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Abstract. We prove existence and uniqueness of strong solutions
to stochastic equations in domains G ⊂ Rd with unit diffusion and
singular time dependent drift b up to an explosion time. We only
assume local Lq Lp-integrability of b in R×G with d/p+ 2/q < 1.
We also prove strong Feller properties in this case. If b is the
gradient in x of a nonnegative function ψ blowing up as G 3 x→
∂G, we prove that the conditions 2Dtψ ≤ Kψ, 2Dtψ + ∆ψ ≤
Keεψ, ε ∈ [0, 2), imply that the explosion time is infinite and the
distributions of the solution have sub Gaussian tails.

1. Introduction

In this paper we prove existence and uniqueness of strong solutions
for stochastic equations of type

xt = x+

∫ t

0

b(s+ r, xr) dr + wt, t ≥ 0, (1.1)

in open subsets Q ⊂ R×Rd for singular drifts b. Here wt is a standard
Wiener process on Rd and (s, x) ∈ R× Rd is the initial starting point.
Since b is not regular, we emphasize that solutions of (1.1) are supposed
to be such that (1.1) makes sense, that is∫ T

0

|b(s+ r, xr)| dr <∞ ∀T ∈ [0,∞) (a.s.).

Observe that the equation itself expresses wt as a function of xr,
r ≤ t. However, from the point of view of applications, in particular, in
mathematical physics, it is desirable to look for solutions of (1.1) which
are functions of the Wiener process wt, i.e. so-called strong solutions.

Diffusions with singular drift as in (1.1) have been studied exten-
sively, in particular, if b does not depend explicitly on time and is the
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gradient of a function. In this case the solution to (1.1) is called a dis-
torted Brownian motion. We refer e.g. to [5], [2], [1], [7, 8, 9], but there
are many more. Moreover, there have been generalizations to infinite
dimensions. The reader should consult the references in the recent pa-
per [4] to which we also refer for more historical comments. The latter
work and especially its applications to finite particle systems in Rd (see
also [16]) and to diffusions in random environments with very singular
interaction has been the starting point of this paper. It should be con-
sidered as preparation to further analyze the case of infinite particles
where progress has been made a few years ago (cf. [3]). But in all
of these papers only weak solutions to (1.1) were constructed. In this
paper we improve these results (however, partly under slightly stronger
conditions) and obtain strong solutions.

The organization of this paper is as follows. In Section 2 we state
our main results precisely. Sections 3-8 are devoted to proofs which
are developed step by step with some further extensions of our re-
sults presented in Section 8. We only want to emphasize here that
our approach is based on the Yamada-Watanabe Theorem. The nec-
essary pathwise uniqueness we show employing a method due to A.
Yu. Veretennikov ([27]) though in a substantially modified and more
general form. In Section 9 we present two applications, both proposed
in [4], i.e. first, diffusions in random media, i.e. their (singular) drifts
depend on according to a Ruelle-type Gibbs measure distributed im-
purities in Rd, given by a locally finite point configuration; second, we
consider M -particles in Rd with a gradient dynamics which becomes
singular when particles come very close. We also discuss the relation
with earlier works, in particular the recent paper [26]. Finally, we fix
some notation used below. As usual Rd = {x = (x1, ..., xd) : xi ∈ R},
for p, q ∈ [1,∞] we denote Lp = Lp(Rd), Lq Lp = Lq(R, Lp). Also we
introduce C = C([0,∞),Rd), Nt = σ{xs : x· ∈ C, s ≤ t}. By N with
or without indices we denote various finite constants.

2. Main results

Let b(t, x) be an Rd-valued Borel function defined on an open set
Q ⊂ Rd+1. Let Qn, n ≥ 1, be bounded open subsets of Q such that
Q̄n ⊂ Qn+1 and ∪nQn = Q. Assume that for each n there exist p =
p(n), q = q(n) satisfying

p ≥ 2, q > 2,
d

p
+

2

q
< 1 (2.1)

and such that bIQn ∈ Lq Lp. Of course, if d ≥ 2, then automatically,
p > d ≥ 2.
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One of our main results is saying that equation (1.1) is uniquely
solvable up to the first exit time of its trajectories from all Qn. There
is a standard and convenient way to deal with processes defined on
a random time interval. Add an object ∂ 6∈ Q to Q and define the
neighborhoods of ∂ as the complements in Q of closed bounded subsets
of Q. Then Q′ = Q ∪ ∂ becomes a compact topological space. By
C([0,∞), Q′) we denote the space of continuous Q′-valued functions
defined on [0,∞).

Theorem 2.1. Let wt be a d-dimensional Wiener process defined on
a complete probability space (Ω,F , P ), let Ft = Fw

t be the completion
of σ(ws : s ≤ t), and let (s, x) ∈ Q. Then for each ω ∈ Ω there exists
a continuous Q′-valued function zt = zt(ω) defined for t ∈ [0,∞) such
that, with

ζ = inf{t ≥ 0 : zt 6∈ Q},
we have

(i) zt is Ft-adapted;
(ii) ζ > 0 and for 0 ≤ t < ζ in coordinate form zt ∈ Q can be written

as (s+ t, xt) with xt defined as the space component of zt;
(iii) for any t ∈ [0,∞), zt = ∂ on the set {ω : t ≥ ζ(ω)} (a.s.);
(iv) for any t ≥ 0 on {ω : t < ζ(ω)} (a.s.) equation (1.1) and∫ t

0

|b(s+ r, xr)|2 dr <∞

hold.
Furthermore, the process zt is unique in the sense that, if on (Ω,F , P )

we are given a continuous Q′-valued function z′t, t ∈ [0,∞), such that
for ζ ′ and x′t defined from z′t

(a) the properties (ii)-(iv) hold with ζ ′, x′· in place of ζ, x·, respec-
tively,

(b) for any h, t ≥ 0 the increment wt+h−wt is independent of {wr, z′r :
r ≤ t},
then (a.s.) supt |zt − z′t| = 0.

Finally, the distribution of z· on C([0,∞), Q′) is uniquely determined
by the function b, that is weak uniqueness holds for equation (1.1).

Remark 2.2. The following is an equivalent and perhaps a more tra-
ditional albeit longer way to state property (b): (b′) there is an in-

creasing filtration of σ-fields F̂t ⊂ F , t ≥ 0, such that (wt, F̂t) is

a Wiener process and z′t is F̂t-adapted. That (b′) implies (b) fol-
lows directly from definitions. The converse becomes clear if we take
F̂t = σ(z′r, wr : r ≤ t).
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Remark 2.3. In the one-dimensional case b(t, x) = −x−1, Q = R ×
(0,∞), and Qn = (−n, n)×{x : 1/n < x < n} satisfy the assumptions
under which Theorem 2.1 is stated. Observe that in this case the
solutions of (1.1) exit from (0,∞) in finite time, so that ζ <∞ (a.s.).

Remark 2.4. Write ζ = ζ(s, x) and xt = xt(s, x) to reflect the depen-
dence of ζ, xt on the initial data. By using an observation from [11]
one can prove that ζ(s, x) and xt(s, x) depend continuously on (s, x)
in the sense that if (sn, xn) → (s, x) ∈ Q, then we have in probability
ζ(sn, xn) → ζ(s, x) and xt(s

n, xn) → xt(s, x) uniformly on any closed
bounded subinterval of [0, ζ(s, x)).

The following theorem provides information on additional properties
of solutions corresponding to different (s, x).

Theorem 2.5. For z = (s, x) ∈ Q, let Pz be the distribution of z· =
z·(s, x) from Theorem 2.1 on the space C([0,∞), Q′). For z = ∂ let Pz
be the measure concentrated on the function identically equal to ∂ on
[0,∞). Define Nt(Q

′) = σ{zr : r ≤ t, z· ∈ C([0,∞), Q′)}. Then

(C([0,∞), Q′),Nt(Q
′), zt, Ps,x) (2.2)

is a strong Markov (time homogeneous) process. Furthermore, this
process is strong Feller (not in the sense of time-homogeneous processes
but) in the sense that for any Borel bounded f defined on Q′ and T ∈ R,
the function Es,xf(zT−s) is continuous with respect to (s, x) in Q ∩
{(s, x) : s < T}.

Remark 2.6. Take a Borel bounded f defined on Q′ and t ∈ R. For
(s, x) ∈ Q∩{s < T} define u(s, x) = Es,xf(zT−s). It turns out that not
only u is continuous in Q∩{s < T} but ux is Hölder continuous there.
Indeed, Theorem 10.3 below and a standard localization procedure (see,
for instance, [17]) show that, for any T ′ ∈ (0,∞) and η ∈ C∞

0 (Q∩{s <
T}) we have that (uη)(·+T−T ′, ·) ∈ H2,q

p (T ′) which along with Lemma

10.2 below lead to our conclusion. For the definition of spaces H2,q
p (T )

we refer the reader to the end of Section 3.

Our next main result concerns a particular case of equation (1.1) in
which we can prove the existence of solutions for all times. Let ψ(t, x)
be a continuous function defined on Q.

Assumption 2.1. (i) The function ψ is nonnegative.
(ii) For each n there exist p = p(n), q = q(n) satisfying (2.1) such that

ψxIQn ∈ Lq Lp, where ψx is understood in the sense of distributions.
(iii) The function ψ blows up near the parabolic boundary of Q, that

is for any (s, x) ∈ Q, τ ∈ (0,∞), and continuous bounded Rd-valued
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function xt defined on [0, τ) and such that (s+t, xt) ∈ Q for all t ∈ [0, τ)
and

lim
t↑τ

dist((s+ t, xt), ∂Q) = 0,

we have

lim
t↑τ

ψ(s+ t, xt) = ∞.

(iv) For some constants K0 ∈ [0,∞) and ε ∈ [0, 2) in the sense of
distributions on Q we have

2Dtψ ≤ K0ψ, 2Dtψ + ∆ψ ≤ heεψ, (2.3)

where h is a continuous nonnegative function on Q satisfying the fol-
lowing condition
(H) for any σ > 0 and T ∈ [0,∞) there is an r = r(T, σ) ∈ (1,∞) such
that

H(T, σ, r) := HQ(T, σ, r) :=

∫
Q

hr(t, x)I(−T,T )(t)e
−σ|x|2 dtdx <∞.

Observe that H(T, σ, r) <∞ if h is just a constant.

Theorem 2.7. Let Assumption 2.1 be satisfied and let wt be a d-
dimensional Wiener process defined on a complete probability space.
Then for any (s, x) ∈ Q there exists a continuous Rd-valued and Fw

t -
adapted random process xt, t ≥ 0, such that almost surely for all t ≥ 0

(s+ t, xt) ∈ Q,
∫ t

0

|ψx(s+ r, xr)|2 dr <∞,

xt = x+ wt −
∫ t

0

ψx(s+ r, xr) dr. (2.4)

Furthermore, for each T ∈ (0,∞) and n ≥ 1 there exists a constant
N , depending only on d, p(n+1), q(n+1), ε, T , ‖ψxIQn+1‖Lq(n+1) Lp(n+1)

,

dist (∂Qn, ∂Qn+1), sup{ψ+h,Qn+1}, and the function H, such that for
(s, x) ∈ Qn we have

E sup
t≤T

exp(µψ(s+ t, xt) + µν|xt|2) ≤ N,

where

µ = (δ/2)e−TK0/(2δ), δ = 1/2− ε/4, ν = µ/(12T ), (2.5)

Remark 2.8. The uniqueness of solutions to (2.4) follows from Theo-
rem 2.1.
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Remark 2.9. The known condition for the existence of weak solutions
in the time homogeneous case (see [4, Assumptions (H1) and (H2)]) is
the following:

∃δ > 0 : |ψx|2∨(d+δ)e−2ψ ∈ L1,loc(Rd). (2.6)

By the way, we write this condition for our equation (2.4) which is
slightly different from the one considered in [4] where there is the factor√

2 in front of wt.
Let us compare this with our results. Notice at once that of course

there is a substantial difference in the number of derivatives of ψ in-
volved. However, as far as the singularities of ψ are concerned our
assumptions are pretty reasonable and sometimes are even weaker.

In one space dimension let ψ(x) = −α ln |x|, ψ′(x) = −αx−1 near
zero. Then (2.6) is satisfied near zero if and only if α > 1/2. For such α
condition (2.3) is satisfied with h = α|x|εα−2, which is summable near
zero to some power r > 1 if ε is sufficiently close to 2. By the way,
this example shows an advantage of allowing h to be a function rather
than just a constant.

Again for d = 1 and ψ(x) = |x|−δ, δ > 0, conditions (2.6) and (2.3)
are both satisfied if in the latter one we take h to be an appropriate
constant.

On the other hand, for d = 3 and ψ(x) = −α ln |x1| the assumptions
of Theorem 2.7 are satisfied in Q = R4 \ {x1 = 0} if α > 1/2 and (2.6)
is satisfied only if α > 1.

One more situation when Theorem 2.7 is applicable and the results
of [4] are not occurs if d = 2 and ψ(x) = α ln | ln |x|| near the origin
with constant α > 0. Here condition (2.3) is satisfied near the origin
with K0 = h = ε = 0 just because ∆ψ ≤ 0. However, |ψx|2+δ exp(−2ψ)
is summable near the origin only if δ ≤ 0. This example shows, in par-
ticular, the advantage of requiring estimates only from above in (2.3).

3. Local weak solutions

Let bt(x·) be an Rd-valued function defined on (0,∞) × C, let p
and q be two numbers satisfying (2.1), and let T,K ∈ (0,∞) be some
constants. Assume that

(i) bt(x·) is jointly measurable Nt-adapted and bt(x·) = 0 for t > T
and x· ∈ C;

(ii) there exists a Borel real-valued function g(t, x) such that |bt(x·)| ≤
g(t, xt) on (0,∞)× C and ‖g‖Lq Lp ≤ K.

Remark 3.1. For us the most important case when requirement (ii)
is satisfied occurs if bt(x·) has the form b(t, xt)It<τ(x·), where τ(x·) is
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a bounded Nt-stopping time. In that case a good candidate for g is
|b(t, x)|. In the future we deal with increasing sequences of Nt-stopping
times and this somewhat justifies the title of the section.

Below we basically reproduce an approach developed by N. Portenko
in [23].

Lemma 3.2. There exist processes wt, xt defined on a probability space
such that

(i) wt, t ≥ 0, is a d-dimensional Wiener process and xt, t ≥ 0, is a
continuous d-dimensional process;

(ii) {xs, ws : s ≤ t} and wt+h−wt are independent for each t, h ≥ 0;
(iii) with probability one∫ ∞

0

|bt(x·)|2 dt <∞;

(iv) with probability one for all t ≥ 0

xt = wt +

∫ t

0

bs(x·) ds. (3.1)

Proof. Let xt be a d-dimensional Wiener process defined on a proba-
bility space and let f be a Borel nonnegative function on Rd+1. Observe
that for t > s ≥ 0 and x ∈ Rd

E

∫ t

s

f(r, x+xr−s) dr =

∫ t

s

(2π(r−s))−d/2
∫

Rd

f(r, x+y)e−|y|
2/(2r−2s) dydr.

By using Hölder’s inequality first with respect to y and then with re-
spect to r we find that for any p′, q′ ∈ [1,∞] satisfying

d

p′
+

2

q′
< 2 (3.2)

we have

E

∫ t

s

f(r, x+ xr−s) dr ≤ N(t− s)1−1/q′−d/(2p′)‖f‖Lq′ Lp′
, (3.3)

where N depends only on d, p′, q′. Next we notice that p′ := p/2 ≥ 1
(p ≥ 2 !) and q′ = q/2 > 1 and apply (3.3) to f = |g|2 (with g
introduced in (ii) in the beginning of the section) to find that

E

∫ t

s

g2(r, x+ xr−s) dr ≤ N(t− s)ε, (3.4)

where N and ε > 0 depend only on d, p, q, and K. Since this estimate
is uniform with respect to t, s, and x, Khasminskii’s lemma (see [14])
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implies that for any constant κ > 0 there is a δ > 0 such that

sup
s,x

E exp(κ

∫ s+δ

s

g2(r, x+ xr−s) dr) ≤ N(κ,K, T, d, p, q).

Then one splits (0, T ) (where T is taken from the beginning of the
section) into a union of intervals of length ≤ δ and one uses the Markov
property of the Wiener process to get that

sup
x
E exp(κ

∫ T

0

g2(r, x+ xr) dr) ≤ N, (3.5)

where N again depends only on κ, T, d, p, q, and K. We replace here g
with |b| and then the integral over (0, T ) can be replaced with the one
over (0,∞) since bt = 0 for t > T . Thus,

E exp(κ

∫ ∞

0

|bt(x·)|2 dt) <∞. (3.6)

By standard results about exponential martingales now it follows that

Eρ = 1, (3.7)

where

ρ = exp(

∫ ∞

0

bt(x·) dxt − (1/2)

∫ ∞

0

|bt(x·)|2 dt). (3.8)

Furthermore, by Girsanov’s theorem the process

wt := xt −
∫ t

0

bs(x·) ds (3.9)

is a Wiener process relative to the new probability measure P̃ defined
by P̃ (dω) = ρ(ω)P (dω). In addition, the increments of wt are indepen-
dent of the past values of xs and ws or, in somewhat more traditional
language, (wt,Ft) is a Wiener process, where Ft is the completion of
σ(ws, xs : s ≤ t) or the completion of σ(xs : s ≤ t) (the two completions
coincide owing to (3.9)). We see that assertions (i), (ii), and (iv) hold
under the new probability measure. Assertion (iii) holds with respect
to the old probability measure due to (3.6). That it holds with respect
to the new measure as well follows from the fact that the new measure
is absolutely continuous with respect to the old one. The lemma is
proved.

Lemma 3.3. Let wt, xt be processes for which the assertions (i)-(iv) of
Lemma 3.2 hold. Then for any Borel nonnegative function f defined
on the space C([0,∞),Rd) we have

Ef(x·) = Ef(w·) exp(

∫ ∞

0

bt(w·) dwt − (1/2)

∫ ∞

0

|bt(w·)|2 dt), (3.10)
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Ef(w·) = Ef(x·) exp(−
∫ ∞

0

bt(x·) dwt − (1/2)

∫ ∞

0

|bt(x·)|2 dt).

Furthermore, for any S ∈ (0,∞) and p′, q′ > 1 satisfying (3.2) there
exists a constant N , depending only on S, p, q, p′, q′, d, T , and K, such
that for any Borel nonnegative function f on Rd+1 we have

E

∫ S

0

f(t, xt) dt ≤ N‖f‖Lq′ Lp′
. (3.11)

Proof. As we have seen from the proof of Lemma 3.2, property (iii)
holds if we take wt in place of xt. Therefore the first assertion of the
lemma is a direct consequence of the Liptser-Shiryaev theorem about
absolutely continuous change of measure (see, for instance, Theorem
7.7 in [22]).

To prove the second assertion we use notation (3.8) with w· in place
of x·. Then by (3.10) and Hölder’s inequality for α, β > 1 satisfying
1/α+ 1/β = 1 we find

E

∫ S

0

f(t, xt) dt = Eρ

∫ S

0

f(t, wt) dt

≤ (Eρα)1/αS1/α(E

∫ S

0

fβ(t, wt) dt)
1/β

Owing to (3.6) all moments of ρ are finite. Indeed, use the notation
ρ(b) for the right-hand side of (3.8) with w· in place of x· (remember
that x· in (3.8) is a Wiener process). Then, for any b we have Eρ(b) ≤ 1
and our assertion follows from Hölder’s inequality and the equation

Eρα = E(ρ(2αb))1/2
(
exp((4α2 − α)

∫ ∞

0

|bt(w·)|2 dt)
)1/2

Hence by (3.3)

E

∫ S

0

f(t, xt) dt ≤ N‖fβ‖1/β
Lq′′ Lp′′

= N‖f‖Lβq′′ Lβp′′

if p′′, q′′ ∈ [1,∞] are such that d/p′′ + 2/q′′ < 2. One can certainly
choose β > 1 sufficiently close to 1 so that this condition holds for
p′′ = p′/β and q′′ = q′/β. This yields the desired result and the lemma
is proved.

Corollary 3.4. In the situation of Lemma 3.3 take a constant κ ≥ 0
and a function b̂t(x·) satisfying the conditions in the beginning of the

section with T̂ , K̂, ĝ, p̂, and q̂ in place of T,K, g, p, q. Then

E exp(κ

∫ ∞

0

|b̂t(x·)|2 dt) ≤ N(d, T̂ , K̂, p̂, q̂, T,K, p, q).
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Proof. By (3.10) the expectation equals

Eρ exp(κ

∫ ∞

0

|b̂t(w·)|2 dt)

≤ (Eρ2)1/2
(
E exp(2κ

∫ ∞

0

|b̂t(w·)|2 dt)
)1/2

,

which is finite by (3.6).

Remark 3.5. Equation (3.10) shows that different solutions of (3.1)
have the same distribution on C. In other words, weak uniqueness
holds for (3.1).

Lemma 3.6. Let b
(i)
t (x·), i = 1, 2, satisfy the assumptions in the begin-

ning of the section and let |b(1)t (x·)−b(2)
t (x·)| ≤ b̄(t, xt), where b̄ ∈ Lq Lp.

Let some couples (w
(i)
t , x

(i)
t ), i = 1, 2, possess the properties (i)-(iv) of

Lemma 3.2 with b replaced by b(i). Then for any bounded Borel func-
tions f (i)(x·), i = 1, 2, given on C we have

|Ef (1)(x(1)
· )− Ef (2)(x(2)

· )| ≤ N
(
E|f (1)(w·)− f (2)(w·)|2

)1/2

+N sup
C
|f (1)| ‖b̄‖Lq Lp , (3.12)

where w· is a d-dimensional Wiener process and N is a constant de-
pending only on p, q, d, T , and K.

Proof. The distributions of x
(i)
· are mutually absolutely continuous

and the corresponding Radon-Nikodym densities are known (see [22]
or Lemma 3.3). We have

Ef (2)(x(2)
· ) = Ef (2)(x(1)

· )ρ̄,

where ρ̄ = ρ̄∞ and for ∆bt = b
(2)
t − b

(1)
t

ρ̄t = exp(

∫ t

0

∆bs(x
(1)
· ) dw(1)

s − (1/2)

∫ t

0

|∆bs(x(1)
· )|2 ds).

Hence the left-hand side of (3.12) is less than

E|f (1) − f (2)|(x(1)
· )ρ̄+ sup

C
|f (1)|E|ρ̄− 1| =: I1 + I2 sup

C
|f (1)|.

By Corollary 3.4 all moments of the exponential martingale ρ̄ are

finite, so that I
3/2
1 ≤ NE|f (1) − f (2)|3/2(x(1)

· ) and the latter is esti-
mated through the first term on the right in (3.12) in the same way as
Corollary 3.4 is proved. To estimate I2 we use Itô’s formula to get

ρ̄ = ρ̄T = 1 +

∫ T

0

∆bs(x
(1)
· )ρ̄s dw

(1)
s .
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It follows that for any β > 1

I2
2 ≤ E|ρ̄− 1|2 ≤ E

∫ T

0

b̄2(s, x(1)
s )ρ̄2

s ds (3.13)

≤ N
( ∫ T

0

Eρ̄2β/(β−1)
s ds

)1−1/β(
E

∫ T

0

b̄2β(s, x(1)
s ) ds

)1/β
.

To estimate the second factor we use (3.11) with β > 1 so close to 1 that

2β/q + βd/p < 1. The first factor is estimated by means of Eρ̄
2β/(β−1)
T

since ρ̄t is a martingale. Then we recall again how all moments of ρ̄
are estimated. The lemma is proved.

Before stating other properties of solutions to (3.1) we introduce
some Banach spaces. For ν ∈ R let Hν

p = (1 −∆)−ν/2Lp be the usual

space of Bessel potentials on Rd and for 0 ≤ S < T <∞ introduce

H2,q
p ((S, T )) = Lq((S, T ), H2

p ), Lq
p((S, T )) = Lq((S, T ), Lp),

H2,q
p (T ) = H2,q

p ((0, T )), Lq
p(T ) = Lq

p((0, T ))

One knows that the norm in H2
p can be taken to be ‖uxx‖Lp + ‖u‖Lp ,

where uxx is the matrix of second order derivatives of u. We also
introduce the space H2,q

p (T ) consisting of functions u = u(t) defined

on [0, T ] with values in the space of distributions on Rd such that
u ∈ H2,q

p (T ) and Dtu ∈ Lq
p(T ). It is worth making precise that by

writing Dtu ∈ Lq
p(T ) we mean that there is an f ∈ Lq

p(T ) such that for

any s, t ∈ [0, T ] and φ ∈ C∞
0 (Rd) we have

(u(t), φ)− (u(s), φ) =

∫ t

s

(f(r), φ) dr.

In that case naturally we write Dtu = f .
It turns out (see Lemma 10.1 below) that if 2/q + d/p < 1 and

u ∈ H2,q
p (T ), then u and ux are continuous in [0, T ] × Rd or, to be

more rigorous, for each t ∈ [0, T ] the distribution u(t) is realized by a
real-valued function u(t, x) and u(t, x) and ux(t, x) are continuous in
[0, T ] × Rd. Therefore, the following statement makes sense. Observe
that p′, q′ in Theorem 3.7 need not coincide with p, q introduced and
fixed in the beginning of the section.

Theorem 3.7 (Itô’s formula). Let 2/q′ + d/p′ < 1 and u ∈ H2,q′

p′ (T ).
Let wt, xt be processes for which the assertions (i)-(iv) of Lemma 3.2
hold. Then with probability one for any 0 ≤ s ≤ t ≤ T

u(t, xt) = u(s, xs) +

∫ t

s

ux(r, xr) dwr
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+

∫ t

s

[
Dtu(r, xr) + (1/2)∆u(r, xr) + bir(x·)uxi(r, xr)

]
dr.

The proof of this theorem is obtained right away by approximating u
by smooth functions and by using estimate (3.11) and Lemma 10.1. It is
perhaps also worth noting that no matter which versions of Dtu,∆u, ux
we take the integral of (Dtu,∆u, ux)(r, xr) over (s, t) remains the same
(a.s.) since owing to (3.11) we have

E

∫ T

0

|f(t, xt)| dt = 0

if f = 0 (a.e.).

Remark 3.8. Under the same conditions on b one can prove that the
assertions of Lemma 3.2 hold true if in (3.1) instead of wt we have∫ t

0
a(s, xs) dws, where a(s, x) is a uniformly nondegenerate bounded

symmetric matrix which is Borel in (s, x) and uniformly continuous in
x ∈ Rd uniformly with respect to s.

In that case instead of using an explicit formula for the distribution
of wt one can use Remark 10.4 and Lemma 10.2.

4. The strong Markov property and the strong Feller
property of weak solutions

In this section we consider a particular case of bt(x·) from Section 3,
namely, we assume that

bt(x·) = b(t, xt),

where b(t, x) is a function defined on (0,∞)×Rd. By shifting the origin
in Rd+1 we get that for each (s, x) ∈ Rd+1 there exists a probability
space and a d-dimensional Wiener process wt, t ≥ 0, and a continuous
d-dimensional process xt = xt(s, x), t ≥ 0, defined on that space such
that {xs, ws : s ≤ t} and wt+h − wt are independent for any t, h ≥ 0
and with probability one∫ ∞

0

|b(s+ t, xt)|2 dt <∞, xt = x+ wt +

∫ t

0

b(s+ r, xr) dr.

By Ps,x we denote the distribution of the Rd+1-valued process

zt = zt(s, x) = (s+ t, xt(s, x))

on C([0,∞),Rd+1) (see Remark 3.5). In an obvious way one introduces
the σ-fields Nt(Rd+1) of subsets of C([0,∞),Rd+1). If Q is a domain
in Rd+1, we define an Nt(Rd+1)-stopping time on C([0,∞),Rd+1) by

τQ = τQ(z·) = inf{t ≥ 0 : zt 6∈ Q}.



DIFFUSIONS WITH SINGULAR DRIFT 13

By Es,x we denote the expectation sign relative to Ps,x.
The following lemma will be used in the proof of Theorem 2.5.

Lemma 4.1. (i) Let g be a Borel bounded function on ∂Q. Then the
function

u(s, x) := Es,xg(zτQ)

is a continuous function in Q.
(ii) The term

(C([0,∞),Rd+1),Nt(Rd+1), zt, Ps,x)

is a strong Markov process. In particular, if γ is an Nt(Rd+1)-stopping
time such that γ ≤ τQ and η is an Nγ(Rd+1)-measurable bounded func-
tion on C([0,∞),Rd+1), then

Es,xηg(zτQ) = Es,xηu(zγ).

Proof. Assertion (ii) follows immediately from (3.10), the strong
Markov property of the Wiener process, and the formula

ργ̄ = E(ρ∞|Fw
γ̄ ) (a.s.), (4.1)

where γ̄ = γ(x+ w·) and

ρt = exp(

∫ t

0

b(s+ r, x+ wr) dwr − (1/2)

∫ t

0

|b(s+ r, x+ wr)|2 dr).

In other words assertion (ii) follows from the fact that the change of
measure preserves the strong Markov property.

To prove (i) we first claim that for any bounded continuous func-
tion f(z·) given on C([0,∞),Rd+1), the function Es,xf(z·) is continuous
with respect to (s, x). Indeed, this follows easily from Lemma 3.6 and
the fact that summable functions are continuous in the mean after
observing that xt(s, x)− x satisfies

yt = wt +

∫ t

0

b̃(r, yr) dr,

where b̃(r, y) := b(s + r, y + x). From thus proved claim it follows by
a standard measure-theoretic argument that Es,xf(z·) is Borel measur-
able for all Borel nonnegative or bounded f(z·).

Next, without losing generality we assume that 0 ∈ Q and only
concentrate on proving the continuity of u at 0. Denote Q±t,r =
(−t, t) × {x ∈ Rd : |x| < r}, r, t > 0, and for z· ∈ C([0,∞),Rd+1)
define γr = γr(z·) as the first exit time of zt from Q±r,r. According to
(ii) for (s, x) ∈ Q±r,r and for r small enough so that Q±r,r ⊂ Q we have

u(s, x) = Es,xu(zγr),
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which owing to (3.10) and (4.1) is rewritten as

u(s, x) = Eu(s+ τr(s, x), x+ wτr(s,x))

+Eu(s+ τr(s, x), x+ wτr(s,x))(ρτr(s,x) − 1) =: I1(s, x) + I2(s, x),

where τr(s, x) is the first exit time of (s + t, x + wt) from Q±r,r. As
is well known I1(s, x) is infinitely differentiable and satisfies the heat
equation in Q±r,r. In particular, I1(s, x) is continuous at 0. Further-
more, similarly to (3.13) (notice that γr ≤ 2r)

|I2(s, x)|2 ≤ N
(
E

∫ 2r

0

|(IQ±r,rb)(s+t, x+wt)|2β dt
)1/β ≤ N‖IQ±r,rb‖Lq Lp .

Hence
lim

(s,x)→0
|u(s, x)− u(0)| ≤ N‖IQ±r,rb‖Lq Lp ,

for any r > 0, where N is independent of r. By letting r ↓ 0 we see
that the left-hand side is zero. The lemma is proved.

The following lemma will allow us to prove that in the situation of
Theorem 2.1 the solutions do not bounce back deep into the interior of
Q from near ∂Q too often on any finite interval of time.

Lemma 4.2. Let wt, xt be processes for which the assertions (i)-(iv) of
Lemma 3.2 hold. Let G,Q be bounded open subsets of Rd+1, containing
the origin and such that Ḡ ⊂ Q. Define ν0 = 0,

µk = inf{t ≥ νk : (t, xt) 6∈ Q}, νk+1 = inf{t ≥ µk : (t, xt) 6∈ Rd+1\Ḡ}.
Then for any S ∈ (0,∞) there exists a constant N , depending only on
d, q, p, S, ‖bIQ‖Lq Lp, and the diameter of Q, such that

∞∑
k=0

(
E|xS∧µk

− xS∧νk
|2

)2 ≤ N.

Proof. We have E|xS∧µk
− xS∧νk

|2 ≤ 2Ik + 2Jk, where

Ik := E|wS∧µk
− wS∧νk

|2, Jk := E
( ∫ S∧µk

S∧νk

|b(s, xs)| ds
)2
.

Observe that

I2
k =

(
E|S ∧ µk − S ∧ νk|d

)2 ≤ d2E|S ∧ µk − S ∧ νk|2 =: d2Īk

≤ d2SE|S ∧ µk − S ∧ νk|,
∞∑
k=0

(
E|wS∧µk

− wS∧νk
|2

)2 ≤ d2S2.

Furthermore,

Jk ≤ E|S ∧ µk − S ∧ νk|
∫ S∧µk

S∧νk

|b(s, xs)|2 ds, J2
k ≤ ĪkJ̄k,
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where

J̄k := E
( ∫ S∧µk

S∧νk

|b(s, xs)|2 ds
)2
.

It only remains to estimate J̄k by a constant N , depending only on d,
q, p, S, ‖bIQ‖Lq Lp , and the diameter of Q.

Observe that on the set {S ∧ νk < S ∧ µk} we have S ∧ νk = νk and
(νk, xνk

) ∈ Ḡ ⊂ Q. Furthermore, (t, xt) ∈ Q for S ∧ νk < t < S ∧ µk.
Now from the strong Markov property of zt it follows that

J̄k ≤ sup
(s,x)∈Q

Es,x
( ∫ S∧τQ

0

|b(s+ t, xt)|2 dt
)2
.

By using (3.10) we easily see that the latter expression will not
change if we change arbitrarily b outside of Q only preserving the prop-
erty that the new b belongs to Lq Lp. We choose to let b to be zero
outside of Q and then get the desired estimate from Corollary 3.4 (after
shifting the origin to (s, x)). The lemma is proved.

Corollary 4.3. Naturally, we say that on the time interval [νk, µk] the
trajectory (t, xt) makes a run from Ḡ to Qc provided that µk < ∞.
Denote by ν(S) the number of runs which (t, xt) makes from G to Q
before time S. Then for any α ∈ [0, 1/2), Eνα(S) is dominated by
a constant N , which depends only on α, d, q, p, S, ‖bIQ‖Lq Lp, the
diameter of Q, and the distance between the boundaries of G and Q.

Proof. Observe that for any integer k ≥ 1

kP 2(µk−1 ≤ S) ≤ P 2(µ0 ≤ S) + ...+ P 2(µk−1 ≤ S) + .... (4.2)

Since
E{|xS∧µk

− xS∧νk
|2 + |S ∧ µk − S ∧ νk|2}

≥ E{|xµk
− xνk

|2 + |µk − νk|2}Iµk≤S ≥ dist2 (∂G, ∂Q)P (µk ≤ S),

by Lemma 4.2 we see that the series in (4.2) converges and its sum
is bounded by a constant with proper dependence on the data. After
that it only remains to note that P (ν(S) ≥ k) = P (µk−1 ≤ S).

5. Pathwise uniqueness and strong solutions

In this section we consider a particular case of bt(x·) from Section 3,
namely, we assume that

bt(x·) = b(t, xt)It<τ(x·),

for (t, x·) ∈ (0,∞) × C, where τ(x·) is a bounded Nt-stopping time
defined on C and b(t, x) is a Borel Rd-valued function defined on Rd+1

such that |b(·, ·)| ∈ Lq Lp for some p, q satisfying (2.1).



16 N.V. KRYLOV AND M. RÖCKNER

Theorem 5.1. Let wt, yt, and zt be Rd-valued processes defined on
a complete probability space for t ≥ 0. Assume that wt is a Wiener
process and the properties (ii)-(iv) of Lemma 3.2 hold true if we take
(yt, wt) and (zt, wt) in place of (xt, wt). Furthermore, let {ys, zs, ws :
s ≤ t} be independent of wt+h − wt for each t, h ≥ 0. Then

P (sup
t≥0

|yt − zt| > 0) = 0.

The Yamada-Watanabe principle (see [28] or [13]) immediately al-
lows us to deduce from Theorem 5.1 and Lemma 3.2 the following result
about existence and uniqueness of so-called strong solutions.

Theorem 5.2. (i) For each t ∈ [0,∞) on C there exists an Nt-
measurable Rd-valued function Ft(y·) such that if

(a) wt and xt are Rd-valued continuous processes defined on a prob-
ability space for t ≥ 0,

(b) wt is a Wiener process and the properties (ii)-(iv) of Lemma 3.2
hold true for xt, wt,
then for each t ∈ [0,∞) we have xt = Ft(w·) (a.s.).

(ii) Let wt be an Rd-valued Wiener process defined on a complete
probability space for t ≥ 0. Then on the same probability space there
exists a continuous process xt, t ≥ 0, such that the properties (ii)-
(iv) of Lemma 3.2 hold. Furthermore, by assertion (i) this process is
Fw
t -adapted and unique.

Remark 5.3. The function Ft(y·) does not change if we change wt or
xt or the underlying probability space. Therefore, for each bt(y·) under
consideration we may and we do choose and fix an appropriate function
Ft(y·).

To prove Theorem 5.1 we need two lemmas before which we introduce
Σt = σ{ys, zs, ws : s ≤ t} and let Σ̄t be the completion of Σt and
Ft =

⋂
s>t Σ̄s. It is easy to see that wt is a Wiener process relative

to Ft.
Lemma 5.4. Let u ∈ H2,q

p (T ). Then there exists a continuous Ft-
adapted increasing process At such that A0 = 0, EAT < ∞, and for
t ∈ [0, T ] ∫ t

0

|ux(s, ys)− ux(s, zs)|2 ds =

∫ t

0

|ys − zs|2 dAs.

Proof. Generally the process At we are looking for is not unique and
the smallest one is given by

At =

∫ t

0

Iys 6=zs

|ux(s, ys)− ux(s, zs)|2

|ys − zs|2
ds
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provided that the right hand side is finite. To prove that this is indeed
the case and also to prove all other assertions of the lemma, we prove
that

E

∫ T

0

Iys 6=zs

|ux(s, ys)− ux(s, zs)|2

|ys − zs|2
ds ≤ N‖u‖H2,q

p (T ), (5.1)

where the constant N is independent of u.
By Lemma 10.2 below if un ∈ H2,q

p (T ), n = 1, 2, ..., and un → u in

H2,q
p (T ), then unx → ux uniformly in [0, T ]×Rd. Bearing in mind Fatou’s

lemma we conclude that it suffices to prove (5.1) for u ∈ C∞
0 ((0, T )×

Rd).
In that case by Hadamard’s formula

ux(s, ys)− ux(s, zs) = (yjs − zjs)

∫ 1

0

uxxj(s, rys + (1− r)zs) dr.

Therefore the left-hand side of (5.1) is less than a constant times∫ 1

0

E

∫ T

0

|uxx(t, ryt + (1− r)zt)|2 dtdr.

Here

ryt + (1− r)zt = wt +

∫ t

0

[rbs(y·) + (1− r)bs(z·)] ds.

Furthermore, for any κ ≥ 0 by convexity and by Corollary 3.4

E exp(κ

∫ T

0

|rbs(y·) + (1− r)bs(z·)|2 ds) (5.2)

≤ rE exp(κ

∫ T

0

|bs(y·)|2 ds) + (1− r)E exp(κ

∫ T

0

|bs(z·)|2 ds) <∞.

Now for fixed r ∈ [0, 1] denote b̄t = rbt(y·) + (1− r)bt(z·) and

ρ = exp(−
∫ T

0

b̄t dwt − (1/2)

∫ T

0

|b̄t|2 dt).

Then (5.2) implies that all (positive and negative) moments of ρ are fi-
nite and Eρ = 1. Hence by Hölder’s inequality and Girsanov’s theorem
for any α > 1

E

∫ T

0

|uxx(t, ryt+(1−r)zt)|2 dt = Eρ−αρα
∫ T

0

|uxx(t, ryt+(1−r)zt)|2 dt

≤ N
(
Eρ

∫ T

0

|uxx(t, ryt + (1− r)zt)|2α dt
)1/α

= N
(
E

∫ T

0

|uxx(t, wt)|2α dt
)1/α

=: NI.
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Thus, the left-hand side of (5.1) is less than a constant times I and now
(5.1) follows from (3.11) if α > 1 is so close to 1 that |uxx|2α ∈ Lq′ Lp′
with d/p′ + 2/q′ < 2. The lemma is proved.

The proof of the second lemma is rather long. Therefore, to un-
derstand better its idea, borrowed from [27], we advice the reader
to take Γ = Ω, assume formally that our construction is valid for
B1 = B2 = Rd, and drop the first inf in the definition of ν̄.

Lemma 5.5. Let γ be a finite Ft-stopping time. Assume that yt = zt
for t ≤ γ and let a Γ ∈ Fγ be such that P (Γ) > 0. Then there exists
a finite Ft-stopping time σ ≥ γ such that yt = zt for γ ≤ t ≤ σ and
P (Γ, σ > γ) > 0.

Proof. Define τ̄ = τ(y·) ∧ τ(z·) and split the proof according as
P (Γ, γ ≥ τ̄) > 0 or = 0.

Case 1: P (Γ, γ ≥ τ̄) > 0. Introduce

σ = γ + IΓ,γ≥τ̄ .

The random variable σ is a stopping time, which is seen from the
following formula

{σ ≤ t} =
(
[Γ ∩ {γ ≥ τ̄}] ∩ {γ ≤ t− 1}

)
∪

(
[Γ ∩ {γ ≥ τ̄}]c ∩ {γ ≤ t}

)
,

where Γ ∩ {γ ≥ τ̄} ∈ Fγ.
Next we observe that, due to the fact that τ(x·) is an Nt-stopping

time, if we are given α·, β· ∈ C and αt = βt for t ∈ [0, τ(α·)), then
τ(α·) = τ(β·). It follows that on the set where γ ≥ τ̄ we have τ̄ =
τ(y·) = τ(z·) ≤ γ and for all t ≥ γ

yt = yγ + wt − wγ = zγ + wt − wγ = zt.

In particular, yt = zt for γ ≤ t ≤ σ. Finally, the assumption P (Γ, γ ≥
τ̄) > 0 implies that P (Γ, σ > γ) > 0.

Case 2: γ < τ̄ (a.s.) on Γ. Obviously for any ε > 0 there exists
T ∈ (0,∞) and a unit ball B1 ⊂ Rd such that

P (T − ε < γ < T, yγ = zγ ∈ B1,Γ) > 0. (5.3)

Let B2 be the ball of radius 2 with center x0 being that of B1. Take
ε from Lemma 10.6 below, find a T which suits (5.3), and take ui,
i = 1, ..., d, from Lemma 10.6. By Itô’s formula for t ∈ [S, T ] :=
[(T − ε)+, T ] we have

ui(t ∧ τ̄ , yt∧τ̄ ) = ui(S ∧ τ̄ , yS∧τ̄ ) +

∫ t∧τ̄

S∧τ̄
uix(r, yr) dwr.
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We multiply this equation by the indicator of the set

Π = {γ > S, yγ = zγ ∈ B1,Γ}
and notice that on this set S ∧ τ̄ = S and yS = zS. We also do the
same for the process zt. Then we obtain

[ui(t ∧ τ̄ , yt∧τ̄ )− ui(t ∧ τ̄ , zt∧τ̄ )]IΠ = IΠ

∫ t∧τ̄

S

[uix(r, yr)− uix(r, zr)] dwr

= IΠ

∫ t∧τ̄

S

[uix(r, yr)− uix(r, zr)]Iγ≤r dwr

=

∫ t∧τ̄

S

[uix(r, yr)− uix(r, zr)]IΠ,γ≤r dwr.

We square the extreme terms of this equation, sum up the results
with respect to i, then take sup’s over t in the range [S, ν] where ν is
a stopping time with values in [S, T ]. After that we take expectations
and use Doob’s inequality to obtain

EIΠ sup
t∈[S,ν]

d∑
i=1

[ui(t ∧ τ̄ , yt∧τ̄ )− ui(t ∧ τ̄ , zt∧τ̄ )]2

≤ 4E

∫ ν∧τ̄

S

IΠ,γ≤r

d∑
i=1

|uix(r, yr)− uix(r, zr)|2 dr. (5.4)

By Lemma 5.4 the right-hand side of (5.4) equals

E

∫ ν∧τ̄

S

IΠ,γ≤r|yr − zr|2 dAr (5.5)

We now take ν := S ∨ ν̄ ∧ T , where

ν̄ := inf{t ≥ γ : |yt − x0| ∨ |zt − x0| ≥ 2} ∧ inf{t ≥ γ : At −Aγ ≥ 1/4}.
Observe that on Π if t ∈ [S, ν] and

d∑
i=1

[ui(t ∧ τ̄ , yt∧τ̄ )− ui(t ∧ τ̄ , zt∧τ̄ )]2 6= 0, (5.6)

then t > γ > S, ν > S, and ν = ν̄ ∧ T . In that case γ < t ≤ ν̄. Also
γ < τ̄ (a.s.) by assumption and hence, a.e. on Π, if t ∈ [S, ν] and (5.6)
holds, then γ < t ∧ τ̄ ≤ ν̄ and therefore |yt∧τ̄ − x0| ≤ 2. A similar
statement holds for z·. By Lemma 10.6 we conclude that the left-hand
side of (5.4) is greater than

(1/2)EIΠ sup
t∈[S,ν]

|yt∧τ̄ − zt∧τ̄ |2. (5.7)
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On the other hand, the right-hand side of (5.4), which equals (5.5),
is less than

E

∫ ν

S

IΠ,γ≤r|yr∧τ̄ − zr∧τ̄ |2 dAr

≤ EIΠ sup
t∈[S,ν]

|yt∧τ̄ − zt∧τ̄ |2
∫ ν̄

S

Iγ≤r dAr ≤ (1/4)EIΠ sup
t∈[S,ν]

|yt∧τ̄ − zt∧τ̄ |2.

We see that expression (5.7) is less than its half, which implies that it
is zero. Introduce

Θ := { sup
t∈[S,ν]

|yt∧τ̄ = zt∧τ̄ | = 0, γ < τ̄} ∩ Π.

Then Θ ⊂ Π and by the above P (Θ) = P (Π).
Our last step is to prove that

σ := [(ν̄ ∧ T ∧ τ̄) ∨ γ]IΘ + γIΘc

possesses the required properties. First, by definition ν̄ > γ. In addi-
tion, the event Θ∩{γ < T∧τ̄} happens with strictly positive probability
due to (5.3) and the condition of the case under consideration. When
this event happens, we have ν̄ ∧ T ∧ τ̄ > γ and σ = ν̄ ∧ T ∧ τ̄ > γ.
Also Γ happens. Therefore P (Γ, σ > γ) ≥ P (Θ ∩ {γ < T ∧ τ̄}) > 0.
Furthermore, obviously σ(ω) ≥ γ(ω) for all ω.

Next, we have

{σ > γ} ⊂ {σ = ν̄ ∧ T ∧ τ̄} ∩Θ, Θ ⊂ Π ⊂ {γ > S},
{γ > S} ⊂ {ν̄ ∧ T > S} ⊂ {ν = ν̄ ∧ T}

implying that

{σ > γ} ⊂ {σ = ν̄ ∧ T ∧ τ̄} ∩ {γ > S}
⊂ {σ = ν̄ ∧ T ∧ τ̄} ∩ {ν = ν̄ ∧ T} ⊂ {σ = ν ∧ τ̄}.

Therefore, if σ > γ, then

sup
t∈[γ,σ]

|yt − zt| ≤ sup
t∈[S,ν∧τ̄ ]

|yt − zt| = 0.

Of course, if σ = γ, then the equality between the extreme terms is
given by the assumption on γ.

It only remains to check that σ is a stopping time. To do that observe
that for any r ≥ 0 we have Θc∩{σ ≤ r} = Θc∩{γ ≤ r} = Πc∩{γ ≤ r}
(a.s.) and Π ∈ Fγ so that

Θc ∩ {σ ≤ r} ∈ Fr.
Furthermore, Θ ∩ {σ ≤ r} is empty if r ≤ S since σ ≥ γ > S on Θ.

If r ≥ S, then (a.s.)

Θ ∩ {σ ≤ r} = {ν̄ ∧ T ∧ τ̄ ≤ r} ∩ {γ ≤ r} ∩ Π,
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Here {γ ≤ r}∩Π ∈ Fr since Π ∈ Fγ and {ν̄ ∧T ∧ τ̄ ≤ r} ∈ Fr because
ν̄, T , and τ̄ are stopping times. Hence Θ∩{σ ≤ r} belongs to Fr along
with Θc ∩ {σ ≤ r} , σ is indeed a stopping time, and the lemma is
proved.

Proof of Theorem 5.1. Almost everything, actually, has been done
in the proof of Lemma 5.5. Indeed, define

µ = inf{t ≥ 0 : |yt − zt| > 0}.
Our goal is to prove that µ = ∞ (a.s.) or that for any constant
S ∈ (0,∞) we have µ∧ S = S (a.s.). Take a constant S and introduce
γ = µ ∧ S and Γ = {ω : γ(ω) < S}. We claim that P (Γ) = 0.

Indeed, if P (Γ) > 0, then according to Lemma 5.5 we can find a
stopping time σ ≥ γ, such that σ > γ on a subset of Γ of positive
probability and yt = zt for t ≤ σ. We therefore have at least one ω
at which µ = γ < σ, and yt = zt for t ≤ σ. But this contradicts the
very definition of µ, which requires |yt − zt| to be strictly bigger than
zero for points arbitrarily close to µ from the right. This completes the
proof of the theorem.

6. Proofs of Theorems 2.1 and 2.5

Proof of Theorem 2.1. Without losing generality we may and will
assume that in (1.1) we have s = 0 and x = 0. We split the proof into
two parts.

Existence. For any z· ∈ C and n ≥ 1 define Nt-stopping times

τn(z·) = inf{t ≥ 0 : (t, zt) 6∈ Qn}.
Notice that since Qn are bounded, τn(z·) are bounded stopping times.

Let bn = bIQn and consider the equation

xnt = wt +

∫ t

0

Is<τn(xn
· )b

n(s, xns ) ds (= wt +

∫ t

0

Is<τn(xn
· )b(s, x

n
s ) ds).

(6.1)
By Theorem 5.2 equation (6.1) has an Ft-adapted solution xnt . As is
easy to see the process

x̄nt := xn+1
t It<τn(xn+1

· ) + (wt − wτn(xn+1
· ) + xn+1

τn(xn+1
· )

)It≥τn(xn+1
· )

also satisfies (6.1). By Theorem 5.1 we have xnt = x̄nt for all t ≥ 0
(a.s.). In particular, these processes coincide before τn(xn· ) = τn(x̄n· ) =
τn(xn+1

· ) and τn(xn· ) < τn+1(xn+1
· ) (a.s.). Therefore, the definitions

ζ = lim
n→∞

τn(xn· ), xt = lim
n→∞

xnt∧τn(xn
· ), t < ζ,

zt = (t, xt), t < ζ, zt = ∂, ζ ≤ t <∞
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make sense almost surely. We may throw away the set of ω where the
above definitions do not make sense and work only on the remaining
part of Ω. Certainly, τn(xn· ) and ζ are Ft-stopping times. Also, xnt∧τn(xn

· )

and xtIt<ζ are Ft-adapted. It follows that zt is Ft-adapted. Next, if
t < ζ, then there exists an n such that t < τn(xn· ) < ζ. Since xs = xns
for s ≤ τn(xn· ), this easily implies assertion (iv) of the theorem and it
only remains to prove that zt is left continuous at ζ (a.s.).

By using the terminology of Corollary 4.3 we denote by νk(S) the
number of runs of (t, xt) from Q̄k to (Qk+1)c before time S ∧ ζ. For
n > k + 1 obviously, νk(S ∧ τn(xn· )) is also the number of runs that
(t, xnt ) makes from Q̄k to (Qk+1)c before time S∧τn(xn· ), which increases
if we increase the time interval to S. It follows by Corollary 4.3 that

Eν
1/4
k (S ∧ τn(xn· )) is bounded by a constant independent of n. By

Fatou’s theorem Eν
1/4
k (S ∧ ζ) is finite. In particular, on the set {ω :

ζ(ω) < ∞} (a.s.) we have νk(ζ) < ∞. The latter also holds on the
set {ω : ζ(ω) = ∞} because (t, xt) is continuous on [0, ζ) and Qk is
bounded.

Thus, νk(ζ) < ∞ (a.s.) for any k. In addition, τn(xn· ) < ζ and
τn(xn· ) ↑ ζ. Since (τn(xn· ), x

n
τn(xn

· )) ∈ ∂Qn we conclude that (a.s.) there

can exist only finitely many n such that (t, xt) visits Qk after exit-
ing from Qn. This is the same as to say that (t, xt) → ∂ as t ↑ ζ
(a.s.). “Cleaning” again the probability space finishes the proof of the
existence part of the theorem.

Uniqueness . The process z′t is continuous and Q′-valued. Further-
more, for t < ζ ′ it is Q-valued. It follows that for any n ≥ 1

τn(x′·) = inf{t ≥ 0 : (t, x′t) 6∈ Qn} < ζ ′. (6.2)

Also observe that (a.s.)

ζ̄ := lim
n→∞

τn(x′·) = ζ ′. (6.3)

Indeed, that ζ̄ ≤ ζ ′ follows from (6.2). On the other hand, on the set
where ζ̄ < ζ ′ we have that, on the one hand, z′

ζ̄
∈ Q since ζ̄ < ζ ′, but

on the other hand, z′
ζ̄

= ∂ since z′
ζ̄

is the limit of points getting outside

of any Qn.
Next, introduce

xnt = x′t∧τn(x′·)
+ wt∨τn(x′·) − wτn(x′·).

Then xnt = x′t for t ≤ τn(x′·), so that τn(x′·) = τn(xn· ) and it is easy to
see that xnt satisfies

xnt =

∫ t

0

Iτn(xn
· )>sb(s, x

n
s ) ds+ wt =

∫ t

0

Iτn(xn
· )>sb

n(s, xns ) ds+ wt,
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where as before bn = bIQn . It follows by Theorem 5.2 that for each
t ∈ [0,∞) there exists an Nt-measurable Rd-valued function F n

t (y·)
determined uniquely by b and Qn such that xnt = F n

t (w·) (a.s.). Hence,
the formulas

{ω : τn(x′·) > t} = {ω : τn(xn· ) > t}
= {ω : inf

r∈ρt

dist
(
(r, F n

r (w·)), ∂Q
n
)
> 0}, (a.s.),

where ρt is the set of rationals on [0, t], and

τn(x′·) =

∫ ∞

0

Iτn(x′·)>t dt = lim
m→∞

m−1

∞∑
i=0

Iτn(x′·)>i/m,

show that τn(x′·) = Gn(w·) (a.s.), where Gn is a Borel function on C
uniquely determined by b and Qn.

Equation (6.3) now shows that ζ ′ is expressed (a.s.) as a Borel func-
tion of w· uniquely determined by b and Qn, n = 1, 2, .... In addition,

x′tIt<ζ′ = lim
n→∞

x′t∧τn(x′·)
It<τn(x′·) = lim

n→∞
xnt∧τn(x′·)

It<τn(x′·)

= lim
n→∞

xnt It<τn(x′·) = lim
n→∞

F n
t (w·)It<Gn(w·) (a.s.).

It follows that z′t is expressed (a.s.) as a Borel function of w· and
this function is uniquely determined by b and Qn, n ≥ 1. Obviously
this implies both statements about uniqueness in the theorem which is
thereby proved.

Proof of Theorem 2.5. Strong Feller property . For z· ∈ C([0,∞), Q′)
let

ζ(z·) = inf{t ≥ 0 : zt = ∂}, τn(z·) = inf{t ≥ 0 : zt 6∈ Qn}.
On {z· : t < ζ} we have zt ∈ Q so that the projection of zt on Rd, which
we denote by xt = xt(z·) is well defined. Observe that by definition of
Ps,x we have zt = (s+ t, xt) (Ps,x-a.s.). Also observe that

Es,xf(zT−s) = f(∂) + Es,x[f(T, xT−s)− f(∂)]Iζ>T−s.

Hence, it suffices to prove that for any T ∈ R and Borel bounded f
given on Rd, the function

u(s, x) := Es,xf(xT−s)Iζ>T−s

is continuous with respect to (s, x) on Q(T ) := Q ∩ {(s, x) : s < T}.
By examining the way Ps,x is defined, it is easy to see that on Q(T )

we have

u(s, x) = lim
n→∞

Es,xf(xT−s)Iτn≥T−s

= lim
n→∞

En
s,xf(xT−s)Iτn≥T−s =: lim

n→∞
un(s, x), (6.4)
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where En
s,x is the symbol of integrating against P n

s,x, which is the distri-

bution on C([0,∞),Rd+1) of (s+ t, xnt ), where xnt is the unique solution
to

xnt = x+ wt +

∫ t

0

bn(s+ r, xnr ) dr

with bn := bIQn . Observe that in the notation introduced before
Lemma 4.1

un(s, x) = En
s,xg(zτQn(T )

),

where Qn(T ) = Qn ∩ {t < T}, g(T, y) = f(y) if (T, y) ∈ ∂Qn(T ),
and g = 0 on the remaining part of ∂Qn(T ). By Lemma 4.1 (ii) for
n ≥ m ≥ 1

un(s, x) = En
s,xu

n(zτQm(T )
) = Em

s,xu
n(zτQm(T )

).

Upon letting n → ∞ and using (6.4) and the dominated convergence
theorem we conclude that for any m ≥ 1

u(s, x) = Em
s,xu(zτQm(T )

),

which implies the continuity of u in Qm(T ) by Lemma 4.1 (i). Since m
is arbitrary, u is continuous in Q(T ).

Strong Markov property . Define for n ≥ 1

znt := (s+ t, xnt ), t ≥ 0.

Then for (s, x) ∈ Q and any Borel bounded f on Rd and any Nt(Q
′)-

stopping time τ

Es,xf(zτ+t) = f(∂) + Es,x(f(zτ+t)− f(∂))Iζ>τ+t. (6.5)

But

Es,xf(zτ+t)Iζ>τ+t

= lim
n→∞

Es,xf(zτ+t)Iτn≥τ+t

= lim
n→∞

En
s,xf(znτ+t)Iτn≥τ+tIτn≥τ

which, since {τn ≥ τ} ∈ Nτ , by Lemma 4.1 equals

lim
n→∞

En
s,xIτn≥τE

n
zn
τ
f(znt )Iτn≥t

= lim
n→∞

Es,xIτn≥τEzτf(zt)Iτn≥t

=Es,xIζ>τEzτf(zt)Iζ>t.

By (6.5) it follows that

Es,xf(zτ+t) = Es,xEzτf(zt).
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Since this equality obviously also holds with (s, x) replaced by ∂, the
strong Markov property follows by a well-known result from Markov
process theory (see e.g. [6, Proposition IV. 6.3]).

7. Some auxiliary estimates

In order to be able to show that under certain conditions our solu-
tions stay in Q for all times, we need certain estimates which we collect
in this section. We fix a T ∈ (0,∞) and a real-valued function φ(t, x)
which is infinitely differentiable on [0,∞) × Rd. Let wt, t ≥ 0, be a
d-dimensional Wiener process given on a complete probability space.

Lemma 7.1. For any x ∈ Rd and Bt := wT−t−wT we have that (a.s.)

φ(0, x)− φ(T, x+ wT )−
∫ T

0

φx(T − s, y +Bs) dBs|y=x+wT

= φ(T, x+ wT )− φ(0, x)−
∫ T

0

φx(s, x+ ws) dws

− 2

∫ T

0

Dtφ(s, x+ ws) ds. (7.1)

Proof. Observe that Bs is a Wiener process on [0, T ], so that the sto-
chastic integral in (7.1) with respect to Bs is well defined. Furthermore,
by Itô’s formula∫ T

0

φx(T − s, y +Bs) dBs = φ(0, y +BT )− φ(T, y)

+

∫ T

0

(Dtφ− (1/2)∆φ)(T − s, y +Bs) ds.

This shows that the left-hand side in this equation is a well defined
continuous function of y so that formula (7.1) makes perfect sense.
This also shows that the left-hand side of (7.1) equals

−
∫ T

0

(Dtφ− (1/2)∆φ)(T − s, x+ wT−s) ds

=

∫ T

0

((1/2)∆φ−Dtφ)(s, x+ ws) ds.

That the latter expression coincides with the right-hand side of (7.1)
follows again by Itô’s formula. The lemma is proved.
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Corollary 7.2. Take a nonnegative Borel function f(x) and for t ∈
[0, T ] introduce

βT (t, x) = exp(−
∫ T−t

0

φx(t+ s, x+ ws) dws

− (1/2)

∫ T−t

0

|φx(t+ s, x+ ws)|2 ds− 2

∫ T−t

0

Dtφ(t+ s, x+ ws) ds),

vT (t, x) = v(t, x) = EβT (t, x)f(x+wT−t), c(t) =

∫
Rd

e−2φ(t,x)v(t, x) dx.

Then c(t) is an increasing function. In particular, c(0) ≤ c(T ), that is∫
Rd

e−2φ(0,x)v(0, x) dx ≤
∫

Rd

e−2φ(T,x)f(x) dx. (7.2)

Furthermore, one can replace ≤ in (7.2) with = if φx ∈ Lq Lp for some
p, q satisfying (2.1) and in that case c(t) is constant on [0, T ].

Proof. First observe that by the Markov property of the Wiener
process, for 0 ≤ t ≤ r ≤ T , we have

v(t, x) = Eβr(t, x)v(r, x+ wr−t).

Furthermore, by applying (7.1) to r − t, φ(t + ·, ·) in place of T, φ,
respectively, we obtain

βr(t, x)e
−2φ(t,x) = ξ(x+ wr−t)e

−2φ(r,x+wr−t),

where

ξ(y) = exp(−
∫ r−t

0

φx(r−s, y+Bs) dBs−(1/2)

∫ r−t

0

|φx(r−s, y+Bs)|2 ds)

and Bs = wr−t−s − wr−t. Therefore,

c(t) = E

∫
Rd

ξ(x+ wr−t)e
−2φ(r,x+wr−t)v(r, x+ wr−t) dx

= E

∫
Rd

ξ(x)e−2φ(r,x)v(r, x) dx =

∫
Rd

e−2φ(r,x)v(r, x)Eξ(x) dx,

and it only remains to use (3.7) and remember that generally the ex-
pectation of an exponential martingale is less than 1.

Remark 7.3. Since the above corollary plays a very important role in
what follows, it is probably worth giving it at least an outline of a
different analytic proof. Under mild conditions v(t, x) satisfies the cor-
responding Kolmogorov equation, that is

Dtv(t, x) + (1/2)∆v(t, x)− φxi(t, x)vxi(t, x)− 2v(t, x)Dtφ(t, x) = 0
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which is rewritten in an equivalent form as

Dt(e
−2φv) + (1/2)

(
e−2φvxi

)
xi = 0.

We integrate through the equation with respect to x and very naturally,
however maybe not quite rigorously, arrive at

Dt

∫
Rd

e−2φ(t,x)v(t, x) dx = 0,

which says that c(t) is constant.
Below we use the notation

Br = {x ∈ Rd : |x| < r}, Qt,r = [0, t)×Br, Qt = [0, t)× Rd.

Lemma 7.4. On an extension of the probability space there is a stop-
ping time γ such that the distribution of (γ, wγ) has a bounded density
concentrated on Q1,1.

Proof. Denote n = d + 2. On an extension of our probability space
there exists a random variable ρ with values in [0, 1] and density nrn−1

such that ρ is independent of all Fw
t . Let F̂t = Fw

t ∨σ(ρ), and define γ
as the first exit time of (t, wt) from Qρ2,ρ. We claim that γ is a random
variable of the type we are looking for.

That γ is an F̂t-stopping time is obvious. As is well known the exit
distribution of (t, wt) from Q1,1 has a bounded density with respect to
the surface measure on

S := ((0, 1)× ∂B1) ∪ ({1} ×B1}.

Denote this density by π(t, x). Since by a straightforward computation(
τQr2,r

(z·), wτQ
r2,r

(z·)

)
=

(
r2τQ1,1(z̄·), rw̄τQ1,1

(z̄·)

)
,

where zt := (t, wt), w̄t := 1
r
wr2t, z̄t := (t, w̄t), t ≥ 0, it follows by the

self-similarity of wt that for any Borel nonnegative f(t, x) we have

Ef(γ, wγ) = n

∫ 1

0

rn−1

∫
S

f(r2t, rx)π(t, x) dSdr

≤ N

∫ 1

0

rn−1

∫
S

f(r2t, rx) dSdr

= N

∫ 1

0

rn−1

∫ 1

0

∫
∂B1

f(r2t, rx) d(∂B1)dtdr

+N

∫ 1

0

rn−1

∫
B1

f(r2, rx) dxdr =: NI1 +NI2.
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Here

I1 =

∫ 1

0

rn−3

∫ r2

0

∫
∂B1

f(t, rx) d(∂B1)dtdr

≤
∫ 1

0

rd−1

∫ 1

0

∫
∂B1

f(t, rx) d(∂B1)dtdr =

∫
Q1,1

f(t, x) dxdt,

I2 =

∫ 1

0

rn−1−d
∫
Br

f(r2, x) dxdr ≤ (1/2)

∫
Q1,1

f(t, x) dxdt.

Hence

Ef(γ, wγ) ≤ N

∫
Q1,1

f(t, x) dxdt,

where N is independent of f and the lemma is proved.
In the following lemma we use the notation

Rd+1
+ = {(t, x) : t ∈ (0,∞), x = (x1, ..., xd) ∈ Rd}.

Lemma 7.5. Let K ∈ [0,∞) be a constant. Assume that for some p, q
satisfying (2.1) we have

φIQ1,1 ≤ K, ‖φxIQ1,1‖Lq Lp ≤ K.

Take an r ∈ (1,∞) and a Borel nonnegative function f = f(t, x) on
Rd+1

+ , such that f(t, x) = 0 for t > T . For 0 ≤ s ≤ t ≤ T and x ∈ Rd

introduce

ρt(s, x) = exp(−
∫ t−s

0

φx(s+ r, x+ wr) dwr

− (1/2)

∫ t−s

0

|φx(s+ r, x+ wr)|2 dr),

αt(s, x) = exp(−2

∫ t−s

0

(Dtφ)+(s+ r, x+ wr) dr),

ut(s, x) = Eρt(s, x)αt(s, x)f(t, x+ wt−s).

Then there is a constant N , depending only on r, p, q,K, and T , such
that∫ T

0

ut(0, 0) dt ≤ N
( ∫

Rd+1
+

f re−2φ dtdx
)1/r

+N
( ∫

Q1,1

fd+3 dtdx
)1/(d+3)

.

(7.3)

Proof. By the strong Markov property of the Wiener process for any
stopping time τ we have

EIτ≤tρt(0, 0)αt(0, 0)f(0, wt) = EIτ≤tρτ (0, 0)ατ (0, 0)ut(τ, wτ ).
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Therefore, upon assuming without losing generality that T ≥ 1, for γ
from Lemma 7.4∫ T

0

ut(0, 0) dt = E

∫ γ

0

ρt(0, 0)αt(0, 0)f(t, wt) dt

+Eργ(0, 0)αγ(0, 0)

∫ T

γ

ut(γ, wγ) dt =: I1 + I2.

Observe that αt ≤ 1 and for t ≤ γ we have (t, wt) ∈ Q1,1 so that,
in particular, in the formula defining ρt(0, 0) we can replace φx with
φxIQ1,1 and hence all moments of ρt(0, 0)It≤γ and ργ(0, 0) are finite and
uniformly bounded in t. It follows by (3.3) that for any ν ∈ (1,∞)

I1 ≤ N
(
E

∫ T

0

f ν(t, wt)IQ1,1(t, wt) dt
)ν ≤ N‖f νIQ1,1‖

1/ν

Ld+5/2(Rd+1)
.

We choose ν so that ν(d+ 5/2) = d+ 3 and get that I1 is less than the
second term on the right in (7.3).

In what concerns I2 we again use αγ(0, 0) ≤ 1 and the finiteness of
all moments of ργ(0, 0). Then we find

I2 ≤ N
( ∫ 1

0

∫ T

s

( ∫
B1

urt (s, x) dx
)
dtds

)1/r
.

To estimate the interior integral with respect to x we insert there
exp(−2φ(s, x)) and again use Hölder’s inequality and the fact that
Eρt(s, x) ≤ 1. This yields

I2(s, t) :=

∫
B1

urt (s, x) dx ≤ e2K
∫

Rd

e−2φ(s,x)v̂t(s, x) dx,

where

v̂t(s, x) = Eρt(s, x)αt(s, x)f
r(t, x+ wt−s) ≤ Eβt(s, x)f

r(t, x+ wt−s).

Hence by Corollary 7.2

I2(s, t) ≤ e2K
∫

Rd

e−2φ(t,x)f r(t, x) dx,

which shows that I2 is less than the first term on the right in (7.3).
The lemma is proved.

In the following lemma by Q±T we mean (−T, T ) × Rd and use the
notation

τQ(x·) = inf{t ≥ 0 : (t, xt) 6∈ Q}, x· ∈ C (7.4)

instead of τQ(z·), where zt = (t, xt).
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Lemma 7.6. Let Q be a domain such that Q ⊂ Q±T . Let the assump-
tions of Lemma 7.5 be satisfied and let ε ∈ [0, 2) be a constant and h a
nonnegative Borel function on Q such that on Q

2Dtφ+ ∆φ ≤ heεφ. (7.5)

Then for any δ ∈ [0, 2 − ε), r ∈ (1, 2/(δ + ε)], there exists a constant
N , depending only on T, p, q,K, ε, δ, and r (but not Q), such that, for
any stopping time τ ≤ τQ(w·) we have

EΦτ ≤ N +N
( ∫

Q

hre−(2−rθ)φ dtdx
)1/r

+N sup
Q1,1

h, (7.6)

where θ = δ + ε, so that rθ ≤ 2, and

Φt := exp(−
∫ t

0

φx(s, ws) dws − (1/2)

∫ t

0

|φx(s, ws)|2 ds

− 2

∫ t

0

(Dtφ)+(s, ws) ds+ δφ(t, wt)).

Proof. By Itô’s formula

Φτ = Φ0 +mτ

+

∫ τ

0

Φt[δDtφ+(δ/2)∆φ− 2(Dtφ)+ +(1/2)(|δ− 1|2− 1)|φx|2](t, wt) dt,

where mt is a local martingale starting at zero. By using (7.5) and the
inequality |δ − 1| ≤ 1 we obtain

Φτ ≤ Φ0 + δ

∫ τ

0

Φth(t, wt) exp(εφ(t, wt)) dt+mτ . (7.7)

Since Φt ≥ 0 we take the expectations of both sides and drop Emτ .
More precisely, we introduce σn := inf{t ≥ 0 : |mt| ≥ n} and substitute
τ ∧ σn in place of τ in (7.7). After that we take expectations, use the
fact that Emt∧σn = 0, let n→∞, and finally use Fatou’s lemma along
with the monotone convergence theorem. Furthermore, we denote f =
IQh exp(θφ) and notice that τ ≤ T . Then in the notation of Lemma 7.5
we find that

EΦτ ≤ N +NE

∫ τ

0

ρt(0, 0)αt(0, 0)f(t, wt) dt

≤ N +N

∫ T

0

Eρt(0, 0)αt(0, 0)f(t, wt) dt = N +N

∫ T

0

ut(0, 0) dt.

It only remains to note that the first term in the right-hand side of (7.3)
is just the second one on the right in (7.6) and the second integral on
the right in (7.3) is less than volQ1,1 supQ1,1

h exp[θK(d + 3)]. The
lemma is proved.
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Theorem 7.7. Let K,K0 ∈ [0,∞) and ε ∈ [0, 2) be some constants
and let Q be a subdomain of Q±T and h be a nonnegative Borel function
on Q. Assume that for some p, q satisfying (2.1) we have

hIQ1,1 ≤ K, φIQ1,1 ≤ K, ‖φxIQ1,1‖Lq Lp ≤ K.

Also assume that on Q

φ ≥ 0, 2Dtφ ≤ K0φ, 2Dtφ+ ∆φ ≤ heεφ.

Finally, let φx satisfy the linear growth condition:

sup
t∈[0,T ],x∈Rd

|φx|/(1 + |x|) <∞.

and denote by xt, t ∈ [0, T ], the solution of

xt = wt −
∫ t

0

φx(s, xs) ds.

Then for any r ∈ (1, 4/(2 + ε)] there exists a constant N , depending
only on r, d, T, p, q,K, and ε, such that

E sup
t≤τQ(x·)

exp[µ(φ(t, xt) + ν|xt|2)] ≤ N +NHQ(T, σ, r), (7.8)

where τQ(x·) is introduced in (7.4), µ, ν, and δ are taken from (2.5),
and σ = (2− rθ)ν, θ = 2δ + ε.

Proof. Define φ̄ = φ+ ν|x|2,

Mt = exp(δφ̄(t, xt)− (K0/2)

∫ t

0

φ̄(s, xs) ds), M∗ = sup
t≤τQ(x·)

Mt.

Then for t ≤ τQ(x·)

φ̄(t, xt) ≤ lnM1/δ
∗ + (K0/(2δ))

∫ t

0

φ̄(s, xs) ds

and hence by Gronwall’s inequality

φ̄(t, xt) ≤ etK0/(2δ) lnM1/δ
∗ ≤ eTK0/(2δ) lnM1/δ

∗ .

Therefore, to prove (7.8), it suffices to prove that E
√
M∗ ≤ N . In

turn by a well-known result on transformations of stochastic inequal-
ities (see, for instance, Lemma 3.2 in [12]), if EMτ ≤ N1 for all stop-
ping times τ ≤ τQ(x·), then E

√
M∗ ≤ 3N1. Thus, it suffices to esti-

mate EMτ .
On a probability space carrying a d-dimensional Wiener process w̄t

introduce x̄t as the solution of the equation

x̄t = w̄t −
∫ t

0

Is<τQ(x̄·)φ̄x(s, x̄s) ds. (7.9)
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Also set

M̄t = exp(2δφ̄(t, x̄t)− 2

∫ t

0

(Dtφ̄)+(s, x̄s) ds).

Write Ē for the expectation sign on the new probability space and
observe that on Q

2Dtφ̄+ ∆φ̄ = 2Dtφ+ ∆φ+ 2νd ≤ (h+ 2νd)eεφ̄.

Then after an obvious change of measure (cf. (3.10)) equation (7.6) with
2δ, Ē, φ̄, and w̄t in place of δ, E, φ, and wt, respectively, θ = 2δ + ε,
and r ∈ (1, 2/(2δ + ε)] is rewritten as

ĒM̄τ ≤ N +N
( ∫

Q

hrI(0,T )e
−(2−rθ)φ̄ dtdx

)1/r

and since φ̄ ≥ ν|x|2 on Q, we obtain

ĒM̄τ ≤ N +NH1/r
Q (T, (2− rθ)ν, r) =: N0

for all stopping times τ ≤ τQ(x̄·). Combining this with the inequality,

exp(2δφ̄(t, x̄t)−K0

∫ t

0

φ̄(s, x̄s) ds) ≤ M̄t, t ≤ τQ(x̄·),

the left-hand side of which is quite similar to Mt but with 2φ̄ in place
of φ̄, by the above argument we get

Ē sup
t≤τQ(x̄·)

exp(2µν|x̄t|2) ≤ Ē sup
t≤τQ(x̄·)

exp(2µφ̄(t, x̄t)) ≤ NN0. (7.10)

We now estimate EMτ through ĒM̄τ by using Girsanov’s theorem
and Hölder’s inequality. We use a certain freedom in choosing x̄t and
w̄t and on the probability space where w· and x· are given we introduce
a new measure by the formula

P̄ (dω) = exp(−2ν

∫ ∞

0

xtIt<τQ(x·) dwt − 2ν2

∫ ∞

0

|xt|2It<τQ(x·) dt)P (dω).

The linear growth condition guarantees that P̄ is a probability measure.
Furthermore, as is easy to see

x̄t := xtIt<τQ(x·) + (wt − wτQ(x·) + xτQ(x·))It≥τQ(x·)

coincides with xt for t ≤ τQ(x·) and satisfies (7.9) with

w̄t = wt + 2ν

∫ t

0

xsIs<τQ(x·) ds,
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which is a Wiener process with respect to P̄ . In this notation for
τ ≤ τQ(x·) = τQ(x̄·)

EMτ ≤ ĒM̄1/2
τ exp(2ν

∫ ∞

0

x̄tIt<τQ(x̄·) dw̄t − 2ν2

∫ ∞

0

|x̄t|2It<τQ(x̄·) dt),

≤ (ĒM̄τ )
1/2

(
Ēρ1/2 exp

(
12ν2

∫ ∞

0

|x̄t|2It<τQ(x̄·) dt
))1/2

,

where

ρ = exp(8ν

∫ ∞

0

x̄tIt<τQ(x̄·) dw̄t − 32ν2

∫ ∞

0

|x̄t|2It<τQ(x̄·) dt).

Observe that Ēρ = 1 and ĒM̄τ ≤ N0. Therefore,

EMτ ≤ N
1/2
0

(
Ē exp

(
24ν2

∫ τQ(x̄·)

0

|x̄t|2 dt
))1/4

.

It only remains to refer to (7.10) after noticing that

24ν2

∫ τQ(x̄·)

0

|x̄t|2 dt ≤ 24ν2T sup
t≤τQ(x̄·)

|x̄t|2 = 2µν sup
t≤τQ(x̄·)

|x̄t|2

and use the inequality aα ≤ 1 + a if a ≥ 0, 0 ≤ α ≤ 1. The theorem is
proved.

8. Proof of Theorem 2.7 and concluding Remarks

By Theorem 2.1 the solution xt is defined at least until the time ζ
when (s+ t, xt) exits from all Qn. We claim that to prove that ζ = ∞
(a.s.) and also to prove the second assertion of the theorem, it suffices to
prove that for each T ∈ (0,∞) andm ≥ 1 there exists a constantN , de-
pending only on d, p(m+1), q(m+1), ε, T , K, ‖ψxIQm+1‖Lq(m+1) Lp(m+1)

,

dist (∂Qm, ∂Qm+1), sup{ψ + h,Qm+1}, and the function H such that
for (s, x) ∈ Qm we have

E sup
t<ζ∧T

exp(µψ(s+ t, xt) + µν|xt|2) ≤ N. (8.1)

To prove the claim notice that (8.1) implies that

sup
t<ζ∧T

(ψ(s+ t, xt) + |xt|2) <∞ (a.s.). (8.2)

It follows that (a.s.) there exists an n ≥ 1 such that up to time ζ∧T the
trajectory zt = (s + t, xt) lies in Qn. Indeed, on the set of all ω where
this is wrong, for the first exit time τn of zt from Qn we have τn < T
for all n. However owing to (8.2), the sequence xτn is bounded and
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therefore the sequence zτn has limit points on ∂Q. By the assumptions
before Theorem 2.7

lim
n→∞

ψ(zτn) = ∞,

which only happens with probability zero again due to (8.2). Hence,
(a.s.) there is an n ≥ 1 such that T ≤ τn. Since this happens for any
T and τn < ζ we conclude ζ = ∞ (a.s.), which proves our intermediate
claim.

Since dist(∂Qm, ∂Qm+1) > 0 we can find κ ∈ (0, 1] sufficiently small
so that (s, x)+Qκ2,κ ⊂ Qm+1 for all (s, x) ∈ Qm. Therefore, by transla-
tion and dilation, without losing generality, we may assume that s = 0,
x = 0, and that Q1,1 ⊂ Qm+1.

Next we notice that obviously, to prove (8.1) it suffices to prove that
with N of the same kind as in (8.1) for any n ≥ m+ 2

E sup
t<τn∧T

exp(µψ(t, xt) + µν|xt|2) ≤ N. (8.3)

Fix an n ≥ m + 2. By virtue of Theorem 5.1 the left-hand side
of (8.3) will not change if we change ψx outside of Qn. Therefore we
may replace ψ with ψη, where η is an infinitely differentiable function
equal 1 on a neighborhood of Q̄n and 0 outside of Qn+1. To simplify
the notation we just assume that ψ itself vanishes outside of Qn+1 and
(2.3) holds in a neighborhood of Q̄n. This is harmless as long as we
prove that N depends appropriately on the data.

Now we mollify ψ by convolving it with a δ-like smooth functions
ξγ(t, x) = γ−d−1ξ(t/γ, x/γ) with compact support. Denote by ψ(γ)

the result of the convolution and use an analogous notation for the
convolution of ξγ(t, x) with other functions. Also denote by xγt the
solution of (2.4) with s = 0, x = 0, and ψ(γ) in place of ψ.

Consider the bounded function f (1) on C given by the formula

f (1)(y·) = sup
t<τn(y·)∧T

exp(µψ(t, yt) + µν|yt|2)

with an obvious meaning of τn(y·) and let f (γ) be defined by the same
formula with ψ(γ) in place of ψ. By using Lemma 3.6 we conclude that
the left-hand side of (8.3) is equal to the limit as γ ↓ 0 of

E sup
t<τn(xγ

· )∧T
exp(µψ(γ)(t, xγt ) + µν|xγt |2). (8.4)

In the light of the fact that (2.3) holds in a neighborhood of Q̄n we
have that on Qn for sufficiently small γ

2Dtψ
(γ) + γψ(γ) = (2Dtψ + γψ)(γ) ≤ (heεψ)(γ) = hγeεψ

(γ)

,
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where hγ := (heγψ)(γ)e−γψ
(γ) → h uniformly on Qn since h is continu-

ous. The functions HQn corresponding to hγ converge to the original
HQn as γ ↓ 0 since Qn is a bounded subset of Q. Furthermore, the
condition 2Dtψ

(γ) ≤ K0ψ
(γ) also holds in a neighborhood of Q̄n for

sufficiently small γ.
We now apply Theorem 7.7 for Qn ∩Q±T in place of Q to conclude

that
E sup

t<τn∧T
exp(µνψ(t, xt) + µν|xt|2)

= lim
γ↓0

E sup
t<τn(xγ

· )∧T
exp(µνψ(γ)(t, xγt ) + µν|xγt |2)

≤ N +NHQn(T, (2− rθ)ν, r) ≤ N +NHQ(T, (2− rθ)ν, r),

where the values of all the parameters are specified in Theorem 7.7
and the constants N depend only on r, d, p(m + 1), q(m + 1), ε, T , K,
‖ψxIQm+1‖Lq(m+1) Lp(m+1)

, dist (∂Qm, ∂Qm+1), and sup{ψ + h,Qm+1}.
We finally use assumption (H). Fix any r0 ∈ (1, 2/(2δ + ε)), set

σ = (2− r0θ)ν (> 0) and take r = r(T, σ) from condition (H). Hölder’s
inequality shows that if condition (H) is satisfied with r = r′ where
r′ > 1, then it is also satisfied with any r ∈ (1, r′]. Hence without
losing generality we may assume that r = r(T, σ) ∈ (1, r0]. Then
(2− rθ)ν ≥ σ and HQ(T, (2− rθ)ν, r) ≤ HQ(T, σ, r(T, σ)) <∞. Thus,
Theorem 7.7 yields the needed estimate of (8.4). The theorem is proved.

Remark 8.1. In Theorem 2.7 additionally assume that (0, 0) ∈ Q and
take the solution of (2.4) corresponding to s = 0 and x = 0. Introduce
τ = inf{t ≥ 0 : (t, wt) 6∈ Q}, τn(y·) = inf{t ≥ 0 : (t, yt) 6∈ Qn},

ρt(n) = exp(−
∫ t∧τn(w·)

0

ψx(s, ws) dws− (1/2)

∫ t∧τn(w·)

0

|ψx(s, ws)|2 ds),

ρt = lim
n→∞

ρt(n).

In the definition of ρt(n) we can replace ψx with IQnψx and therefore
ρt(n) are martingales. Furthermore, for any m, on the set {t < τm(w·)}
we obviously have ρt(n) = ρt for any n ≥ m. Hence, by Girsanov’s
theorem for any T ∈ (0,∞) and NT -measurable nonnegative f = f(y·)

Ef(x·) = lim
n→∞

Ef(x·)Iτn(x·)>T = lim
n→∞

Ef(w·)ρT (n)Iτn(w·)>T

= lim
n→∞

Ef(w·)ρT Iτn(w·)>T = Ef(w·)ρT Iτ>T .

In particular, EρT Iτ>T = 1 and since, by Fatou’s lemma EρT∧τ ≤ 1,
we get that

1 ≥ EρT∧τ = EρτIτ≤T + EρT Iτ>T , EρτIτ≤T = 0, EρτIτ<∞ = 0,
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which is only possible if∫ τ

0

|ψx(s, ws)|2 ds = lim
n→∞

∫ τn(w·)

0

|ψx(s, ws)|2 ds = ∞

(a.s.) on the set where {τ <∞}.
Another consequence of this argument is that

Ef(x·) = Ef(w·)ρT∧τ ,

which in turn for f being FS-measurable with S ≤ T implies that ρt∧τ
is a martingale.

Remark 8.2. Under Assumption 2.1 take a Borel locally bounded Rd-
valued function b(t, x) defined on Rd+1 satisfying the condition |b(t, x)| ≤
K(1 + |x|), where K is a finite constant. Then it turns out that the
first assertion of Theorem 2.7 still holds with the equation

xt = x+ wt −
∫ t

0

ψx(s+ r, xr) dwr +

∫ t

0

b(s+ r, xr) dr (8.5)

in place of (2.4).
To prove this we take the process zt from Theorem 2.1 corresponding

to the drift term b−ψx and prove that ζ = ∞ (a.s.). Denote by x̄t the
process from Theorem 2.7 solving equation (2.4) and for T ∈ [0,∞)
introduce

ρT (s, x) = exp
( ∫ T

0

b(s+ r, x̄r) dwr − (1/2)

∫ T

0

|b(s+ r, x̄r)|2 dr
)
.

First we claim that

EρT (s, x) = 1, ∀(s, x) ∈ Q, T ∈ [0,∞). (8.6)

To prove (8.6) fix (s, x) ∈ Q and observe that by the Markov property
of x̄t for some constant α ∈ [0,∞) we have

EρT+α(s, x) = EρT
[
Et,yρα(t, y)

]∣∣
t=s+T,y=x̄s+T

,

where we use the notation from Theorem 2.5. Furthermore, for (t, y) ∈
Q

Et,y exp

∫ α

0

|b(t+ r, x̄r)|2 dr ≤ Et,y expKα(1 + sup
r≤α

|x̄r)|2) (8.7)

which is finite due to Theorem 2.7 for Kα ≤ µ2/(12α), where µ is taken
from (2.5) with α in place of T . By analizing the condition Kα ≤
µ2/(12α) we easily conclude that there exists an α0 = α0(ε,K0) > 0
such that the rignt-hand side of (8.7) is finite for α = α0. It follows
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(see, for instance, [22]) that Et,yρα0(t, y) = 1 and hence for any integer
n ≥ 0

Eρ(n+1)α0(s, x) = Eρnα0(s, x) = 1.

Since ρT (s, x) is a supermartingale, we have proved (8.6).
Now we fix T ∈ (0,∞), introduce a new probability measure by

P̄ (dω) = ρT (s, x)P (dω), and by Girsanov’s theorem conclude that x̄t
satisfies (8.5) for t ∈ [0, T ] (a.s.) with a certain process w̄t in place of
wt and w̄t is a Wiener process relative to the new probability measure.
Hence there exists a probability space on which (8.5) has solutions
defined at least up to T . By the weak uniqueness in Theorem 2.1
applied to Q ∩Q±(s+T ), we have ζ > T (a.s.) and since T is arbitrary,
ζ = ∞ (a.s.) indeed.

One of the important features of (8.5) is that the added drift coeffi-
cient may or may not be the gradient of a function.

Remark 8.3. By using (ii) and observing that equation (2.4) is equiv-
alent to the following

xt = x+ wt −
∫ t

0

[K(1 + |x|2) + ψ]x(s+ r, xr) dr +

∫ t

0

2Kxr dr

we conclude that (2.4) has a unique solution defined for all times if
(s, x) ∈ Q provided that ψ + K(1 + |x|2) rather than ψ satisfies As-
sumption 2.1. This carries our result about existence and uniqueness
of strong solutions over to the cases in which ψ is not necessarily non-
negative but ψ ≥ −K(1 + |x|2).

Remark 8.4. Before τn(x·) the process x· satisfies (2.4) with IQnψx in
place of ψx. Hence by Lemma 3.3

E

∫ τn(x·)

0

|f(t, xt)| dt ≤ N‖fIQn‖Lq Lp ,

with N independent of f if d/p+2/q < 2. This estimate and Girsanov’s
theorem allow adding into equation (2.4) a new drift b which vanishes
outside of some Qn and is such that ‖bIQn‖Lq Lp < ∞. Again b need
not be a gradient.

Remark 8.5. One can obviously combine the observations from Re-
marks 8.2 and 8.4.

9. Applications

9.1. Diffusions in random media. In this subsection we would like
to apply our results to a particle which peforms a random motion in
Rd, d ≥ 2, interacting with impurities which are randomly distributed
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according to a Gibbs measure of Ruelle type. So, the impurities form a
locally finite subset γ = {xk | k ∈ N} ⊂ Rd. The interaction is given by
a pair potential V to be specified below defined on {x ∈ Rd : |x| > ρ},
where ρ ≥ 0 is a given constant. The stochastic dynamics of the particle
is then determined by a stochastic equation of type (2.4) as in Theorem
2.7 above with

Q := R× (Rd \ γρ), ψ(t, x) :=
∑
y∈γ

V (x− y), (t, x) ∈ Q, (9.1)

where γρ is the closed ρ-neighborhood of the set γ, i.e., the random
path xt of the particle should be the unique stong solution of

xt = x+ wt −
∫ t

0

∑
y∈γ

Vx(xs − y) ds, t ≥ 0. (9.2)

Below we shall give conditions on the pair potential V which imply
that this is indeed the case, i.e. that Theorem 2.7 above applies, for all
γ outside a set of measure zero for the Gibbs measure. Let us define
the set of admissible impurities γ we can treat, namely (cf. [16])

Γad := {γ ⊂ Rd | ∀r > 0∃c(γ, r) > 0

: |γ ∩ Br(x)| ≤ c(γ, r) log(1 + |x|) for all x ∈ Rd},
(9.3)

where Br(x) denotes the open ball with center x and radius r and where
|A| denotes the cardinality of a set A. We emphasize that for essentially
all classes of Gibbs measures in equilibrium statistical mechanics of
interacting infinite particle systems in Rd the set Γad has measure one
(cf. [15]). In particular, this is true for Ruelle measures (see, [20]). Since
this is the only fact we use about such Gibbs measures, we do not recall
the precise and quite involved definition here, but refer e.g. to [3].

In what follows we fix γ ∈ Γad. Here are the conditions we need on
the pair potential V . Notice that the typical case when ρ = 0 is not
excluded.
(V1) The function V is once continuously differentiable in Rd ∩ {|x| >
ρ}) and lim|x|↓ρ V (x) = ∞.
(V2) There exist finite constants α > d/2, K ≥ 0, ε ∈ [1, 2) such that
with U(x) := K(1 + |x|2)−α we have

|V (x)|+ |Vx(x)| ≤ U(x) for |x| ≥ ρ+ 1, (9.4)

∆V (x) ≤ K(eε(V (x)+U(x)) − 1) for |x| > ρ (9.5)

in the sense of distributions on {x ∈ Rd : |x| > ρ}.
We emphasize that the above conditions are fulfilled for essentially

all potentials of interest in statistical physics.



DIFFUSIONS WITH SINGULAR DRIFT 39

Introduce V̄ (x) = V (x) + 2U(x), |x| > ρ, and let

ψ̄(t, x) :=
∑
y∈γ

V̄ (x− y), b(t, x) := 2
∑
y∈γ

Ux(x− y), (t, x) ∈ Q.

It is easy to see (cf. [16, Lemma 3.1]) that owing to (9.4) and the fact
that γ ∈ Γad with Γad described in (9.3), the function ψ is continuously
differentiable inQ and |b(t, x)| ≤ N log(2+|x|), whereN is independent
of (t, x). Also notice that for appropriate constants N we have 2∆U ≤
NU ≤ N(eεU−1). Upon combining this with the inequalities V +U ≥ 0
and

∑
(exp ak − 1) ≤ exp

∑
ak − 1, ak ≥ 0, and the fact that one can

always differentiate series converging in the sense of distributions, we
find

∆V̄ ≤ K(eε(V+U) − 1) +N(eεU − 1) ≤ N(eεV̄ − 1),

∆ψ̄(t, x) =
∑
y∈γ

∆V̄ (x− y) ≤ N
∑
y∈γ

(eεV̄ (x−y) − 1)

≤ K exp(
∑
y∈γ

εV̄ (x− y)
)

= Keεψ̄(t,x). (9.6)

It follows that all conditions on ψ̄ in Theorem 2.7 are fulfilled and
therefore by Remark 8.2 the equation

xt = x+ wt −
∫ t

0

ψ̄x(r, xr) dwr +

∫ t

0

b(r, xr) dr (9.7)

has a unique strong solution defined for all times if x ∈ Rd \ γρ. Obvi-
ously, equation (9.7) coincides with (9.2).

Remark 9.1. For ρ = 0 in [4] (which is based in part on the analytic
results in [16]) the existence of merely a weak solution to (9.2) was
proved. The assumptions in [4] and [16] are different, in [4] they are
much stronger than ours and in [16] they are basically weaker (yet see
Remark 2.9).

9.2. M-particle systems with gradient dynamics. In this subsec-
tion we consider a model of M particles in Rd interacting via a pair
potential V , similar to the one from the previous subsection but satis-
fying the following weaker conditions:
(V3) The function V is once continuously differentiable in Rd \ {0},
lim|x|↓0 V (x) = ∞, V ≥ −U , where U(x) := K(1 + |x|2) and K is a
constant.
(V4) There exists a constant ε ∈ [1, 2) such that

∆V (x) ≤ Keε(V (x)+U(x)) for x 6= 0

in the sense of distributions on Rd \ {0}.
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Some readers may like to restrict their attention to potentials which
are, in addition, symmetric, or radially symmetric, or bounded from
below, or have compact support, or else have some other properties
“natural” in particular applications. We, however, only impose the
conditions (V3) and (V4), the only ones used below.

Introduce V̄ := V + 2U ,

Q := R×
(

RMd \
⋃

1≤k<j≤M

{x = (x(1), . . . , x(M)) ∈ RMd : x(k) = x(j)}
)

and let the functions ψ, ψ̄, and b be defined on Q by

ψ(t, x) :=
∑

1≤k<j≤M

V (x(k) − x(j)), ψ̄(t, x) :=
∑

1≤k<j≤M

V̄ (x(k) − x(j)),

b = (b(1), ..., b(M)), b(k)(t, x) = 4K
M∑

j=1,j 6=k

(x(k) − x(j)).

Obviously, 2∆U ≤ NeεU for an appropriate constant N . Also ob-
viously ψ and ψ̄ are continuously differentiable in Q. Furthermore, in
the sense of distributions on Q (cf. (9.6))

∆V̄ ≤ K +K(eε(V+U) − 1) +N +N(eεU − 1) ≤ N +N(eεV̄ − 1),

∆ψ̄(t, x) = 2
∑

1≤k<j≤M

∆V̄ (xk − xj) ≤ N +N
∑

1≤k<j≤M

(eεV̄ (xk−xj) − 1)

≤ N +N(eεψ̄(t,x) − 1) ≤ Neεψ̄(t,x).

It follows that all conditions on ψ̄ in Theorem 2.7 are fulfilled and
therefore by Remark 8.2 the corresponding stochastic equation for a

process xt = (x
(1)
t , ..., x

(M)
t ) has a unique strong solution defined for all

times whenever for the initial condition x we have (0, x) ∈ Q. The
equation in question is the following system

x
(i)
t = xi + w

(i)
t −

∫ t

0

M∑
j=1,j 6=i

V̄x
(
(x(i)

s − x(j)
s )sign (j − i)

)
sign (j − i) ds

+

∫ t

0

b(i)(s, xs) ds, i = 1, ...,M.

Simple arithmetics shows that this system is rewritten as the following
one with i = 1, ...,M

x
(i)
t = x(i) + w

(i)
t −

∫ t

0

M∑
j=1,j 6=i

Vx
(
(x(i)

s − x(j)
s )sign (j − i)

)
sign (j − i) ds,

(9.8)
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which thus has a unique strong solution defined for all times whenever
(0, x(1), ..., x(M)) ∈ Q.

Remark 9.2. (i) The results of this subsection substantially improve
those in [4] (see also [16]) where under stronger assumptions on V
merely the existence of weak solutions to (9.8) was proved. The latter
results themselves generalized earlier results in [24], [25]. We also im-
prove the recent result on strong solutions in [26, Lemma 1], where as
in [24], [25] much stronger conditions than ours were imposed on the
behaviour of V at zero (cf. [26, Condition (P)]).
(ii) By the same arguments as in the previous subsection one can inves-
tigate the hard core case where the particles are balls of a fixed radius
rather than points in Rd.

10. Appendix

Take a constant T ∈ (0,∞).

Lemma 10.1. Let p, q ∈ (1,∞), 2/q < β ≤ 2, and u ∈ H2,q
p (T ) Then

for any s, t ∈ [0, T ] and a > 0

‖u(t)− u(s)‖H2−β
p

≤ N |t− s|β/2−1/qaβ−1(a‖u‖H2,q
p (T ) + a−1‖Dtu‖Lq

p(T )),

(10.1)
where N depends only on p, q, β, which upon minimizing with respect
to a > 0 yields

‖u(t)− u(s)‖H2−β
p

≤ N |t− s|β/2−1/q‖u‖1−β/2
H2,q

p (T )
‖Dtu‖β/2Lq

p(T )
. (10.2)

This lemma is a particular case of Theorem 7.3 of [19].

Lemma 10.2. Let p, q ∈ (1,∞) and u ∈ H2,q
p (T ). We assert the

following.
(i) If d/p + 2/q < 2, then u(t, x) is a bounded Hölder continuous

function on [0, T ]× Rd. More precisely, for any ε, δ ∈ (0, 1] satisfying

ε+ d/p+ 2/q < 2, 2δ + d/p+ 2/q < 2

there exists a constant N , depending only on p, q, ε, and δ, such that
for all s, t ∈ [0, T ] and x, y ∈ Rd satisfying x 6= y we have

|u(t, x)− u(s, x)| ≤ N |t− s|δ‖u‖1−1/q−δ
H2,q

p (T )
‖Dtu‖1/q+δ

Lq
p(T )

. (10.3)

|u(t, x)|+ |u(t, x)− u(t, y)|
|x− y|ε

≤ NT−1/q(‖u‖H2,q
p (T ) + T‖Dtu‖Lq

p(T ))

(10.4)
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(ii) If d/p+2/q < 1, then ux(t, x) is Hölder continuous in [0, T ]×Rd,
namely for any ε ∈ (0, 1) satisfying

ε+ d/p+ 2/q < 1,

there exists a constant N , depending only on p, q and ε, such that for
all s, t ∈ [0, T ] and x, y ∈ Rd satisfying x 6= y, equations (10.3) and
(10.4) hold with ux in place of u and ε/2 in place of δ.

Proof. (i) First take β = 2δ + 2/q and notice that 2/q < β ≤ 2
and 2 − β > d/p. Then we get (10.3) from (10.2) by the Sobolev
embedding theorems after simple arithmetical manipulations showing,
for instance, that β/2− 1/q = δ.

To prove (10.4) observe that, as is easy to see, this estimate is in-
variant with respect to dilations of the time axis. Therefore, we may
concentrate on the case T = 1. Consider (10.1) with a = 1 and u
replaced by the product of u and an infinitely differentiable function
depending only on t and equal to zero either at 0 or at 1. Then from
Lemma 10.1 by taking s to be 0 or 1 one obtains that for any t ∈ [0, 1]
and β satisfying 2/q < β ≤ 2

‖u(t)‖H2−β
p

≤ N(‖u‖H2,q
p (1) + ‖Dtu‖Lq

p(1)) (10.5)

Take here β = ε′ + 2/q, where 0 < ε′ < 2 − (ε + d/p + 2/q). Then
2/q < β ≤ 2 and (10.4) follows from (10.5) and the Sobolev embedding
theorems due to the fact that 2− β − d/p > ε.

(ii) Here with δ = ε/2 and the same β’s as above we have 2 − β >
1+d/p and 2−β−d/p > 1+ ε, respectively, and again everything is a
straightforward consequence of the Sobolev embedding theorems. The
lemma is proved.

We are now in the position to prove an existence theorem.

Assumption 10.1. We are given numbers p and q satisfying (2.1)
and a Borel Rd-valued function b = b(t, x) defined on Rd+1 such that
b ∈ Lq Lp.

Theorem 10.3. Let Assumption 10.1 be satisfied. Take ε > 0, f ∈
Lq
p(T ) and φ ∈ H

2−2/q+ε
p . Then in H2,q

p (T ) there is a unique solution
of the equation

Dtu+ (1/2)∆u+ biuxi + f = 0 (10.6)

with boundary condition u(T, x) = φ(x). For this solution

‖Dtu‖Lq
p(T ) + ‖u‖H2,q

p (T ) ≤ N(‖f‖Lq
p(T ) + ‖φ‖

H
2−2/q+ε
p

), (10.7)

where N = N(d, q, p, ε, T, ‖b‖Lq Lp).
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Proof. This theorem for b = 0 is a particular case of Theorem 1.2 of
[18] where p, q ∈ (1,∞) is the only restriction on p, q. Actually, in that
theorem the left-hand side of (10.7) contains only ‖uxx‖Lq

p(T ). However,
then one gets an estimate of ‖Dtu‖Lq

p(T ) from the equation itself and
after that the only missing norm is ‖u‖Lq

p(T ), which one estimates by
using

‖u(t)‖Lp ≤ ‖φ‖Lp +

∫ T

t

‖Dsu(s)‖Lp ds

and ‖φ‖Lp ≤ ‖φ‖
H

2−2/q+ε
p

. Therefore the method of continuity is ap-

plicable and to prove the theorem it suffices to prove (10.7) assuming
that the solution already exists.

By Theorem 1.2 of [18] we find that for S ∈ [0, T ]

I(S) := ‖Dtu‖qLq
p((S,T ))

+ ‖u‖qHq
2,p((S,T ))

≤ N
(
‖f‖qLq

p((S,T ))
+ ‖φ‖q

H
2−2/q+ε
p

+ ‖biuxi‖qLq
p((S,T ))

)
. (10.8)

By Lemma 10.2 (ii) and by the Sobolev embedding theorems for t ∈
(S, T )

|ux(t, x)| ≤ |ux(t, x)− φx(x)|+ |φx| ≤ NI1/q((t, T )) +N‖φ‖
H

2−2/q+ε
p

.

Furthermore,

‖biuxi‖qLq
p(S,T )

≤
∫ T

S

sup
x
|ux(t, x)|q‖b(t, ·)‖qLp

dt.

It follows that

I(S) ≤ N
(
‖f‖qLq

p(T )
+ ‖φ‖q

H
2−2/q+ε
p

)
+N

∫ T

S

I(t, T )‖b(t, ·)‖qLp
dt.

Finally, by using Gronwall’s inequality we estimate I(0) and arrive at
(10.7). The theorem is proved.

Remark 10.4. The term ∆u in (10.6) can be replaced with aij(t, x)uxixj ,
if the matrix a is symmetric, uniformly nondegenerate, bounded and
Borel in (t, x), and uniformly continuous in x ∈ Rd uniformly with
respect to t. This is proved by using standard techniques on the basis
of Theorem 1.2 of [18] which, in particular, states that the result is
true for b = 0 and a independent of x.

Remark 10.5. The reader may have noticed that in the main part of the
article, in fact, we only used the solvability of (10.6) on [T − ε, T ] for
sufficiently small ε. In connection with this observe that the constant
N in (10.7) can be chosen to increase with respect to T and thus be
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bounded for T small. This follows from the fact that solutions on larger
time intervals also solve the equation on smaller ones.

The following result is of main importance in what concerns the
needs of the present article.

Lemma 10.6. Let Assumption 10.1 be satisfied and let B2 be a ball in
Rd of radius 2. Take functions φ1, ..., φd ∈ C∞

0 (Rd) so that φi = xi in
B2. By using Theorem 10.3 introduce ui, i = 1, ..., d, as the solutions of
(10.6) with f = 0 and boundary condition ui(T, x) = φi(x). Then there
exists an ε ∈ (0, 1) independent of T such that for t ∈ [(T −ε)+, T ] and
x, y ∈ B2 we have

(1/2)|x− y|2 ≤
∑
i

[ui(t, x)− ui(t, y)]2 ≤ 2|x− y|2.

Proof. It suffices to concentrate on T ∈ (0, 1]. Indeed, for larger T
one can just shift the origin of the time axis. Next, observe that

ui(t, x)− ui(t, y) = Aij(t, x, y)(xj − yj),∑
i

[ui(t, x)− ui(t, y)]2 = Gij(t, x, y)(xi − yi)(xj − yj),

where

Aij(t, x, y) =

∫ 1

0

uixj(t, rx+ (1− r)y) dr, Gij = AkiAkj.

By Lemma 10.2 (ii) and Remark 10.5, if ε is small enough, then for
all t ∈ [(T − ε)+, T ] the matrices A(t, x, y) and G(t, x, y) are close
to A(T, x, y) and G(T, x, y), respectively, uniformly in x, y ∈ Rd. If
x, y ∈ B2, then obviously A(T, x, y) = G(T, x, y) = I, where I is the
unit d × d matrix. It follows that the eigenvalues of G(t, x, y) can be
made as close to 1 as we wish if x, y ∈ B2 on the account of choosing
sufficiently small ε. This definitely implies the assertion of the lemma,
which is thereby proved.
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