∫

D

g(s, X̄s−, z)N(ds, dz), t ∈ [0, T ].
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Remark 1.1. The integrability of all terms in the above equality are implicitly required
in the definition and it will be all justified in the proof of existence of solutions. Note that
A(s, X̄s) is a V

∗-valued process according to the definition, however, the integral with respect
to ds in the above equality is initially a V ∗-valued Bochner integral which turns out to be
in fact H-valued.

Now we can present the main result of this paper.

Theorem 1.2. Suppose that conditions (H1)− (H4) hold for F ∈ L
β+2
2 ([0, T ]×Ω; dt× P),

and there exists constants γ < θ
2β

and C > 0 such that for all t ∈ [0, T ], ω ∈ Ω and v ∈ V
we have

‖B(t, v)‖22 +

∫

Dc

‖f(t, v, z)‖2Hν(dz) ≤ Ft + C‖v‖2H + γ‖v‖αV ;(1.2)
∫

Dc

‖f(t, v, z)‖β+2
H ν(dz) ≤ F

β+2
2

t + C‖v‖β+2
H ;(1.3)

ρ(v) ≤ C(1 + ‖v‖αV )(1 + ‖v‖βH).(1.4)

(i) Then for any x ∈ Lβ+2(Ω,F0,P;H), equation (1.1) has a unique solution {Xt}t∈[0,T ].
(ii) If g ≡ 0, then there exists a constant C such that

(1.5) sup
t∈[0,T ]

E‖Xt‖
β+2
H + E

∫ T

0

‖Xt‖
β
H‖Xt‖

α
V dt ≤ C

(

E‖x‖β+2
H + E

∫ T

0

F
(β+2)/2
t dt

)

.

(iii) If g ≡ 0 and γ is small enough, then we have

(1.6) E

(

sup
t∈[0,T ]

‖Xt‖
β+2
H

)

+ E

∫ T

0

‖Xt‖
β
H‖Xt‖

α
V dt ≤ C

(

E‖x‖β+2
H + E

∫ T

0

F
(β+2)/2
t dt

)

.

Remark 1.3. (1) If f = g ≡ 0 in (1.1) (i.e. Wiener noise case), then Theorem 1.2 recovers
the main result in [35]. Moreover, we improve [35, Theorem 1.1] for allowing a positive
constant γ in (1.2), which means that the diffusion coefficient B can also depend on some
gradient term of solution in applications. We also want to emphasize that (H2) is essentially
weaker than the classical monotonicity condition used extensively in the literature (i.e. ρ ≡ 0,
see e.g. [43, 27, 45, 48, 46, 18]). The typical examples are the stochastic Burgers equations
and 2D Navier-Stokes equation on a bounded or unbounded domain, which satisfies (H2)
but does not satisfy the standard monotonicity condition (see Section 3 or [35, 34] for more
examples).

(2) If ρ ≡ 0 in (H2) and β = 0 in (H4), then the existence and uniqueness of strong
solutions to (1.1) follows from the general result of Gyöngy [21].

(3) If the noise is zero (or additive type) in (1.1), then the existence and uniqueness
of solutions is established in [34] by replacing (H2) with the following more general local
monotonicity condition:

V ∗〈A(t, v1)− A(t, v2), v1 − v2〉V ≤ (K + η(v1) + ρ(v2)) ‖v1 − v2‖
2
H ,
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where η, ρ : V → [0,+∞) are measurable functions and locally bounded in V .
(4) In general, the estimates (1.5) and (1.6) might not hold anymore if we have large

jumps term in the equation. However, if we assume the Lévy measure has finite moment
of certain order, then it is still possible to obtain some similar estimates and this will be
investigated in a separated work.

Remark 1.4. (1) Note that if β = 0 in (H4), then one can just take any γ <∞ in (1.2). In
this case, the assumption on B in (1.2) can be removed since it follows directly from (H3)
and (H4) (cf. [45, Remark 4.1.1]).

(2) If f satisfies the following growth condition for some fixed p ≥ β + 2:

‖f(t, v, z)‖pH ≤ h(z)p(F
p

2
t + C‖v‖pH), (t, v, z) ∈ [0, T ]× V ×Dc,

where
∫

Dc

[

h(z)β+2 + h(z)2
]

ν(dz) < ∞, then it is easy to show that conditions (1.3) and
(1.2) hold.

In particular, if f satisfying the following conditions:

‖f(t, x, z)− f(t, y, z)‖H ≤ C‖x− y‖H‖z‖, t ∈ [0, T ], x, y ∈ V, z ∈ Dc;

‖f(t, x, z)‖H ≤ C(1 + ‖x‖H)‖z‖, t ∈ [0, T ], x, y ∈ V, z ∈ Dc,

where
∫

Dc ‖z‖
2ν(dz) <∞, then (H2), (1.2) and (1.3) are all satisfied.

The rest of the paper is organized as follows: in the next section we will recall some
preliminaries on the Poisson random measure and its corresponding stochastic integral. The
proof of the main result will be given in Section 3 and some concrete examples of SPDE will
be studied in Section 4 as applications.

2 Some Preliminaries on Poisson Random Measure

As a preparation, we begin with a brief review of some terminology and results of Poisson
random measures. Let (S,S) be a measurable space, N = {0, 1, 2, · · · } and N̄ = N∪{∞}. Let
MN̄(S) denote the space of all N̄-valued measures on (S,S). We use the symbol B(MN̄(S)) to
denote the smallest σ-field on MN̄(S) such that all mappings iB : MN̄(S) ∋ µ 7→ µ(B) ∈ N̄,
B ∈ S are measurable.

Definition 2.1. A map N : Ω×S → N̄ is called an N̄-valued random measure if for each
ω ∈ Ω, N(ω, ·) ∈ MN̄(S) and for each A ∈ S, N(·, A) is an N̄-valued random variable on
the probability space (Ω,P,F). We will often write N(A) instead of N(·, A) for simplicity
of notation.

Definition 2.2. An N̄-valued random measure N is called a Poisson random measure if

(1) for any B ∈ S provided E[N(B)] < ∞, N(B) is a random variable of Poisson distri-
bution with the parameter η(B) = E[N(B)];
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(2) for any pairwise disjoint sets B1, · · · , Bn ∈ S, the random variables

N(B1), · · · , N(Bn)

are independent.

Let (Z,Z) be a measurable space. A point function α on (Z,Z) is a mapping α :
D(α) → Z, where the domain D(α) ⊂ (0,∞) of α is a countable subset. Let ΠZ be the set
of all point functions on Z. For each point function, we define a counting measure Nα by

Nα(U) := ♯{s ∈ D(α) : (s, α(s)) ∈ U}, U ∈ B((0,∞))⊗Z.

Denote by Q the σ-field on ΠZ generated by all the subsets {α ∈ ΠZ : Nα(U) = k},
U ∈ Z, k = 0, 1, 2, · · · . A function p : Ω → ΠZ is called a point process on Z if it is
F/Q-measurable. Let p be a point process in (ΠZ ,Q). Analogously, we may define for every
ω ∈ Ω, the counting measure Np associated with p by

Np(U, ω) := ♯{s ∈ D(p(ω)) : (s, p(s, ω)) ∈ U}, U ∈ B((0,∞))⊗Z.(2.1)

In particular, we have

Np((0, t]× A, ω) = ♯{s ∈ (0, t] ∩ D(p(ω)) : p(s, ω) ∈ A}, A ∈ Z, 0 < t ≤ T.(2.2)

It is also useful to introduce the shifted point process θtp defined by

(θtp)(s) = p(s+ t), s > 0;

D(θtp) = {s ∈ (0,∞) : s+ t ∈ D(p)}.

and the stopped point process αtp defined by

(αtp)(s) = p(s), for s ∈ D(αtp);

D(αtp) = (0, t] ∩ D(p).

Definition 2.3. A point process p is said to be finite if ENp((0, t] × Z) < ∞ for every
0 < t ≤ T .

A point process p is said to be σ-finite if there exists an increasing sequence {Dn}n∈N ⊂ Z
such that ∪nDn = Z and ENp((0, t]×Dn) <∞ for all 0 < t ≤ T and n ∈ N.

A point process p is said to be stationary if for every t > 0, p and θtp have the same
probability laws.

A point process p is said to be renewal if it is stationary and for every 0 < t < ∞, the
point processes αtp and θtp are independent.

A point process p is said to be adapted to the filtration F if for every t > 0 and A ∈ Z,
its counting measure Np((0, t]× A) is Ft-measurable.

A point process p is called a Poisson point process if Np(·) defined by (2.1) is a Poisson
random measure on ((0,∞)× Z,B((0,∞))⊗Z).
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Remark 2.1. It can be shown that if a point process p is σ-finite and renewal, then Np

defined by (2.1) is a Poisson random measure (cf. [31, Theorem 3.1],). It is easy to verify
that a Poisson point process is stationary if and only if there exists a nonnegative measure
ν on (Z,Z) such that

ENp((0, t]× A) = tν(A), t ≥ 0, A ∈ Z.(2.3)

In such a case, we say that the Poisson random measure Np is time homogenous. At this
point, it should be mentioned that, in the literature, some authors may use the above
property (2.3) as an alternative definition of stationary property of a Poisson point process.
In fact, this is consistent with our definition of a stationary point process here.

Let Mq
T (P ⊗ Z, dt × P × ν;H), q ∈ [1,∞), be the space of all (equivalence classes of)

P ⊗ Z-measurable functions f : [0, T ]× Ω× Z → H such that

E

∫ T

0

∫

Z

‖f(s, ·, z)‖qHν(dz)ds <∞.(2.4)

Let MT (P⊗Z, N ;H) be the space of all P⊗Z-measurable functions f : [0, T ]×Ω×Z → H
such that

E

∫ T

0

∫

Z

‖f(s, ·, z)‖HN(ds, dz) <∞.(2.5)

Here
∫ T

0

∫

Z
‖f(s, ·, z)‖HN(ds, dz)(ω) is understood to be the Lebesgue integral w.r.t. the

measure N(·, ·)(ω) for every ω ∈ Ω and is equal to the convergent sum (cf. [29]),

∫ T

0

∫

Z

‖f(s, ω, z)‖HN(ds, dz) =
∑

s∈(0,T ]∩D(p(ω))

‖f(s, ω, p(s, ω))‖H .

It should come as no surprise that if f : [0, T ] × Ω × Z → H is a B([0, T ]) ⊗ FT ⊗ Z-

measurable function and E
∫ T

0

∫

Z
‖f(s, ·, z)‖HN(ds, dz) <∞, then for every ω ∈ Ω, f(·, ω, ·)

is B([0, T ]) ⊗ Z-measurable and
∫ T

0

∫

Z
‖f(s, ω, z)‖HN(ds, dz)(ω) < ∞, P-a.s., hence for

almost all ω ∈ Ω, f(·, ω, ·) is Bochner integrable with respect to N(ds, dz)(ω) and we have
for every t ≤ T

∫ t

0

∫

Z

f(s, ω, z)N(ds, dz)(ω) =
∑

s∈(0,t]∩D(p(ω))

f(s, ω, p(s, ω)), P-a.s.(2.6)

Now we state some important properties of the stochastic integrals w.r.t. the compen-
sated Poisson random measures for further reference. Proofs of these properties and detailed
discussions can be found in [29] (see also [6, 49, 56]).

Proposition 2.2. Let f ∈ M2
T (P ⊗ Z, dt× P× ν;H).
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(i) The stochastic integral process
∫ t

0

∫

Z
f(s, ·, z)Ñ(ds, dz), t ∈ [0, T ] is a càdlàg 2-integrable

martingale. More precisely, it has a modification which has càdlàg trajectories;

(ii) The following isometry property holds:

E
∥

∥

∫ t

0

∫

Z

f(s, ·, z)Ñ(ds, dz)
∥

∥

2

H
= E

∫ t

0

∫

Z

‖f(s, ·, z)‖2Hν(dz)ds, t ∈ (0, T ];(2.7)

(iii) If D ∈ Z with E(N((0, t]×D)) <∞, then for every t ∈ [0, T ], P-a.s.,

∫ t

0

∫

D

f(s, ·, z)Ñ(ds, dz) =
∑

s∈(0,t]∩D(p)

f(s, ·, p(s))1D(p(s))−

∫ t

0

∫

D

f(s, ·, z)ν(dz)ds;

(2.8)

(iv) If f ∈ M2
T (P ⊗Z, dt× P× ν;H) ∩M1

T (P ⊗Z, dt× P× ν;H), then we have for each
t ∈ [0, T ], P-a.s.

∫ t

0

∫

Z

f(s, ·, z)Ñ(ds, dz) =
∑

s∈(0,t]∩D(p)

f(s, ·, p(s))−

∫ t

0

∫

Z

f(s, ·, z)ν(dz)ds.(2.9)

Remark 2.3. (1) We may extend the stochastic integral to P ⊗ Z-measurable functions
f satisfying

∫ T

0

∫

Z

‖f(s, ·, z)‖2Hν(dz)ds <∞, P-a.s..

In this case, the stochastic integral process
∫ t

0

∫

Z
f(s, ·, z)Ñ(ds, dz), t ∈ [0, T ] is a

càdlàg 2-integrable local martingale and for every stopping time τ ≤ T , we have
∫ t∧τ

0

∫

Z

f(s, ·, z)Ñ(ds, dz) =

∫ t

0

∫

Z

1[0,τ ]f(s, ·, z)Ñ(ds, dz).

(2) From now on, when we talk about the stochastic integral process
∫ t

0

∫

Z
f(s, ·, z)Ñ(ds, dz), t ∈ [0, T ], we implicitly assume that the stochastic integral

process has càdlàg trajectories, unless stated otherwise, in which case, the stochasti-
cally equivalence coincides with the P-equivalence.

(3) For Banach spaces martingale type p (1 < p ≤ 2), one has, instead of the Itô isometry
property (2.7), the following continuity property (Cp is some constant):

E
∥

∥

∫ T

0

∫

Z

f(s, ·, z)Ñ(ds, dz)
∥

∥

p

H
≤ CpE

∫ T

0

∫

Z

‖f(s, ·, z)‖pHν(dz)ds.

(4) Even though there are close connections between predictable processes and progres-
sively measurable processes, the predictability requirement of the function f in Propo-
sition 2.2 (iii) and (iv) is necessary. In fact, one can find a progressively measurable
but not predictable function such that identities (2.8) and (2.9) no longer hold (cf.
[56]).
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One should note that another important and widely used class of Poisson random mea-
sures are the one associated to a Lévy process, which is actually a special type of Poisson
random measures associated to a Poisson point process as we discussed before. More pre-
cisely, let L := (Lt)t≥0 be an Z-valued Lévy process (in this case Z need to be a separable
Banach space). Without loss of generality we may always assume that the Lévy process L
is càdlàg, even if we don’t impose the càdlàg property in the definition of a Lévy process,
see e.g. [13, Theorem 16.1]. Hence, for every ω ∈ Ω, L·(ω) has at most countable number of
jumps on [0, t]. So it is easy to see that for every ω ∈ Ω,

△L·(ω) : [0,∞) → Z; △Ls(ω) := Ls(ω)− Ls−(ω)

is a point function in (Z \ {0},B(Z \ {0})). Let us define

N(A, ω) = ♯{s ∈ (0,∞) : (s,△Ls(ω)) ∈ A}, A ∈ B((0,∞))⊗ B(Z \ {0}), ω ∈ Ω.(2.10)

By the definition of a point process, it is relatively straightforward to show that △L :
Ω → ΠZ is F/Q-measurable. This means that △L is a point process. Since the Lévy process
L has independent and stationary increments, one can show that the point process △L is
stationary and renewal. Obviously, by taking Dn = {x ∈ Z : ‖x‖ > 1

n
}, we find that the

point process △L is σ-finite. On the basis of Remark 2.1, we know that N defined by (2.10)
is a stationary Poisson random measure with a nonnegative measure ν(·) such that

EN((0, t]× A) = tν(A), t > 0, A ∈ B(Z \ {0}).

In such a case, N is called the Poisson random measure associated to the Lévy process L.

3 Proof of The Main Theorem

3.1 Without large jumps

First of all we note that since ν(D) <∞, for almost all ω ∈ Ω, the set

{s ∈ (0, T ] ∩ D(p) : p(s, ω) ∈ D}

contains only finitely many points. Hence we may denote these points according to their
magnitude by

0 < τ1(ω) < τ2(ω) < · · · < τm(ω) < · · ·

In other words, we put

τ1 = inf{s ∈ (0,∞) ∩ D(p) : p(s) ∈ D} ∧ T ;

τm = inf{s ∈ (0,∞) ∩ D(p) : p(s) ∈ D; s > τm−1} ∧ T, m ≥ 2.

The random times τ1, τ2, · · · form a random configuration of points in (0, T ] with p(τi) ∈ D
and it is a sequence of jump times of the Poisson process N(t,D), t ∈ [0, T ]. So, it is easy to
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see that τm ↑ T as m → ∞ P-a.s. and for each m, the random time τm is a stopping time.
Indeed, for every u > 0, we have by definition

{τm ≤ u} = {N(u,D) ≥ m} ∈ Fu.

Note that since
∫ t

0
g(s,Xs−, z)N(ds, dz) = 0 for t ∈ [0, τ1), the equation (1.1) can be rewritten

into the following type of equation on the interval [0, τ1):

dXt = A(t,Xt)dt+B(t,Xt)dWt +

∫

Dc

f(t,Xt−, z)Ñ(dt, dz),

X0 = x.

(3.1)

Actually, by means of interlacing procedure (which will be introduced in Section 3.2), for
the proof of Theorem 1.2 it is sufficient to show the existence and uniqueness of solutions to
(3.1).

Theorem 3.1. Under the same assumptions as in Theorem 1.2, for every x ∈ Lβ+2(Ω,F0,P;H),
there exists a unique càdlàg H-valued F-adapted process (Xt) such that

(i) the following equality holds P-a.s.:

Xt = x+

∫ t

0

A(s, X̄s)ds+

∫ t

0

B(s, X̄s)dWs +

∫ t

0

∫

Dc

f(s, X̄s−, z)Ñ(ds, dz), t ∈ [0, T ],

(3.2)

where X̄ ∈ Lα([0, T ]×Ω, dt×P;V )∩L2([0, T ]×Ω, dt×P;H) and it is dt×P-equivalent
to X;

(ii) we have

sup
t∈[0,T ]

E‖Xt‖
β+2
H + E

∫ T

0

‖Xt‖
β
H‖Xt‖

α
V dt ≤ C

(

E‖x‖β+2
H + E

∫ T

0

F
(β+2)/2
t dt

)

.

The proof of Theorem 3.1 is divided into three steps. Assume that {e1, e2, · · · } ⊂ V
is an orthonormal basis of H such that span{e1, e2, · · · } is dense in V . Denote Hn :=
span{e1, · · · , en}. Let Pn : V ∗ → Hn be defined by

Pny :=
n
∑

i=1

V ∗〈y, ei〉V ei, y ∈ V ∗.

It is easy to see that Pn|H is just the orthogonal projection onto Hn in H and we have

V ∗〈PnA(t, u), v〉V = 〈PnA(t, u), v〉H = V ∗〈A(t, u), v〉V , u ∈ V, v ∈ Hn.

Let {g1, g2, · · · } be an orthonormal basis of U and

W
(n)
t :=

n
∑

i=1

〈Wt, gi〉Ugi = P̃nWt,

11



where P̃n is the orthogonal projection onto span{g1, · · · , gn} in U .
For each finite n ∈ N, we consider the following stochastic equation on Hn:

dX
(n)
t = PnA(t,X

(n)
t )dt+ PnB(t,X

(n)
t )dW

(n)
t +

∫

Dc

Pnf(t,X
(n)
t− , z)Ñ(dt, dz),

X
(n)
0 = Pnx.

(3.3)

According to [19, Theorem 1] (cf. also [1, Theorem 3.1]), (3.3) has a unique strong
solution of the form

X
(n)
t =Pnx+

∫ t

0

PnA(s,X
(n)
s )dt+

∫ t

0

PnB(s,X(n)
s )dW (n)

s(3.4)

+

∫ t

0

∫

Dc

Pnf(s,X
(n)
s− , z)Ñ(ds, dz), t ∈ [0, T ].

In order to construct the solution of (3.1), we need a priori estimate for X(n).

Lemma 3.2. Under the same assumptions as in Theorem 1.2, there exists C > 0 such that

sup
n∈N

(

sup
t∈[0,T ]

E‖X(n)
t ‖β+2

H + E

∫ T

0

‖X(n)
t ‖βH‖X

(n)
t ‖αV dt

)

≤C

(

E‖x‖β+2
H + E

∫ T

0

F
(β+2)/2
t dt

)

.

(3.5)

Proof. For any given n ∈ N, we define

τ
(n)
R := inf{t ≥ 0 : ‖X(n)

t ‖H > R} ∧ T.

Since the solution (X
(n)
t )0≤t≤T is right continuous and F-adapted, τ

(n)
R is a stopping time

for every R ∈ N. Moreover, since the trajectories t 7→ X
(n)
t (ω) are right continuous with

left limits P-a.s., the process X(n) is bounded on every compact intervals, hence we see that
τ
(n)
R ↑ T , P-a.s. and P{τ (n)R < T} = 0 as R → ∞.

For the simplicity of notations we take p = β + 2. By applying the Itô formula (cf. [39])

to the function ‖ · ‖pH and the process X
(n)
t we have

‖X(n)
t ‖pH =‖X(n)

0 ‖pH + p(p− 2)

∫ t

0

‖X(n)
s− ‖p−4

H ‖(PnB(s,X(n)
s )P̃n)

∗X
(n)
s− ‖2Hds

+
p

2

∫ t

0

‖X(n)
s− ‖p−2

H

(

2V ∗〈A(s,X(n)
s ), X

(n)
s− 〉V + ‖PnB(s,X(n)

s )P̃n‖
2
2

)

ds

+

∫ t

0

p‖X(n)
s− ‖p−2

H 〈X(n)
s− , PnB(s,X(n)

s )dW (n)
s 〉H

+

∫ t

0

∫

Dc

p‖X(n)
s− ‖p−2

H 〈X(n)
s− , Pnf(s,X

(n)
s− , z)〉HÑ(ds, dz)

+

∫ t

0

∫

Dc

[

‖X(n)
s− + Pnf(s,X

(n)
s− , z)‖

p
H − ‖X(n)

s− ‖pH

− p‖X(n)
s− ‖p−2

H 〈X(n)
s− , Pnf(s,X

(n)
s− , z)〉H

]

N(ds, dz), t ∈ [0, T ].

(3.6)
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Then conditions (H3) and (1.2) give

‖X(n)
t ‖pH +

pθ

2

∫ t

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

≤‖x‖pH + p(p− 2)

∫ t

0

(

C‖X(n)
s ‖pH + Fs · ‖X

(n)
s ‖p−2

H + γ‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV

)

ds

+
p

2

∫ t

0

(

K‖X(n)
s ‖pH + Fs · ‖X

(n)
s ‖p−2

H

)

ds+ Y (t) + Z(t) + I(t),

where,

Y (t) =

∫ t

0

p‖X(n)
s− ‖p−2

H 〈X(n)
s− , PnB(s,X(n)

s )dW (n)
s 〉H ;

Z(t) =

∫ t

0

∫

Dc

p‖X(n)
s− ‖p−2

H 〈X(n)
s− , Pnf(s,X

(n)
s− , z)〉HÑ(ds, dz);

I(t) =

∫ t

0

∫

Dc

∣

∣

∣
‖X(n)

s− + Pnf(s,X
(n)
s− , z)‖

p
H − ‖X(n)

s− ‖pH

− p‖X(n)
s− ‖p−2

H 〈X(n)
s− , Pnf(s,X

(n)
s− , z)〉H

∣

∣

∣
N(ds, dz).

Note that ‖X(n)
t ‖H ≤ R, for t < τ

(n)
R . Since X

(n)
t takes values in the finite dimensional space

Hn, there exists a constant C such that

‖X(n)
t ‖V ≤ CR, t < τ

(n)
R .

Hence by (1.2) we have

E

∫ t∧τ
(n)
R

0

‖X(n)
s− ‖2(p−1)

H ‖B(s,X(n)
s )‖22 ds <∞

E

∫ t∧τ
(n)
R

0

∫

Dc

‖X(n)
s− ‖2(p−1)

H ‖f(s,X(n)
s− , z)‖

2
H ν(dz)ds <∞.

Therefore, the processes Y
t∧τ

(n)
R

and Z
t∧τ

(n)
R

are martingales. Denote, for notational simplicity,

the stopped processX
(n)

t∧τ
(n)
R

etc again byX
(n)
t etc. Then by Young’s inequality and martingale

property we have

E‖X(n)
t ‖pH +

(

pθ

2
− γp(p− 2)

)

E

∫ t

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

≤E‖x‖pH + CE

∫ t

0

(

‖X(n)
s ‖pH + F p/2

s

)

ds+ EI(t),

where C is some constant.
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The Taylor formula implies that for some constant Cp (p ≥ 2) we have
∣

∣‖x+ h‖pH − ‖x‖pH − p‖x‖p−2
H 〈x, h〉H

∣

∣ ≤ Cp(‖x‖
p−2
H ‖h‖2H + ‖h‖pH), x, h ∈ Hn.(3.7)

In particular, if p = 2, the above inequality can be replaced by the equality with Cp = 1, i.e.
∣

∣‖x+ h‖2H − ‖x‖2H − 2〈x, h〉H
∣

∣ = ‖h‖2H , for all x, h ∈ Hn.

Then it follows from (1.3) and (3.7) that

EI(t) ≤ E

∫ t

0

∫

Dc

∣

∣

∣
‖X(n)

s− + Pnf(s,X
(n)
s− , z)‖

p
H − ‖X(n)

s− ‖pH

− p‖X(n)
s− ‖p−2

H 〈X(n)
s− , Pnf(s,X

(n)
s− , z)〉H

∣

∣

∣N(ds, dz)

= E

∫ t

0

∫

Dc

∣

∣

∣‖X(n)
s + Pnf(s,X

(n)
s , z)‖pH − ‖X(n)

s ‖pH

− p‖X(n)
s ‖p−2〈X(n)

s , Pnf(s,X
(n)
s , z)〉H

∣

∣

∣
ν(dz)ds

≤ CE

∫ t

0

‖X(n)
s ‖p−2

H ‖f(s,X(n)
s , z)‖2Hds+ CE

∫ t

0

‖f(s,X(n)
s , z)‖pHds

≤ CE

∫ t

0

(

F
p/2
t + ‖X(n)

s ‖pH

)

ds,

(3.8)

where C is some constant may change from line to line.
Combining the above estimates we get

E‖X(n)
t ‖pH +

(

pθ

2
− γp(p− 2)

)

E

∫ t

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

≤E‖x‖pH + CE

∫ t

0

(

‖X(n)
s ‖pH + F p/2

s

)

ds,

where C is some constant.
By Gronwall’s lemma we have

E‖X(n)

t∧τ
(n)
R

‖pH + E

∫ T∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds ≤ C

(

E‖x‖pH + E

∫ T

0

F p/2
s ds

)

, n ≥ 1.

Here the constant C is independent of n and the stopping times τ
(n)
R . Therefore, applying

Fatou’s lemma yields the desired inequality (3.5).

If we assume the same assumptions as for Theorem 1.2, but with the condition (1.3)
replaced by a weaker assumption

∫

Dc

‖f(t, v, z)‖β+2
H ν(dz) ≤ F

(β+2)/2
t + C‖v‖β+2

H + γ‖v‖βH‖v‖
α
V ,(3.9)

we arrive at the following Lemma.
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Lemma 3.3. There exists a constant γ0 such that if (3.9) is satisfied with γ < γ0, then we
have

sup
n∈N

(

E sup
t∈[0,T ]

‖X(n)
t ‖β+2

H + E

∫ T

0

‖X(n)
t ‖βH‖X

(n)
t ‖αV dt

)

≤C

(

E‖x‖β+2
H + E

∫ T

0

F
(β+2)/2
t dt

)

.

(3.10)

Proof. Let p = β + 2 as before. By (3.6), (H3) and (1.2), we find

sup
s∈[0,t∧τ

(n)
R

]

‖X(n)
s ‖pH +

pθ

2

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

≤‖x‖pH + p(p− 2)

∫ t∧τ
(n)
R

0

(

C‖X(n)
s ‖pH + Fs · ‖X

(n)
s ‖p−2

H + γ‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV

)

ds

+
p

2

∫ t∧τ
(n)
R

0

(

K‖X(n)
s ‖pH + Fs · ‖X

(n)
s ‖p−2

H

)

ds+ I1(t) + I2(t) + I3(t)

≤‖x‖pH + γp(p− 2)

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

+ C

∫ t∧τ
(n)
R

0

(

‖X(n)
s ‖pH + F p/2

s

)

ds+ I1(t) + I2(t) + I3(t),

where C is some constant which may change from line to line, τ
(n)
R are the stopping times

defined in the proof of the proceeding Lemma and

I1(t) := p sup
r∈[0,t∧τ

(n)
R

]

∣

∣

∣

∣

∫ r

0

‖X(n)
s ‖p−2

H 〈X(n)
s , PnB(s,X(n)

s )dW (n)
s 〉H

∣

∣

∣

∣

;

I2(t) := p sup
r∈[0,t∧τ

(n)
R

]

∣

∣

∣

∣

∫ r

0

∫

Dc

‖X(n)
s ‖p−2

H 〈X(n)
s− , Pnf(s,X

(n)
s− , z)〉HÑ(ds, dz)

∣

∣

∣

∣

;

I3(t) := sup
r∈[0,t∧τ

(n)
R

]

∣

∣

∣

∫ r

0

∫

Dc

[

‖X(n)
s− + Pnf(s,X

(n)
s− , z)‖

p
H − ‖X(n)

s− ‖pH

− p‖X(n)
s− ‖p−2

H 〈X(n)
s− , Pnf(s,X

(n)
s− , z)〉

]

N(dz, ds)
∣

∣

∣.

On the basis of the Burkholder-Davis-Gundy inequality, (1.2), Cauchy-Schwartz inequal-
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ity and Young’s inequality, we have for any ε > 0,

EI1(t)

(3.11)

=pE sup
r∈[0,t∧τ

(n)
R

]

∣

∣

∣

∣

∫ r

0

‖X(n)
s ‖p−2

H 〈X(n)
s , PnB(s,X(n)

s )dW (n)
s 〉H

∣

∣

∣

∣

≤3pE

[

∫ t∧τ
(n)
R

0

‖X(n)
s ‖2p−2

H ‖B(s,X(n)
s )‖22ds

]1/2

≤3pE



 sup
s∈[0,t∧τ

(n)
R

]

‖X(n)
s ‖pH ·

(

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H

(

Fs + C‖X(n)
s ‖2H + γ‖X(n)

s ‖αV
)

ds
)





1/2

≤3p

[

εE sup
s∈[0,t]

‖X(n)
s ‖pH

]1/2 [

1

ε
E

(

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H

(

Fs + C‖X(n)
s ‖2H + γ‖X(n)

s ‖αV
)

ds
)

]1/2

≤εE sup
s∈[0,t∧τ

(n)
R

]

‖X(n)
s ‖pH + Cε,pE

(

∫ t∧∧τ
(n)
R

0

‖X(n)
s ‖p−2

H

(

Fs + C‖X(n)
s ‖2H + γ‖X(n)

s ‖αV
)

ds
)

≤εE sup
s∈[0,t∧τ

(n)
R

]

‖X(n)
s ‖pH + γCε,pE

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

+ Cε,pE

∫ t∧τ
(n)
R

0

(

‖X(n)
s ‖pH + F p/2

s

)

ds.

Similarly, using the Burkholder-Davis inequality (cf. [28]), (1.2) and Young’s inequality we
have

EI2(t)

(3.12)

= pE sup
r∈[0,t∧τ

(n)
R

]

∣

∣

∣

∣

∫ r

0

∫

Dc

‖X(n)
s ‖p−2

H 〈X(n)
s− , Pnf(s,X

(n)
s− , z)〉HÑ(ds, dz)

∣

∣

∣

∣

≤ CE

[

∫ t∧τ
(n)
R

0

∫

Dc

‖X(n)
s ‖2p−2

H ‖Pnf(s,X
(n)
s , z)‖2Hν(dz)ds

]

1
2

≤ CE



 sup
s∈[0,t∧τ

(n)
R

]

‖X(n)
s ‖pH

(

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H (Fs + C‖X(n)
s ‖2H + γ‖X(n)

s ‖αV )ds

)





1
2

≤ εE sup
s∈[0,t∧τ

(n)
R

]

‖X(n)
s ‖pH + Cε,pE

(

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

(

Fs + ‖X(n))
s ‖2H + γ‖X(n))

s ‖αV
)

ds
)
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≤ εE sup
s∈[0,t∧τ

(n)
R

]

‖X(n)
s ‖pH + γCε,pE

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

+ Cε,pE

∫ t∧τ
(n)
R

0

(

‖X(n)
s ‖pH + F p/2

s

)

ds,

where Cε,p is not necessarily the same number from line to line.
For the term I3(t), by (3.9), (1.2) and (3.7), we have

EI3(t) ≤ E

∫ t∧τ
(n)
R

0

∫

Dc

∣

∣

∣
‖X(n)

s− + Pnf(s,X
(n)
s− , z)‖

p
H − ‖X(n)

s− ‖pH(3.13)

− p‖X(n)
s− ‖p−2

H 〈X(n)
s− , Pnf(s,X

(n)
s− , z)〉H

∣

∣

∣N(ds, dz)

= E

∫ t∧τ
(n)
R

0

∫

Dc

∣

∣

∣
‖X(n)

s + Pnf(s,X
(n)
s , z)‖pH − ‖X(n)

s ‖pH

− p‖X(n)
s ‖p−2〈X(n)

s , Pnf(s,X
(n)
s , z)〉H

∣

∣

∣
ν(dz)ds

≤ CpE

∫ t∧τ
(n)
R

0

∫

Dc

(

‖X(n)
s ‖p−2

H ‖f(s,X(n)
s , z)‖2H + ‖f(s,X(n)

s , z)‖pH

)

ν(dz)ds

≤ γCpE

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds+ CpE

∫ t∧τ
(n)
R

0

(F
p/2
t + ‖X(n)

s ‖pH)ds.

Combining the estimates (3.11)-(3.13) we get

E(I1(t) + I2(t) + I3(t))

≤2εE sup
s∈[0,t∧τ

(n)
R

]

‖X(n)
s ‖pH + γCε,pE

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

+ Cε,pE

∫ t∧τ
(n)
R

0

‖X(n)
s ‖pHds+ Cε,pE

∫ T

0

F p/2
s ds.

Let ε = 1
3
, then we have

1

3
E sup

s∈[0,t∧τ
(n)
R

]

‖X(n)
s ‖pH +

(

pθ

2
− 3γC0

)

E

∫ t∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

≤E‖x‖pH + C0E

∫ t∧τ
(n)
R

0

‖X(n)
s ‖pHds+ C0E

∫ T

0

F p/2
s ds,

where C0 is some constant.
Observe that ‖X(n)

s ‖H ≤ R, for s < τ
(n)
R . Then we see that the right-hand side of the

above inequality is finite. Therefore, if γ is small enough (e.g. γ < γ0 :=
pθ
6C0

), we may apply
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Gronwall’s lemma to get

E sup
t∈[0,T∧τ

(n)
R

]

‖X(n)
t ‖pH+E

∫ T∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds ≤ C

(

E‖x‖pH + E

∫ T

0

F p/2
s ds

)

, n ≥ 1,

where C is a constant independent of n. Recall that τ
(n)
R ↑ T , P-a.s. and P{τ (n)R < T} = 0

as R → ∞. It then follows from Fatou’s lemma that

E sup
t∈[0,T ]

‖X(n)
t ‖pH + E

∫ T

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds

≤ lim inf
R→∞



E sup
t∈[0,T∧τ

(n)
R

]

‖X(n)
t ‖pH + E

∫ T∧τ
(n)
R

0

‖X(n)
s ‖p−2

H ‖X(n)
s ‖αV ds





≤ C

(

E‖X0‖
p
H + E

∫ T

0

F p/2
s ds

)

, for all n ≥ 1.

This completes the proof.

For the simplicity of notations, we introduce the following spaces:

K = Lα([0, T ]× Ω, dt× P;V );

K∗ = L
α

α−1 ([0, T ]× Ω, dt× P;V ∗);

J = L2([0, T ]× Ω, dt× P; T2(U ;H));

M = M2
T (P ⊗ Z, dt× P× ν;H).

Lemma 3.4. Under the same assumptions as in Theorem 1.2, there exists a subsequence
(nk) and an element X̄ ∈ K ∩ L∞([0, T ];Lp(Ω;H)) such that

(i) X(nk) → X̄ weakly in K and weakly star in L∞([0, T ];Lp(Ω;H));
(ii) Y (nk) := Pnk

A(·, X(nk)) → Y weakly in K∗;
(iii) Z(nk) := Pnk

B(·, X(nk)) → Z weakly in J and

∫ ·

0

Pnk
B(s,X(nk)

s )dW (nk)
s →

∫ ·

0

ZsdWs

weakly in L∞([0, T ], dt;L2(Ω,P;H));
(iv) F (nk) := Pnk

f(·, X(nk), ·)1Dc → F1Dc weakly in M.

Proof. Applying Lemma 3.2 with p = 2(i.e. β = 0) we have

sup
n

E

∫ T

0

‖X(n)
t ‖αV dt <∞.(3.14)

Since the space K is reflexive, we can find a weakly convergent subsequence {X(nk)} and
X̄ ∈ K such that X(nk) converges to X̄ weakly in K.
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Similarly, since L∞([0, T ];Lp(Ω;H)) = (L1([0, T ];L
p

p−1 (Ω;H)))∗, by the Banach-Alaoglu
theorem, (3.5) allows us to get another weakly star convergent subsequence ( for simplicity
we still denote it by the same notation {X(nk)}) and X̄ ∈ K∩Lp(Ω;L∞([0, T ];H)) such that
assertion (i) holds. Meanwhile, by (H4) and (3.5) we have

sup
n

E

∫ T

0

‖A(t,X(n)
t )‖

α
α−1

V ∗ dt

≤ sup
n

E

∫ T

0

(Ft + C‖X(n)
t ‖αV )(1 + ‖X(n)

t ‖βH)dt

≤C sup
n

E

∫ T

0

(

Ft + ‖X(n)
t ‖αV + F

β+2
2

t + ‖X(n)
t ‖β+2

H + ‖X(n)
t ‖βH‖X

(n)
t ‖αV

)

dt

<∞.

Therefore, claim (ii) also holds.
Also, note that by (1.2)

sup
n

E

∫ T

0

‖PnB(t,X
(n)
t )‖22dt

≤ sup
n

E

∫ T

0

(

Ft + C‖X(n)
t ‖2H + γ‖X(n)

t ‖αV

)

dt <∞.

Hence by taking a subsequence we have that Pnk
B(t,X

(nk)
t ) converges to Z weakly in J .

Recall that P̃n is the orthogonal projection onto span{g1, · · · , gn} in U , one may assume

Pnk
B(t,X

(nk)
t )P̃n also converges to Z weakly in J without loss of generality. Since

∫ ·

0

PnB(s,X
(nk)
t )dW nk

s =

∫ ·

0

Pnk
B(s,X(nk)

s )P̃nk
dWs

and weakly convergence is preserved under the linear continuous mapping

I : φ ∈ J 7→ I(φ) :=

∫

φ dW ∈ L2([0, T ]× Ω;H),

we know that
∫ ·

0

PnB(s,X(nk)
s )P̃ndWs

converges weakly to
∫ ·

0
ZsdWs, i.e. (iii) holds.

Similarly, by (1.2) we have

sup
n

E

∫ T

0

∫

Dc

‖Pnf(s,X
(n)
s− , z)‖

2
Hν(dz)ds

≤ sup
n

∫ T

0

(

Ft + C‖X(n)
s ‖2H + γ‖X(n)

s ‖αV
)

ds

<∞,

which yields claim (iv).
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Proof of Theorem 3.1. Existence of solutions: Now we define a V ∗-valued process X by

(3.15) Xt := X0 +

∫ t

0

Ysds+

∫ t

0

ZsdWs +

∫ t

0

∫

Dc

F (s, z)Ñ(ds, dz), t ∈ [0, T ].

By Lemma 3.4, it is easy to see that X is a V ∗-valued modification of the V -valued process
X̄, i.e. X = X̄ dt× P-a.e. in V . Moreover, we have

sup
t∈[0,T ]

E‖Xt‖
p
H + E

∫ T

0

‖Xt‖
α
V dt <∞.

By [20], we know that X is an H-valued càdlàg F-adapted process satisfying

‖Xt‖
2
H =‖X0‖

2
H +

∫ t

0

(

2V ∗〈Ys, X̄s〉V + ‖Zs‖
2
2

)

ds+ 2

∫ t

0

〈X̄s, ZsdWs〉H(3.16)

+ 2

∫ t

0

∫

Dc

〈X̄s, F (s, z)〉HÑ(ds, dz) +

∫ t

0

∫

Dc

‖F (s, z)‖2HN(ds, dz).

Therefore, it remains to verify that

A(·, X̄) = Y, B(·, X̄) = Z, dt× P− a.e.;

and f(s, X̄s−, z) = F (s, z), dt× P× ν − a.e..

Define

N =

{

φ : φ is a V -valued F-adapted process such that E

∫ T

0

ρ(φs)ds <∞

}

.

For φ ∈ K ∩N ∩L∞([0, T ];Lp(Ω;H)), by applying the Itô formula to the process X(nk), see
[50, proof of Theorem 4.1] we have

e−
∫ t

0 (K+ρ(φs))ds‖X(nk)
t ‖2H

=‖X(nk)
0 ‖2H +

∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈A(s,X(nk)
s ), X

(nk)
s− 〉V

+ ‖Pnk
B(s,X(nk)

s )P̃nk
‖22 − (K + ρ(φs))‖X

(nk)
s ‖2H

)

ds

]

+ 2

∫ t

0

e−
∫ s

0 (K+ρ(φr))dr〈X(nk)
s− , Pnk

B(s,X(nk)
s )dW nk

s 〉H

+ 2

∫ t

0

∫

Dc

e−
∫ s

0 (K+ρ(φr))dr〈X(nk)
s− , Pnk

f(s,X
(nk)
s− , z)〉HÑ(ds, dz)

+

∫ t

0

∫

Dc

e−
∫ s

0 (K+ρ(φr))dr‖Pnk
f(s,X

(nk)
s− , z)‖2HN(ds, dz).
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Then by taking the expectation to both sides and (H2) we get

E

(

e−
∫ t

0 (K+ρ(φs))ds‖X(nk)
t ‖2H

)

− E

(

‖X(nk)
0 ‖2H

)

=E

[ ∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈A(s,X(nk)
s ), X

(nk)
s− 〉V

+ ‖Pnk
B(s,X(nk)

s )P̃nk
‖22 − (K + ρ(φs))‖X

(nk)
s ‖2H

)

ds

]

+ E

[

∫ t

0

∫

Dc

e−
∫ s

0 (K+ρ(φr))dr‖Pnk
f(s,X

(nk)
s− , z)‖2Hν(dz)ds

]

≤E

[ ∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈A(s,X(nk)
s )− A(s, φs), X

(nk)
s − φs〉V

+ ‖B(s,X(nk)
s )− B(s, φs)‖

2
2 − (K + ρ(φs))‖X

(nk)
s − φs‖

2
H

+

∫

Dc

‖f(s,X(nk)
s , z)− f(s, φs, z)‖

2
Hν(dz)

)

ds

]

+ E

[ ∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈A(s,X(nk)
s )− A(s, φs), φs〉V + 2V ∗〈A(s, φs), X

(nk)
s 〉V

− ‖B(s, φs)‖
2
2 + 2〈B(s,X(nk)

s ), B(s, φs)〉T2(U,H) − 2(K + ρ(φs))〈X
(nk)
s , φs〉H

+ (K + ρ(φs))‖φs‖
2
H +

∫

Dc

(

2〈f(s,X(nk)
s , z), f(s, φs, z)〉H − ‖f(s, φs, z)‖

2
H

)

ν(dz)

)

ds

]

≤E

[ ∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈A(s,X(nk)
s )− A(s, φs), φs〉V + 2V ∗〈A(s, φs), X

(nk)
s 〉V

− ‖B(s, φs)‖
2
2 + 2〈B(s,X(nk)

s ), B(s, φs)〉T2(U,H) − 2(K + ρ(φs))〈X
(nk)
s , φs〉H

+ (K + ρ(φs))‖φs‖
2
H +

∫

Dc

(

2〈f(s,X(nk)
s , z), f(s, φs, z)〉H − ‖f(s, φs, z)‖

2
H

)

ν(dz)

)

ds

]

.

Hence for any nonnegative function ψ ∈ L∞([0, T ]; dt) we have

E

[∫ T

0

ψt

(

e−
∫ t

0 (K+ρ(φs))ds‖Xt‖
2
H − ‖X0‖

2
H

)

dt

]

≤ lim inf
k→∞

E

[∫ T

0

ψt

(

e−
∫ t

0 (K+ρ(φs))ds‖X(nk)
t ‖2H − ‖X(nk)

0 ‖2H

)

dt

]

≤ lim inf
k→∞

E

[ ∫ T

0

ψt

(∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈A(s,X(nk)
s )− A(s, φs), φs〉V

+ 2V ∗〈A(s, φs), X
(nk)
s 〉V − ‖B(s, φs)‖

2
2 + 2〈B(s,X(nk)

s ), B(s, φs)〉T2(U,H)

(3.17)

− 2(K + ρ(φs))〈X
(nk)
s , φs〉H + (K + ρ(φs))‖φs‖

2
H

+

∫

Dc

(

2〈f(s,X(nk)
s , z), f(s, φs, z)〉H − ‖f(s, φs, z)‖

2
H

)

ν(dz)

)

ds

)

dt

]
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=E

[ ∫ T

0

ψt

(∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈Ys − A(s, φs), φs〉V + 2V ∗〈A(s, φs), X̄s〉V

− ‖B(s, φs)‖
2
2 + 2〈Zs, B(s, φs)〉T2(U,H) − 2(K + ρ(φs))〈X̄s, φs〉H

+ (K + ρ(φs))‖φs‖
2
H +

∫

Dc

(

2〈F (s, z), f(s, φs, z)〉H − ‖f(s, φs, z)‖
2
H

)

ν(dz)

)

ds

)

dt

]

.

On the other hand, by (3.16) we have for φ ∈ K ∩M∩ L∞([0, T ];Lp(Ω;H)),

E

(

e−
∫ t

0 (K+ρ(φs))ds‖Xt‖
2
H

)

− E
(

‖X0‖
2
H

)

(3.18)

=E

[ ∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈Ys, X̄s〉V + ‖Zs‖
2
2

− (K + ρ(φs))‖Xs‖
2
H +

∫

Dc

‖F (s, z)‖2Hν(dz)

)

ds

]

.

Combining (3.18) with (3.17) we have

E

[ ∫ T

0

ψt

(∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈Ys − A(s, φs), X̄s − φs〉V − (K + ρ(φs))‖X̄s − φs‖
2
H

+ ‖B(s, φs)− Zs‖
2
2 +

∫

Dc

‖f(s, φs, z)− F (s, z)‖2Hν(dz)

)

ds

)

dt

]

≤ 0.

(3.19)

Therefore, if we take φ = X̄ in (3.19), we obtain that Z = B(·, X̄) in J , F (·, ·) = f(·, X̄·, ·)
in M.

Note that (3.19) also implies that

E

[ ∫ T

0

ψt

(∫ t

0

e−
∫ s

0 (K+ρ(φr))dr

(

2V ∗〈Ys − A(s, φs), X̄s − φs〉V

− (K + ρ(φs))‖X̄s − φs‖
2
H

)

ds

)

dt

]

≤ 0.

(3.20)

If we take φ = X̄ − εφ̃v in (3.20) for φ̃ ∈ L∞([0, T ] × Ω; dt × P;R) and v ∈ V , divide
both sides by ε and let ε→ 0 , then we have

E

[ ∫ T

0

ψt

(∫ t

0

e−
∫ s

0 (K+ρ(X̄r))dr

(

2φ̃sV ∗〈Ys − A(s, X̄s), v〉V

)

ds

)

dt

]

≤ 0.

Then the claim Y = A(·, X̄) follows immediately.
Therefore, the process X = {Xt}t≥0 is a solution to (3.1). Furthermore, the estimates

(1.5) and (1.6) follows directly from Lemma 3.2, 3.3 and 3.4.
Uniqueness of solutions: We finally proceed with showing the uniqueness of solutions to

(3.1).
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Suppose Xt, Yt are the solutions of (3.1) with initial conditions X0, Y0 respectively, i.e.

Xt = X0 +

∫ t

0

A(s,Xs)ds+

∫ t

0

B(s,Xs)dWs +

∫ t

0

∫

Dc

f(s,Xs−, z)Ñ(ds, dz), t ∈ [0, T ];

Yt = Y0 +

∫ t

0

A(s, Ys)ds+

∫ t

0

B(s, Ys)dWs +

∫ t

0

∫

Dc

f(s, Ys−, z)Ñ(ds, dz), t ∈ [0, T ].

(3.21)

We define the following stopping times:

σN := inf{t ∈ [0, T ] : ‖Xt‖H ≥ N} ∧ inf{t ∈ [0, T ] : ‖Yt‖H ≥ N} ∧ T.

Applying again the Schmalfuss [50] trick, by means of the Itô formula (3.16) we have

e−
∫ t∧σN
0 (K+ρ(Ys))ds‖Xt∧σN

− Yt∧σN
‖2H − ‖X0 − Y0‖

2
H

=

∫ t∧σN

0

e−
∫ s

0 (K+ρ(Yr))dr

(

2V ∗〈A(s,Xs)− A(s, Ys), Xs − Ys〉V

+ ‖B(s,Xs)− B(s, Ys)‖
2
2 − (K + ρ(Ys))‖Xs − Ys‖

2
H

)

ds

+ 2

∫ t∧σN

0

e−
∫ s

0 (K+ρ(Yr))dr〈Xs − Ys, B(s,Xs)dWs − B(s, Ys)dWs〉H

+ 2

∫ t∧σN

0

∫

Dc

e−
∫ s

0 (K+ρ(Yr))dr〈Xs − Ys, f(s,Xs−, z)− f(s, Ys−, z)〉HÑ(ds, dz)

+

∫ t∧σN

0

∫

Dc

e−
∫ s

0 (K+ρ(Yr))dr‖f(s,Xs−, z)− f(s, Ys−, z)‖
2
HN(ds, dz).

It then follows from (H2) that

E

[

e−
∫ t∧σN
0 (K+ρ(Ys))ds‖Xt − Yt‖

2
H

]

− E‖X0 − Y0‖
2
H

=E

[ ∫ t∧σN

0

e−
∫ s

0 (K+ρ(Yr))dr

(

2V ∗〈A(s,Xs)− A(s, Ys), Xs − Ys〉V

+ ‖B(s,Xs)− B(s, Ys)‖
2
2 − (K + ρ(Ys))‖Xs − Ys‖

2
H

+

∫

Dc

‖f(s,Xs−, z)− f(s, Ys−, z)‖
2
Hν(dz)

)

ds

]

≤0.

Hence if X0 = Y0 P-a.s., then

E

[

e−
∫ t∧σN
0 (K+ρ(Ys))ds‖Xt − Yt‖

2
H

]

= 0, t ∈ [0, T ].

Note that by (1.4) and (1.5) (see Lemma 3.2) we have

∫ T

0

(K + ρ(Ys))ds <∞, P-a.s..
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Therefore, by letting N → ∞ (hence σN ↑ T ) we have that Xt = Yt, P-a.s., t ∈ [0, T ]. Then
the pathwise uniqueness follows from the path càdlàg property of X, Y in H.

This completes the proof of Theorem 3.1.

3.2 With large jumps

Let τ be a stopping time such that τ <∞ a.s.. We define

W τ (t) = W (t+ τ)−W (τ);

pτ (t) = p(t+ τ), t ∈ D(pτ ),
(3.22)

where D(pτ ) = {t ∈ (0,∞) : t + τ ∈ D(p)}. Let F τ
t = Ft+τ , t ∈ [0, T ]. The following result

is a direct extension from Theorem II6.4 and II6.5 in [29].

Proposition 3.5. The process W τ defined by (3.22) is a cylindrical F τ
t -Wiener process and

pτ is a stationary F τ
t -Poisson point process with the intensity measure ν.

Clearly W τ is independent of Fτ and W τ , pτ enjoy the same properties as W, p.

Corollary 3.6. Let τ be a stopping time on [0, T ] and Xτ be an Fτ -measurable random
variable. Under the same assumptions as in Theorem 1.2, there exists a unique càdlàg H-
valued F-adapted process (Xt) and a process X̄ ∈ Lα([τ, T ];V ) ∩ L2([τ, T ];H), P-a.s. which
is dt× P-equivalent to X such that the equality holds P-a.s.:

Xt = Xτ +

∫ t

τ

A(s, X̄s)ds+

∫ t

τ

B(s, X̄s)dWs +

∫ t

τ

∫

Dc

f(s, X̄s−, z)Ñ(ds, dz), t ∈ [τ, T ].

(3.23)

Moreover, if Xτ ∈ Lβ+2(Ω,Fτ ,P;H), then we have

X̄ ∈ Lα([τ, T ]× Ω, dt× P;V ) ∩ Lβ+2([τ, T ]× Ω, dt× P;H).

Proof. We first assume Xτ = h ∈ H, then it is obvious that Xτ ∈ Lβ+2(Ω,Fτ ,P;H).
Let N τ be the compensated Poisson random measure associated to the Poisson point

process pτ . As an immediate consequence of Theorem 3.1, there exists a unique (F τ
t )-adapted

H-valued càdlàg process Xτ,h such that

Xτ,h
t =h+

∫ t

0

A(s+ τ, X̄τ,h
s )ds+

∫ t

0

B(s+ τ, X̄τ,h
s )dW τ

s

+

∫ t

0

∫

Dc

f(s+ τ, X̄τ,h
s− , z)Ñ

τ (ds, dz), t ∈ [0, T ],

where as before X̄τ,h is the dt × P-equivalent class of Xτ,h. Indeed, this follows along the
same lines of the proof of Theorem 3.1 in such a way that all computations involving the
expectations are replaced by conditional expectations with respect to Fτ .
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Since for any h ∈ H, the solution Xτ,h
t is a measurable function of h, by replacing h with

the Fτ -measurable random variable Xτ , where Xτ , W
τ and pτ are mutually independent,

we obtain an unique solution Xτ satisfying

Xτ
t =Xτ +

∫ t

0

A(s+ τ, X̄τ
s )ds+

∫ t

0

B(s+ τ, X̄τ
s )dW

τ
s

+

∫ t

0

∫

Dc

f(s+ τ, X̄τ
s−, z)Ñ

τ (ds, dz), t ∈ [0, T ].

Set Xt := Xτ
t−τ , then it is straightforward to see that X is the unique solution to equation

(3.23) with initial condition Xτ .

For convenience, we use X ′
τ,t(ξ), t ∈ [0, T ] to denote the solution to equation (3.23) on

[0, T ] with initial condition ξ at time τ and X0,t(x), t ∈ [0, T ] to denote the solution to
equation (1.1) on [0, T ] with initial condition x at time 0.

Theorem 3.1 tells us that equation (3.1) with initial condition x at time 0 has a unique
H-valued càdlàg solution X ′ := (X ′

0,t(x))t∈[0,T ] on [0, T ], that is

X ′
0,t(x) =x+

∫ t

0

A(s, X̄ ′
0,s(x))ds+

∫ t

0

B(s, X̄ ′
0,s(x))dWs

+

∫ t

0

∫

Dc

f(s, X̄ ′
0,s−(x), z)Ñ(ds, dz), t ∈ [0, T ].

Here X̄ ′
0,·(x) ∈ Lα([0, T ]×Ω, dt×P;V )∩L2([0, T ]×Ω, dt×P;H) and it is dt×P-equivalent to

X ′
0,·(x). Recall that {τn} are the arrival times for the jumps of the Poisson process N(t,D),

t ∈ [0, T ]. Now we may construct a solution to (1.1) on [0, τ1] as follows:

X0,t(x) =

{

X ′
0,t(x), for 0 ≤ t < τ1;

X ′
0,τ1−

(x) + g(τ1, X̄
′
0,τ1−

(x), p(τ1)), for t = τ1.

We note that since the process X ′
0,t(x), t ∈ [0, T ] has no jumps occurring at time τ1, we infer

X0,τ1−(x) = X ′
0,τ1−

(x) = X ′
0,τ1

(x). Set X̄0,t(x) = X̄ ′
0,t(x) on [0, τ1]. Then it is easy to see that

X̄0,t(x) is dt× P-equivalent to X0,t(x) on [0, τ1]. Hence we have

X0,τ1(x) = X ′
0,τ1−

(x) + g(τ1, X̄
′
0,τ1−

(x), p(τ1))

= x+

∫ τ1

0

A(s, X̄ ′
0,s(x))ds+

∫ τ1

0

B(s, X̄ ′
0,s(x))dWs

+

∫ τ1

0

∫

Dc

f(s, X̄ ′
0,s−(x), z)Ñ(ds, dz) + g(τ1, X̄

′
0,τ1−

(x), p(τ1))

= x+

∫ τ1

0

A(s, X̄0,s(x))ds+

∫ τ1

0

B(s, X̄0,s(x))dWs

+

∫ τ1

0

∫

Dc

f(s, X̄0,s−(x), z)Ñ(ds, dz) + g(τ1, X̄0,τ1−(x), p(τ1)).
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Also, since τ1 is the time at which the first jump of the process N(t,D), t ∈ [0, T ] happened,
we infer

∫ t

0

∫

D

g(s, X̄ ′
0,s−(x), z)N(ds, dz) =

{

0, t ∈ [0, τ1),
g(τ1, X̄

′
0,τ1−

(x), p(τ1)), t ∈ [τ1, τ2).

It follows that for t ∈ [0, τ1] we have

X0,t(x) =x+

∫ t

0

A(s, X̄0,s(x))ds+

∫ t

0

B(s, X̄0,s(x))dWs

+

∫ t

0

∫

Dc

f(s, X̄0,s−(x), z)Ñ(ds, dz) +

∫ t

0

∫

D

g(s, X̄0,s−(x), z)N(ds, dz),

which shows that the process X0,t(x) is an H-valued solution to the equation (1.1) on [0, τ1].
Since the valued of g(·, X, ·) at time τ1 depends only on the valued of Xτ1− strictly prior

to the time τ1, the uniqueness of the solution X
′
0,t(x) on [0, τ1) implies the uniqueness of the

solution X0,t(x) on [0, τ1].
Next, let X ′

τ1,t
(X0,τ1(x)) be the unique solution to the equation (3.1) with initial condition

X0,τ1(x) at time τ1, then there exists a dt × P-equivalent class X̄ ′
τ1,t

(X0,τ1(x)), t ∈ [τ1, T ]
satisfying

X ′
τ1,t

(X0,τ1(x)) = X0,τ1(x) +

∫ t

τ1

A(s, X̄ ′
τ1,s

(X0,τ1(x)))ds+

∫ t

τ1

B(s, X̄ ′
τ1,s

(X0,τ1(x)))dWs

+

∫ t

τ1

∫

Dc

f(s, X̄ ′
τ1,s−

(X0,τ1(x)), z)Ñ(ds, dz), t ∈ [τ1, T ].

We define

X0,t(x) =







X0,t(x), for 0 ≤ t ≤ τ1;
X ′

τ1,t
(X0,τ1(x)), for τ1 < t < τ2;

X ′
τ1,τ2−

(X0,τ1(x)) + g(τ2, X̄
′
τ1,τ2−

(X0,τ1(x)), p(τ2)), for t = τ2,

and

X̄0,t(x) =

{

X̄0,t(x), for t ∈ [0, τ1];
X̄ ′

τ1,t
(X0,τ1(x)), for t ∈ [τ1, τ2].

It is easy to see that X̄0,s(x) = X0,s(x), dt× P on [0, τ2]. Then we have for t ∈ (τ1, τ2),

X0,t(x) = X ′
τ1,t

(X0,τ1(x))

=x+

∫ τ1

0

A(s, X̄0,s(x))ds+

∫ τ1

0

B(s, X̄0,s(x))dWs

+

∫ τ1

0

∫

Dc

f(s, X̄0,s−(x), z)Ñ(ds, dz) + g(τ1, X̄0,τ1−(x), p(τ1))

+

∫ t

τ1

A(s, X̄ ′
τ1,s

(X0,τ1(x)))ds+

∫ t

τ1

B(s, X̄ ′
τ1,s

(X0,τ1(x)))dWs
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+

∫ t

τ1

∫

Dc

f(s, X̄ ′
τ1,s−

(X0,τ1(x)), z)Ñ(ds, dz)

=x+

∫ t

0

A(s, X̄0,s(x))ds+

∫ t

0

B(s, X̄ ′
0,s(x))dWs

+

∫ t

0

∫

Dc

f(s, X̄0,s−(x), z)Ñ(ds, dz) +

∫ t

0

∫

D

g(s, X̄0,s−(x), z)N(ds, dz).

As we known that X ′
τ1,τ2−

(X0,τ1(x)) = X ′
τ1,τ2

(X0,τ1(x)), a similar argument as above gives

X0,τ2(x) =x+

∫ τ2

0

A(s, X̄0,s(x))ds+

∫ τ2

0

B(s, X̄0,s(x))dWs

+

∫ τ2

0

∫

Dc

f(s, X̄0,s−(x), z)Ñ(ds, dz) +

∫ τ2

0

∫

D

g(s, X̄0,s−(x), z)N(ds, dz).

In particular,

∫ τ2

0

∫

D

g(s, X̄0,s−(x), z)N(ds, dz) = g(τ1, X̄0,τ1−, p(τ1)) + g(τ2, X̄0,τ2−, p(τ2))

= g(τ1, X̄
′
0,τ1−

(x), p(τ1)) + g(τ2, X̄
′
τ1,τ2−

(X0,τ1(x)), p(τ2)).

Therefore, X0,t(x) is a solution of (1.1) on [0, τ2] and the uniqueness of the solution on [0, τ2]
follows from the uniqueness of the solutions X ′

0,t(x) and X
′
τ1,t

(X0,τ1)(x).
By using this type of interlacing structure, one can construct a unique solution recursively

to the equation (1.1) in the time interval [0, τn] for every n ∈ N.
Now the proof is complete.

4 Application and Examples

Theorem 1.2 gives a unified framework for a very large class of SPDE driven by general Lévy
noise, which generalizes both the classical result in [27, 45] and the recent result in [35, 11].
Within this framework, the issue of existence and uniqueness of solutions to a large class
of stochastic evolution equations with monotone coefficients (cf. [45, 27] for the stochastic
porous medium equation and stochastic p-Laplace equation) and with locally monotone
coefficients (cf. [35] for stochastic generalized Burgers equations and stochastic 2D Navier-
Stokes equations) driven by more general Lévy processes instead of Wiener processes can be
treated.

For the simplicity of notation we use Di to denote the spatial derivative ∂
∂xi

, and Λ ⊆ R
d

is an open bounded domain with smooth boundary. For the standard Sobolev spaceW 1,p
0 (Λ)

(p ≥ 2) we always use the following (equivalent) Sobolev norm:

‖u‖1,p :=

(∫

Λ

|∇u(x)|pdx

)1/p

.
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For d = 2, we recall the following well-known estimate on R
2 (cf. [52]):

(4.1) ‖u‖4L4 ≤ C‖u‖2L2‖∇u‖2L2 , u ∈ W 1,2
0 (Λ).

W also recall the following estimate on R
3:

(4.2) ‖u‖4L4 ≤ C‖u‖L2‖∇u‖3L2 , u ∈ W 1,2
0 (Λ),

We first recall the following lemma in [35], which is used to verify the local monotonicity
condition (H2) in examples.

Lemma 4.1. Consider the Gelfand triple

V := W 1,2
0 (Λ) ⊆ H := L2(Λ) ⊆ W−1,2(Λ)

and the operator

A(u) = ∆u+
d
∑

i=1

fi(u)Diu,

where fi : R → R (i = 1, · · · , d) are bounded Lipschitz functions.
(1) If d < 3, then there exists a constant K > 0 such that

2V ∗〈A(u)− A(v), u− v〉V ≤ −‖u− v‖2V +
(

K +K‖v‖2V
)

‖u− v‖2H , u, v ∈ V.

(2) If d = 3, then there exists a constant K > 0 such that

2V ∗〈A(u)− A(v), u− v〉V ≤ −‖u− v‖2V +
(

K +K‖v‖4V
)

‖u− v‖2H , u, v ∈ V.

(3) If fi are independent of u for i = 1, · · · , d, i.e.

A(u) = ∆u+
d
∑

i=1

fi ·Diu,

then for any d ≥ 1 we have

2V ∗〈A(u)− A(v), u− v〉V ≤ −‖u− v‖2V +K‖u− v‖2H , u, v ∈ V.

Remark 4.2. (1) Note that the coercivity condition (H3) directly follows from the local
monotonicity (H2) above by taking v = 0.

(2) One should note that the boundedness assumption of fi might be removed in some
cases. For example, if

d = 1,Λ = [0, 1], A(u) = ∆u+
∂F (u)

∂x
,

where F satisfies F (x)− F (y) = c(x− y)2 + f(y)(x− y) for some constant c and function f
with at most linear growth.
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Then by Hölder’s inequality, (4.1) and Young’s inequality we have the following local
monotonicity:

V ∗〈A(u)− A(v), u− v〉V

= −‖u− v‖2V +

∫

Λ

(

∂F (u)

∂x
−
∂F (v)

∂x

)

(u− v) dx

= −‖u− v‖2V −

∫

Λ

(F (u)− F (v))
∂

∂x
(u− v) dx

= −‖u− v‖2V −
c

3

∫

Λ

∂

∂x
(u− v)3 dx+

∫

Λ

f(v)(u− v)
∂

∂x
(u− v) dx

= −‖u− v‖2V +

∫

Λ

f(v)(u− v)
∂

∂x
(u− v) dx

≤ −‖u− v‖2V + ‖f(v)‖L4‖u− v‖L4‖u− v‖V

≤ −‖u− v‖2V + Cn‖f(v)‖L4‖u− v‖1/2H ‖u− v‖3/2V

≤ −
3

4
‖u− v‖2V + (K +K‖v‖4L4)‖u− v‖2H , u, v ∈ V,

(4.3)

where K is a generic constant that may change from line to line.
One simple example is F (x) = c1x

2 + c2x, in this case f(x)(= f1(x)) = 2c1x + c2 is
not bounded but the local monotonicity still holds. Hence the result also covers the case of
Burgers type equations (see also [35]).

For all examples below in this section, we will only state the result on the existence and
uniqueness of solutions. But we should remark that one can also obtain those regularity
estimates (1.5) and (1.6) by Theorem 1.2 if we don’t have the large jumps term in our
equations (i.e. g = 0).

4.1 Semilinear type SPDEs

Example 4.3. (Stochastic Burgers type equations) Let Λ be an open bounded domain in R
d

with smooth boundary. We consider the following semilinear stochastic equation

dXt =

(

∆Xt +
d
∑

i=1

fi(Xt)DiXt + f0(Xt)

)

dt+B(Xt)dWt

+

∫

Dc

f(Xt−, z)Ñ(dt, dz) +

∫

D

g(Xt−, z)N(dt, dz);

X0 =x.

(4.4)

Suppose the coefficients satisfy the following conditions:
(i) fi are bounded Lipschitz functions on R for i = 1, · · · , d;
(ii) f0 is a continuous function on R such that

|f0(x)| ≤ C(|x|r + 1), x ∈ R;

(f0(x)− f0(y))(x− y) ≤ C(1 + |y|s)(x− y)2, x, y ∈ R.
(4.5)
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where C, r, s are some positive constants;
(iii) the function B : W 1,2

0 (Λ) → T2(U ;L
2(Λ)) satisfies the following condition:

‖B(v1)− B(v2)‖
2
2 ≤ C

∫

Λ

|v1 − v2|
2dx, v1, v2 ∈ W 1,2

0 (Λ).

(iv) f, g : R× Z → R such that for all v, v1, v2 ∈ W 1,2
0 (Λ),

∫

Dc

∫

Λ

|f(v1, z)− f(v2, z)|
2dxν(dz) ≤ C

∫

Λ

|v1 − v2|
2dx;

∫

Dc

∫

Λ

|f(v, z)|2dxν(dz) ≤ C(1 +

∫

Λ

|v|2dx);

∫

Dc

(∫

Λ

|f(v, z)|2dx

)3

ν(dz) ≤ C

(

1 +

(∫

Λ

|v|2dx

)3
)

.

(4.6)

Then we have the following result:
(1) If d = 1, r = 3, s = 2, then for any x ∈ L6(Ω,F0,P;H), (4.4) has a unique solution

{Xt}t∈[0,T ].
(2) If d = 2, r = 7

3
, s = 2, then for any x ∈ L6(Ω,F0,P;H), (4.4) has a unique solution

{Xt}t∈[0,T ].
(3) If d = 3, r = 7

3
, s = 4

3
and fi, i = 1, · · · , d are bounded measurable functions which are

independent of Xt, then for any x ∈ L6(Ω,F0,P;H), (4.4) has a unique solution {Xt}t∈[0,T ].

Proof. We consider the following Gelfand triple

V := W 1,2
0 (Λ) ⊆ H := L2(Λ) ⊆ (W 1,2

0 (Λ))∗

and define the operator

A(u) = ∆u+
d
∑

i=1

fi(u)Diu+ f0(u), u ∈ V.

One can show that A,B satisfies (H1)− (H4) with α = 2, β = 4 (see [35, Example 3.2]).
Moreover, it is easy to show that f also satisfies the required conditions (i.e. (H2), (1.2)

and (1.3)) by (4.6).
Then all assertions follow from Theorem 1.2.

Remark 4.4. (1) As mentioned in Remark 4.2, if d = 1, one may take f1(x) = x such that
Theorem 1.2 can be applied to classical stochastic Burgers equation (i.e. (4.4) with f0 ≡ 0).
Therefore, the above example improves the main result in [14] (Theorem 2.2) in the sense
that we allow the coefficient B in front of Wiener noise to be non-additive type. Another
improvement is that we also allow a polynomial perturbation term f0 in the drift of (4.4).
For example, one can take f0(x) = −x3 + c1x

2 + c2x(c1, c2 ∈ R) and show that (4.5) holds.
Hence (4.4) also covers some stochastic reaction-diffusion type equations driven by certain
type of a Lévy noise (cf. [7]).
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(2) If Z = R
d, Dc = {z ∈ R

d : |z| ≤ 1} and ν is a Lévy measure on R
d, then one simple

sufficient condition for f satisfying (4.6) is to assume

|f(x, z)− f(y, z)| ≤ C|x− y||z|, x, y ∈ R, z ∈ Dc;

|f(x, z)| ≤ C(1 + |x|)|z|, x, y ∈ R, z ∈ Dc.

(3) One should note that in the example 4.3, B is assumed to be Lipschitz from W 1,2
0 (Λ)

(w.r.t. ‖ · ‖H) to T2(U ;L
2(Λ)) only for simplicity. Actually, the Lipschitz condition on B

can even be weakened to the requirement

‖B(v1)− B(v2)‖
2
2 ≤ ‖v1 − v2‖

2
V +

(

K +K‖v2‖
2
V

)

‖v1 − v2‖
2
H .

4.2 Quasi-linear type SPDEs

Besides from the example of semilinear SPDE above, we can also apply the main result to
the following quasi-linear SPDE on R

d (d ≥ 3) driven by Lévy noise.

Example 4.5. (Stochastic p-Laplace equations) We consider the following equation on R
d

for p > 2

dXt =

(

d
∑

i=1

Di

(

|DiXt|
p−2DiXt

)

+ f0(Xt)

)

dt+B(Xt)dWt

+

∫

Dc

f(Xt−, z)Ñ(dt, dz) +

∫

D

g(Xt−, z)N(dt, dz);

X0 =x.

(4.7)

Suppose the following conditions hold:
(i) f0 is a continuous function on R such that

f0(x)x ≤ C(|x|
p

2
+1 + 1), x ∈ R;

|f0(x)| ≤ C(|x|r + 1), x ∈ R;

(f0(x)− f0(y))(x− y) ≤ C(1 + |y|t)|x− y|s, x, y ∈ R,

(4.8)

where C > 0 and r, s, t ≥ 1 are some constants.
(ii) B : W 1,p

0 (Λ) → T2(U ;L
2(Λ)) satisfying the following condition:

‖B(v1)− B(v2)‖
2
2 ≤ C

∫

Λ

|v1 − v2|
2dx, v1, v2 ∈ W 1,p

0 (Λ).

(iv) f, g : R× Z → R such that for all v, v1, v2 ∈ W 1,p
0 (Λ),

∫

Dc

∫

Λ

|f(v1, z)− f(v2, z)|
2dxν(dz) ≤ C

∫

Λ

|v1 − v2|
2dx;

∫

Dc

∫

Λ

|f(v, z)|2dxν(dz) ≤ C(1 +

∫

Λ

|v|2dx);

∫

Dc

(∫

Λ

|f(v, z)|2dx

)3

ν(dz) ≤ C

(

1 +

(∫

Λ

|v|2dx

)3
)

.

(4.9)
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Then we have
(1) if d < p, s = 2, r = p + 1 and t ≤ p, then for any x ∈ L6(Ω,F0,P;H), (4.7) has a

unique solution.

(2) if d > p, 2 < s < p, r = 2p
d
+ p − 1 and t ≤ min

{

p2(s−2)
(d−p)(p−2)

, p(p−s)
p−2

}

, for any

x ∈ L6(Ω,F0,P;H) (4.7) has a unique solution.

Proof. (1) Define the following Gelfand triple

V := W 1,p
0 (Λ) ⊆ H := L2(Λ) ⊆ W−1,q(Λ),

then it is well known that
∑d

i=1Di (|Diu|
p−2Diu) satisfy (H1)-(H4) with α = p (cf. [32, 33]).

In particular, there exists a constant δ > 0 such that

(4.10)
d
∑

i=1

V ∗〈Di

(

|Diu|
p−2Diu

)

−Di

(

|Div|
p−2Div

)

, u−v〉V ≤ −δ‖u−v‖pV , u, v ∈ W 1,p
0 (Λ).

Recall that for d < p we have the following Sobolev embedding

W 1,p
0 (Λ) ⊆ L∞(Λ).

Hence by (4.8) we have

V ∗〈f0(u)− f0(v), u− v〉V ≤ C

∫

Λ

(

1 + |v|t
)

|u− v|2dx

≤ C
(

1 + ‖v‖tL∞

)

‖u− v‖2L2

≤ C
(

1 + ‖v‖tV
)

‖u− v‖2H , u, v ∈ V,

(4.11)

where C is a constant may change from line to line.
Hence (H2) holds with ρ(v) = C‖v‖tV .
Note that from (4.8) we have

V ∗〈f0(u), u〉V ≤ C

∫

Λ

(1 + |u|
p

2
+1)dx

≤ C
(

1 + ‖u‖p/2L∞‖u‖H
)

≤
δ

2
‖u‖pV + C

(

1 + ‖u‖2H
)

, u ∈ V.

(4.12)

Therefore, (4.12) together with (4.10) verify (H3) with α = p.
(H4) with β = 4 (in fact one may take β = 2p

p−1
< 4) follows from the following estimate:

‖f0(u)‖V ∗ ≤ C
(

1 + ‖u‖p+1
Lp+1

)

≤ C
(

1 + ‖u‖p−1
L∞ ‖u‖2H

)

≤ C
(

1 + ‖u‖p−1
V ‖u‖2H

)

, u ∈ V.

Then combining with (4.9) we know that the assertions follow from Theorem 1.2.
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(2) Note that for d > p we have the following Sobolev embedding

W 1,p
0 (Λ) ⊆ Lp0(Λ), p0 =

dp

d− p
.

Let t0 =
p(s−2)
s(p−2)

∈ (0, 1) and p1 ∈ (2, p0) such that

1

p1
=

1− t0
2

+
t0
p0
.

Then we have the following interpolation inequality:

‖u‖Lp1 ≤ ‖u‖1−t0
L2 ‖u‖t0Lp0 , u ∈ W 1,p

0 (Λ).

Since 2 < s < p, it is easy to show that s < p1.
Let p2 =

p1
p1−s

, then by (4.8) we have

V ∗〈f0(u)− f0(v), u− v〉V ≤ C

∫

Λ

(

1 + |v|t
)

|u− v|sdx

≤ C
(

1 + ‖v‖tLtp2

)

‖u− v‖sLp1

≤ C
(

1 + ‖v‖tLtp2

)

‖u− v‖s(1−t0)

L2 ‖u− v‖st0Lp0

≤ ε‖u− v‖pLp0 + Cε

(

1 + ‖v‖tbLtp2

)

‖u− v‖2L2 ,

(4.13)

where ε, Cε are some constants and the last step follows from the following Young inequality

xy ≤ εxa + Cεy
b, x, y ∈ R, a =

p− 2

s− 2
, b =

p− 2

p− s
.

With some calculations, one have

s

p1
=
p− s

p− 2
+

p(s− 2)

p0(p− 2)
, p2 =

p0(p− 2)

(p0 − p)(s− 2)
.

Hence if t ≤ (p0−p)(s−2)
p−2

, then

‖u‖Ltp2 ≤ C‖u‖Lp0 ≤ C‖u‖V , v ∈ V.

Therefore, (H2) follows from (4.10) and (4.13).
(H3) can be verified for α = p in a similar manner.
For r = 2p

d
+ p− 1, by the interpolation inequality we have

‖f0(u)‖V ∗ ≤ C
(

1 + ‖u‖r
Lrp′0

)

≤ C
(

1 + ‖u‖p−1
p0

‖u‖θH
)

, u ∈ V,

where
1

p0
+

1

p′0
= 1, θ =

2p

d
.

Therefore, (H4) also holds with β = 4.
Then all assertions follow from Theorem 1.2.
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Remark 4.6. One further generalization is to replace
∑d

i=1Di (|Diu|
p−2Diu) by more gen-

eral quasi-linear differential operator

∑

|α|≤m

(−1)|α|DαAα(x,Du(x, t); t),

where Du = (Dβu)|β|≤m. Under certain assumptions (cf. [55, Proposition 30.10]) this oper-
ator also satisfies the monotonicity and coercivity conditions. Then by a similar argument,
according to Theorem 1.2, we can obtain the existence and uniqueness of solutions to this
type of quasi-linear SPDE driven by Lévy noise.

4.3 Stochastic hydrodynamical systems

The next example is the stochastic 2D Navier-Stokes equation driven by Lévy noise (cf.
[5, 17, 38, 35] for Wiener noise case). The classical Navier-Stokes equation is a very important
model in fluid mechanics to describe the time evolution of incompressible fluids, it can be
formulated as follows (2D case):

∂tu(t) = ν∆u(t)− (u(t) · ∇) u(t)−∇p(t) + f(t),

∇ · u(t) = 0,

where u(t, x) = (u1(t, x), u2(t, x)) represents the velocity field, ν is the viscosity constant,
p(t, x) denotes the pressure and f is an external force field acting on the fluid.

Let Λ be a bounded domain in R
2 with smooth boundary. Define

V =
{

v ∈ W 1,2
0 (Λ,R2) : ∇ · v = 0 a.e. in Λ

}

, ‖v‖V :=

(∫

Λ

|∇v|2dx

)1/2

,

and H is the closure of V in the following norm

‖v‖H :=

(∫

Λ

|v|2dx

)1/2

.

The linear operator PH (the Helmholtz-Leray projection) and A (Stokes operator with vis-
cosity constant ν) are defined by

PH : L2(Λ,R2) → H orthogonal projection;

A : W 2,2(Λ,R2) ∩ V → H, Au = νPH∆u.

It is well known that the Navier-Stokes equation can be reformulated as follows:

(4.14) u′ = Au+ F (u) + f0, u(0) = u0 ∈ H,

where f0 ∈ L2(0, T ;V ∗) denotes some external force and

F : DF ⊂ H × V → H, F (u, v) = −PH [(u · ∇) v] , F (u) = F (u, u).
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It is standard that in the framework of the Gelfand triple

V ⊆ H ≡ H∗ ⊆ V ∗,

one can show that the following mappings

A : V → V ∗, F : V × V → V ∗

are well defined. In particular, we have

V ∗〈F (u, v), w〉V = −V ∗〈F (u, w), v〉V , V ∗〈F (u, v), v〉V = 0, u, v, w ∈ V.

Now we consider the stochastic 2D Navier-Stokes equation driven by Lévy noise:

dXt =(AXt + F (Xt) + f0(t)) dt+B(Xt)dWt

+

∫

Dc

f(Xt−, z)Ñ(dt, dz) +

∫

D

g(Xt−, z)N(dt, dz);

X0 =x.

(4.15)

Example 4.7. (Stochastic 2D Navier-Stokes equation) Suppose that B : V → T2(U ;H) and
f, g : R× Z → R satisfy the following conditions:

‖B(v1)− B(v2)‖
2
2 +

∫

Dc

‖f(v1, z)− f(v2, z)‖
2
Hν(dz) ≤ C‖v1 − v2‖

2
H ;

∫

Dc

‖f(v, z)‖2Hν(dz) ≤ C(1 + ‖v‖2H);
∫

Dc

‖f(v, z)‖4Hν(dz) ≤ C(1 + ‖v‖4H),

(4.16)

where C is some constant.
Then for any x ∈ L4(Ω,F0,P;H), (4.15) has a unique solution {Xt}t∈[0,T ].

Proof. The hemicontinuity (H1) is obvious since F is a bilinear map.
Note that V ∗〈F (v), v〉V = 0, it is also easy to show (H3) with α = 2:

V ∗〈Av + F (v) + Ft, v〉V ≤ −ν‖v‖2V + ‖Ft‖V ∗‖v‖V ≤ −
ν

2
‖v‖2V + C‖Ft‖

2
V ∗ , v ∈ V,

‖B(v)‖22 ≤ 2K‖v‖2H + 2‖B(0)‖22, v ∈ V.

Recall the following estimates (cf. e.g.[38, Lemmas 2.1, 2.2])

|V ∗〈F (w), v〉V | ≤ 2‖w‖L4(Λ;R2)‖v‖V ;

|V ∗〈F (w), v〉V | ≤ 2‖w‖3/2V ‖w‖1/2H ‖v‖L4(Λ;R2), v, w ∈ V.
(4.17)

Then we have

V ∗〈F (u)− F (v), u− v〉V = −V ∗〈F (u, u− v), v〉V + V ∗〈F (v, u− v), v〉V

= −V ∗〈F (u− v), v〉V

≤ 2‖u− v‖3/2V ‖u− v‖1/2H ‖v‖L4(Λ;R2)

≤
ν

2
‖u− v‖2V +

32

ν3
‖v‖4L4(Λ;R2)‖u− v‖2H , u, v ∈ V.

(4.18)
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Hence we have the local monotonicity:

V ∗〈Au+ F (u)− Av − F (v), u− v〉V ≤ −
ν

2
‖u− v‖2V +

32

ν3
‖v‖4L4(Λ;R2)‖u− v‖2H .

Combining with (4.16) we know that (H2) holds with ρ(v) = C‖v‖4L4(Λ;R2).

(4.17) and (4.1) imply that (H4) holds with β = 2.

Then it is easy to see that the existence and uniqueness of solutions to (4.15) follows
from Theorem 1.2.

Remark 4.8. As we mentioned in the introduction, besides the stochastic 2D Navier-Stokes
equation, many other hydrodynamical systems also satisfy the local monotonicity and coer-
civity conditions that we assumed. For example, in a recent work of Chueshov and Millet [11],
they have studied the well-posedness and large deviation principle for an abstract stochastic
semilinear equation (driven by Wiener noise) which covers a wide class of fluid dynamical
models. In fact, the Condition (C1) and (C2) in [11] implies that the assumptions in The-
orem 1.2 hold. More precisely, (2.2) in [11] implies the coercivity (H3) holds, and the local
monotonicity (H2) follows from (2.4) (or (2.8)) in [11]. Other assumptions in Theorem 1.2
can be also verified easily.

Therefore, Theorem 1.2 can be applied to show the well-posedness of all hydrodynam-
ical models in [11] driven by general Lévy noise, e.g. stochastic magneto-hydrodynamic
equations, stochastic Boussinesq model for the Bénard convection, stochastic 2D magnetic
Bénard problem and stochastic 3D Leray-α model driven by Lévy noise.
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